

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Lecture 3: Image Formation (continued)

Menu for Today (January 16, 2023)

Topics:

– Lenses

- Human **eye** (as a camera)

Readings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5
- **Next** Lecture: none

Reminders:

- Google Colab tutorial video is available in Canvas
- Assignment 1 will be out today, January 16th
- iClicker can be registered now on Canvas, but having issues linking

— Image as a function Linear filtering

- Complete Assignment 0 (optional, ungraded) due today, January 16th

iClicker

Please sign up for the iClicker course via Canvas ("iClicker Sync" in menu) See also the <u>UBC iClicker Student Guide</u>

concernant manning it follows LIPC and provincial privacy

nt-guide/	E 🖒	♥	ABP	≡
H COLUMBIA	Q.~			
ort 🗙 Initiatives 🗙 Governance 🖍	 News 			
	Contact Lis			
	Contact Us			
udent response system that	What will I use it for?			
lually to in-class polls and low- n computer or mobile device. esponses instantly and may ct answers in the tool during	Your instructor may have you use iClicker for a variety of activities:			
	 Test your knowledge or opinions at different points in the class for marks 			
BC Privacy Impact	 Support peer instruction, wherein you answer a question, discuss in small 			

Today's "fun" Example #1: Nudging

Aerial view of the white stripes at the lake shore drive in Chicago.

Today's "fun" Example #1: Anchoring and Ordering

Champagne

CH18	NV	GREMILLET "Brut Selection"
CH31	NV	ERNEST RAPENEAU "Selection
CH12	NV	CHAMPAGNE ERNEST RAPE
CH05	NV	DRAPPIER "Carte d'Or" - Cha
CH30	2007	ERNEST RAPENEAU VINTAG
CH32	NV	ERNEST RAPENEAU "Premie
CH28	NV	DRAPPIER Brut Rose - Cham
CH29	2012	DRAPPIER "Millesime Except
CH11	2008	DRAPPIER " Cuvee Grande S
CH39	NV	ERNEST RAPENEAU "Grande

Sparkling Wines

CH06	NV	IL CORTIGIANO - Prosecco E
CH17	NV	VALLFORMOSA "Clasic" Sem
CH24	NV	VEUVE MOISANS "Blanc de I
CH25	NV	VALDO - Prosecco Extra Dry
CH33	NV	VALDO "Origine" Rose - Ven
CH03	2012	CHATEAU MONTGUERET Sa
CH04	NV	CAVA MASET RESERVA BRU
CH14	NV	TRIVENTO "Brut Nature" - N
CH21	2015	CAMASELLA - Glera - Vaneto
CH02	2013	BRUT D'ARGENT ICE - Chard
CH01	NV	VALDO "ORO PURO" Prosec
CH40	NV	MAISON DARRAGON - AOC
CH09	NV	LOU MIRANDA ESTATE 'LEO

Rose Wines

PO03	2014	CASAL MENDES Rose - Baga
RH09	2014	LA VIE EN ROSE - Cinsault - I
RH69	2015	LES EMBRUNS "La Croix des
RH04	2015	LES MAITRES VIGNERONS D
RH15	2015	MANON - COTES DE PROVE
RH04M	2015	LES MAITRES VIGNERONS D

Sweet Wines

AR33	2015	TRIVENTO "Birds & Bees" White - Mendoza	\$30
AR34	2016	TRIVENTO "Birds & Bees" Red - Mendoza	\$30
AU05	2015	DEAKIN ESTATE - Moscato - Murray Darling	\$30
AU12	2016	Chalk Hill - Moscato - McLaren Vale	\$30
AU68	NV	WESTEND ESTATE "Richland" - Moscato - New South Wales	\$30
AU107	NV	WESTEND ESTATE "Richland" - Pink Moscato - New South Wales	\$30

Champagne, Sparkling, Rose, Sweet Wines

- Champagne	\$65
n Brut" - Champagne	\$65
EAU - BRUT - Chardonnay/Pinot Noir/Pinot Meunier	\$75
mpagne	\$78
- Chardonnay/ Pinot Noir - Champagne	\$80
Cru Brut" - Champagne	\$80
bagne	\$85
ion" - Champagne	\$98
endree" - Champagne	\$130
Reserve"- Magnum - Champagne	\$130
tra Dry - Veneto	\$30
Seco - Cava	\$30
Blancs" - Loire Valley	\$30
- Treviso. Veneto	\$30
eto	\$30
umur Sec Rose - Cabernet Franc - Loire Valley	\$32
T - Macabeo/Xarello/Parellada - Cava	\$32
endoza	\$32
	\$32
onnay - France	\$35
o Superiore - Veneto	\$36
/ouvray Brut - Loire Valley	\$38
NE' - Sparkling Shiraz - Barossa Valley	\$42
- Portugal	\$30
anguedoc	\$30
Saintes" - Sable de Camargue	\$30
ST TROPEZ - Cotes de Provence	\$32
ICE - Grenache/Cinsault/Syrah Provence	\$34
LA PRESQU'ILE DE SAINT TROPEZ - Grenache/Mourve	\$68
hite - Mendoza	\$30

Developed by the French company **Varioptic**, the lenses consist of an oilbased and a water-based fluid sandwiched between glass discs. Electric charge causes the boundary between oil and water to change shape, altering the lens geometry and therefore the lens focal length

The intended applications are: **auto-focus** and **image stabilization**. No moving parts. Fast response. Minimal power consumption.

Video Source: <u>https://www.youtube.com/watch?v=2c6lCdDFOY8</u>

Developed by the French company **Varioptic**, the lenses consist of an oilbased and a water-based fluid sandwiched between glass discs. Electric charge causes the boundary between oil and water to change shape, altering the lens geometry and therefore the lens focal length

The intended applications are: **auto-focus** and **image stabilization**. No moving parts. Fast response. Minimal power consumption.

Video Source: <u>https://www.youtube.com/watch?v=2c6lCdDFOY8</u>

Electrostatic field between the column of water and the electron (other side of power supply attached to the pipe) — see full video for complete explanation

Video Source: <u>https://www.youtube.com/watch?v=NjLJ77luBdM</u>

Electrostatic field between the column of water and the electron (other side of power supply attached to the pipe) — see full video for complete explanation

Video Source: <u>https://www.youtube.com/watch?v=NjLJ77luBdM</u>

add auto-focus capability to it DataMan line of industrial ID readers (press release May 29, 2012)

As one example, in 2010, **Cognex** signed a license agreement with Varioptic to

Video Source: <u>https://www.youtube.com/watch?v=EU8LXxip1NM</u>

add auto-focus capability to it DataMan line of industrial ID readers (press release May 29, 2012)

As one example, in 2010, **Cognex** signed a license agreement with Varioptic to

Video Source: <u>https://www.youtube.com/watch?v=EU8LXxip1NM</u>

Lecture 2: Re-cap

Surface reflection depends on both the viewing (θ_v, ϕ_v) and illumination (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF**($\theta_i, \phi_i, \theta_v, \phi_v$)

Mirror surface: all incident light reflected in one directions $(\theta_v, \phi_v) = (\theta_r, \phi_r)$

Slide adopted from: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 2: Re-cap Pinhole Camera Abstraction

Pinhole Camera Abstraction

Lecture 2: Re-cap Projection 3D object point $P = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ projects t

Perspective

Weak Perspective

Orthographic

to 2D image point
$$P' = \begin{bmatrix} x' \\ y' \end{bmatrix}$$
 where

$$x' = f' \frac{x}{z}$$

$$y' = f' \frac{y}{z}$$

$$x' = mx$$

$$m = \frac{f'}{z_0}$$

$$y' = my$$

$$x' = x$$

$$y' = y$$

Forsyth & Ponce (1st ed.) Figure 1.9

Lecture 3: Re-cap Lens Properties

Rays passing through the center of the lens are not bent

- A lens focuses parallel rays (from points at infinity) at focal length of the lens

Lecture 3: Re-cap Lens Properties

Objects off the plane are blurred depending on the distance

Is convergence projection point **directly** / **inversely** proportional to world position?

1 1 1 $\frac{z'}{z'} - \frac{z}{z} = \frac{1}{f}$

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations

Is convergence projection point **directly** / **inversely** proportional to world position?

$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations

 $\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations

Is convergence projection point **directly** / **inversely** proportional to world position?

 $\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$ -F - 2F

Objects further away than the focal length

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations

Is convergence projection point **directly** / **inversely** proportional to world position?

Is convergence projection point **directly** / **inversely** proportional to world position?

 $\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$ - 2F -F

Objects further away than the focal length

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations

Objects at 2 x focal length

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations

Is convergence projection point directly / inversely proportional to world position?

Objects at 2 x focal length

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations

Is convergence projection point **directly** / **inversely** proportional to world position?

Is convergence projection point directly / inversely proportional to world position?

Objects at the focal length

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations

 $\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$ -F -2F

Objects closer than the focal length

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations

Is convergence projection point **directly** / **inversely** proportional to world position?

Is convergence projection point **directly** / **inversely** proportional to world position?

 $\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$ -F - 2F

Objects closer than the focal length

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations

$$z' = \frac{zf}{z+f}$$

Smaller aperture \Rightarrow smaller blur, larger **depth of field**

Depth of Field

Aperture size = f/N, \Rightarrow large N = small aperture

Real Lenses

- Real Lenses have multiple stages of positive and negative elements with differing refractive indices
- This can help deal with issues such as chromatic aberration (different colours bent by different amounts), vignetting (light fall off at image edge) and sharp imaging across the zoom range

Spherical Aberration

Forsyth & Ponce (1st ed.) Figure 1.12a

Spherical Aberration

Un-aberrated image

Image from lens with Spherical Aberration

Compound Lens Systems

A modern camera lens may contain multiple components, including aspherical elements

Vignetting

Vignetting in a two-lens system

Forsyth & Ponce (2nd ed.) Figure 1.12

The shaded part of the beam never reaches the second lens

Vignetting

Image Credit: Cambridge in Colour

Chromatic Aberration

- Index of **refraction depends on wavelength**, λ , of light
- Light of different colours follows different paths
- Therefore, not all colours can be in equal focus

Image Credit: Trevor Darrell

Other (Possibly Significant) Lens Effects

- Chromatic aberration
- Index of refraction depends on wavelength, $\lambda,$ of light
- Light of different colours follows different paths
- Therefore, not all colours can be in equal focus
- Scattering at the lens surface
- Some light is reflected at each lens surface
- There are other geometric phenomena/distortions
- pincushion distortion
- barrel distortion
- etc

Lens **Distortion**

Fish-eye Lens

- Szeliski (1st ed.) Figure 2.13
- Lines in the world are no longer lines on the image, they are curves!

Human Eye

- The eye has an iris (like a camera)
- Focusing is done by changing shape of lens
- When the eye is properly focused,
 light from an object outside the eye is
 imaged on the **retina**
- The retina contains light receptors
 called rods and cones

pupil = pinhole / aperture

retina = film / digital sensor

Slide adopted from: Steve Seitz

Fun Aside

https://io9.gizmodo.com/does-your-brain-really-have-the-power-to-see-the-world-5905180

George M. Stratton

Human Eye

- The eye has an iris (like a camera)
- Focusing is done by changing shape of lens
- When the eye is properly focused,
 light from an object outside the eye is
 imaged on the **retina**
- The retina contains light receptors
 called rods and cones

pupil = pinhole / aperture

retina = film / digital sensor

Slide adopted from: Steve Seitz

Human Eye

- The eye has an **iris** (like a camera)
- Focusing is done by changing shape of lens
- When the eye is properly focused,
 light from an object outside the eye is
 imaged on the **retina**
- The retina contains light receptors
 called rods and cones

pupil = pinhole / aperture

retina = film / digital sensor

Slide adopted from: Steve Seitz

Two-types of Light Sensitive Receptors

Rods

75-150 million rod-shaped receptors **not** involved in color vision, gray-scale vision only operate at night highly sensitive, can responding to a single photon yield relatively poor spatial detail

Cones

6-7 million cone-shaped receptors color vision operate in high light less sensitive yield higher resolution

Slide adopted from: James Hays

Human Eye

Density of rods and cones

Slide adopted from: James Hays

Lecture Summary

— We discussed a "physics-based" approach to image formation. Basic abstraction is the **pinhole camera**.

- Lenses overcome limitations of the pinhole model while trying to preserve it as a useful abstraction

- Projection equations: **perspective**, weak perspective, orthographic
- Thin lens equation
- Some "aberrations and **distortions**" persist (e.g. spherical aberration, vignetting)
- The human eye functions much like a camera

What is **Computer Vision**?

Compute vision, broadly speaking, is a research field aimed to enable computers to process and interpret visual data, as sighted humans can.

Sensing Device

Interpreting Device

Interpretation

blue sky, trees, fountains, UBC, ...

What is **Computer Vision**?

Compute vision, broadly speaking, is a research field aimed to enable computers to process and interpret visual data, as sighted humans can.

Image (or video)

and low-level processing ... we will talk about these topics <u>next week</u>

Sensing Device

Image (or video)

Discretization (spatially and and in terms of photon counts), camera **hardware**

Perception and encoding of **color** ... we will talk about this in a <u>few weeks</u>

Interpreting Device

Interpretation

blue sky, trees, fountains, UBC, ...

and low-level processing ... we will talk about these topics <u>next week</u>

Discretization (spatially and and in terms of photon counts), camera **hardware**

Perception and encoding of **color** ... we will talk about this in a few weeks

What is **Computer Vision**?

Compute vision, broadly speaking, is a research field aimed to enable computers to process and interpret visual data, as sighted humans can.

Sensing Device

Interpreting Device

Interpretation

blue sky, trees, fountains, UBC, ...

What is **Computer Vision**?

Compute vision, broadly speaking, is a research field aimed to enable computers to process and interpret visual data, as sighted humans can.

