THE UNIVERSITY OF BRITISH COLUMBIA

Don’t let this be you... - L2

CALM
Plan ahead!

AND

STUDY
FOR EXAMS

Lecture 24: Review

Final Exam Detalls

2.5 hours

Closed book, no calculators
— Equations will be given

Format similar to midterm exam
— Part A: Multiple-part true/false
— Part B: Short answer

No coding questions

How to study?

— Look at the Lectures Notes and Assignment and think critically if you truly
understand the material

— Look at each algorithm, concept,
— what are properties of the algorithm / concept?
— what does each step do?
— Is this step important”? can you imagine doing it another way"?
— what are parameters”? what would be the effect of changing those?

PIQZZQ

Course Review: Cameras and Lenses

Pinhole camera

Projections (and projection equations)
— perspective, weak perspective, orthographic

Lenses

Human eye

Pinhole Camera

A pinhole camera is a box with a small hall (aperture) in it

image
plane

I . J
pinhole .-~ virtual
- image

Forsyth & Ponce (2nd ed.) Figure 1.2

Summary of Projection Equations

L _
3D object point P = | y | projects to 2D image point P’ = .| where
- i

Perspective

Weak Perspective

Orthographic

Why Not a Pinhole Camera?

— |If pinhole Is too big then many directions
are averaged, blurring the image

| mm

— |If pinhole Is too small then diffraction
becomes a factor, also blurring the image

— Generally, pinhole cameras are dark,
because only a very small set of rays from a
particular scene point hits the image plane

().6mm .35 mm

— PInhole cameras are slow, because only a
very small amount of light from a particular
scene point hits the iImage plane per unit time

0.15 mm 0.07 mm

Image Credit: Credit: E. Hecht. “Optics,” Addison-Wesley, 1987

Lens Basics

A lens focuses parallel rays (from points at infinity) at focal length of the lens

Rays passing through the center of the lens are not bent

‘ from o0

N
To focus closer,
we have to move
the image plane back

J

\
,’

X

‘A

Course Review: Filters

Correlation and convolution
Box, pilloox, Gaussian filters
Separability

Non-linear filters: median, bilateral

Template matching

538

Linear Filters: Correlation vs. Convolution

Definition: Correlation

Definition: Convolution

(rotated by 180)

Filter

Y

¢

I'X,Y)y= Y » F@i,)I(X+iY +j)

I'X,Y)y= % » F(i,j)I(X—iY —j)

}

o

P

k k

j=—ki=—Fk

k k

j=—ki=—Fk

O

9

e

+ 60

Output

1 CBEJ

=9a+8b+ 7cC
€ 5563 L

- 2h + 1]

41

olololololo olololololo
ol K K1 K2 K B e ~~ e M R R K R e
ololaolololo olololololo
N|T|o|lo|T|q|e]°@ Vl. N|F|o|lo|s|q|e|°
olololololo -~ olololololo
m|o|o|o|o|n|9|° VA m|o|[o|o|o|n|9|°
ololaolololo olololololo
Mm|O|o|o|B|[n|2]< - Mm|O|o|o|B|n|2]<
o ololololo]o ~ o olololololo
™ QOO —| v _I_ ™ QOO v~ | —
ololaolololololo olo|lolololololo
N|FT|IO|OOTOD|AN| — | — N|FT|IO|LOOTOD|AN| — | —
ololaolololololo i olololololololo
I N|MO|OIAN|—~ | —]|D® D) I N|MO|OIN|—~ | —]|D®

o|o o|o
o|lo|o|o|olol|2|S o o|lo|o|lo|olo|2]2
D)
O
VY
” Y1 Y1 T
AN
FH
=
N\
V o|lo|R[R|R|R|o|o|o|o
~ o|lo|3I38|38|38|o|lo|o|o
F olo|lo|o
o|o o|lo|o|o

e — |o|o|o

—_— V_A o|lo|RI2138|I8|eo|o|lolo

O = o[=[8[3]38[8[=[=]8]°

m F o|lo|3I138I3138|e|o|8|e

ofololo o

a : OOESSSOOSO

o|lo|lo|o|o|o|o|o|K|o

> G
[N

T | Y]
- <
A |]]
O, — O
L

N I | D X ~—

L1 L

~— O |7
)
— — ™

X Fr_l

B o|lo|o|lo|lo|o|lo|lo|o|o o|lo|o|o|lo|o|lo|lo|o|o
o|lo|o|o|lo|o|lo|lo|o|o o|lo|o|o|lo|o|lo|lo|o|o

-~ olo|8|8|I8IS|o|o|o|o V_ olo|8|8|I8IS|o|o|o|o

"—-- o|lo|RI1I8|S|eo|o|lo|o ~ |o|o|8I8[I8|IS|co|leo|ole

N — olo|lS[8I3|le|e|o|o VA olo|RI8[8IS|o|o|lo|o

I N~

N — oloS[SloS|o|lo|o|o ~ o|lo|S|8|o|8|o|o|o|o

b olo|SIS18||o|o|o|o ool 8ISISIS|ele|o|o

o o

a o|lo|o|lo|o|lo|o|o|§|o o lo|o)lofo|lo|o|o|lo|§|o

S o|lo|o|o|lo|o|lo|lo|o|o wOOOOOOOOOO

a o|lo|o|o|lo|o|lo|lo|o|o E|lolo|o|lo|o|olo|olo|o

Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X QY)

Total: m® x n® multiplications

Separable 2D Gaussian:

At each pixel, (X,Y), thereare 2m multiplications

There are n Xmn pixelsin (X ,‘Y)

2

Total. 2m x n“ multiplications

Speeding Up Convolution (The Convolution Theorem)

General implementation of convolution:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X 7‘Y)

Total: m® x n® multiplications

Convolution if FFT space:

Cost of FFT/IFFT for image: O(n?logn)
Cost of FFT/IFFT for filter: O(m? log m)

Cost of convolution: @(nQ) Note: not a function of filter size !!!

Bilateral Filter

Domain Kernel

image ()
ge [(X,Y oq = 0.45
25 | 0 | 25 [255|255(255 1 00sl0.12|0.08 0 |0.9
’ 253 0.12]0.20|0.12 0.1
0 255
0.08(0.12|0.08 0.1
0 255 1
Gaussian Filter (only)
Range Kernel Range * Domain Kernel
o, = 0.45
0.98]1 0.98] 0.2 , 0.08] 0.12] 0.02 0.11] 0.16{ 0.03 0 [0.9
multiply
1 1 0.1 _) 0.12| 0.20{ 0.01 g 0.16| 0.26| 0.01 0.1] 1 — O 1
0.98[1 | 0.1 0.08| 0.12] 0.01 0.11] 0.16] 0.01 0.1 1
this Is different for each : .
(. . . Bilateral Filter
locations in the image)

Multi-Scale Template Matching

Correlation with a fixed-sized template only detects faces at specific scales

ATS VY

“r“

JUDYB,

DYB ATS JUQY BATS JUDYBATS JUDYBATS

= Template

Multi-Scale Template Matching

Correlation with a fixed-sized template only detects faces at specific scales

ATS VY

“r“

JUDYB,

DYB ATS JUQY BATS JUDYBATS JUDYBATS

= Template

Multi-Scale Template Matching

Correlation with a fixed-sized template only detects faces at specific scales

ATS VY

“r“

JUDYB,

DYB ATS JUQY BATS JUDYBATS JUDYBATS

= Template

Multi-Scale Template Matching

Correlation with a fixed-sized template only detects faces at specific scales

BATS JUD{BATS Junyams
A

o QWAL A

= Template

Multi-Scale Template Matching

Correlation with a fixed-sized template only detects faces at specific scales

UDYBATS JURYBATS #:2
>3 ‘

w

JUDYBATS ¥

= Template

Course Review: Edge and Corners

Estimating the image gradient
Canny edge detection
Marr/Hildreth edge detection
Boundary detection

Harris corner detection

Estimating Derivatives

“forward difference” implemented as “‘backward difference” implemented as

correlation correlation

from left from right

Estimating Derivatives

“forward difference” implemented as “‘backward difference” implemented as

correlation correlation

from left from right

Estimating Derivatives

“forward difference” implemented as “‘backward difference” implemented as

correlation correlation

from left from right

Estimating Derivatives

“forward difference” implemented as “‘backward difference” implemented as

correlation correlation

from left from right

Estimating Derivatives

“forward difference” implemented as “‘backward difference” implemented as

correlation correlation

from left from right

A Sort Exercise: Derivative in X Direction

Use the “first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

0O -041-0.3/-0.3| O

- EED
DD

0O [-04 -0.3 -0.3| O

A Sort Exercise: Derivative in Y Direction

Use the “first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

- EED
DD

Image Gradient

The gradient of animage: V f = Jf IOf

SRy
vf =105
The gradient points In the direction of most rapid increase of intensity:

The gradient direction is given by:

(how is this related to the direction of the edge?)

The edge strength is given by the gradient magnitude:

Image Gradient

The gradient of animage: V f = Jf IOf

SRy
vf =105
The gradient points In the direction of most rapid increase of intensity:

The gradient direction is given by: 8 = tan—1 (af/a—f)

(how is this related to the direction of the edge?)

The edge strength is given by the gradient magnitude: ||V f|| = \/ (a;’;) + (%)

Marr / Hildreth Laplacian of Gaussian

A “zero crossings of a second derivative operator” approach
Steps:
1. Gaussian for smoothing

2. Laplacian (Vv?) for differentiation where

02 (x,y) | &f(a
Vif(z,y) = 6,(;2 v) | 5,(;2 Y)

3. Locate zero-crossings in the Laplacian of the Gaussian (V2G') where

—1 [z*4y* 22442
VQG(x,y) — 27_‘_0_4 2 > exp 202

O

Canny Edge Detector

Steps:

1. Apply directional derivatives of Gaussian

2. Compute gradient magnitude and gradient direction

3. Non-maximum suppression
— thin multi-pixel wide “ridges”™ down to single pixel width

4. Linking and thresholding
— Low, high edge-strength thresholds

— Accept all edges over low threshold that are connected to edge over high
threshold

Autocorrelation

-

'

— - -
S
T S e .
/ " ‘.ﬁ“"',-ut_o. - A -
o=V . .~ \—; - »
. oy

rw

Szeliski, Figure 4.5

Harris Corner Detection Review

— Filter image with Gaussian
— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel Harris & Stephens (1988)

— Harris uses a Gaussian window ,
det(C') — wtrace”(C)
— Solve for product of the A’s | |

— If N’s both are big (product reaches local maximum above threshold) then we
have a corner

— Harris also checks that ratio of As is not too high

Course Review: Texture

Texture representation
Laplacian pyramid, oriented pyramid

Texture synthesis (Efros and Leung paper)

l4s)

lexture Representation

Result: 48-channel “image”

Figure Credit: Leung and Malik, 2001

Texture representation and recognition

e [exture Is characterized by the repetition of basic elements or textons

e [or stochastic textures, it is the identity of the textons, not their spatial

arrangement, that matters

L= =
. . .-
.:
X : = im 2 ¥ «
— -
' = |
. ': . .‘ .
3 g o v
=])
. 1
=
. < . .1 .
. - — — - —
. ,.
B
f] |
E ! g
X o
il i
o
o . r
=
I . .

- B & .
i | o }
Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

o> | 2
1x © 01X X
1% O W i
o O 0o o
m & 2 S @

C 5 [# O = 2

O m "X H L

g QS Im = i k-

— < IR i3 13
= 0 4 7

m .- e e

D

\

o 1

-

qv)

nﬂu bR

g egegesetede

RS

£ e

C esseseselel

% 02020202024

D

\

O

D

\

Q

S

-

I

D

f—

Texture representation and recognition

CEXNY

histogram
i

]

Universal texton dictionary

JEECE XN

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Course Review: L ocal Invariant Features

Keypoint detection using Difference of Gaussian pyramid
Keypoint orientation assignment

Keypoint descriptor

Matching with nearest and second-nearest neighbors

SIFT and object recognition

79

cale Invariant Feature Transform (SIFT

SIFT describes both a detector and descriptor

80 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

1. Multi-scale Extrema Detection

Half the size

s
= -
= =

= = = =
s -

-
= -
= =

= = = = -
= = -

s s -
- =
= = = = -

= = = = -~

—

- = -

s
s -

z = ~ =
—
- s

s -

-
= = = = -

A s

-
= = = -

= s s~

= = =~
A s s s s s s L

A s s s s s s L

z = = ~

- s s s s s L
- -~

= = = = = = = = -~

s~
s s s s L

7! oAE]O0 PUOOSS _ 7

A s s s s s s L
A - - s s s s S
A s s s s s s S
- - s s s s
A s s s s s s S
s s s s s s

- s s s s
- s s s s s S

A - - s s s L
A s s s s L
A s s s s s s S
s - s s s s

= = = ~Z Z Z 7 7

s - s s s s L
- s s s s
- - s s s s
- - s s s
= = = s~ -

A s s s s s s L
A s s s s s s L

= = =

SAR)00 1SJI1

A - s s s s S
- s s s s

- - s s s s
s s s

A s s s s s s L

= = = = = = = = -~

Difference of Gaussian (DoG)

(Gaussian

lekas (CMU)

IOU

loannis (Yannis) Gk

Slide Credi

31

1. Multi-scale Extrema Detection

Detect maxima and minima of Difference of Gaussian in scale space

-
™
=
o 3
O) &
\

© O
= &
O ©
O N
O —
D ©
DO
P

o 7

- T 7

-~
- ~ O -0 -0 - - -~

/
/

= O 0) - = 7

A A
- = O -0 -0 - - >
A A

- 7 T
>
>

= 7

90UBIIBA URISSNEY) JO 8][0S

VA
~—
™
N
|
e

Difference of Gaussian (DoG)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

32

2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

— Lowe suggests computing the ratio of the eigenvalues of C (recall Harris
corners) and checking If it is greater than a threshold

83

3. Orientation Assignment

— Create histogram of local gradient
directions computed at selected scale /

— Assign canonical orientation at peak
of smoothed histogram

— Each key specifies stable 2D
coordinates (x , y , scale, orientation)

384

4. SIFT Descriptor

— Thresholded image gradients are sampled over 16 x 16 array of locations in
scale space (weighted by a Gaussian with sigma half the size of the window)

— Create array of orientation histograms
— 8 orientations x 4 x 4 histogram array

Image gradients Keypoint descriptor

85

Alternatives to SIFT

— Histogram of Oriented Gradients (HoG) — more detailed, higher dimensional

— SURF — faster, lower dimensional

Course Review: Fitting Data to a Model

RANSAC

Hough transform

87

RANSAC (RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a
sample)

2. Points within some distance threshold, t, of model are a consensus set.
Size of consensus set Is model’s support

3. Repeat for N samples; model with biggest support is most robust fit
— Points within distance t of best model are Inliers
— kit final model to all inliers

Slide Credit: Christopher Rasmussen
88

RANSAC: How many samples?

Let w be the fraction of inliers (I.e., points on line)

Let n be the number of points needed to define hypothesis
(n = 2 for a line in the plane)

Suppose k samples are chosen

The probability that a single sample of n points is correct (all inliers) Is

wn

The probability that all £ samples fail is
(1—w")*
Choose k large enough (to keep this below a target failure rate)

39

RANSAC: kK Samples Chosen (p = 0.99)

Sample
s1ze

N 5% 10% 20% 25% 30% 40% S50%

Proportion of outliers

Figure Credit: Hartley & Zisserman

90

Discussion of RANSAC

Advantages:
— General method suited for a wide range of model fitting problems
— Easy to iImplement and easy to calculate its failure rate

Disadvantages:
— Only handles a moderate percentage of outliers without cost blowing up

— Many real problems have high rate of outliers (but sometimes selective
choice of random subsets can help)

The Hough transform can handle high percentage of outliers

91

Hough [ransform

|dea of Hough transform:
— For each token vote for all models to which the token could belong
— Return models that get many votes

Example: For each point, vote for all lines that could pass through it; the true
ines will pass through many points and so receive many votes

92

Example: Clean Data

C o3 04 ol apo

Votes
Tokens Horizontal axis is 6

Vertical AXIS IS r
Forsyth & Ponce (2nd ed.) Figure 10.1 (Top)

93

Example: Some Noise

s 0.6 Qo !

Votes
Tokens Horizontal axis is 6

Vertical AXIS IS r
Forsyth & Ponce (2nd ed.) Figure 10.1 (Bottom)

94

Example: 1oo Much Noise

04

“0 0z OA 0e on

Votes
Tokens Horizontal axis is 6

Vertical AXIS IS r

Forsyth & Ponce (2nd ed.) Figure 10.2

95

Course Review: Stereo

Epipolar constraint
Rectified images
Computing correspondences

Ordering constraint

96

The Epipolar Constraint

epipolar line epipolar line

Matching points lie along corresponding epipolar lines
Reduces correspondence problem to 1D search along conjugate epipolar lines

Greatly reduces cost and ambiguity of matching

Slide credit: Steve Seitz
97

Simplest Case: Rectified Images

Image planes of cameras are parallel

Focal points are at same height

Focal lengths same

Then, epipolar lines fall along the horizontal scan lines of the images

We assume images have been rectified so that epipolar lines correspond to
scan lines

— Simplifies algorithms
— Improves efficiency

93

Rectified Stereo Pair

o

.

\

/12
4

Method: Correlation

Left Right

SSD error &

RN,

>

disparity

100

Ordering Constraints

Ordering constraint and a failure case

Forsyth & Ponce (2nd ed.) Figure 7.13

101

ldea: Use More Cameras

Adding a third camera reduces ambiguity in stereo matching

AQ oD

=7 ST

_J <

d'Cl 0‘ " bza
b] C»

Forsyth & Ponce (2nd ed.) Figure 7.17

102

Sample Question

True or false: The ordering constraint always holds in stereo vision.

103

Course Review: Motion and Optical Flow

Motion (geometric), optical flow (radiometric)
Optical flow constraint equation

Lucas-Kanade method

104

Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(z,y,1)
Applying the chain rule for differentiation, we obtain
dl(x,y,t) dx dy

G teg Thug T
where subscripts denote partial differentiation
Define u = Cji—f and v = % Then |u, v] is the 2-D motion and the space of all
such v and v is the 2-D velocity space
Suppose (a;’ y,t) _ 0 - Then we obtain the (classic) optical flow constraint
equation ' Lou+ To+ 1, =0

How do we compute ...

lyu+L,v+1; =0

- \ - \
I — ol I — ol I ol
xr — 8_.’13 y 8y t — a
\ spatial derivative) ! temporal derivative
y
Forward difference Frame differencing
Sobel filter

Scharr filter

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Frame Differencing: =xample

ol

t+ 1 t It:E
0 0 0 0 O
0 0 0 0 O
) 10 10 10 10 _ (V9 = 9 O
0 10 10 0 10 10 10 0 9 0 0 0
0 10 10 10 10 10 10 0 9 0 0 O
0 10 10 10 10 10 10 0O 9 0 0 O

(example of a forward temporal difference)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

t+ 1

o O O

o O O

o O O

10 10 10 10

10 10 10 10

10 10 10 10
10 10 10 10

ol
ot

Q{
ox

O 0 O 0O O
O 0 O O O

0 . -0
0

0
0

910 0 O

9,010 |0

91010 |0

O 0 O 0O O
0 BEEESEEEE O

O O 0 O
O 0 O 0 O

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

101

How do we compute ...

Iwu—l—ly’v—l—ft =0

- 2 - 2
I — ol I — o1 I ol
= 9. YT O U = 7 t = 9t
\ spatial derivative) optical flow \ temporal derivative
y
Forward difference How do you compute this? Frame differencing
Sobel filter

Scharr filter

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

| ucas-Kanade Summary

A dense method to compute motion, [y, v] at every location in an image
Key Assumptions:

1. Motion Is slow enough and smooth enough that differential methods apply
(.e., that the partial derivatives, 1., I,,, I;, are well-defined)

dl(x,y,t
2. The optical flow constraint equation holds (i.e., (:; ty) =0)

3. A window size is chosen so that motion, |u, v|. is constant in the window

4. A window size is chosen so that the rank of AY A is 2 for the window

Sample Question

Describe two examples of imaging situations where motion and optical flow do
not coincide.

Course Review: Clustering

K-means clustering

K-Means Clustering

K-means clustering alternates between two steps:

1. Assume the cluster centers are known (fixed). Assign each point to
the closest cluster center.

2. Assume the assignment of points to clusters is known (fixed).
Compute the best center for each cluster, as the mean of the points assigned
to the cluster.

The algorithm is initialized by choosing K random cluster centers

K-means converges to a local minimum of the objective function
— Results are Initialization dependent

Example 1: K-Means Clustering

True Clusters

0.8

0.7r . : . . ot . ° .', 0
o . : <
0.6 o ’ ‘.o::o
0.5_ ° ‘e .o‘ :. .’ .0
% ° % +‘. o.o.
04 B ° : @

d .:...'o. .
0al ¢ w :...:::'.*~: “..

0.2

Example 1: K-Means Clustering

0.8F
0.7+
0.6F
0.5+
0.4+
0.3+

0.2

Clusters at iteration

1

0.2

0.4

0.6

0.8

Example 1: K-Means Clustering

Clusters at iteration 2

0.8

0.7h . . .:c 2-.0,.
o « °*° S

0.6
0.5_ . .~ o.. .‘. ‘o ..o . e® o0
0.4_ ° .:. c o4 .‘ . : e

‘e"+‘:.° ‘ o .
0.3_ o e

0.2

Example 1: K-Means Clustering

0.8
0.7F
0.6
0.5
0.4
0.3

0.2

Clusters at iteration

3

0.2

0.4

0.6

0.8

Example 1: K-Means Clustering

0.8+
0.7}
0.6+
0.5+
0.4}
0.3+

0.2

Clusters at iteration

13

0.2

0.4

0.6

0.8

Course Review: Classification

Bayes' risk, loss functions

Underfitting, overfitting

Cross-validation

Receiver Operating Characteristic (ROC) curve

Parametric vs. non-parametric classifiers
— K-nearest neighbour

— Bayes’ classifier

— Support vector machines

— Decision trees

Course Review: Image Classification

Visual words, codebooks
Bag of words representation
Spatial pyramid

VLAD

Standard Bag-of-Words Pipe\ine (for image classification) — Training

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each Image

Classify:
Train data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Standard Bag-of-Words Pipe\ine (for image classification) — Training

— o Dictionary Learning:
nput: large collection of images 5, . , ,
(they don’t even need to be training images) | earn Visual \Words uSIing C‘USterlﬂg

Output: dictionary of visual words

ULTIMATE -.

Encode. <k A
puild Bags-of-Words (BOW) vectors a ‘ RS
for each image ;
DICTIONAR

Classify:
Train data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Standard Bag-of-Words Pipe\ine (for image classification) — Training

- o Dictionary Learning:
nput: large collection of images — . , ,
(they don’t even need to be training images) Learﬂ \/|Sua‘ WOrdS USIHQ C‘USterlﬂg

Output: dictionary of visual words

Encode: S -
_ . CL : Utput: nistogram representation
Input: training images, dictionary = puild Bags-of-\Words (BOW) vectors = or each trainir?g imagz

for each Image

% v.: - . -
R Classify: -

- gggggg Train data using BOWSs -
N =T ors
ok o) s 0 8 5 o 1 R ship

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Standard Bag-of-Words PIpeling (for image classification) — Training

- o Dictionary Learning:
nput: large collection of images — . , ,
(they don’t even need to be training images) Learﬂ V|Sua‘ WOrdS USIHQ C‘USterlﬂg

Output: dictionary of visual words

Encode: Summ o
_ . CL : Utput: nistogram representation
Input: training images, dictionary = puild Bags-of-\Words (BOW) vectors = or each trainir?g imagg

for each Image

Input: histogram representation for _— ClaSSify:

L —) Output: parameters if the classifier
each training image + labels . .
Train data using BOWs

airplane

= Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Standard Bag-of-Words Pipeline (for image classification) — Testing

Encode:
Input: test image, dictionary —> puild Bags-of-Words (BOW) vectors —>_
\ for each image ’ ’
Classify:

Test data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Standard Bag-of-Words Pipeline (for image classification) — Testing

Encode:
Input: test image, dictionary —> puild Bags-of-Words (BOW) vectors —>_
for each image) ’

Input: histogram representation for Classi :
test image, trained classifier — Test data usiﬂfg BOWs —
! 4

airplane

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Example: VLAD

Bag of Word
‘ I 6. 3. O]
VLAD

/7 N\

Sample Question

How do we construct a codebook (vocabulary) of local descriptors, say SIFT?

Course Review: Object Detection

Sliding window
Viola-Jones face detection

Object proposals

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

This IS a search over location
— We have to search over scale as well
— We may also have to search over aspect ratios

Example: Face Detection

1. Select best filter/threshold combination

W, .
.1

a. Normalize the weights | “ " W 1 if £.(x)> 6.

j=1""tJ hj(x):<

\O otherwise

b. For each feature, j £ :Ziw,. hj(x,.)—y,-

c. Choose the classifier, h, with the lowest error .

[

2. Re-weight examples
t+lz IBt G :Bt: gt

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Example: Face Detection

Viola & Jones algorithm

3. Ihe final strong classifier IS

| T | T |
1 a,h,(x)2 EZ _a,| o ,=log—

]’l()C)=< :Bt

0 otherwise

The final strong classifier is a weighted linear combination of the T weak
classifiers where the weights are inversely proportional to the training errors

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Cascading Classifiers

T I T
IMAGE . ,
SUB-WINDOW @ * FACE
lp lF F

NON-FACE NON-FACE NON-FACE Figure credit: P. Viola

To make detection faster, features can be reordered by increasing complexity

of evaluation and the thresholds adjusted so that the early (simpler) tests have
few or no false negatives

Any window that Is rejected by early tests can be discarded quickly without
computing the other features

This Is referred 10 as a cascade architecture

Object Proposals

First introduced by Alexe et al., who asked ‘what is an object?’ and defined an
‘Objectness’ score based on several visual cues

Figure credit: Alexe et al., 2012

Course Review: Convolutional Neural Networks

Neuron, activation function

Backpropagation (you only need to know properties)
Convolutional neural network architecture
Convolutional neural network layers

R-CNN

Neural Network: Short Review

Neural Network: Short Review

N
y=17r (Z W; T b)
i=1

Input Layer

Input Image
» |-
L4

Vectorized Input
(32 x 32 x 3) = 3072

Input Layer

Input Image
» |-
L4

Vectorized Input
(32 x 32 x 3) = 3072

N
y=f (Z Wi X4
i=1

Inputs: 3072
Outputs: 1

Parameters; 3072 + 1

Neural Network: Short Review

)

Neural Network: Short Review

Hidden Layer 1

* Fully Connected
/w 400 neurons
/w Rel.u activ

Input Layer

Input Image
L4

Vectorized Input
(32 x 32 x 3) = 3072

Neural Network: Short Review

Hidden Layer 1

* Fully Connected
/w 400 neurons
/w Rel.u activ

Input Layer

Input Image
L4

Vectorized Input
(32 x 32 x 3) = 3072

W17b1

Inputs: 3072
Outputs: 400

Parameters:
3072 x 400 + 400

Neural Network: Short Review

Hidden Layer 1
* Fully Connected

/w 400 neurons
/w Rel.u activ

Input Layer

Note: All neurons within a layer can be
computed in parallel, making computations
very efficient (especially on GPUSs!, which
are designed for parallelism)

Input Image
L4

Vectorized Input
(32 x 32 x 3) = 3072

W17b1

Inputs: 3072
Outputs: 400

Parameters:
3072 x 400 + 400

Neural Network: Short Review

Hidden Layer 1

* Fully Connected Hidden Layer 2
/w 400 neurons * Fully Connected
/w Rel.u activ /w 100 neurons
Input Layer /w Rel.u activ
L1
Input Image
L2

L4

Vectorized Input
(32 x 32 x 3) = 3072

Note: Across layers computations
are seqguential
W, b
W17b1

Inputs: 3072
Outputs: 400

Parameters:
3072 x 400 + 400

Neural Network: Short Review

Hidden Layer 1

* Fully Connected Hidden Layer 2
/w 400 neurons * Fully Connected
/w Rel.u activ /w 100 neurons

Input Layer /w Rel.u activ

Input Image

S ||—
L4

Vectorized Input W2, by
(32 X 32 X 3) = 3072 Wl, b1
Inputs: 3072 Inputs: 400
Outputs: 400 Outputs: 100
Parameters: Parameters:

3072 x 400 + 400 400 x 100 + 100

Neural Network: Short Review

Hidden Layer 3
* Fully Connected
/w 700 neurons

Hidden Layer 1

Input Layer

Input Image

Vectorized Input
(32 x 32 x 3) = 3072

* Fully Connected
/w 400 neurons
/w Rel.u activ

W17b1

Inputs: 3072
Qutputs: 400

Parameters:
3072 x 400 + 400

Hidden Layer 2

* Fully Connected

/w 100 neurons
/w Rel.u activ

331_
L2
& L3 | e — —

W27 b2

Inputs: 400
Outputs: 100

Parameters:
400 x 100 + 100

/w Rel.u activ

EWSbB

Neural Network: Short Review

Hidden Layer 3
* Fully Connected

Hidden Layer 1

* Fully Connected
/w 400 neurons
/w Rel.u activ

Input Layer

Input Image

Vectorized Input

(82 X 32 X 3) = 3072 Wl, b1

Inputs: 3072
Qutputs: 400

Parameters:
3072 x 400 + 400

Hidden Layer 2

* Fully Connected

/w 100 neurons
/w Rel.u activ

331_
L2
& L3 | e — —

W27 b2

Inputs: 400
Qutputs: 100

Parameters:
400 x 100 + 100

/w 700 neurons
/w Rel.u activ

EWSbB

Inputs: 100
Outputs: 700

Parameters:
100 x 700 + 700

Neural Network: Short Review

Hidden Layer 3
* Fully Connected
/w 700 neurons

Hidden Layer 1

" Fully Connected Hidden Layer 2 W Rel u activ
/w 400 neurons * Fully Connected
/w Rel.u activ /w 100 neurons Output Layer
/w Rel.u activ * Fully Connected . .
Input Layer w10 neurons. T S|gmf)|d o
- /w Rel.u activ Yi = 9
L1 Zj e
Input Image
L2
L4
. W47 b4
= Inputs: 700 Inputs: 10
Vectorized Input W2, b Outputs: 10 Qutputs: 10
(82 X 32 X 3) = 3072 Wl, b1 Parameters: Parameters:
Inputs: 3072 Inputs: 400 Ws. by /00x10+10 none
Outputs: 400 Outputs: 100 Inputs: 100
Parameters: Parameters: Outputs: 700
3072 x 400 + 400 400 x 100 + 100

Parameters:
100 x 700 + 700

Neural Network: Short Review

This simple neural network has nearly 1.35 million parameters

Vectorized Input
(32 x 32 x 3) = 3072

W17b1

Inputs: 3072
Qutputs: 400

Parameters:
3072 x 400 + 400

Input Image o
L2

W27 b2

Inputs: 400
Qutputs: 100

Parameters:
400 x 100 + 100

—H-H-

W47 b4
Inputs: 700 Inputs: 10
Qutputs: 10 Qutputs: 10
Parameters: Parameters:

Wi by /00x10+10 none

Inputs: 100
Qutputs: 700

Parameters:
100 x 700 + 700

Neural Network: Short Review

Hidden Layer 3
* Fully Connected
/w 700 neurons

Hidden Layer 1

" Fully Connected Hidden Layer 2 W Rel u activ
/w 400 neurons * Fully Connected
/w Rel.u activ /w 100 neurons Output Layer
/w Rel.u activ * Fully Connected . .
Input Layer w10 neurons. T S|gmf)|d o
- /w Rel.u activ Yi = 9
L1 Zj e
Input Image
L2
L4
. W47 b4
= Inputs: 700 Inputs: 10
Vectorized Input W2, b Outputs: 10 Qutputs: 10
(82 X 32 X 3) = 3072 Wl, b1 Parameters: Parameters:
Inputs: 3072 Inputs: 400 Ws. by /00x10+10 none
Outputs: 400 Outputs: 100 Inputs: 100
Parameters: Parameters: Outputs: 700
3072 x 400 + 400 400 x 100 + 100

Parameters:
100 x 700 + 700

Neural Network: Short Review

| Hidden Layer 3
Inference: given values

* Fully Connected

for all parameters predict Hidden Layer 1 /w 700 neurons
output (probability) * Fully Connected Hidden Layer 2 w Rel u activ
/w 400 neurons * Fully Connected

(a.k.a. Forward Pass) w Rel u activ /w 100 neurons

/w Rel.u activ

Output Layer
* Fully Connected

Input Layer A 10 NEUrONS + sigmoid
/w Rel.u activ
L1
Input Image
L2

- — -
— B — B —

, —
L4

— —
—_— B —

W47 b4
Inputs: 700 Inputs: 10

Vectorized Input W2, b Outputs: 10 Qutputs: 10
(32 X 32 X 3) = 3072 Wl, b1 Parameters: Parameters:

Inputs: 3072 Inputs: 400 W;. by 700x10+ 10 none

Outputs: 400 Outputs: 100 Inputs: 100

Parameters: Parameters: Outputs: 700

3072 x 400 + 400 400 x 100 + 100

Parameters:
100 x 700 + 700

Neural Network: Short Review

| Hidden Layer 3
Inference: given values

* Fully Connected

for all parameters predict Hidden Layer 1 /w 700 neurons
output (probability) * Fully Connected Hidden Layer 2 w Rel u activ
/w 400 neurons * Fully Connected

(a.k.a. Forward Pass) w Rel u activ /w 100 neurons

/w Rel.u activ

Output Layer
* Fully Connected

Input Layer A 10 NEUrONS + sigmoid
/w Rel.u activ
L1
Input Image
L2

- — -
— B — B —

’ —
L4

— —
—_— B —

W47 b4
Inputs: 700 Inputs: 10
Vectorized Input W2, b Outputs: 10 Qutputs: 10
(32 X 32 X 3) = 3072 Wl, b1 Parameters: Parameters:
_ | Inputs: 3072 Inputs: 400 Wi by 00x10+10 none
Learning: given data optimize
parameters using gradient Outputs: 400 Outputs: 100 Inputs: 100
-based optimization Parameters: Parameters: Outputs: 700
-_— 3072 x 400 + 400 400 x 100 + 100

Parameters:

(a.k.a. Backwards Pass) 100 x 700 + 700

Neural Network: Short Review

| Hidden Layer 3
Inference: given values

* Fully Connected

for all parameters predict Hidden Layer 1 /w 700 neurons
output (probability) * Fully Connected Hidden Layer 2 w Rel u activ
/w 400 neurons * Fully Connected

(a.k.a. Forward Pass) w Rel u activ /w 100 neurons

/w Rel.u activ

Output Layer
* Fully Connected

Input Layer A 10 NEUrONS + sigmoid
/w Rel.u activ
L1
Input Image
L2

—
—_

— —
— B —

’ —
L4

— —
—_— B —

W, b, L(y,¥)
Inputs: 700 Inputs: 10
Vectorized Input W2, b Outputs: 10 Qutputs: 10
(32 X 32 X 3) = 3072 Wl, b1 Parameters: Parameters:
_ | Inputs: 3072 Inputs: 400 Wi by 00x10+10 none

Learning: given data optimize
parameters using gradient Outputs: 400 Outputs: 100 Inputs: 100
-based optimization Parameters: Parameters: Outputs: 700
-_— 3072 x 400 + 400 400 x 100 + 100

Parameters:

(a.k.a. Backwards Pass) 100 x 700 + 700

Neural Network: Short Review

| Hidden Layer 3
Inference: given values

* Fully Connected

for all parameters predict Hidden Layer 1 /w 700 neurons
output (probability) * Fully Connected Hidden Layer 2 w Rel u activ
/w 400 neurons * Fully Connected

(a.k.a. Forward Pass) w Rel u activ /w 100 neurons

/w Rel.u activ

Output Layer
* Fully Connected

Input Layer A 10 NEUrONS + sigmoid
/w Rel.u activ
L1
Input Image
L2

,E,E_,

" 0b
Wy, by 7 7

’ —
L4

— —
—_— B —

Inputs: 700 Inputs: 10
Vectorized Input W2, b Outputs: 10 Qutputs: 10
(32 X 32 X 3) = 3072 Wl, b1 Parameters: Parameters:
_ | Inputs: 3072 Inputs: 400 Wi by 00x10+10 none
Learning: given data optimize
parameters using gradient Outputs: 400 Outputs: 100 Inputs: 100
-based optimization Parameters: Parameters: Outputs: 700
-_— 3072 x 400 + 400 400 x 100 + 100

Parameters:

(a.k.a. Backwards Pass) 100 x 700 + 700

Neural Network: Short Review

| Hidden Layer 3
Inference: given values

* Fully Connected

for all parameters predict Hidden Layer 1 /w 700 neurons
output (probability) * Fully Connected Hidden Layer 2 w Rel u activ
/w 400 neurons * Fully Connected

(a.k.a. Forward Pass) w Rel u activ /w 100 neurons

/w Rel.u activ

Output Layer
* Fully Connected

Input Layer A 10 NEUrONS + sigmoid
/w Rel.u activ
L1
Input Image
L2

,E,E_,

OW3 ' 0Obs W4,]:)4 OW, ' Oby

’ —
L4

— —
—_— B —

Inputs: 700 Inputs: 10
Vectorized Input W2, b Outputs: 10 Qutputs: 10
(32 X 32 X 3) = 3072 Wl, b1 Parameters: Parameters:
_ | Inputs: 3072 Inputs: 400 Wi by 00x10+10 none
Learning: given data optimize
parameters using gradient Outputs: 400 Outputs: 100 Inputs: 100
-based optimization Parameters: Parameters: Outputs: 700
-_— 3072 x 400 + 400 400 x 100 + 100

Parameters:

(a.k.a. Backwards Pass) 100 x 700 + 700

Neural Network: Short Review

| Hidden Layer 3
Inference: given values

* Fully Connected

for all parameters predict Hidden Layer 1 /w 700 neurons
output (probability) * Fully Connected Hidden Layer 2 w Rel u activ
/w 400 neurons * Fully Connected

(a.k.a. Forward Pass) w Rel u activ /w 100 neurons

/w Rel.u activ

Output Layer
* Fully Connected

Input Layer A 10 NEUrONS + sigmoid
/w Rel.u activ
L1
Input Image
L2

—
— —>

L(*,)

,E,E_,

’ —
L4

OWy '’ 8b2 OWs ' Obs W4 b4 OW, ' 0Oby
Inputs: 700 Inputs: 10
Vectorized Input W2, b Outputs: 10 Qutputs: 10
(32 X 32 X 3) = 3072 Wl, b1 Parameters: Parameters:
. . ~_ Inputs: 3072 Inputs: 400 Wi by 00x10+10 none
Learning: given data optimize
parameters using gradient Outputs: 400 Outputs: 100 Inputs: 100
-based optimization Parameters: Parameters: Outputs: 700
-_— 3072 x 400 + 400 400 x 100 + 100

Parameters:

(a.k.a. Backwards Pass) 100 x 700 + 700

Neural Network: Short Review

| Hidden Layer 3
Inference: given values

* Fully Connected

for all parameters predict Hidden Layer 1 /w 700 neurons
output (probability) * Fully Connected Hidden Layer 2 w Rel u activ
/w 400 neurons * Fully Connected

(a.k.a. Forward Pass) w Rel u activ /w 100 neurons

/w Rel.u activ

Output Layer
* Fully Connected

Input Layer A 10 NEUrONS + sigmoid
/w Rel.u activ
L1
Input Image
‘ 2 — EEE—
- -—
:1;4 L’(.,.) E(.).) E(-,-)
oW1~ 0Oby OWy '’ 8b2 8W3’ 8b3 W4, b4 8W4’ 8b4
Inputs: 700 Inputs: 10
Vectorized Input W2, b Outputs: 10 Qutputs: 10
(32 X 32 X 3) = 3072 Wl, b1 Parameters: Parameters:
. . ~_ Inputs: 3072 Inputs: 400 Wi by 00x10+10 none
Learning: given data optimize
parameters using gradient Outputs: 400 Outputs: 100 Inputs: 100
-based optimization Parameters: Parameters: Outputs: 700
e EE— 3072 x 400 + 400 400 x 100 + 100

Parameters:

(a.k.a. Backwards Pass) 100 x 700 + 700

Neural Network: Short Review

| Hidden Layer 3
Inference: given values

* Fully Connected

for all parameters predict Hidden Layer 1 A 700 NEUrons
output (probability) * Fully Connected Hidden Layer 2 w Rel u activ
/w 400 neurons * Fully Connected
(@k.a. Forward Pass) /w Relu activ /w 100 neurons Output Layer
/w Rel.u activ * Fully Connected . .
Input Layer A 10 NEUrONS + sigmoid
Input Image /w Relu activ
L1
L2
Ed 4 -
, . . 7 awg’ ab3 W, 0W4’ ab4)
| Inputs: 7OO Inputs: 10
Vectorized Input Outputs: 10 Qutputs: 10
(32 x 32 x 3) = 3072 Parameters: Parameters:
o . Inputs: 3072 Inputs: 400 W3, by /00x10+10 none
Learning: given data optimize
parameters using gradient Outputs: 400 Outputs: 100 Inputs: 100
-based optimization Parameters: Parameters: Outputs: 700
e EE— 3072 x 400 + 400 400 x 100 + 100

Parameters:

(a.k.a. Backwards Pass) 100 x 700 + 700

Neural Network: Short Review

| Hidden Layer 3
Inference: given values

* Fully Connected

for all parameters predict Hidden Layer 1 A 700 NEUrons
output (probability) * Fully Connected Hidden Layer 2 w Rel u activ
/w 400 neurons * Fully Connected
(@k.a. Forward Pass) /w Relu activ /w 100 neurons Output Layer
/w Rel.u activ * Fully Connected . .
Input Layer A 10 NEUrONS + sigmoid
Input Image /w Relu activ
L1
L2
Ed 4 -
, . . 7 awg’ ab3 W, 0W4’ ab4)
| Inputs: 7OO Inputs: 10
Vectorized Input Outputs: 10 Qutputs: 10
(32 x 32 x 3) = 3072 Parameters: Parameters:
o . Inputs: 3072 Inputs: 400 W3, by /00x10+10 none
Learning: given data optimize
parameters using gradient Outputs: 400 Outputs: 100 Inputs: 100
-based optimization Parameters: Parameters: Outputs: 700
e EE— 3072 x 400 + 400 400 x 100 + 100

Parameters:

(a.k.a. Backwards Pass) 100 x 700 + 700

Neural Network: Short Review

This simple neural network has nearly 1.35 million parameters

Vectorized Input
(32 x 32 x 3) = 3072

W17b1

Inputs: 3072
Qutputs: 400

Parameters:
3072 x 400 + 400

Input Image o
L2

W27 b2

Inputs: 400
Qutputs: 100

Parameters:
400 x 100 + 100

—H-H-

W47 b4
Inputs: 700 Inputs: 10
Qutputs: 10 Qutputs: 10
Parameters: Parameters:

Wi by /00x10+10 none

Inputs: 100
Qutputs: 700

Parameters:
100 x 700 + 700

Convolutional Layer

32 x 32 x[§]image

Filters always extend the full depth of the input volume

32 height
> 5XD xfilter
Convolve the filter with the image
(.e., “slide over the image spatially,
computing dot products”
32 width

3 depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Pooling Layer

* Makes representation smaller, more manageable and spatially invariant

* Operates over each activation map independently

224x224x64

/ / o 1/1 2x112x64
/ ﬁ V

4

> e 112
224 downsampling
112
224

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Pooling Layer

* Makes representation smaller, more manageable and spatially invariant

* Operates over each activation map independently

224x224x64
/// 112x112x64

pool i y
)/ How many parameters”

&

> e 112
224 downsampling
112
224

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

y

Pooling Layer

* Makes representation smaller, more manageable and spatially invariant

* Operates over each activation map independently

224x224x64
/// 112x112x64

pool i y
)/ How many parameters”

& None!

> e 112
224 downsampling
112
224

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

y

Deep Learning Terminology

3

°GGEHE . QHZ gg g{% g% %% Google’s “Inception” network
TETE L W Lt s b
Nepperge s ikgg B
tentey g b B

i &

* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

generally kept fixed, requires some knowledge of the problem and NN to sensibly set
* Loss function: objective function being optimized (softmax, cross entropy, etc.)

requires knowledge of the nature of the problem

 Parameters: trainable parameters of the network, including weights/biases of
inear/fc layers, parameters of the activation functions, etc. [elitri R RC PRI (=l Ie

* Hyper-parameters: parameters, including for optimization, that are not optimized
direct\y as part Of training e.9., learning rate, batch size, drop-out rate)

Deep Learning Terminology

3

SRR {E o !I} ; g g g{ % g}} [L% g % Google’s “Inception” network
TETE L W ot L
ik phggil 5~ g @
Jepfr o tibny B
tertey g b B

i &

* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

generally kept fixed, requires some knowledge of the problem and NN to sensibly set
* Loss function: objective function being optimized (softmax, cross entropy, etc.)

requires knowledge of the nature of the problem

 Parameters: trainable parameters of the network, including weights/biases of
inear/fc layers, parameters of the activation functions, etc. [elitri R RC PRI (=l Ie

* Hyper-parameters: parameters, including for optimization, that are not optimized
direct\y aS part Of training e.9., learning rate, batch size, drop-out rate)

Deep Learning Terminology

o g % % Eﬂl %} % Google’s “Inception” network

E {H E}' El l | i {

p iy B B b gtk sttt
gﬂ gm - & &

* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

generally kept fixed, requires some knowledge of the problem and NN to sensibly set
* Loss function: objective function being optimized (softmax, cross entropy, etc.)

requires knowledge of the nature of the problem

Specification of neural architecture will define a computational graph.

R-CNN

Linear Regression for bounding box offsets

Bbox reg

SVMs

Bbox reg

Bbox reg

SVMs

ConvN

ConvN

et

4

[Girshick et al, CVPR 2014 |

Classify regions with SVM

Forward each region
through a CNN

4 g /" Warped image regions

Regions of Interest from
a proposal method (~2k)

* image from Ross Girshick

Fast R-CNN
Log loss + Smooth L1 loss | Multi-task |oss [Girshick et al, ICCV 2015]
Object
L : Linear +
Classification | .~ Bounding box regression

FCs

N
,— "Rol Pooling” layer

Regions of |

Interest = /5/ “conv5” feature map

from the

proposal Forward prop the whole image through CNN
method

ConvNet

* image from Ross Girshick

Course Review: Colour

Human colour perception
RGB and CIE XYZ colour spaces
Uniform colour space

HSV colour space

Color Matching Experiments

Test 2 . Test Light
light Py :
T £ S
P :‘
3 ~__
.

Forsyth & Ponce (2nd ed.) Figure 3.2

Show a split field to subjects. One side shows the light whose colour one wants
to match. The other a weighted mixture of three primaries (fixed lights)

I'= w1 Py +ws Py + w33

Example 1: Color Matching Experiment

e
knobs here

Example Credit: Bill Freeman

Example 1: Color Matching Experiment

knobs here

Example Credit: Bill Freeman

Example 2: Color Matching Experiment

P1 P> P3

Example Credit: Bill Freeman

Example 2: Color Matching Experiment

We say a “negative”
amount of P was
needed to make a
match , because

we added it to the test
color side

The primary color amount
needed to match:

P

Example Credit: Bill Freeman

Uniform Colour Spaces

McAdam Ellipses: Each ellipse shows colours perceived to be the same

|

0.8

08

0.7}

061

05

0AF

03k

021

0.1

Y 05F

]] 1 I 1 l 1
0 0.1 0.2 03 04 05 06 0.7 08
X

10 times actual size

I
09

1

1

09

08

0.7

0.6

04r

03F

02F

0.1F

0

1 1 1 1 1 1
0 0.1 0.2 0.3 04 05 0.6 0.7

X

Actual Size

Forsyth & Ponce (2nd ed.) Figure 3.14

1
0.8

1
0.9

1

Uniform Colour Spaces

McAdam ellipses demonstrate that differences in x , y are a poor guide to
differences in perceived colour

A uniform colour space is one in which differences In coordinates are a good
guide to differences In perceived colour

— example: CIE LAB

HOope you enjoyed the course!

