CPSC 425: Computer Vision

Lecture 24: Color

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Hope you enjoyed the course!

Menu for Today

Topics:

- Colour
- Colour Matching Experiments
- Trichromasity
- Colour Spaces

Readings:

- Today’s Lecture: Forsyth \& Ponce (2nd ed.) 3.1-3.3

Reminders:

- Assignment 6: Deep Learning is due tomorrow (last day of classes)
- Quiz 6 is due by tonight
- Assignment 4 grades are out
- Solutions to final prep questions are out, Office hours will post

Overview: Image Formation, Cameras and Lenses

The image formation process that produces a particular image depends on

- Lightening condition
- Scene geometry
- Surface properties
- Camera optics

Sensor (or eye) captures amount of light reflected from the object

Colour

- Light is produced in different amounts at different wavelengths by each light source
- Light is differentially reflected at each wavelength, which gives objects their natural colour (surface albedo)
- The sensation of colour is determined by the human visual system, based on the product of light and reflectance

Relative Spectral Power of Two Illuminants

Relative spectral power plotted against wavelength in nm

Forsyth \& Ponce (2nd ed.) Figure 3.4

(small) Graphics Review

Surface reflection depends on both the viewing $\left(\theta_{v}, \phi_{v}\right)$ and illumination $\left(\theta_{i}, \phi_{i}\right)$ direction, with Bidirectional Reflection Distribution Function: $\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)$

(small) Graphics Review

Surface reflection depends on both the viewing $\left(\theta_{v}, \phi_{v}\right)$ and illumination $\left(\theta_{i}, \phi_{i}\right)$ direction, with Bidirectional Reflection Distribution Function: $\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)$

Spectral Albedo of Natural Surfaces

Forsyth \& Ponce (2nd ed.) Figure 3.6

Colour Appearance

Reflected light at each wavelength is the product of illumination and surface reflectance at that wavelength

Surface reflectance often is modeled as having two components:

- Lambertian reflectance: equal in all directions (diffuse)
- Specular reflectance: mirror reflectance (shiny spots)

(small) Graphics Review

Surface reflection depends on both the viewing $\left(\theta_{v}, \phi_{v}\right)$ and illumination $\left(\theta_{i}, \phi_{i}\right)$ direction, with Bidirectional Reflection Distribution Function: $\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)$
source

Lambertian surface:

$\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)=\frac{\rho_{d}}{\pi}$

$$
L=\frac{\rho_{d}}{\pi} I(\vec{i} \cdot \vec{n})
$$

(small) Graphics Review

Surface reflection depends on both the viewing $\left(\theta_{v}, \phi_{v}\right)$ and illumination $\left(\theta_{i}, \phi_{i}\right)$ direction, with Bidirectional Reflection Distribution Function: $\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)$

Lambertian surface:

Mirror surface: all incident light reflected in one directions $\left(\theta_{v}, \phi_{v}\right)=\left(\theta_{r}, \phi_{r}\right)$

Color Matching Experiments

Forsyth \& Ponce (2nd ed.) Figure 3.2
Show a split field to subjects. One side shows the light whose colour one wants to match. The other a weighted mixture of three primaries (fixed lights)

$$
T=w_{1} P_{1}+w_{2} P_{2}+w_{3} P_{3}
$$

Recall: Color is an Artifact of Human Perception

"Color" is not an objective physical property of light (electromagnetic radiation). Instead, light is characterized by its wavelength.

electromagnetic spectrum

What we call "color" is how we subjectively perceive a very small range of these wavelengths.

Recall: Color is an Artifact of Human Perception

"Color" is not an objective physical property of light (electromagnetic radiation). Instead, light is characterized by its wavelength.

Recall: Color is an Artifact of Human Perception

"Color" is not an objective physical property of light (electromagnetic radiation). Instead, light is characterized by its wavelength.

Recall: Color is an Artifact of Human Perception

"Color" is not an objective physical property of light (electromagnetic radiation). Instead, light is characterized by its wavelength.

electromagnetic spectrum

What we call "color" is how we subjectively perceive a very small range of these wavelengths.

Recall: Color is an Artifact of Human Perception

"Color" is not an objective physical property of light (electromagnetic radiation). Instead, light is characterized by its wavelength.

electromagnetic spectrum
electromagnetic

What we call "color" is how we subjectively perceive a very small range of these wavelengths.

Recall: Color is an Artifact of Human Perception

"Color" is not an objective physical property of light (electromagnetic radiation). Instead, light is characterized by its wavelength.

electromagnetic spectrum

What we call "color" is how we subjectively perceive a very small range of these wavelengths.

Color Matching Experiments

Forsyth \& Ponce (2nd ed.) Figure 3.2
Show a split field to subjects. One side shows the light whose colour one wants to match. The other a weighted mixture of three primaries (fixed lights)

$$
T=w_{1} P_{1}+w_{2} P_{2}+w_{3} P_{3}
$$

Color Matching Experiments

Figure Credit: Brian Wandell, Foundations of Vision,

Example 1: Color Matching Experiment

knobs here

Example 1: Color Matching Experiment

knobs here

Example 1: Color Matching Experiment

knobs here

Example 1: Color Matching Experiment

$$
T=w_{1} P_{1}+w_{2} P_{2}+w_{3} P_{3}
$$

knobs here

Example 2: Color Matching Experiment

Example 2: Color Matching Experiment

Example 2: Color Matching Experiment

Example 2: Color Matching Experiment

Example 2: Color Matching Experiment

We say a "negative" amount of P_{2} was needed to make a match, because we added it to the test color side

Example 2: Color Matching Experiment

We say a "negative" amount of P_{2} was needed to make a match , because we added it to the test color side

The primary color amount needed to match:

$$
T+w_{2} P_{2}=w_{1} P_{1}+w_{3} P_{3}
$$

Important Implication

Most televisions and monitors that are tri-chromatic cannot produce the full spectrum of colors we as humans can perceive (e.g., there are natural colors in bluishgreenish range that we cannot generally produce using RGB)

Sharp aquos

Color Matching Experiments

- Many colours can be represented as a positive weighted sum of $\mathrm{A}, \mathrm{B}, \mathrm{C}$
- Write

$$
M=a A+b B+c C
$$

where the $=$ sign should be read as "matches"

- This is additive matching
- Defines a colour description system
- two people who agree on A, B, C need only supply (a, b, c)

Color Matching Experiments

- Some colours can't be matched this way
- Instead, we must write

$$
M+a A=b B+c C
$$

where, again, the $=$ sign should be read as "matches"

- This is subtractive matching
- Interpret this as (-a, b, c)

Color Matching Experiments

- Some colours can't be matched this way
- Instead, we must write

$$
M+a A=b B+c C
$$

where, again, the = sign should be read as "matches"

- This is subtractive matching
- Interpret this as (-a, b, c)

Problem for designing displays: Choose phosphors R, G, B so that positive linear combinations match a large set of colours

Principles of Trichromacy

Experimental facts:

Three primaries work for most people, provided we allow subtractive matching

- Exceptional people can match with two or only one primary
- This likely is caused by biological deficiencies

Most people make the same matches

- There are some anomalous trichromats, who use three primaries but match with different combinations

Grassman's Laws

For colour matches:

- symmetry: $U=V \Leftrightarrow V=U$
- transitivity: $U=V$ and $V=W \Rightarrow U=W$
- proportionality: $U=V \Leftrightarrow t U=t V$
- additivity: if any two of the statements are true, then so is the third

$$
\begin{aligned}
U & =V \\
W & =X \\
(U+W) & =(V+X)
\end{aligned}
$$

These statements mean that colour matching is, to an accurate approximation, linear.

Additive vs. Subtractive Color

Human Cone Sensitivity

http://hyperphysics.phy-astr.gsu.edu/hbase/vision/colcon.html

Representing Colour

- Describing colours accurately is of practical importance (e.g. Manufacturers are willing to go to a great deal of trouble to ensure that different batches of their product have the same colour)
- This requires a standard system for representing colour.

Linear Color Spaces

A choice of primaries yields a linear colour space

- the coordinates of a colour are given by the weights of the primaries used to match it

Choice of primaries is equivalent to choice of colour space

- RGB: Primaries are monochromatic energies, say 645.2 nm, 526.3 nm, 444.4 nm
- CIE XYZ: Primaries are imaginary, but have other convenient properties. Colour coordinates are (X, Y, Z), where X is the amount of the X primary, etc.

RGB Colour Matching Functions

- Primaries monochromatic
- Wavelengths 645.2, 526.3 and 444.4 nm
- Negative parts means some colours can be matched only subtractively

Forsyth \& Ponce (2nd ed.) Figure 3.9

RGB Color Space

RGB Colour Matching Functions

- Primaries monochromatic
- Wavelengths 645.2, 526.3 and 444.4 nm
- Negative parts means some colours can be matched only subtractively

Forsyth \& Ponce (2nd ed.) Figure 3.9

RGB Colour Matching Functions

CIE XYZ: Colour matching functions are positive everywhere, but primaries are imaginary. Usually draw x, y, where

$$
\begin{aligned}
& x=X /(X+Y+Z) \\
& y=Y /(X+Y+Z)
\end{aligned}
$$

Overall brightness is ignored

Forsyth \& Ponce (2nd ed.) Figure 3.8

Geometry of Colour (CIE)

- White is in the center, with saturation increasing towards the boundary
- Mixing two coloured lights creates colours on a straight line
- Mixing 3 colours creates colours within a triangle
- Curved edge means there are no 3 actual lights that can create all colours that humans perceive!

RGB Colour Space

The sub-space of CIE colours that can be displayed on a typical computer monitor (phosphor limitations keep the space quite small)

RGB Colour Space

Adding red to the green color outside of the region brings it back to where it can be matched by green and blue RGB primaries

Uniform Colour Spaces

Usually one cannot reproduce colours exactly
This means it is important to know whether a colour difference would be noticeable to a human viewer

Uniform Colour Spaces

McAdam Ellipses: Each ellipse shows colours perceived to be the same

Uniform Colour Spaces

McAdam ellipses demonstrate that differences in x , y are a poor guide to differences in perceived colour

A uniform colour space is one in which differences in coordinates are a good guide to differences in perceived colour

- example: CIE LAB

Colour Constancy

Image colour depends on both light colour and surface colour
Colour constancy: determine hue and saturation under different colours of lighting

It is surprisingly difficult to predict what colours a human will perceive in a complex scene

- depends on context, other scene information

Humans can usually perceive

- the colour a surface would have under white light

Environmental Effects

Chromatic adaptation: If the human visual system is exposed to a certain colour light for a while, colour perception starts to skew

Contrast effects: Nearby colours affect what is perceived

Summary

- Approaches to texture exploit pyramid (i.e. scaled) and oriented representations
- Human colour perception
- colour matching experiments
- additive and subtractive matching
- principle of trichromacy
- RGB and CIE XYZ are linear colour spaces
- Uniform colour space: differences in coordinates are a good guide to differences in perceived colour
- HSV colour space: more intuitive description of colour for human interpretation
- (Human) colour constancy: perception of intrinsic surface colour under different colours of lighting

