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Lecture 23: Neural Network Vision Applications



Menu for Today

Topics:
— Image Generation

— Quiz 5 and 6 online (see Canvas)
Note: grading same 0.5 point for participation

— Today’s Lecture: N/A

— Object Detection
— Segmentation

Reminders:

— Assignment 6: Deep Learning is out and due next Thursday

— No lecture on Monday (holiday)
— No office hours on Friday (holiday)

— Additional Office Hours week after next (for Final Prep)



Please Till out
Student Evaluations
(on Canvas)



Review Lecture 22: Convolutional Layer

32 x 32 x[§]image

Filters always extend the full depth of the input volume

32 height
> 5XD xfilter
Convolve the filter with the image
(.e., “slide over the image spatially,
computing dot products”
32 width

3 depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Review Lecture 22: Convolutional Layer

f we have 6 5xb filter, we'll get 6 separate activation maps:  activation map

32 height 28 heignt
convolutional
layer
28 \Wiath
3 depth this results in the “new image” of size 28 x 28 x 6!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Review Lecture 22: Convolutional Neural Network (ConvNet)

3 depth

32 height

CONV,
Rel U

e.g. 6 5x5x3
filters

32 width

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Review Lecture 22: Convolutional Neural Network (ConvNet)

3 depth

32 height

CONV,
Rel U

e.g. 6 5x5x3
filters

32 width

6 deptn

28 height

28 width

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Review Lecture 22: Convolutional Neural Network (ConvNet)

3 depth

32 height

CONV,
Rel U

e.g. 6 5x5x3
filters

32 width

6 deptn

28 height

CONV,
Rel U

e.g. 10 5x5x6
filters

28 width

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Review Lecture 22: Convolutional Neural Network (ConvNet)

3 depth

32 height

CONV,
Rel U

e.g. 6 5x5x3
filters

32 width

6 deptn

28 height 24 height

CONV,
Rel U

e.g. 10 5x5x6
filters

28 width 24 \vidth

10 deptn

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Review Lecture 22: Convolutional Neural Network (ConvNet)

3 depth

32 height

CONV,
Rel U

e.g. 6 5x5x3
filters

32 width

6 deptn

28 height 24 height
CONV,
Rel U
e.g. 10 5x5x6
filters

28 width 24 \vidth

10 deptn

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Review Lecture 22: Pooling Layer

* Makes representation smaller, more manageable and spatially invariant

* Operates over each activation map independently

224x224x64
/// 112x112x64

pool y
/ ﬁ V

&

> e 112
224 downsampling
112
224

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




Review Lecture 22: Deep Learning Terminology

3

°GGEHE . QHZ gg g{% g% %% Google’s “Inception” network
TETE L W Lt s b
Nepperge s ikgg B
tentey g b B

i &

* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

generally kept fixed, requires some knowledge of the problem and NN to sensibly set
* Loss function: objective function being optimized (softmax, cross entropy, etc.)

requires knowledge of the nature of the problem

 Parameters: trainable parameters of the network, including weights/biases of
inear/fc layers, parameters of the activation functions, etc. [elitri R RC PRI (=l Ie

* Hyper-parameters: parameters, including for optimization, that are not optimized
direct\y aS part Of training e.9., learning rate, batch size, drop-out rate)



Review Lecture 22: Deep Learning Terminology

Google’s “Inception” network

ol Bl
st iin
) g o

* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

generally kept fixed, requires some knowledge of the problem and NN to sensibly set
* Loss function: objective function being optimized (softmax, cross entropy, etc.)

requires knowledge of the nature of the problem

Specification of neural architecture will define a computational graph.




Computer Vision Problems



Computer Vision Problems

Categorization

Multi-class: Horse
Church

Toothbrush
Person

IMAGENET

Multi-label: Horse
Church

Toothbrush
Person



Trends:

— Deeper networks (more layers)

— Smaller filters (give same receptive fields with fewer parameters)

— Reduction of resolution /w increase of filters as you go deeper

— Residual connections for more stable training (avoid vanishing gradients)

— Reusable blocks (design a good structure for a small block use it recursively)

Comparing Complexity

J Inception-v4
80 e 80 1 . :
Inception-v3 ‘ ResNet-152
ResNet-SO. | VGG-16 VGG-19
A I A A N B Bl 1T e ResNet-101
. ResNet-34
2 L
= 704 70 A ResNet-18
> -1 09"
© © GooglLeNet
> E ENet
O 65 4 g 697
- —
3 4 0 BN-NIN
" 60 4 " 60 ‘ 5M 35M - 65M - 95M - 125M - 155M
BN-AlexNet
s 55 AlexNet
50 ¢ & $ < < o 6 5 » S « ~ > ~ 50 + - - - - v - .
5 10 15 20 ZD 30 35 40
*“\e +$e$«$\ ?,\\\e e\\\e e :\'66:\66:& et:b e’&") \:\Q v'\c). 00'\‘. 0(\’\l Operations [G-Ops]
o il B RTQR? @7\ (¢

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



COmpUter ViSiOn PrOblemS (no language for now)

Categorization Detection

Horse (X, y, w, h)
Horse (X, y, w, h)
Person (X, y, w, h)
Person (X, y, w, h)

Multi-class: Horse
Church

Toothbrush
Person

IMAGENET

Common Objects in Context

Multi-label: Horse
Church

Toothbrush
Person



Object Detection as Regression Problem

IIH::\._ ol - —)  CAT (X, y, W ,h)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Regression Problem

—  CAT (X, Y, W ,h)

D)

Xy, w,
Xy, w,
Xy, w,
Xy, w,
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Xy, w,

DD
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O
OOO0000O0
2222222

D)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Regression Problem

IIH::\._ ol - —)  CAT (X, y, W ,h)
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* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Classification Problem

Category Prediction

Dog No

Cat No

rr-l— Sl ... —_—) Couch NoO
j Flowers No

Background  Yes

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Classification Problem

Category Prediction
Dog No

y I_ Cat NoO

! B || = Couch No

i - Flowers No
Background  Yes

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Classification Problem

Category Prediction

Dog Yes
Cat No
rr-l— Sl ... —_—) Couch NoO
J Flowers No
Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Classification Problem

Category Prediction
Dog Yes

y I_ Cat No

! | | || = Couch No
i - Flowers No
Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Classification Problem

Category Prediction

Dog No

Cat Yes
rr-l— Sl ... —_—) Couch NoO
J Flowers No
Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Classification Problem

Problem: Need to apply CNN to many patches in each image

Category Prediction

Dog No

Cat Yes
rr-l— Sl ... —_—) Couch NoO
J Flowers No
Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



A—..
[ Alexe et al, TPAMI 2012

Region Proposa\s (older idea in vision) [ Uilkings et al, IJCV 2013

[ Cheng et al, CVPR 2014
| Zitnick and Dollar, ECCV 2014

Find image regions that are likely contain objects (any object at all)

B~ B WN

- typically works by looking at histogram distributions, region aspect ratio, closed contours, coherent color

Re\ative\y fast to run (Selective Search gives 1000 region proposals in a few seconds on a CPU)

Goal: Get “true” object regions to be in as few top K proposals as possible

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




| Girshick et al, CVPR 2014 |

Input Image

* image from Ross Girshick



| Girshick et al, CVPR 2014 |

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



| Girshick et al, CVPR 2014 |

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



ConvN

ConvN
et

4

[ Girshick et al, CVPR 2014 |

Forward each region
through a CNN

4 g /" Warped image regions

Regions of Interest from

a proposal method (~2k)

Input Image

* image from Ross Girshick



SVMs

SVMs

SVMs

ConvN

ConvN

et

4

[ Girshick et al, CVPR 2014 |

Classify regions with SVM

Forward each region
through a CNN

4 g /" Warped image regions

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



R-CNN

Linear Regression for bounding box offsets

Bbox reg

SVMs

Bbox reg

Bbox reg

SVMs

ConvN

ConvN

et

4

[ Girshick et al, CVPR 2014 |

Classify regions with SVM

Forward each region
through a CNN

4 g /" Warped image regions

Regions of Interest from
a proposal method (~2k)

* image from Ross Girshick



R-CNN

R-CNN (Regions with CNN features) algorithm:
— Extract promising candidate regions using an object proposals algorithm

— Resize each proposal window to the size of the input layer of a trainead
convolutional neural network

— Input each resized image patch to the convolutional neural network

Implementation detail: Instead of using the classification scores of the
network directly, the output of the final fully-connected layer can be used as an
input feature to a trained support vector machine (SVM)



R-CNN vs. SPP

| He et al, ECCV 2014 ]

feature
feature

feature

feature

R-CNN
2000 nets on image regions



R-CNN vs. SPP

| He et al, ECCV 2014 ]

feature

feature

feature
feature

feature
feature

, ,','

‘\,_..

/9’.»4"“ l m-w"*w.
R s ~1mage v
—

R-CNN SPP-net
2000 nets on image regions 1 net on full image



Fast R-CNN

| Girshick et al, ICCV 2015 |

* image from Ross Girshick



Fast R-CNN

| Girshick et al, ICCV 2015 |

/ /”convS” feat
/ Forward wi

* image from Ross Girshick



Fast R-CNN

[ Girshick et al, ICCV 2015 |

/ ‘convd” feature map

T

ANAN

Forward prop the whole image through CNN

ConvNet

* image from Ross Girshick



Fast R-CNN

Regions of
Interest
from the
poroposal
method

ﬁ/ Vi /47/ “convs” feature map
T

Forward prop the whole image through CNN

ConvNet

[ Girshick et al, ICCV 2015 |

* image from Ross Girshick



Fast R-CNN
[ Girshick et al, ICCV 2015 |
Regions of /7 ,~ ,— RolPooling” layer
Interest 7@/ ) 7/ “convb” feature map
from the /
proposal Forward prop the whole image through CNN
method *

Input Image

Girshick, “Fast R-C
Figure copyright Ri

* image from Ross Girshick



Rol Align

15 x 15 pixel Region of Interest
in the original image

I e Lo e A o

1 o I sl BT TR Wi A s T s s 7 . o -~ B
iginal Image: 128 x 128
NS " o A LO A 1 L0

CNN

Corresponding region in the
Feature Map (2.93 x 2.93)

P

Feature Map: 25 x 25

vaf{riablqlasiz Rol




Fast R-CNN
Log loss + Smooth L1 loss | Multi-task |oss [ Girshick et al, ICCV 2015 ]
Object
L : Linear +
Classification | .~ Bounding box regression

FCs

N
,— "Rol Pooling” layer

Regions of |

Interest = /5/ “conv5” feature map

from the

proposal Forward prop the whole image through CNN
method

ConvNet

* image from Ross Girshick



Fast R-CNN: Training

Object

Log loss + Smooth L1 loss | Multi-task loss

'L . *

classification | “near+

softmax

Linear | Bounding box regression

Regions of

FCS%

i \®

— ,—7 Rol Pooling” layer

Interest

from the

ﬁ /—tbﬁf—“conva” feature map
 §

poroposal
method

ConvNet

[ Girshick et al, ICCV 2015 |

Forward prop the whole image through CNN

* image from Ross Girshick



R-CNN vs. SPP vs. Fast R-CNN Girehiok ot ol OVPR 20141

[ Girshick et al, ICCV 2015 ]
| He et al, ECCV 2014 |

e 3 Test time (seconds)
Tl'al ni ng tl me (HOU rS) B Including Region propos...

B Excluding Region Propo...

R-CNN R-CNN

SPP-Net

SPP-Net

Fast R-CNN 8.75

Fast R-CNN
0 25 50 75 100

60

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



R-CNN vs. SPP vs. Fast R-CNN Girehiok ot ol OVPR 20141

[ Girshick et al, ICCV 2015 |
| He et al, ECCV 2014 |

e 3 Test time (seconds)
Tl'al ni ng t' me (HOU rS) B Including Region propos...

B Excluding Region Propo...

R-CNN R-CNN

SPP-Net

SPP-Net

Fast R-CNN 8.75

Fast R-CNN
0 25 50 75 100

60

Observation: Performance dominated by the region proposals at this point!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Faster R-CNN

Make CNN do proposals!

Insert Region Proposal
Network (RPN) to predict

proposals from features

D proposeV /
Jointly train with 4 losses:

/ Rol pooling

1. RPN classify object / not object Region Proposal Network '

2. RPN regress box coordinates ﬁ

3. Final classification score (object TaRir e
classes) l

4. Final box coordinates

CNN

y 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

4

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 P L A 7=
Figure copyright 2015, Ross Girshick; reproduced with permission



YOLO: You Only Look Once

| Redmon et al, CVPR 2016 |

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
S numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

Input image Divide image into grid Output:
3XHXW 7x7 Ix7x(5*B+C)

Image a set of base boxes
centered at each grid cell
Here B =3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



11th - 30th
Class Probabilities

(- p/
_IIIIIII *

zllllllla
g
_lllllll+,
_llllllla

6th - 10th
Box #2

| Redmon et al, CVPR 2016 |

.
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YOLO



http://pureddie.com/yolo



http://pureddie.com/yolo



11th - 30th
Class Probabilities

(- p/
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6th - 10th
Box #2

| Redmon et al, CVPR 2016 |
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COmpUter ViSiOn PrOblemS (no language for now)

Segmentation

Common Objects in Context



emantic Segmentation

Label every pixel with a

category label (without
differentiating instances

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Semantic Segmentation: Sliding Window  Farabet et al, TPAMI 2013

| Pinheiro et al, ICML 2014 |

Extract patches Classify center pixel with CNN

7’ S
alll - j—) Cow
3 GD— con
ol - :ﬂ—» Grass

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



emantic Segmentation: Sliding Window  Farabet et al, TPAMI 2013

| Pinheiro et al, ICML 2014 |

Extract patches Classify center pixel with CNN

7’

ol .. || gy G OW

ﬁl j—) Cow

olll - j]—) Grass

VERY inefficient, no reuse of computations for overlapping patches

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers to make
oredictions for all pixels at once!

4

* 3 "6"& \‘ } =
o S B A
w 5 § s s
&2 S W [ SEEET
oF R *«w

S

oy

N oy o

o %3
T TR T "
3 o SO *3
H f o PRt R
/ - AR EERA
\
o 4
5
v
%
=)
o \
Elegiy |
B St
*\
X
b I AN O VA

Input Image Class Scores Predicted Labels
3xHxW ' _ CxXHxW Hx W
Convolutions
DxHxW

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers to make
oredictions for all pixels at once!

-

Input Image

3XHxW '

Convolutions

DxHxW

4

-

Class Scores Predicted Labels

CxHxW Hx W

Problem: Convolutions at the original image scale will be very expensive
(in terms of storage)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers with
downsampling and upsampling inside the network!

Med-res: Med-res:
D, x H/4 x W/4 Do x H/4 x W/4

Low-res:
Input Image Dsx H/4 x W/4 Predicted Labels

3w Hx W High-res: High-res: H x W
Dy x H/2 x W/2 Dy x H/2 x W/2

| Long et al, CVPR 2015 |
| Noh et al, ICCV 2015 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers with
downsampling and upsampling inside the network!

Med-res: Med-res:
D, x H/4 x W/4 Do x H/4 x W/4

Low-res:
Input Image 1 Dsx H/4 x W/4 Predicted Labels
3w Hx W High-res: High-res: H x W
Dy x H/2 x W/2 Dy x H/2 x W/2
Downsampling = Pooling Upsampling = 777

| Long et al, CVPR 2015 |
| Noh et al, ICCV 2015 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling (a.k.a “Unpooling”)

Nearest Neighbor

1T 112 2
1 2 T 112 2
—
3 4 3 3|4 4
3 3|4 4
Input: 2 x 2 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling (a.k.a “Unpooling”)

Nearest Neighbor “Bed of Nails”
T 112 2 1T 012 O
1 2 T 112 2 1 2 O 0|10 O
3 4 — 3 314 4 3 4 — 3 014 O
3 3|14 4 O 0|10 O
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Max Unpooling

Max Pooling Max Unpooling
Remember which element was max! Use positions from pooling layer

1T 210 3 O 02 O
3 o2 5 B 1 2 O 110 O
1T 212 1 /8 Rest of the network 3 4 O 010 0
[ 3|4 38 3 0|0 4

Output: 2 x 2 Input: 2 x 2
Input: 4 x 4 Output: 4 x 4

A —

Corresponding pairs of downsampling and upsampling layers

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

—_—

Dot product between
filter and input

Input: 4 x 4 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

—_—

Dot product between
filter and input

Input: 4 x 4 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

—_—

Dot product between
filter and input

Output: 2 x 2

Input: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

—_—

Dot product between
filter and input

Output: 2 x 2

Filter moves 2 pixels in the input for every one
Input: 4 x 4 pixel in the output

Stride gives ratio in movement in input vs output

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

3 X 3 transpose convolution, stride 2 pad 1

Output: 4 x 4
Input: 2 x 2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

3 X 3 transpose convolution, stride 2 pad 1

——
Input gives
weight for

filter

Output: 4 x 4
Input: 2 x 2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

3 X 3 transpose convolution, stride 2 pad 1
Sum where

output overlaps

——
Input gives
weight for

filter

Output: 4 x 4
Input: 2 x 2

Filter moves 2 pixels in the output for every one
pixel in the Input

Stride gives ratio in movement in output vs input

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Transpose Convolution: 1-D Example

Output
d
Yy az H| DX
o
k / / by

Output contains copies of the filter weighted multiplied by the input, summing
at overlaps In the output

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



U-Net Architecture

input
image
tile

572 x 572

ResNet-like Fully convolutional CNN

| 64 64
128 64 64 2
. olele output
N . segmentation
& % map
O = -
N K S g
XN X
O @
~f ©
N
'128 128 I
256 128
o~ o
% % % & t&’ a
¥ oo 256 512 256
N s o
gIN 1 §D?8IEI =» conv 3x3, RelLU
3 0 f S S = copy and crop
512

512 512 1024
& ¥ max pool 2x2

4 up-conv 2x2
=» CONV 1x1

| Ronneberger et al, CVPR 2015 |




Image Colorization

[ Zhang et al. 2016 ]



Depth Estimation

U-Net with skip
connections

Loss,
Direct supervision e.g.,L2

via Kinect RGB+D



Depth Estimation

[ DenseNet Huang et al 2018 ] [ Alhashim Wonka 2019 ]



Super Resolution

bicubic
| (21.59dB/0.6423)

: J’
s

SRResNet
(23.53dB/0.7832)

8 - e oA
'/" »., )

) o

4 N ) '.,/ -
» o .
. )

original

A state of the art super-res network trained with L2 loss is
good at sharpening edges, but results lack realistic texture

[ Ledig et al 2017 ]



Image-to-Image Iranslation

Labels to Street Scene Labels to Facade BW to Color

iInput output

Day to Night Edges to Photo

output output iInput output

Figure 1 in the original paper.

| Isola et al., 2016 |



Generative Adversarial Networks

Positive examples Negative examples
. Real or fake pair? Real or fake pair?
Architecture: DCGAN-based ol 1
D | : } D : : |
I | l l | |

Training Is conditioned on the Images
from the source domain

<

EN

ITI :

G [ ] !
|

G tries to synthesize fake
Images that fool D

D tries to identify the fakes

Figure 2 in the original paper.

| Isola et al., 2016 |



Image-to-Image Iranslation

Style transfer: change the style of an image while preserving the content

Monet —_ Photos . Zebras 7_* Horses . Summer Z_ Winter

Photograph Monet Cezane

Data: two unrelated collections of image, one for each style [Zhuetal., 2017 ]



Denoising Diffusion Models

Key Ildea: | earning to generate by denoising

Denoising diffusion models consist of two processes:
Forward diffusion process that gradually adds noise to input

Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Data

Reverse denoising process (generative)

Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015
Ho et al., Denoising Diffusion Probabilistic Models, NeurlPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Slide from: https://www.cs.unc.edu/~ronisen/teaching/fall_2022/pdf_lectures/lecture/-8_diffusion_model.pdf
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Forward Diffusion Process

The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

Data

{q xt‘xt—l

Xt \/1 — Oixg-1, ¢l =>  Sample: x; = \/1 — PDtTt—1 + V Pt€t—1

mean variance where, €¢t—1 ™~ N(0,I)

Slide from: https://www.cs.unc.edu/~ronisen/teaching/fall_2022/pdf_lectures/lecture/-8_diffusion_model.pdf

19



Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

Data

plxr) =N , Autoencoder predicts the mean of
po(X¢—1|xt) = N(x¢t—1; g(xt,t),0¢/1)  the denoised image x(t-1) given x(t).

-

'

Trainable network
(U-net, Denoising Autoencoder)

Slide from: https://www.cs.unc.edu/~ronisen/teaching/fall_2022/pdf_lectures/lecture/-8_diffusion_model.pdf

Noise

23



Implementation: Network Architecture

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent eq(x;, t)

o= - - - - -

I
I
I
I
.

Time Representation 1' I

Fully-connected
Layers

Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization
layers. (see Dharivwal and Nichol NeurlPS 2021)

28

Slide from: https://www.cs.unc.edu/~ronisen/teaching/fall_2022/pdf_lectures/lecture/-8_diffusion_model.pdf



4. Visual Imagination
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A brain riding a rocketship

heading towards the moon.

A marble statue of a Koala DJ in
front of a marble statue of a
turntable. The Koala has wearing
large marble headphones.

A dragon fruit wearing karate belt
in the snow.
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Android Mascot made from
bamboo.

A Pomeranian is sitting on the An extremely angry bird.
Kings throne wearing a crown.
Two tiger soldiers are standing

next to the throne.

Three spheres made of glass
falling into ocean. Water is

splashing. Sun is setting.

A single beam of light enter the
room from the ceiling. The beam
of light is illuminating an easel.
On the easel there is a
Rembrandt painting of a raccoon.

Imagen.research.google

Jext to Image generation

Uses diffusion process,
training using large dataset
of text (web scale) and
image-text (400M) pairs

“A Golden Retriever dog wearing a blue
checkered beret and red dotted turtleneck.”

Text

Text Embedding

Text-to-Image
Diffusion Model

164 X 64 Image

256 x 256 Image

Y

Super-Resolution
Diffusion Model

1024 x 1024 Image



http://imagen.research.google

COmpUter ViSiOn PrOblemS (no language for now)

Instance Segmentation

HorseT

Horse?
Person
Person?



Mask R-CNN
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Instance

seamentation

[He et al, 2017 ]



Summary

Common types of layers:

1. Convolutional Layer
— Parameters define a set of learnable filters

2. Pooling Layer
— Performs a downsampling along the spatial dimensions

3. Fully-Connected Layer
— As In a regular neural network

Each layer accepts an input 3D volume and transforms it to an output 3D
volume through a differentiable function



Summary

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule

A convolutional neural network assumes Iinputs are images, and constrains
the network architecture to reduce the number of parameters

A convolutional layer applies a set of learnable filters
A pooling layer performs spatial downsampling
A fully-connected layer Is the same as in a regular neural network

Convolutional neural networks can be seen as learning a hierarchy of filters



