
Lecture 23: Neural Network Vision Applications

CPSC 425: Computer Vision 



Menu for Today
Topics: 

— Object Detection

— Segmentation

Redings: 
— Today’s Lecture:  N/A                                

Reminders: 
— Assignment 6: Deep Learning is out  and due next Thursday 

— No lecture on Monday (holiday)

— No office hours on Friday (holiday) 
— Additional Office Hours week after next (for Final Prep)

— Image Generation

— Quiz 5 and 6 online (see Canvas)

      Note: grading same 0.5 point for participation



Please fill out 

Student Evaluations  

(on Canvas)
3



Review Lecture 22: Convolutional Layer

32 height

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

5 x 5 x 3 filter

Convolve the filter with the image 
(i.e., “slide over the image spatially, 
computing dot products”

Filters always extend the full depth of the input volume



Review Lecture 22: Convolutional Layer

32 width

3 depth
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolutional

layer

28 width

6 depth

28 height

activation mapIf we have 6 5x5 filter, we’ll get 6 separate activation maps:

32 height

this results in the “new image” of size 28 x 28 x 6! 



CONV,

ReLU

e.g. 6 5x5x3 
filters

Review Lecture 22: Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



CONV,

ReLU
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Review Lecture 22: Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



CONV,

ReLU

e.g. 6 5x5x3 
filters

Review Lecture 22: Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

CONV,

ReLU

e.g. 10 5x5x6 
filters

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



CONV,

ReLU

e.g. 6 5x5x3 
filters

Review Lecture 22: Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,

ReLU

e.g. 10 5x5x6 
filters

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



CONV,

ReLU

e.g. 6 5x5x3 
filters

Review Lecture 22: Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,

ReLU

e.g. 10 5x5x6 
filters

CONV,

ReLU

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Review Lecture 22: Pooling Layer
• Makes representation smaller, more manageable and spatially invariant

• Operates over each activation map independently 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Review Lecture 22: Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph)


• Loss function: objective function being optimized (softmax, cross entropy, etc.)


• Parameters: trainable parameters of the network,  including weights/biases of 
linear/fc layers, parameters of the activation functions, etc.


• Hyper-parameters: parameters, including for optimization, that are not optimized 
directly as part of training (e.g., learning rate, batch size, drop-out rate)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set 

optimized using SGD or variants 

grid search

requires knowledge of the nature of the problem

deeper = better



Review Lecture 22: Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph)


• Loss function: objective function being optimized (softmax, cross entropy, etc.)


Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set 

requires knowledge of the nature of the problem

deeper = better

Specification of neural architecture will define a computational graph. 



Computer Vision Problems



Multi-class: Horse
Church
Toothbrush
Person

Multi-label: Horse
Church
Toothbrush
Person

Categorization

Computer Vision Problems



Comparing Complexity

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Trends: 

— Deeper networks (more layers) 

— Smaller filters (give same receptive fields with fewer parameters)

— Reduction of resolution /w increase of filters as you go deeper

— Residual connections for more stable training (avoid vanishing gradients) 

— Reusable blocks (design a good structure for a small block use it recursively)



Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h)

Horse (x, y, w, h)

Person (x, y, w, h)

Person (x, y, w, h)

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization



Object Detection as Regression Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

CAT (x, y, w ,h)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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…
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Object Detection as Regression Problem
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Problem: each image needs a different number of outputs 
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Object Detection as Classification Problem 

21

…

…
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𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Dog

Cat

Couch

Flowers

Background

…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

No

No

No

No

Yes 
…

Category    Prediction

Apply CNN to many different crops in the image and (classification) CNN 
classifies each patch as object or background
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Object Detection as Classification Problem
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No

Yes 
No

No

No

…

Category    Prediction

Apply CNN to many different crops in the image and (classification) CNN 
classifies each patch as object or background

Problem: Need to apply CNN to many patches in each image



Region Proposals (older idea in vision)

Find image regions that are likely contain objects (any object at all)

- typically works by looking at histogram distributions, region aspect ratio, closed contours, coherent color


Relatively fast to run (Selective Search gives 1000 region proposals in a few seconds on a CPU)

[ Alexe et al, TPAMI 2012 ]

[ Uijkings et al, IJCV 2013 ]

[ Cheng et al, CVPR 2014 ]


[ Zitnick and Dollar, ECCV 2014 ]

Goal: Get “true” object regions to be in as few top K proposals as possible 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image

Regions of Interest from

a proposal method (~2k)
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a proposal method (~2k)

Warped image regions
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Forward each region 
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through a CNN

Classify regions with SVM



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image

Regions of Interest from

a proposal method (~2k)

Warped image regions

Forward each region 
through a CNN

Classify regions with SVM

Linear Regression for bounding box offsets



R-CNN (Regions with CNN features) algorithm: 

— Extract promising candidate regions using an object proposals algorithm 

— Resize each proposal window to the size of the input layer of a trained    
convolutional neural network 

— Input each resized image patch to the convolutional neural network 


Implementation detail: Instead of using the classification scores of the 
network directly, the output of the final fully-connected layer can be used as an 
input feature to a trained support vector machine (SVM) 


R-CNN



R-CNN vs. SPP
[ He et al, ECCV 2014 ]



R-CNN vs. SPP
[ He et al, ECCV 2014 ]



Fast R-CNN
[ Girshick et al, ICCV 2015 ]

* image from Ross Girshick

            
Input Image



Fast R-CNN
[ Girshick et al, ICCV 2015 ]

* image from Ross Girshick

Input Image



Fast R-CNN
[ Girshick et al, ICCV 2015 ]
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Forward prop the whole image through CNN

“conv5” feature map
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Fast R-CNN
[ Girshick et al, ICCV 2015 ]

* image from Ross Girshick

Input Image

Forward prop the whole image through CNN

“conv5” feature map
Regions of 
Interest 
from the 
proposal

method

“RoI Pooling” layer



RoI Align



[ Girshick et al, ICCV 2015 ]

* image from Ross Girshick

Input Image

Forward prop the whole image through CNN

“conv5” feature map
Regions of 
Interest 
from the 
proposal

method

“RoI Pooling” layer

Bounding box regression
Object 

classification

                    Fast R-CNN
Multi-task loss



[ Girshick et al, ICCV 2015 ]

* image from Ross Girshick

Input Image

Forward prop the whole image through CNN

“conv5” feature map
Regions of 
Interest 
from the 
proposal

method

“RoI Pooling” layer

Bounding box regression
Object 

classification

                    Fast R-CNN: Training
Multi-task loss



R-CNN vs. SPP vs. Fast R-CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Girshick et al, ICCV 2015 ]
[ He et al, ECCV 2014 ]

[ Girshick et al, CVPR 2014 ]



R-CNN vs. SPP vs. Fast R-CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Girshick et al, ICCV 2015 ]
[ He et al, ECCV 2014 ]

[ Girshick et al, CVPR 2014 ]

Observation: Performance dominated by the region proposals at this point! 



Faster R-CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



YOLO: You Only Look Once

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Redmon et al, CVPR 2016 ]



YOLO: You Only Look Once
[ Redmon et al, CVPR 2016 ]



Optional subtitle



Optional subtitle



YOLO: You Only Look Once
[ Redmon et al, CVPR 2016 ]



Computer Vision Problems (no language for now)

Segmentation

Horse

Person



Semantic Segmentation

Cow

Grass

Sky
Tre

es

Grass

Cat

Sky Trees

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Label every pixel with a 
category label (without 
differentiating instances)



Semantic Segmentation: Sliding Window

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM
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[grass: 0.81]
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AttributesVisual Attributes by MIL

Visual representation by DCNN

Classify center pixel with CNNExtract patches

Cow

Cow

Grass

[ Farabet et al, TPAMI 2013 ]

[ Pinheiro et al, ICML 2014 ]



Semantic Segmentation: Sliding Window

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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AttributesVisual Attributes by MIL

Visual representation by DCNN

Classify center pixel with CNNExtract patches

Cow

Cow

Grass

[ Farabet et al, TPAMI 2013 ]

[ Pinheiro et al, ICML 2014 ]

Problem: VERY inefficient, no reuse of computations for overlapping patches



Semantic Segmentation: Fully Convolutional CNNs

CONV,

ReLU

CONV,

ReLU

CONV,

ReLU

Argmax

Input Image

Convolutions

Class Scores Predicted Labels

C x H x W H x W

D x H x W

3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers to make 
predictions for all pixels at once! 



Semantic Segmentation: Fully Convolutional CNNs

CONV,

ReLU

CONV,

ReLU

CONV,

ReLU

Argmax

Input Image

Convolutions

Class Scores Predicted Labels

C x H x W H x W

D x H x W

3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers to make 
predictions for all pixels at once! 

Problem: Convolutions at the original image scale will be very expensive

(in terms of storage)



Semantic Segmentation: Fully Convolutional CNNs

Input Image Predicted Labels

H x W3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers with 
downsampling and upsampling inside the network! 

High-res:

D1 x H/2 x W/2

High-res:

D1 x H/2 x W/2

Med-res:

D2 x H/4 x W/4

Med-res:

D2 x H/4 x W/4

Low-res:

D3 x H/4 x W/4

[ Long et al, CVPR 2015 ]

[ Noh et al, ICCV 2015 ]



Semantic Segmentation: Fully Convolutional CNNs

Input Image Predicted Labels

H x W3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers with 
downsampling and upsampling inside the network! 

High-res:

D1 x H/2 x W/2

High-res:

D1 x H/2 x W/2

Med-res:

D2 x H/4 x W/4

Med-res:

D2 x H/4 x W/4

Low-res:

D3 x H/4 x W/4

[ Long et al, CVPR 2015 ]

[ Noh et al, ICCV 2015 ]

Downsampling = Pooling Upsampling = ???



In-network Up Sampling (a.k.a “Unpooling”)

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

Nearest Neighbor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling (a.k.a “Unpooling”)

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0
0 0 0 0
3 0 4 0
0 0 0 0

“Bed of Nails”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Max Unpooling

Input: 4 x 4

1 2 6 3
3 5 2 1
1 2 2 1
7 3 4 8

1 2
3 4

Input: 2 x 2
Output: 4 x 4

0 0 2 0
0 1 0 0
0 0 0 0
3 0 0 4

Max Unpooling 
Use positions from pooling layer

5 6
7 8

Max Pooling 
Remember which element was max!

… 

Rest of the network

Output: 2 x 2

Corresponding pairs of downsampling and upsampling layers

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product between 
filter and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product between 
filter and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Transpose Convolution

Input: 4 x 4

Dot product between 
filter and input

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Output: 2 x 2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Transpose Convolution

Input: 4 x 4

Output: 2 x 2

Dot product between 
filter and input

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Filter moves 2 pixels in the input for every one 
pixel in the output


Stride gives ratio in movement in input vs output

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Transpose Convolution

Input: 2 x 2
Output: 4 x 4

3 x 3 transpose convolution, stride 2 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Transpose Convolution

Input gives 
weight for 
filter

Input: 2 x 2
Output: 4 x 4

3 x 3 transpose convolution, stride 2 pad 1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



In-network Up Sampling: Transpose Convolution

Input gives 
weight for 
filter

Sum where 
output overlaps

Input: 2 x 2
Output: 4 x 4

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in the output for every one 
pixel in the input


Stride gives ratio in movement in output vs input

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Transpose Convolution: 1-D Example

a

b

x

y

z

 ax

 ay

az + bx

 by       

bz

Input Filter

Output

Output contains copies of the filter weighted multiplied by the input, summing 
at overlaps in the output


* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



U-Net Architecture

[ Ronneberger  et al, CVPR 2015 ]

ResNet-like Fully convolutional CNN 



Image Colorization

[ Zhang et al. 2016 ]



Depth Estimation

Other Tasks ± Surface Normals

NormalsColor Image

𝒏 ൌ 𝑛௫, 𝑛௬, 𝑛௭ , 𝒏 ൌ 1

Room

Legend

Image credit: NYU Dataset, Silberman et al.  ECCV 2012

U-Net with skip 
connections

Loss, 
e.g., L2Direct supervision 

via Kinect RGB+D



[ Alhashim Wonka 2019 ][ DenseNet Huang et al 2018 ]

Depth Estimation



Super Resolution
bicubic SRResNet SRGAN original

(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4⇥ upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4⇥ upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR

[ Ledig et al 2017 ]

A state of the art super-res network trained with L2 loss is 
good at sharpening edges, but results lack realistic texture 



Image-to-Image Translation

[ Isola et al., 2016 ]



Generative Adversarial Networks 

Architecture: DCGAN-based


Training is conditioned on the images 
from the source domain 

[ Isola et al., 2016 ]



Style transfer: change the style of an image while preserving the content

Data: two unrelated collections of image, one for each style [ Zhu et al., 2017 ]

Image-to-Image Translation



Denoising Diffusion Models
Key Idea: Learning to generate by denoising

Slide from: https://www.cs.unc.edu/~ronisen/teaching/fall_2022/pdf_lectures/lecture7-8_diffusion_model.pdf



Forward Diffusion Process

Slide from: https://www.cs.unc.edu/~ronisen/teaching/fall_2022/pdf_lectures/lecture7-8_diffusion_model.pdf



Reverse Denoising Process

Slide from: https://www.cs.unc.edu/~ronisen/teaching/fall_2022/pdf_lectures/lecture7-8_diffusion_model.pdf



Implementation: Network Architecture

Slide from: https://www.cs.unc.edu/~ronisen/teaching/fall_2022/pdf_lectures/lecture7-8_diffusion_model.pdf



4. Visual Imagination
• imagen.research.google

• Text to image generation

• Uses diffusion process, 

training using large dataset 
of text (web scale) and 
image-text (400M) pairs 


http://imagen.research.google


Computer Vision Problems (no language for now)

Instance Segmentation

Horse1

Horse2

Person1

Person2



Mask R-CNN

[ He et al, 2017 ]



Summary
Common types of layers: 


	 1.  Convolutional Layer 
— Parameters define a set of learnable filters  

	 2.  Pooling Layer 
— Performs a downsampling along the spatial dimensions  

	 3.  Fully-Connected Layer 
— As in a regular neural network  

Each layer accepts an input 3D volume and transforms it to an output 3D 
volume through a differentiable function 



Summary

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule 


A convolutional neural network assumes inputs are images, and constrains 
the network architecture to reduce the number of parameters 


A convolutional layer applies a set of learnable filters


A pooling layer performs spatial downsampling


A fully-connected layer is the same as in a regular neural network 


Convolutional neural networks can be seen as learning a hierarchy of filters 


