

CPSC 425: Computer Vision

Lecture 21: Neural Networks Intro

Recall: Linear Classifier

Defines a score function:

Recall: Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

An alternative solution is to regress to one-hot targets = 1 vs all classifiers

Transpose

Transpose

Transpose

Transpose

Solve regression problem by Least Squares

$$\mathcal{L} = |\mathbf{X}\mathbf{W} - \mathbf{T}|^2$$

Transpose

Solve regression problem by Least Squares

$$\mathcal{L} = |\mathbf{X}\mathbf{W} - \mathbf{T}|^2 + \lambda |\mathbf{W}|^2$$

Solve regression problem by Least Squares

$$\mathcal{L} = |\mathbf{X}\mathbf{W} - \mathbf{T}|^2 + \lambda |\mathbf{W}|^2$$

Recall: Nearest Mean Classifier

Find the nearest mean and assign class:

$$c_q = \arg\min_i |\mathbf{x}_q - \mathbf{m}_i|^2$$

CIFAR10 class means:

Warning:

Our intro to Neural Networks will be very light weight ...

... if you want to know more, take my CPSC 532S

A Neuron

- The basic unit of computation in a neural network is a neuron.
- A neuron accepts some number of input signals, computes their weighted sum, and applies an **activation function** (or **non-linearity**) to the sum.
- Common activation functions include sigmoid and rectified linear unit (ReLU)

A Neuron

- The basic unit of computation in a neural network is a neuron.
- A neuron accepts some number of input signals, computes their weighted sum, and applies an **activation function** (or **non-linearity**) to the sum.
- Common activation functions include sigmoid and rectified linear unit (ReLU)

Recall: Linear Classifier

Defines a score function:

Recall: Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Aside: Inspiration from Biology

Figure credit: Fei-Fei and Karpathy

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Neural nets/perceptrons are loosely inspired by biology.

But they certainly are not a model of how the brain works, or even how neurons work.

Activation Function: Sigmoid

Figure credit: Fei-Fei and Karpathy

Common in many early neural networks
Biological analogy to saturated firing rate of neurons
Maps the input to the range [0,1]

Activation Function: ReLU (Rectified Linear Unit)

Figure credit: Fei-Fei and Karpathy

Found to accelerate convergence during learning Used in the most recent neural networks

A Neuron

(1) Combine the sum and activation function

(1) Combine the sum and activation function

(1) Combine the sum and activation function

(2) suppress the bias term (less clutter)

$$x_{N+1} = 1$$

$$w_{N+1} = b$$

This network is also called a Multi-layer Perceptron (MLP)

'input' layer

'hidden' layer 'input' layer

A neural network comprises neurons connected in an acyclic graph. The outputs of neurons can become inputs to other neurons. Neural networks typically contain multiple layers of neurons.

Figure credit: Fei-Fei and Karpathy

Example of a neural network with three inputs, a single hidden layer of four neurons, and an output layer of two neurons

Question: What is a Neural Network?

Answer: Complex mapping from an input (vector) to an output (vector)

Question: What is a Neural Network?

Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?

Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more about what specific functions next ...

Question: What is a Neural Network?

Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?

Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more about what specific functions next ...

Question: What does a hidden unit do?

Answer: It can be thought of as classifier or a feature.

Question: What is a Neural Network?

Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?

Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more about what specific functions next ...

Question: What does a hidden unit do?

Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?

Answer: 1) More layers = more complex functional mapping

2) More efficient due to distributed representation

A neural network comprises neurons connected in an acyclic graph. The outputs of neurons can become inputs to other neurons. Neural networks typically contain multiple layers of neurons.

Figure credit: Fei-Fei and Karpathy

Example of a neural network with three inputs, a single hidden layer of four neurons, and an output layer of two neurons

Note: each neuron will have its own vector of weights and a bias, its easier to think of all neurons in a layer as a single entity with a matrix of weights (size = number of inputs x number of neurons) and a vector of biases (size = number of neurons)

Note: each neuron will have its own vector of weights and a bias, its easier to think of all neurons in a layer as a single entity with a matrix of weights (size = number of inputs x number of neurons) and a vector of biases (size = number of neurons)

hidden layer

$$\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$$

Why can't we have linear activation functions? Why have non-linear activations?

$$\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$$

$$\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$$
$$= \mathbf{W}_2^{(2 \times 4)} \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)}$$

hidden layer

$$\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$$

$$= \mathbf{W}_2^{(2 \times 4)} \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)}$$

$$= \mathbf{W}_2^{(2 \times 4)} \mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{W}_2^{(2 \times 4)} \mathbf{b}_1^{(4)} + \mathbf{b}_2^{(2)}$$

hidden layer

$$\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right) \\
= \mathbf{W}_2^{(2 \times 4)} \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \\
= \mathbf{W}_2^{(2 \times 4)} \mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{W}_2^{(2 \times 4)} \mathbf{b}_1^{(4)} + \mathbf{b}_2^{(2)} \\
= \mathbf{W}_2^{(2 \times 3)} \mathbf{W}_1^{(2 \times 3)} \mathbf{x} + \mathbf{W}_2^{(2 \times 4)} \mathbf{b}_1^{(4)} + \mathbf{b}_2^{(2)}$$

hidden layer

Non-linear activation is required to provably make the Neural Net a universal function approximator

Intuition: with ReLU activation, we effectively get a linear spline approximation to any function.

Optimization of neural net parameters = finding slops and transitions of linear pieces

The quality of approximation depends on the number of linear segments

Number of linear segments for large input dimension: $\Omega(2^{\frac{2}{3}Ln})$

Light Theory: Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate any continuous function with compact support to arbitrary accuracy, when the width goes to infinity.

[Hornik et al., 1989]

Universal Approximation Theorem (revised): A network of infinite depth with a hidden layer of size d+1 neurons, where d is the dimension of the input space, can approximate any continuous function.

[Lu et al., NIPS 2017]

Universal Approximation Theorem (further revised): ResNet with a single hidden unit and infinite depth can approximate any continuous function.

[Lin and Jegelka, NIPS 2018]

How many neurons?

How many neurons? 4+2=6

How many neurons? 4+2=6

$$4+2 = 6$$

How many weights?

How many neurons? 4+2=6

$$4+2=6$$

How many weights?

How many neurons? 4+2=6

How many weights?

 $(3 \times 4) + (4 \times 2) = 20$

How many learnable parameters?

How many neurons? 4+2=6

How many weights?

$$(3 \times 4) + (4 \times 2) = 20$$

$$20 + 4 + 2 = 26$$
How many learnable parameters?

Modern **convolutional neural networks** contain 10-20 layers and on the order of 100 million parameters

Training a neural network requires estimating a large number of parameters

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$\mathcal{L} = -\sum_i y_i \log(\hat{y}_i)$$
 $\hat{y}_i = \frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$\mathcal{L} = -\sum_i y_i \log(\hat{y}_i)$$
 $\hat{y}_i = \frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$\mathcal{L} = -\sum_i y_i \log(\hat{y}_i)$$
 $\hat{y}_i = \frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

$$c_1 = -2.85$$
 $c_2 = 0.86$
 $c_3 = 0.28$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$\mathcal{L} = -\sum_i y_i \log(\hat{y}_i)$$
 $\hat{y}_i = \frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$\mathcal{L} = -\sum_i y_i \log(\hat{y}_i)$$
 $\hat{y}_i = \frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

$$c_1 = -2.85$$

$$c_2 = 0.86$$

$$c_3 = 0.28$$

$$exp$$

$$0.058$$

$$0.058$$

$$sum to 1$$

$$0.016$$

$$0.0353$$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$\mathcal{L} = -\sum_i y_i \log(\hat{y}_i)$$
 $\hat{y}_i = \frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

$$c_1 = -2.85$$

$$c_2 = 0.86$$

$$c_3 = 0.28$$

$$c_{10} = 0.28$$

$$c_{10} = 0.058$$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$\mathcal{L} = -\sum_i y_i \log(\hat{y}_i)$$
 $\hat{y}_i = \frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}$ softmax function multi-class classifier

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

$$c_1 = -2.85$$

$$c_2 = 0.86$$

$$c_3 = 0.28$$

$$c_{10} = 0.28$$

$$c_{10} = 0.058$$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$\mathcal{L} = -\sum_i y_i \log(\hat{y}_i)$$
 $\hat{y}_i = \frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

$$c_1 = -2.85$$

$$c_2 = 0.86$$

$$c_3 = 0.28$$

$$c_{10} = 0.058$$

$$c_{10} = 0.058$$

$$c_{10} = 0.058$$

$$c_{10} = 0.058$$

$$c_{10} = 0.016$$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$\mathcal{L} = -\sum_i y_i \log(\hat{y}_i)$$
 $\hat{y}_i = \frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

We want to compute the **gradient** of the loss with respect to the network parameters so that we can incrementally adjust the network parameters

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\left.
abla \left. \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\left.
abla \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k=0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\left.
abla \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{b}_{k+1} = \mathbf{b}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\left.
abla \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{b}_{k+1} = \mathbf{b}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\left.
abla \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{b}_{k+1} = \mathbf{b}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

 λ - is the learning rate

1. Start from random value of W_0, b_0

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\nabla \left. \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \underline{\lambda} \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{b}_{k+1} = \mathbf{b}_k - \underline{\lambda} \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$