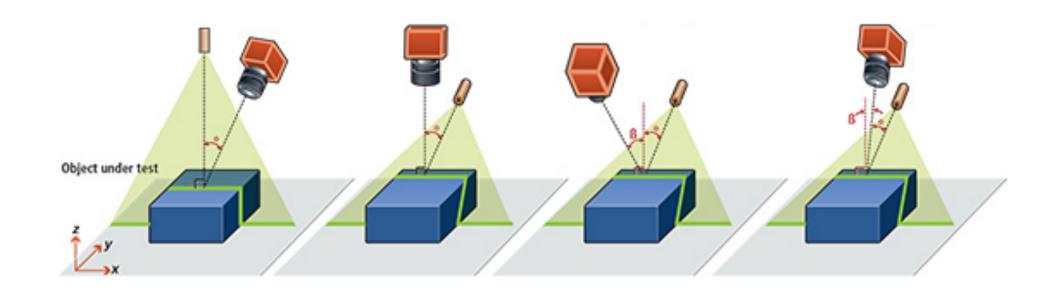


THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Lecture 2: Image Formation

Menu for Today (January 11, 2022)

Topics:

- Image Formation
- Cameras and Lenses

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 1.1.1 - 1.1.3

Reminders:

- Complete Assignment 0 (ungraded) by Monday, January 1
- Please sign up for Piazza (116 students signed up so far)
- CoLab and Jupyter Notebooks for assignments

- Projection

- Next Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5

Today's "fun" Example

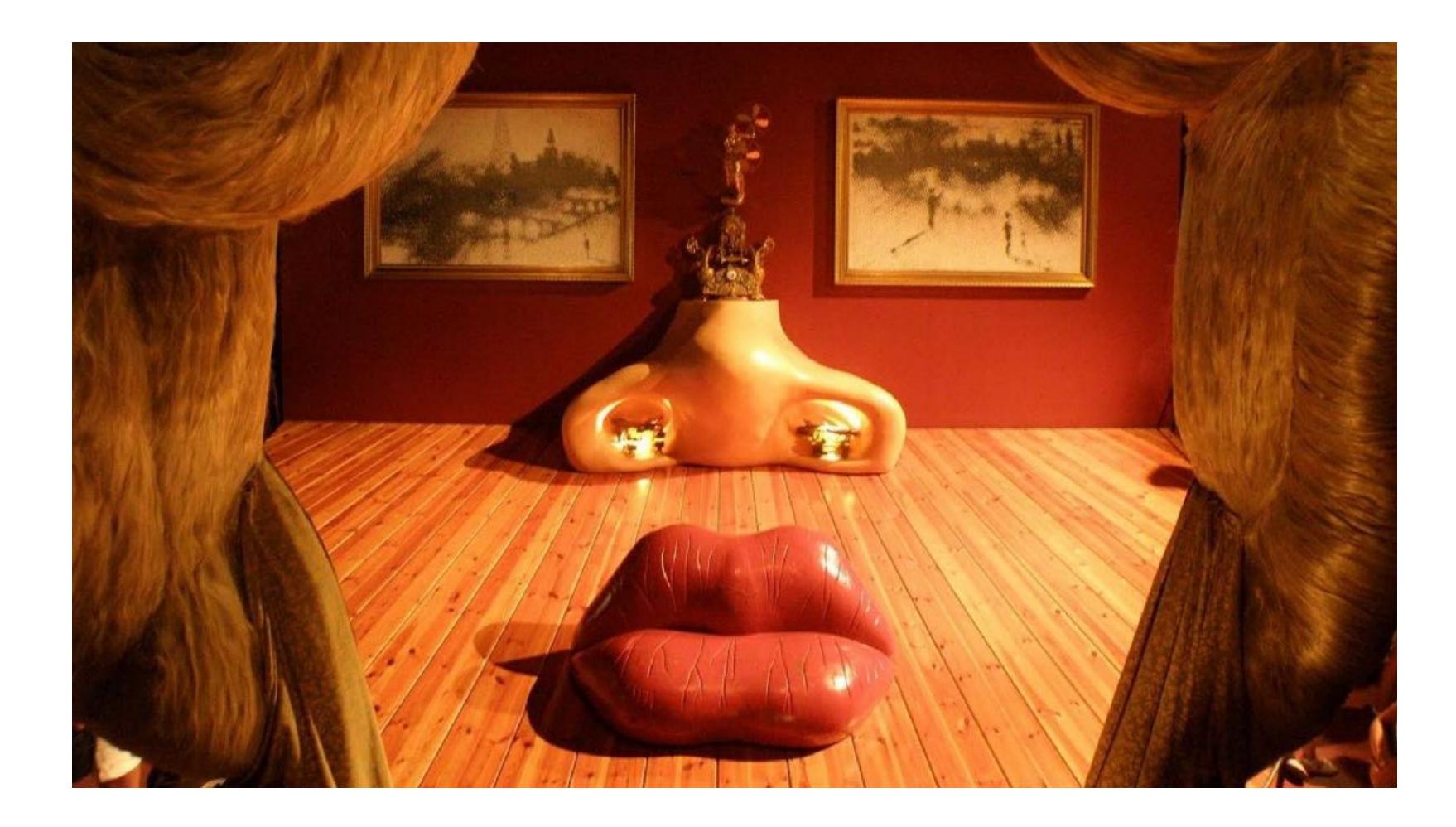
Today's "fun" Example

Photo credit: reddit user Liammm

Today's "fun" Example: Eye Sink Illusion

Photo credit: reddit user Liammm

Salvador Dali — Pareidolia



Lecture 1: Re-cap

Types of computer vision **problems**:

- Recognition of objects and scenes (*perception and interpretation*)
- Search and interact with visual data (search and organization)

Computer vision challenges:

- Fundamentally ill-posed
- Enormous computation and scale
- Lack of fundamental understanding of how human perception works

— Computing properties of the 3D world from visual data (*measurement*) — Manipulation or creation of image or video content (*visual imagination*)

Lecture 1: Re-cap

Computer vision technologies have moved from research labs into commercial products and services. Examples cited include:

- broadcast television sports
- electronic games (Microsoft Kinect)
- biometrics
- image search
- visual special effects
- medical imaging
- robotics
- ... many others

Lecture 2: Goal

To understand how images are formed

(and develop relevant mathematical concepts and abstractions)

What is **Computer Vision**?

Compute vision, broadly speaking, is a research field aimed to enable computers to process and interpret visual data, as sighted humans can.

Sensing Device

Interpreting Device

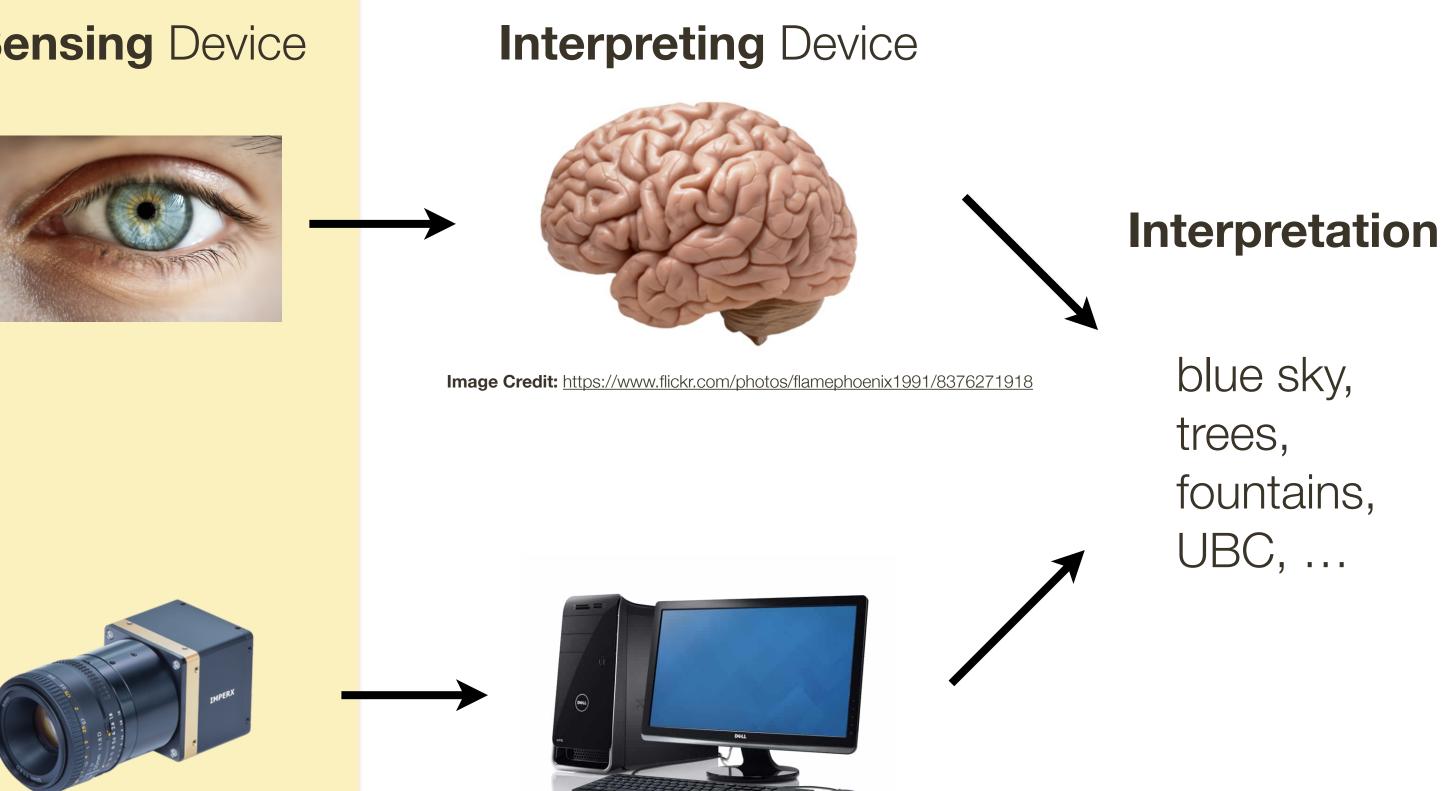
Interpretation

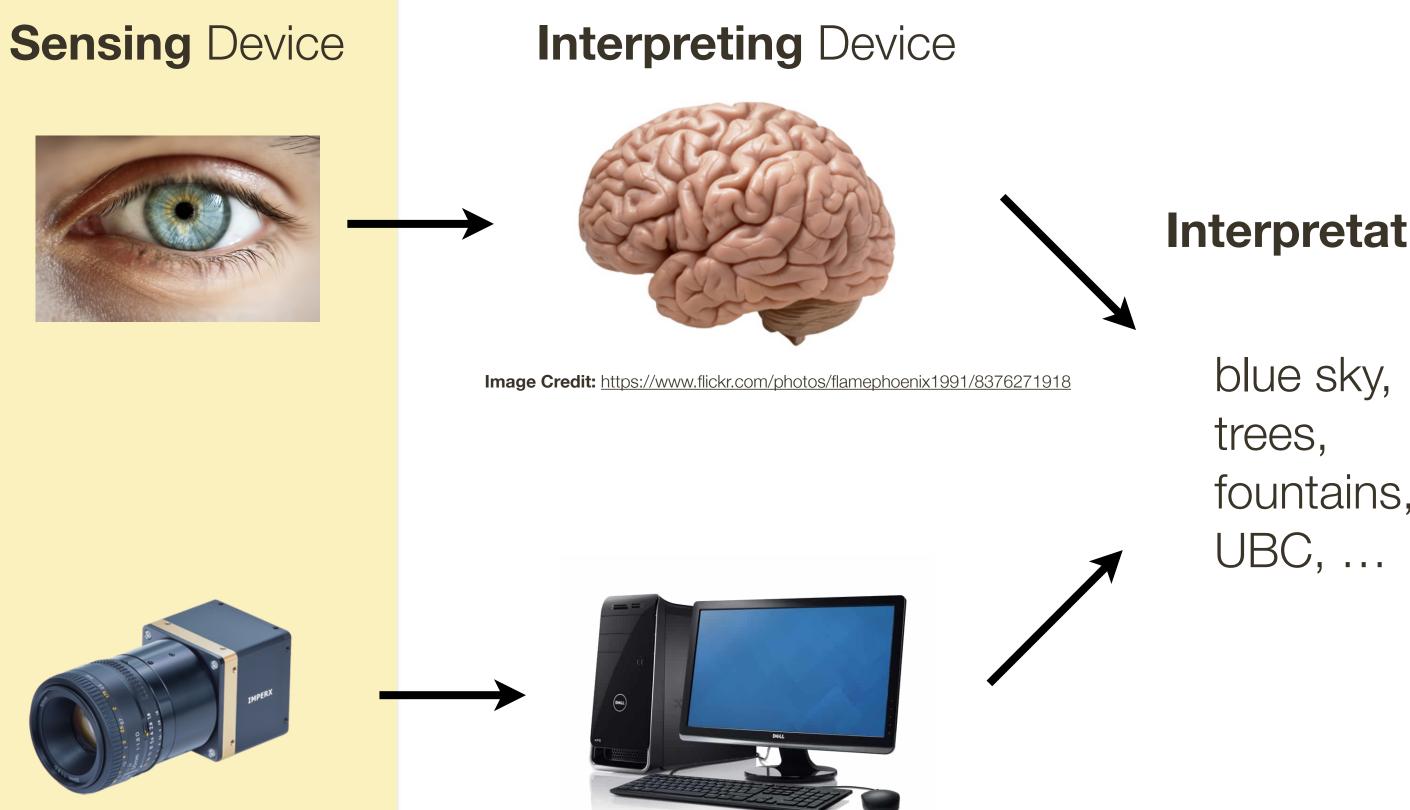
os/flamephoenix1991/8376271918

blue sky, trees, fountains, UBC, ...

What is **Computer Vision**?

Compute vision, broadly speaking, is a research field aimed to enable computers to process and interpret visual data, as sighted humans can.





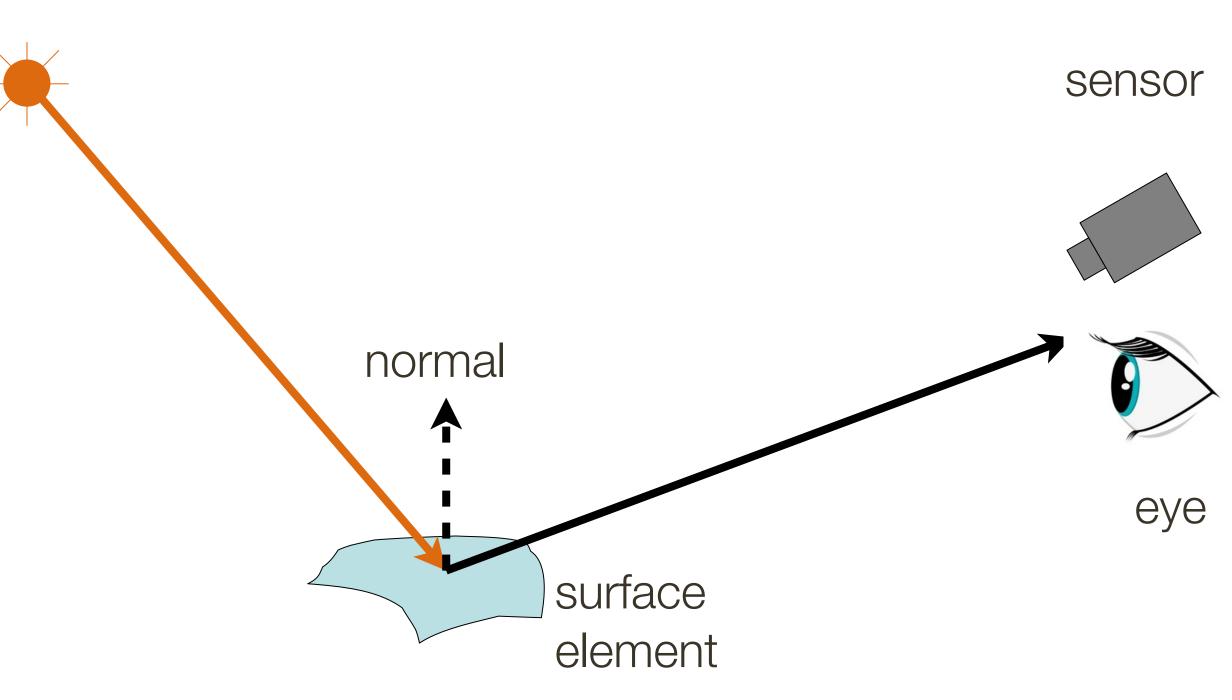
Overview: Image Formation, Cameras and Lenses

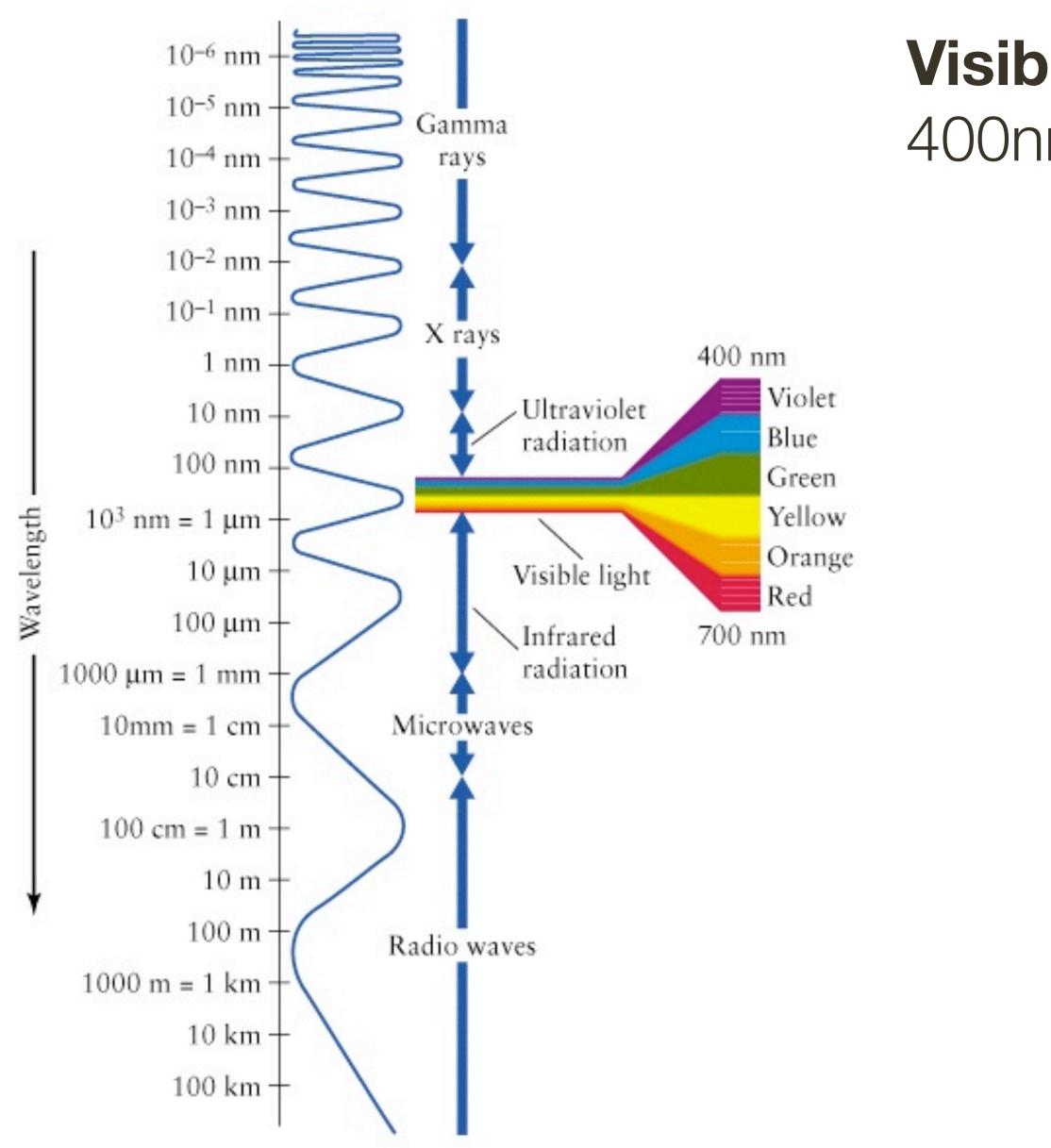
source

The image formation process that produces a particular image depends on

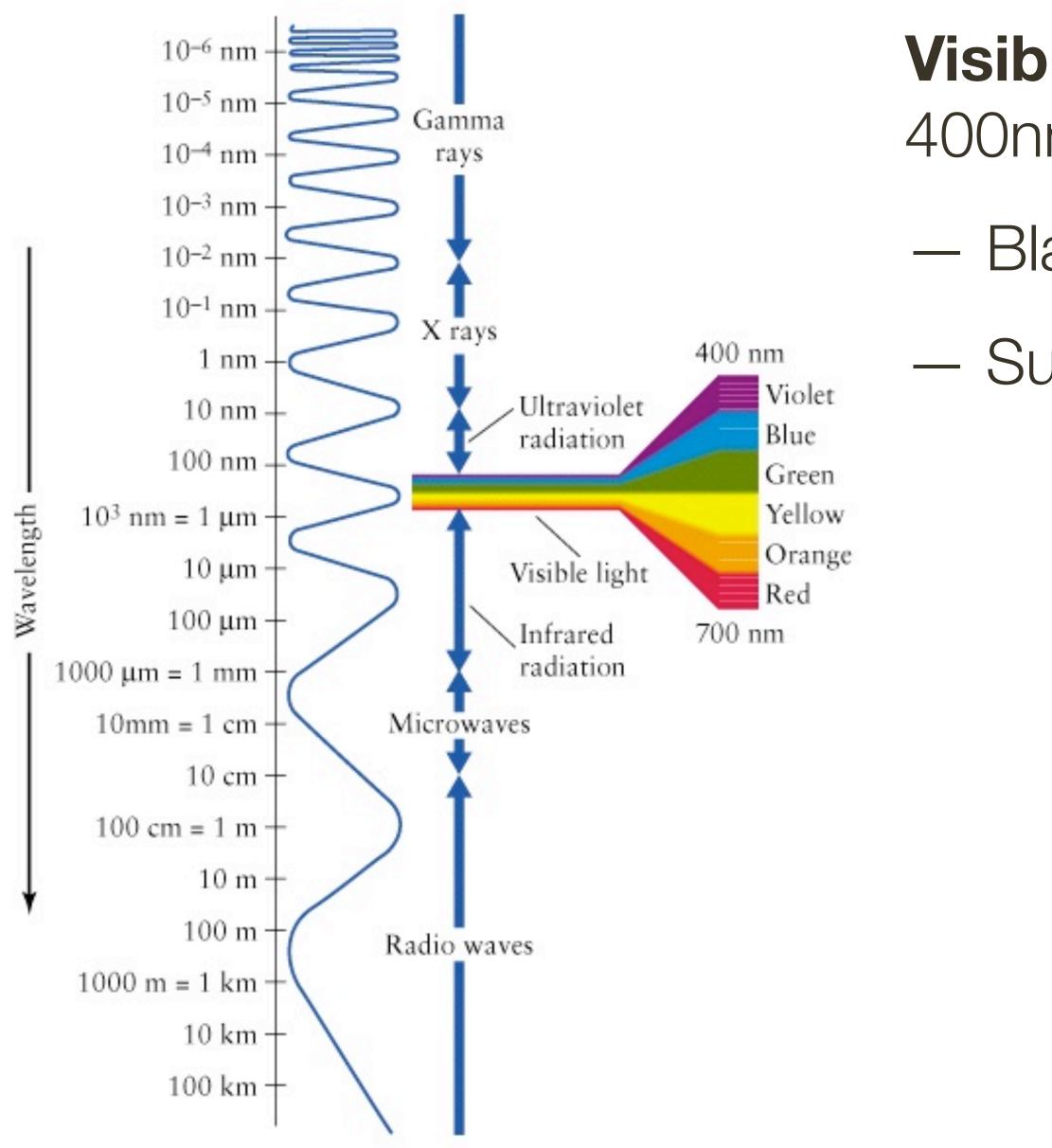
- Lightening condition
- Scene geometry
- Surface properties
- Camera optics and viewpoint

Sensor (or eye) captures amount of light reflected from the object

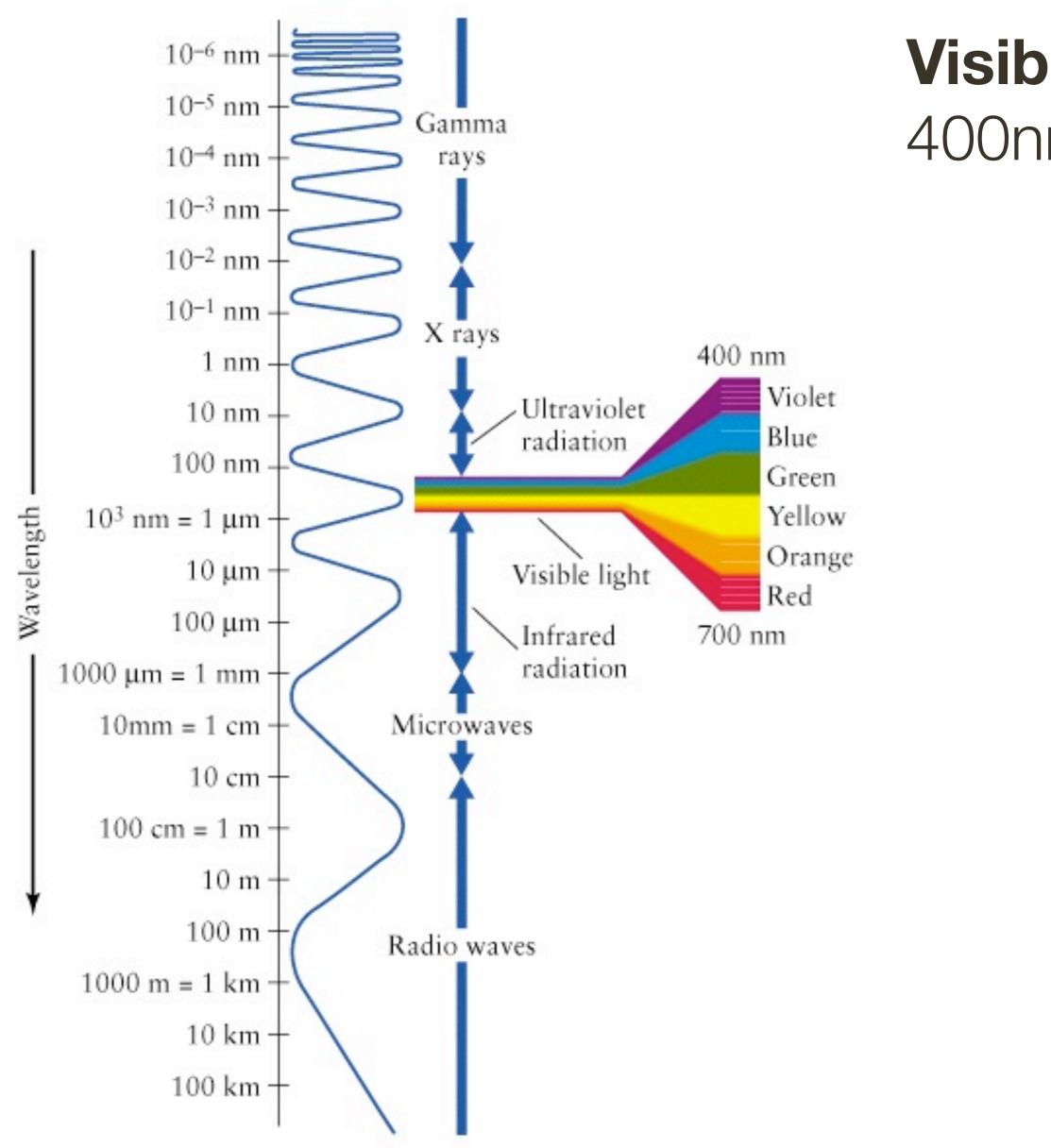




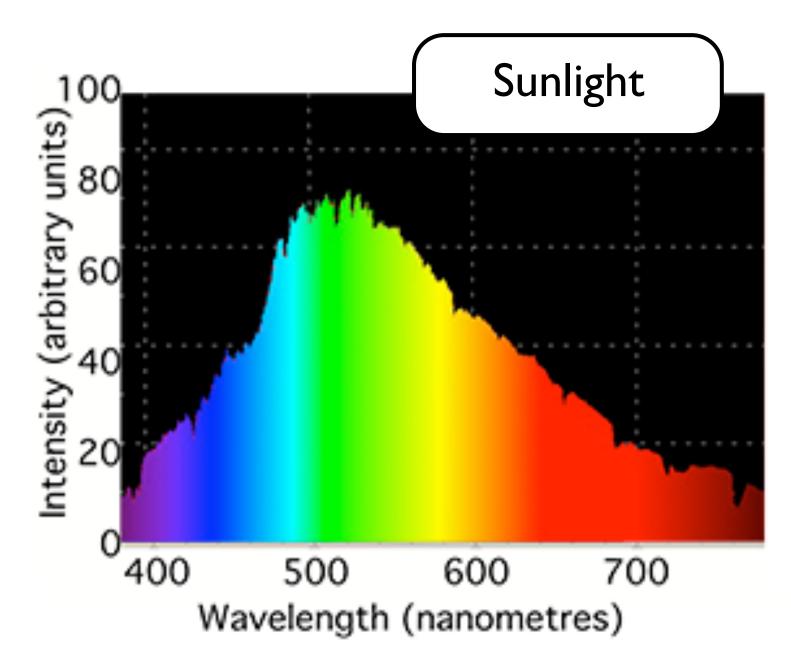
Visible light is electromagnetic radiation in the 400nm-700nm band of wavelengths

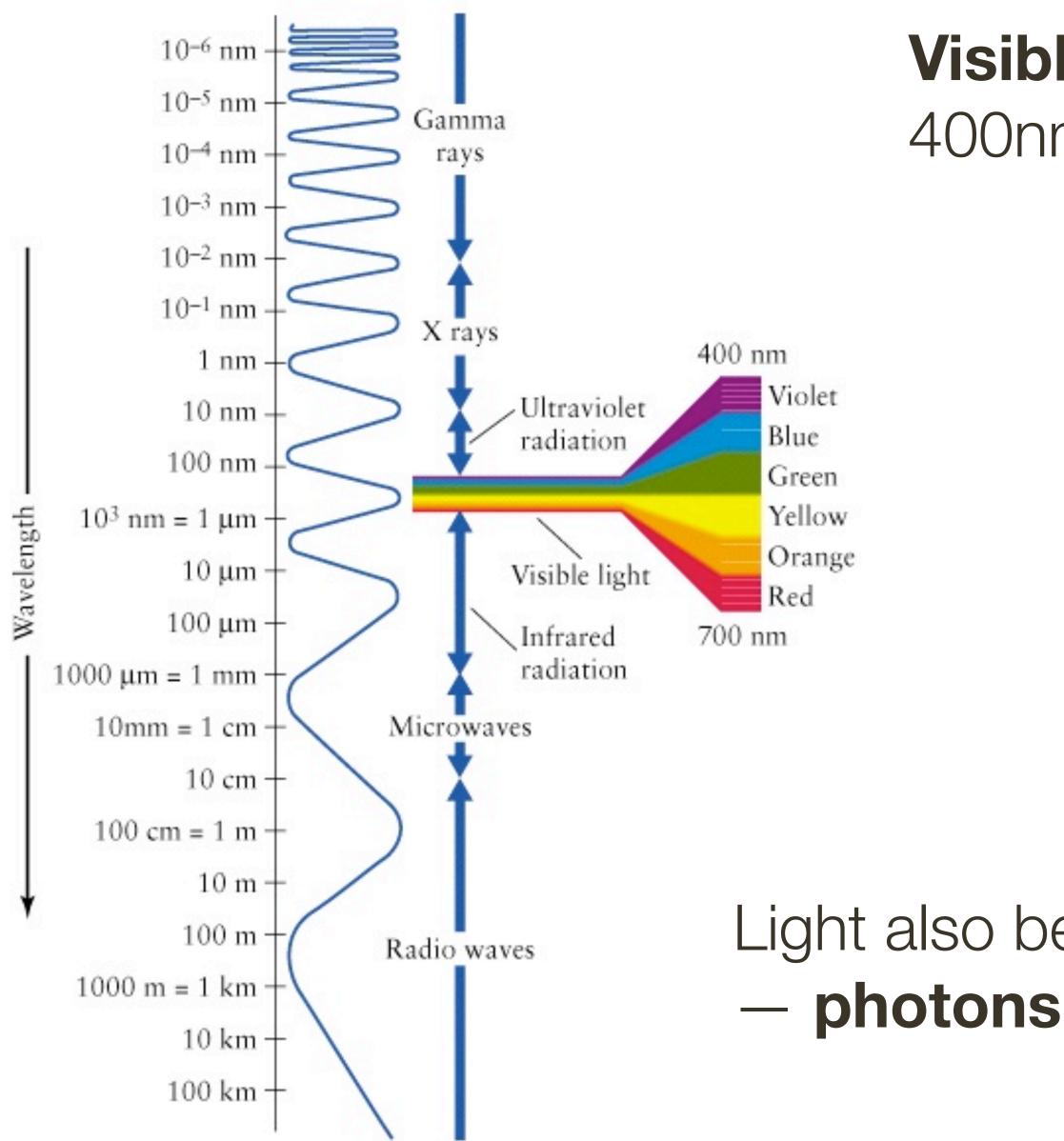


- **Visible** light is electromagnetic radiation in the 400nm-700nm band of wavelengths
- Black is the absence of light
- Sunlight is a spectrum of light

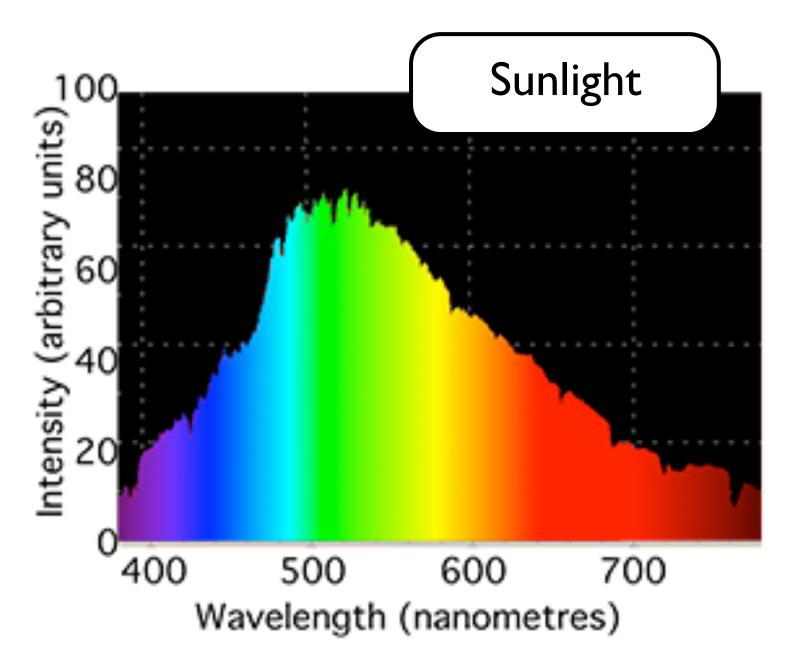


Visible light is electromagnetic radiation in the 400nm-700nm band of wavelengths





Visible light is electromagnetic radiation in the 400nm-700nm band of wavelengths



Light also behaves as particles with specific wavelengths - photons; that travel in straight lines within a medium

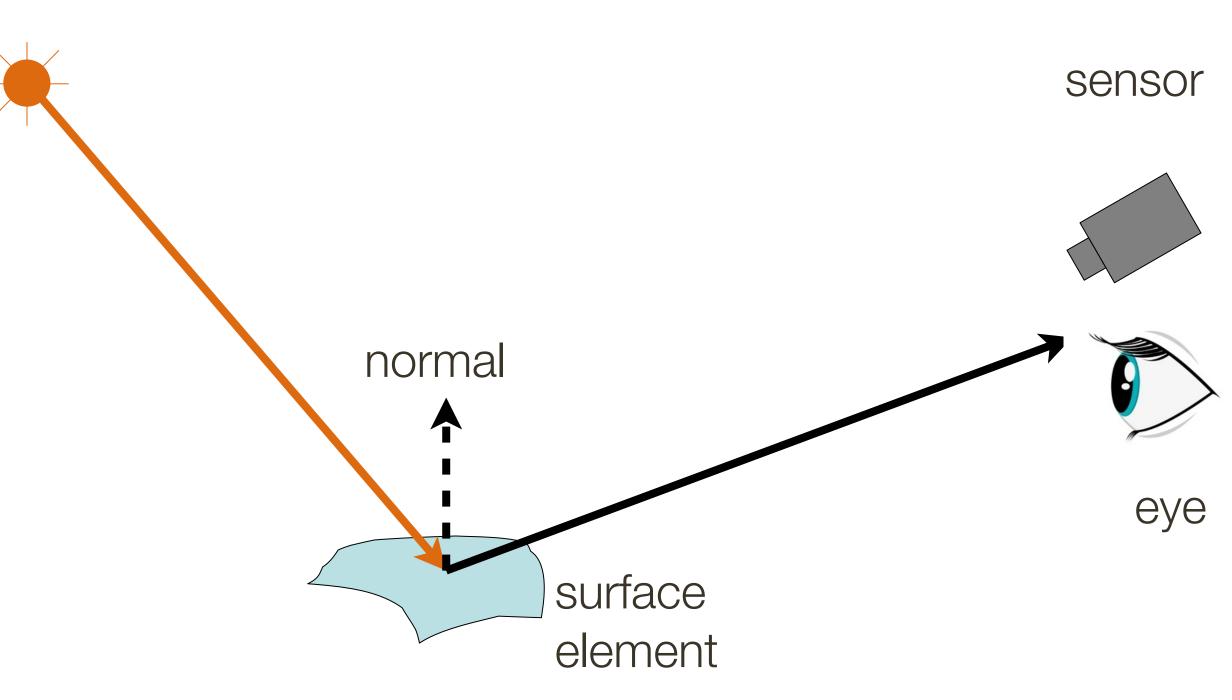
Overview: Image Formation, Cameras and Lenses

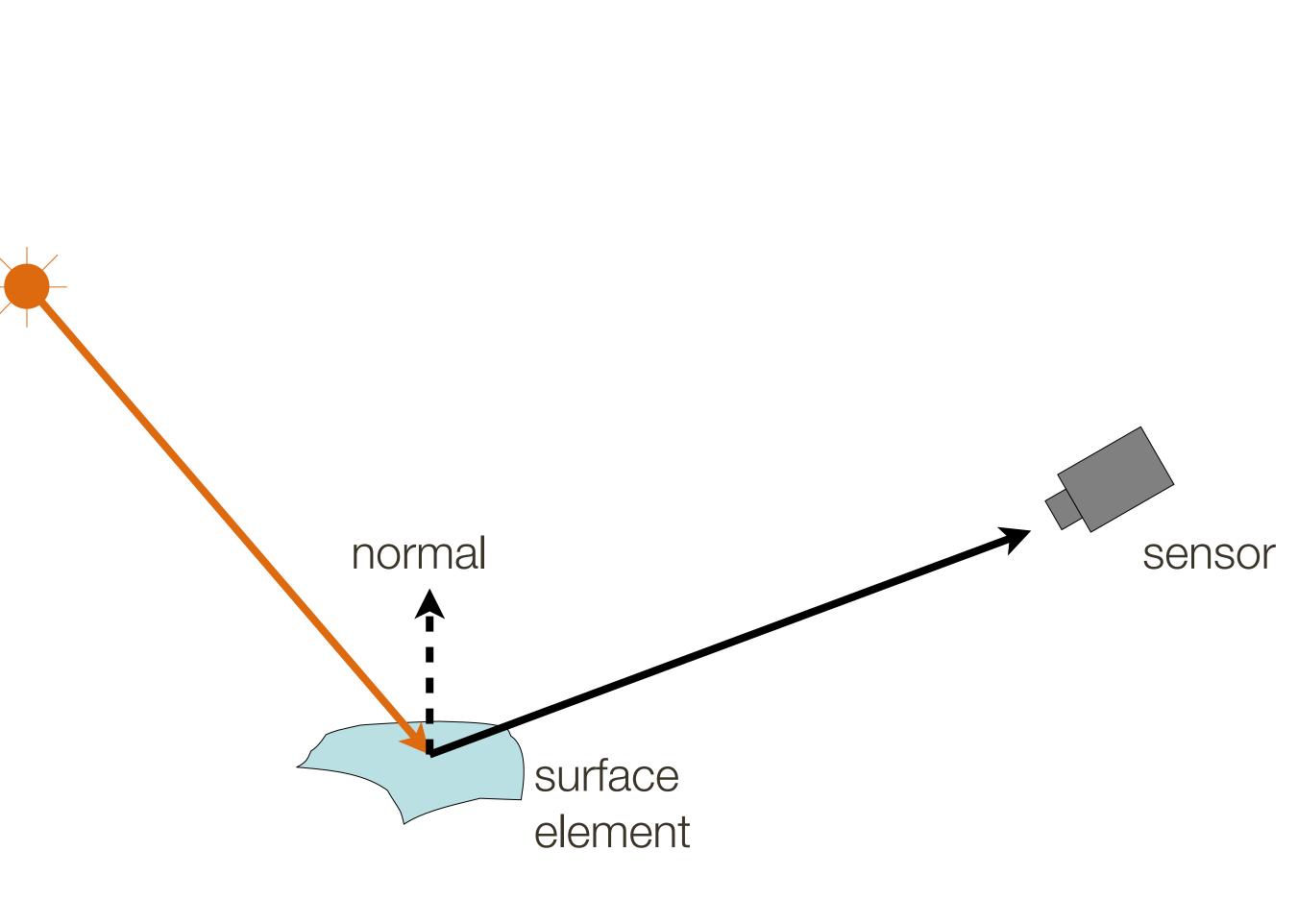
source

The image formation process that produces a particular image depends on

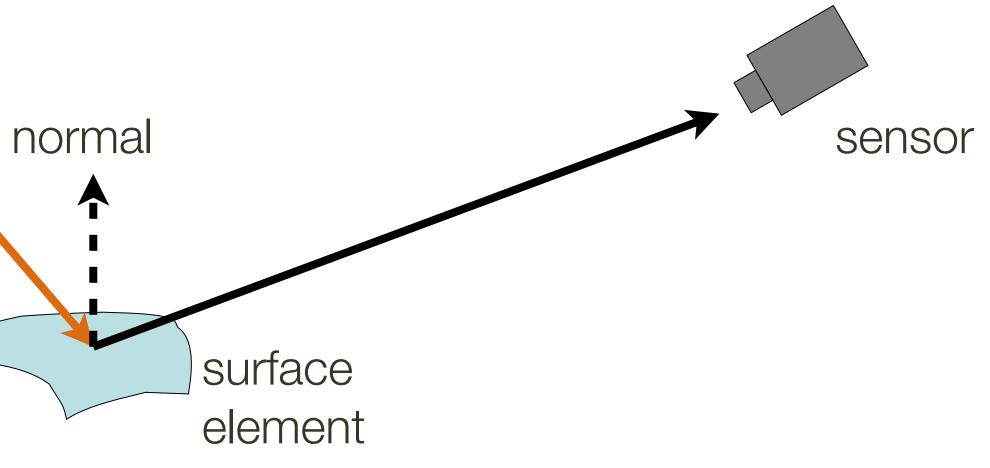
- Lightening condition
- Scene geometry
- Surface properties
- Camera optics and viewpoint

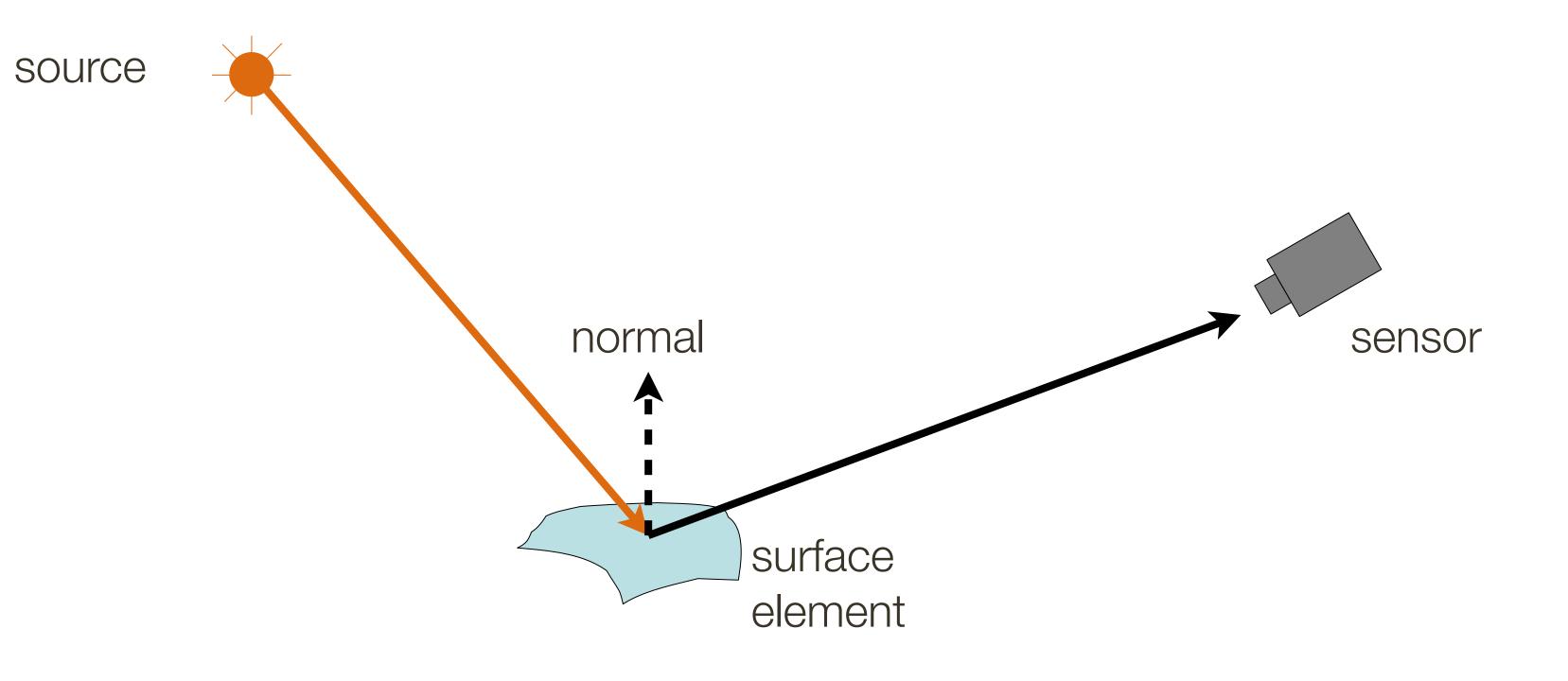
Sensor (or eye) captures amount of light reflected from the object

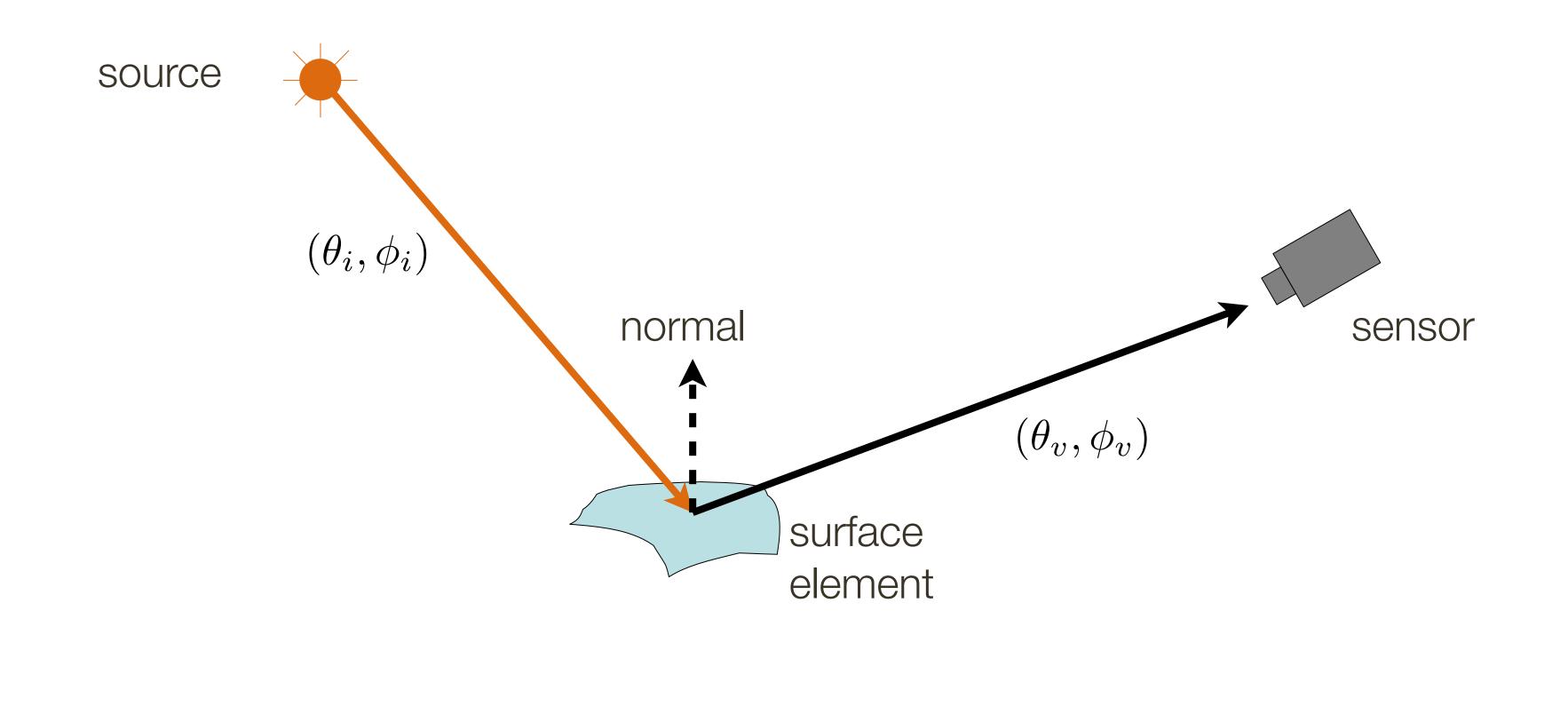




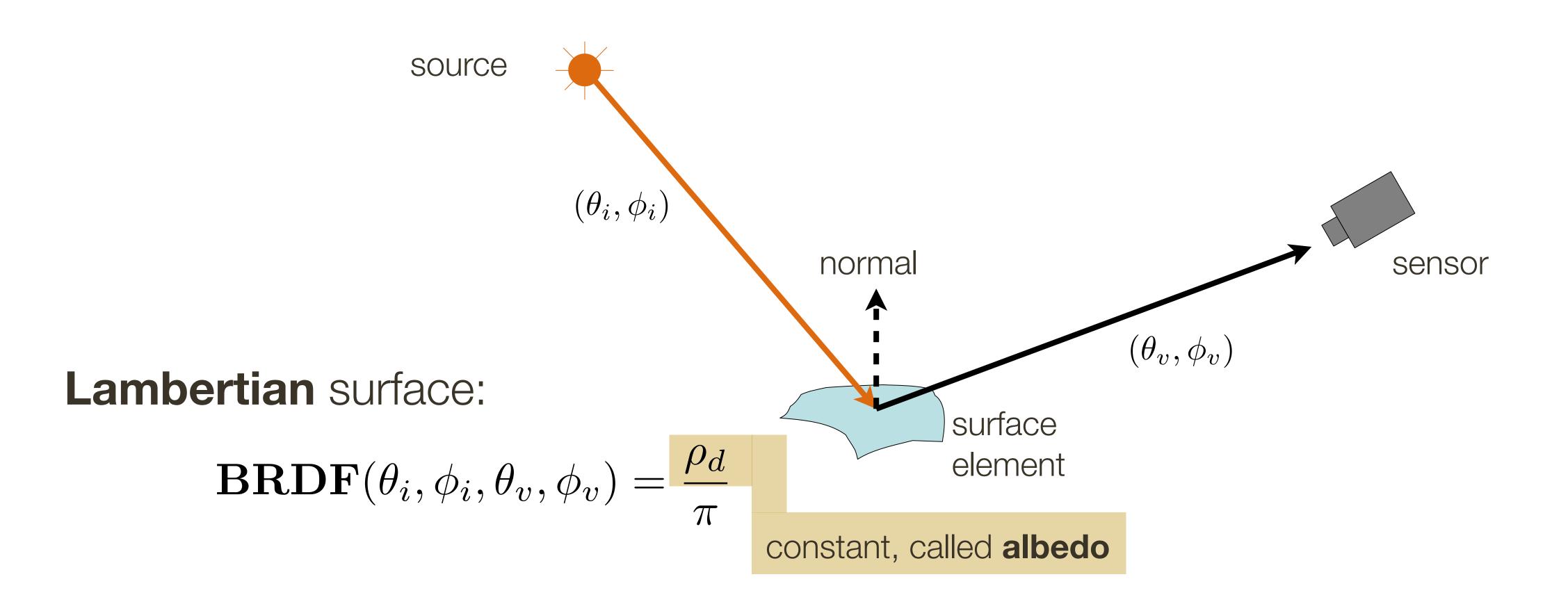
Source



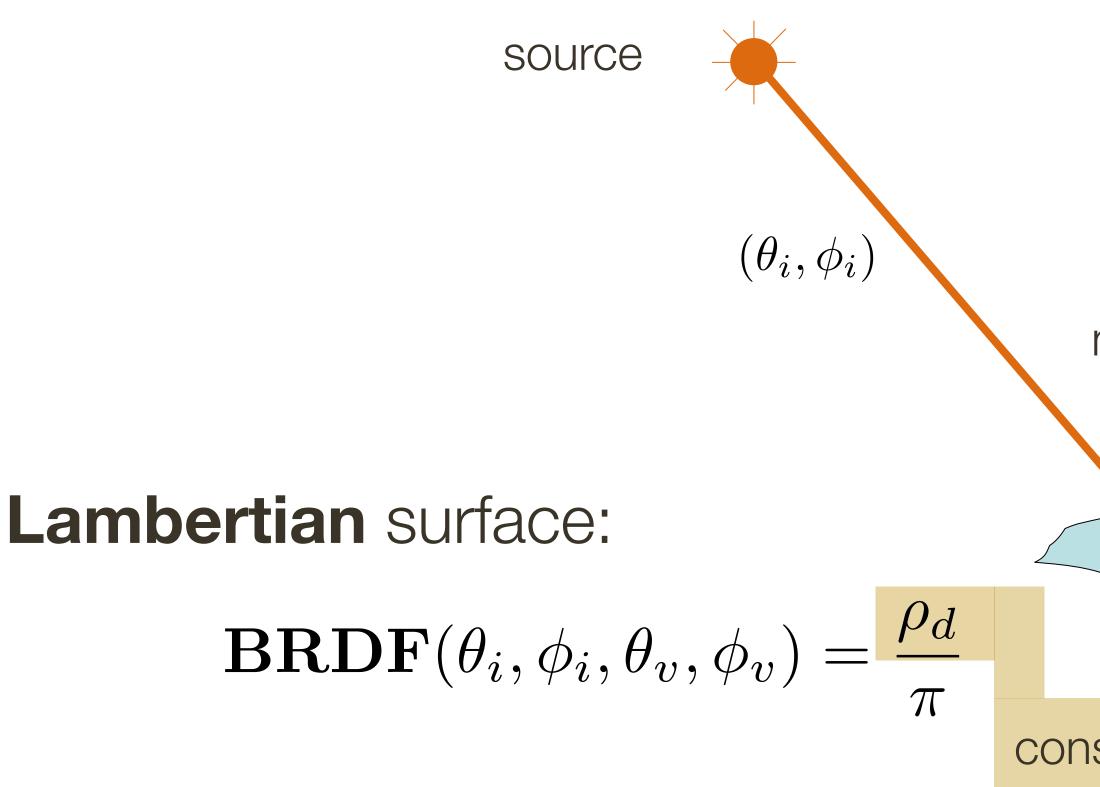




Surface reflection depends on both the viewing (θ_v, ϕ_v) and illumination (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF**($\theta_i, \phi_i, \theta_v, \phi_v$)

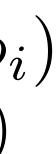


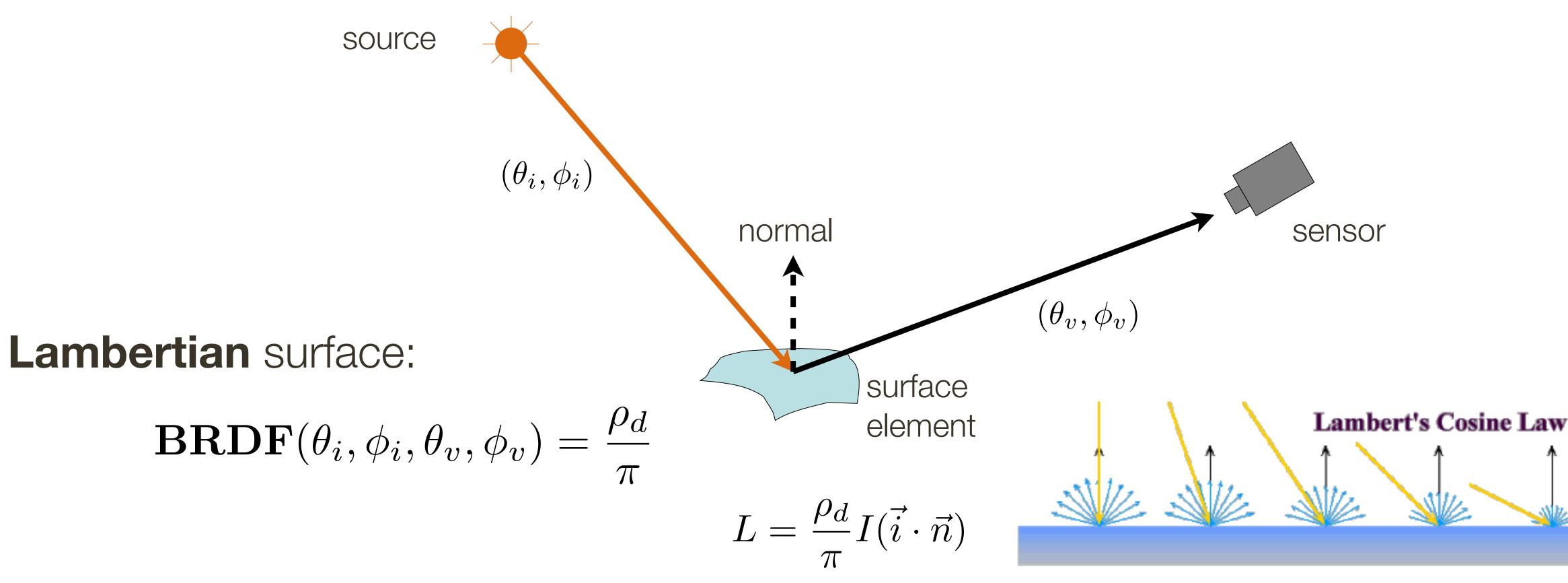
Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF** $(\theta_i, \phi_i, \theta_v, \phi_v)$



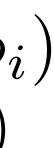
Surface reflection depends on both the viewing (θ_v, ϕ_v) and illumination (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF**($\theta_i, \phi_i, \theta_v, \phi_v$)

		Surface type	Typical value
		Fresh asphalt	0.03 – 0.04
		Open ocean	0.06
		Conifer forest (summer)	0.08 – 0.15
		Worn asphalt	0.12
		Deciduous trees	0.15 – 0.18
normal		Sand	0.15 – 0.45
surface element		Tundra	0.18 – 0.25
	$(heta_v, \phi_v)$	Agricultural crops	0.18 – 0.25
	(*0)70)	Bare soil	0.17
		Green grass	0.20 - 0.25
		Dessert sand	0.30 - 0.40
		Snow	0.40 - 0.90
		Ocean ice	0.50 - 0.70
stant, called albedo		Fresh snow	0.80 - 0.90

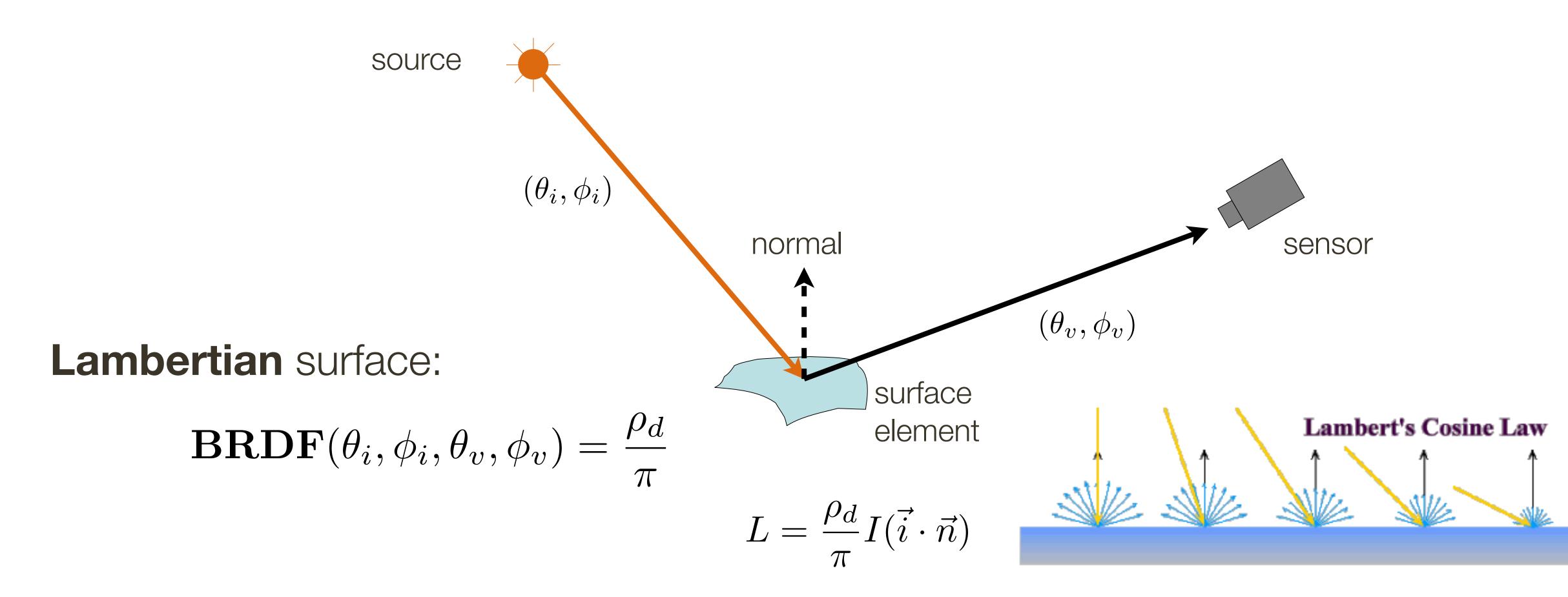




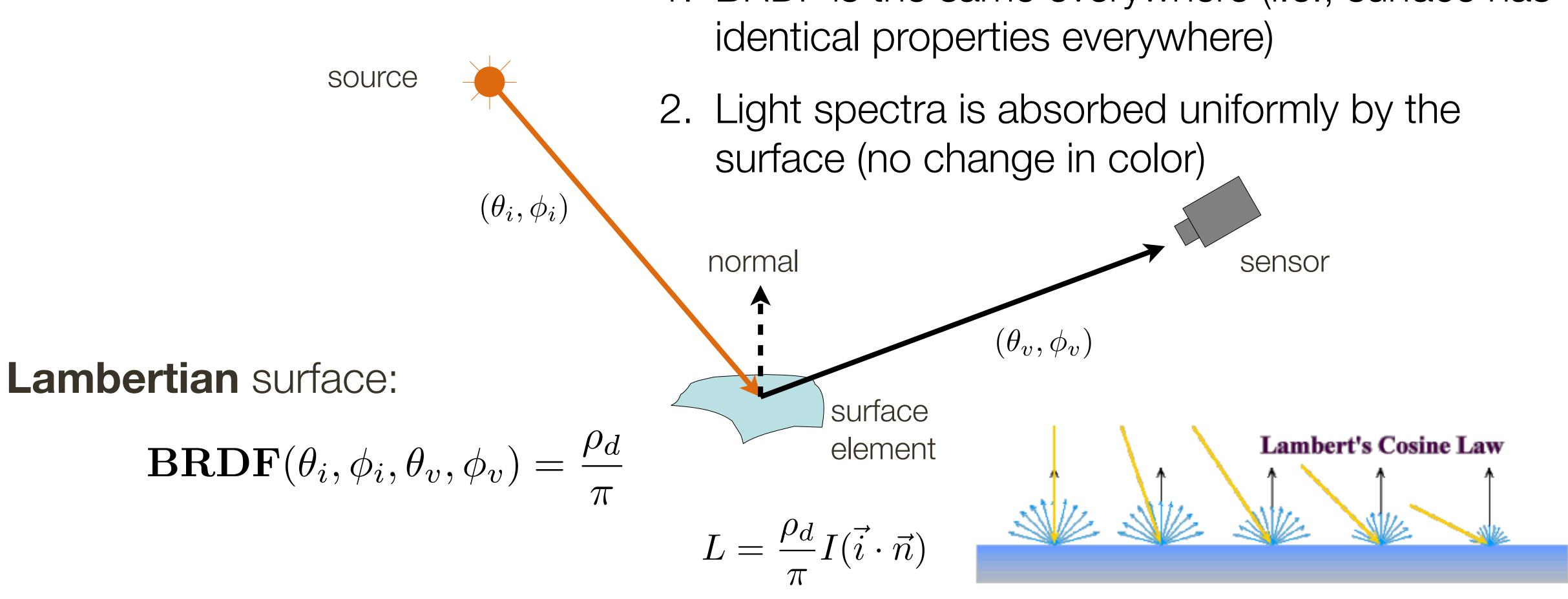
Surface reflection depends on both the viewing (θ_v, ϕ_v) and illumination (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF**($\theta_i, \phi_i, \theta_v, \phi_v$)



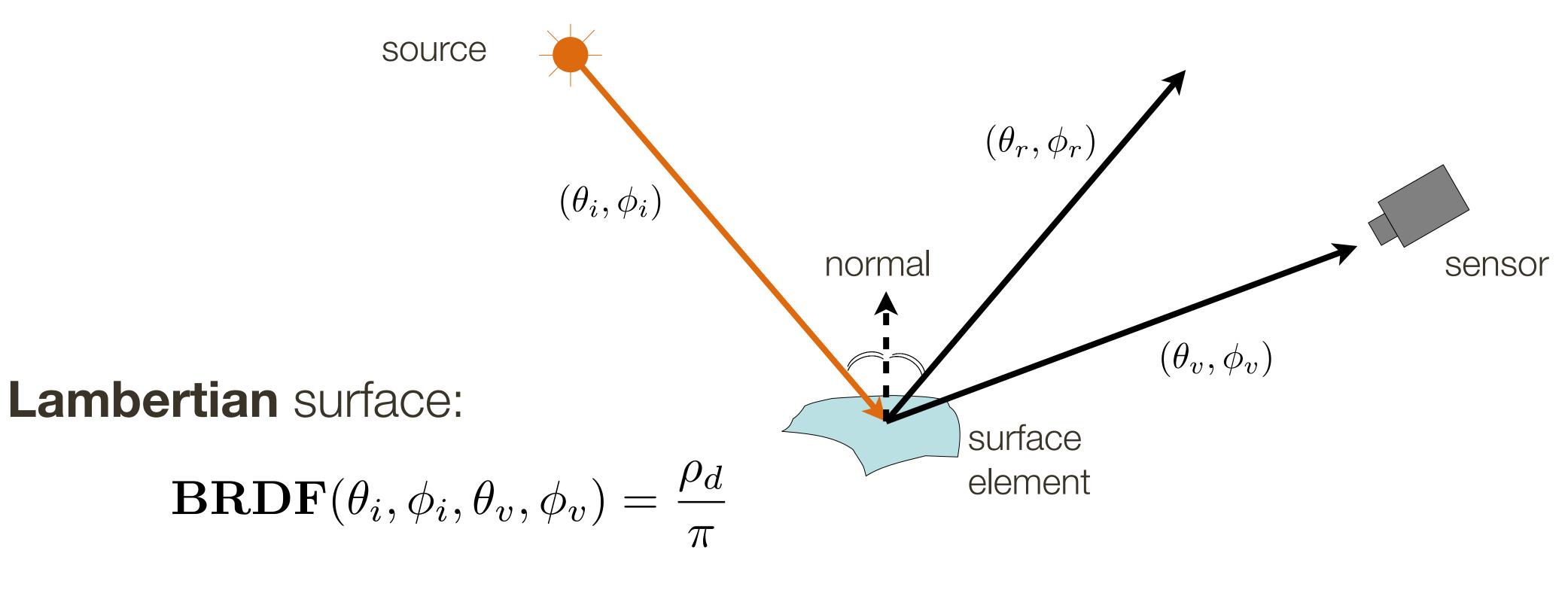
Question: What are the simplifying assumptions we are making here?



Question: What are the simplifying assumptions we are making here?

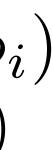


- 1. BRDF is the same everywhere (i.e., surface has



Mirror surface: all incident light reflected in one directions $(\theta_v, \phi_v) = (\theta_r, \phi_r)$

Surface reflection depends on both the viewing (θ_v, ϕ_v) and illumination (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF**($\theta_i, \phi_i, \theta_v, \phi_v$)

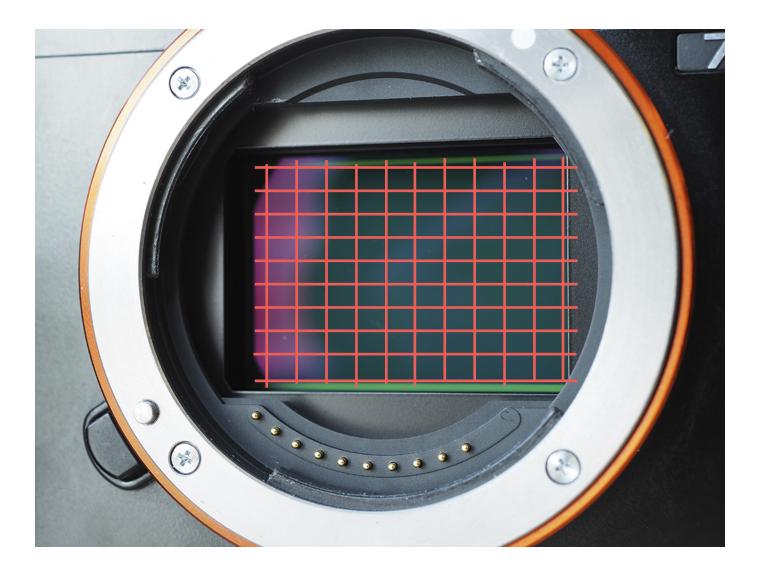


Old school film camera

Digital CCD/CMOS camera

Old school film camera

Digital CCD/CMOS camera



Let's say we have a sensor ...

Digital CCD/CMOS camera

Let's say we have a sensor ...

Digital CCD/CMOS camera

Let's say we have a sensor ...

Digital CCD/CMOS camera

digital sensor (CCD or CMOS)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

... and the **object** we would like to photograph

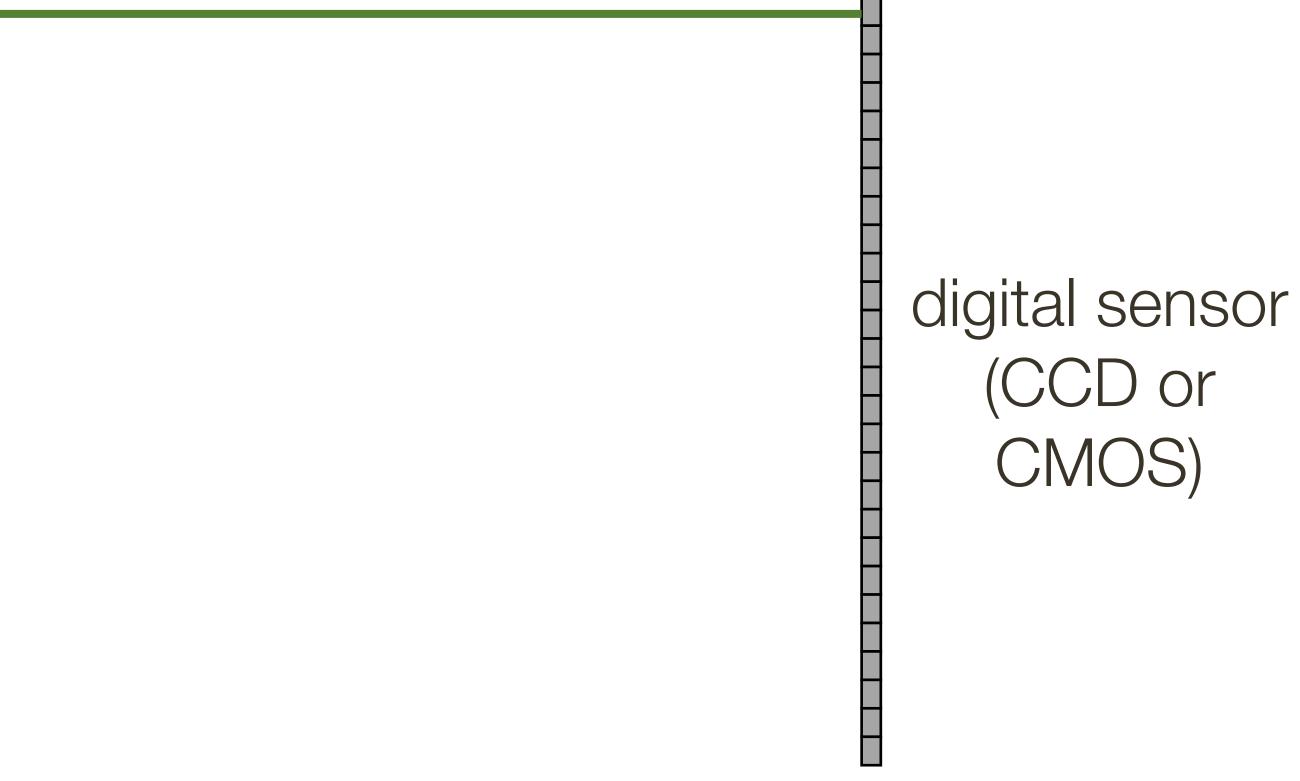
real-world object

What would an image taken like this look like?

digital sensor (CCD or CMOS)

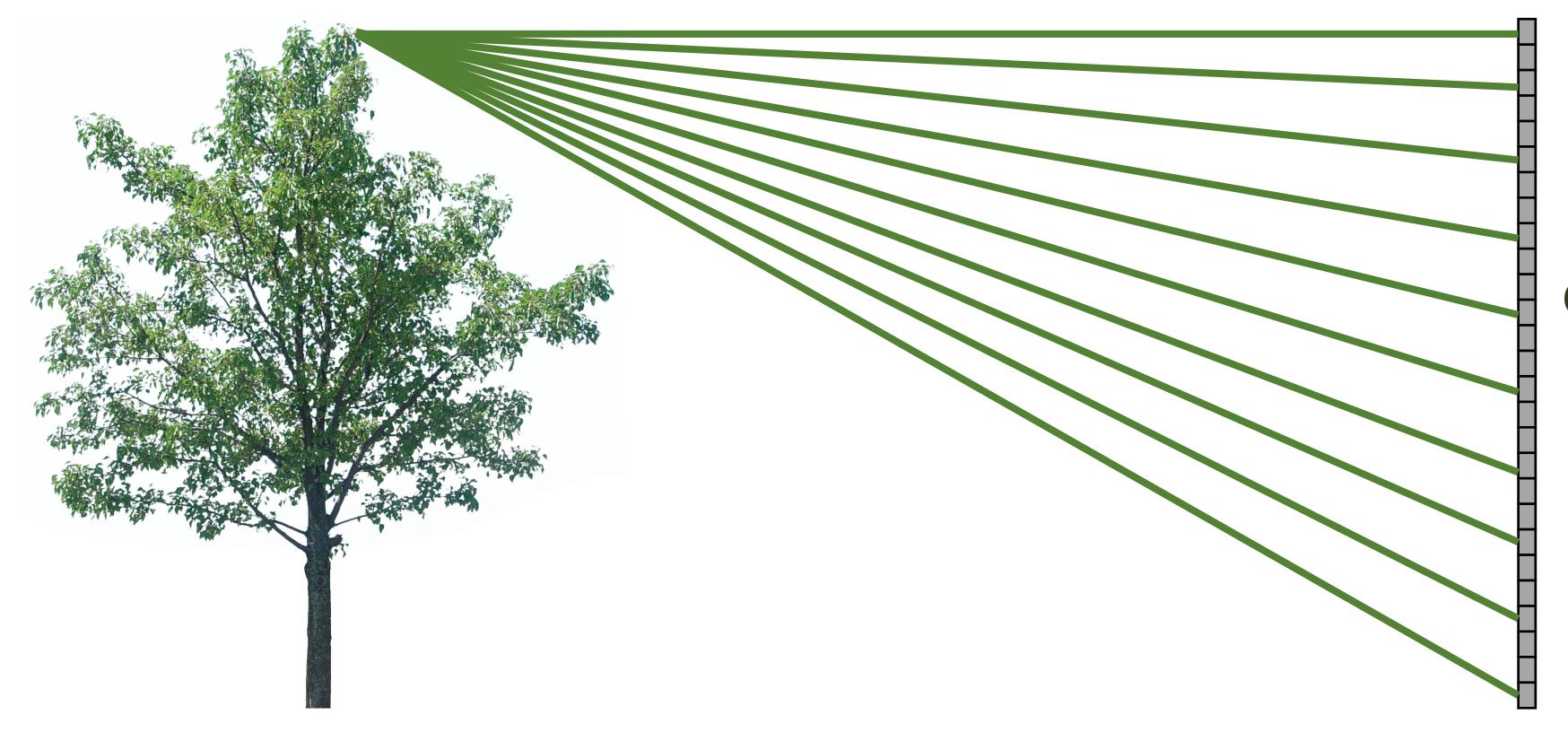
Bare-sensor imaging

real-world object



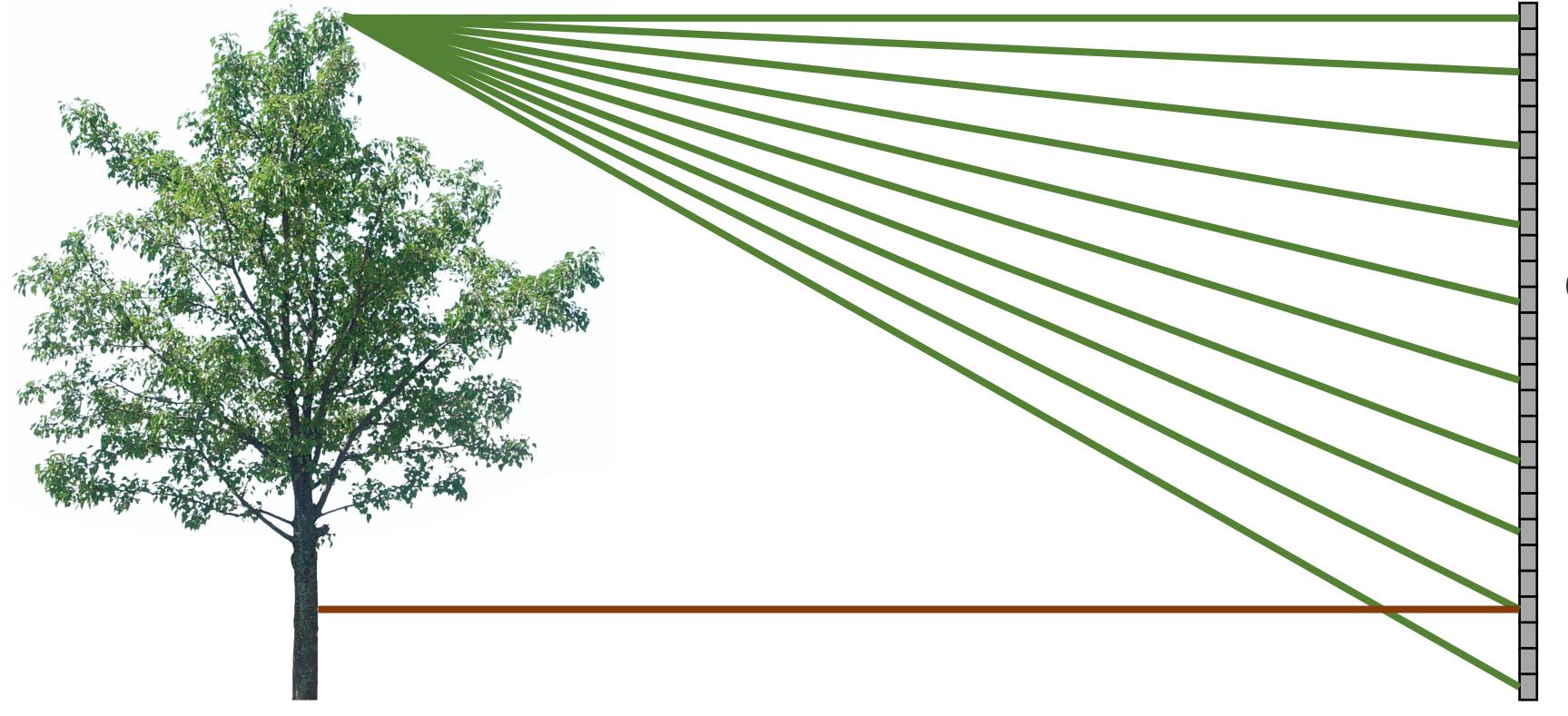
Bare-sensor imaging

real-world object



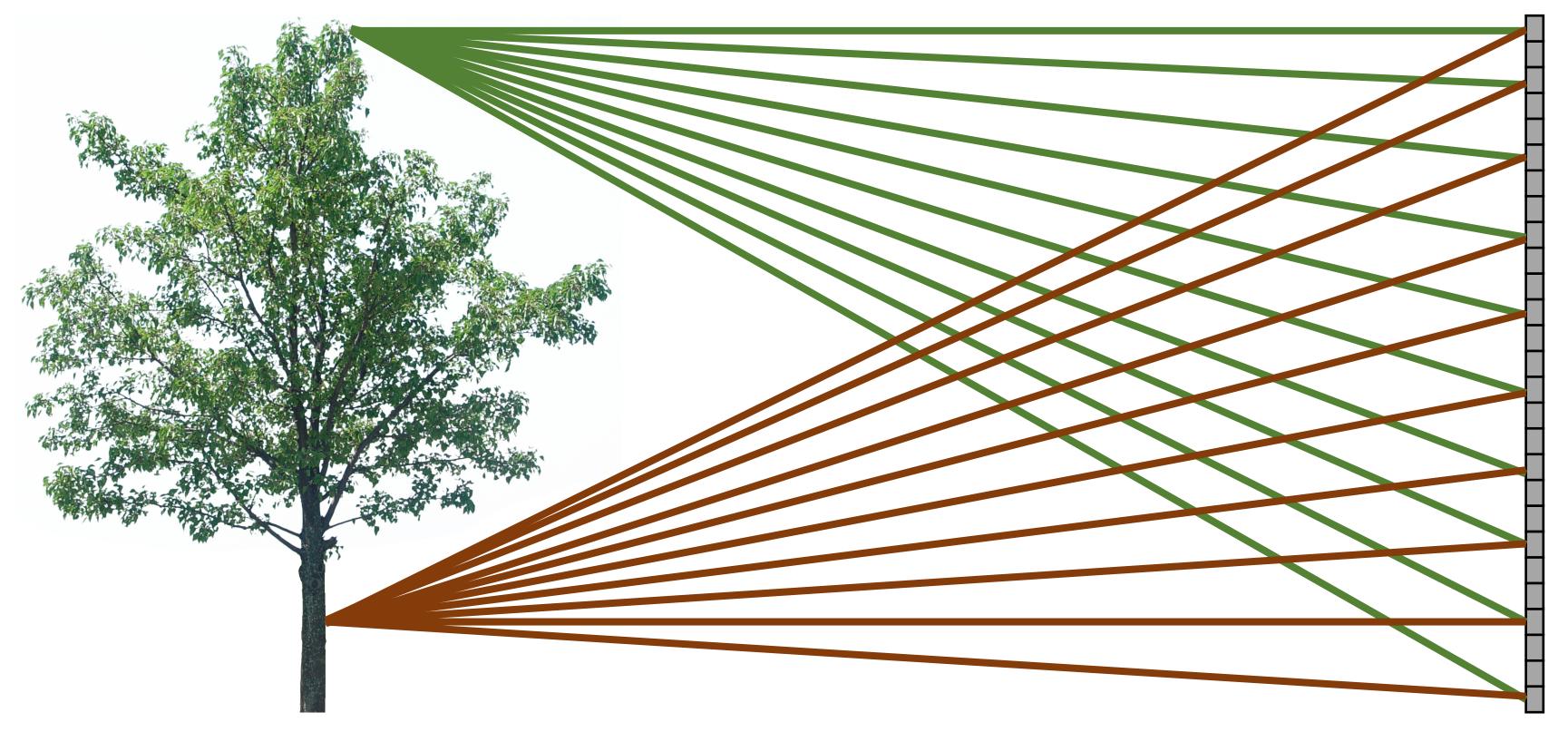
Bare-sensor imaging

real-world object



digital sensor (CCD or CMOS)

Bare-sensor imaging



All scene points contribute to all sensor pixels

real-world object

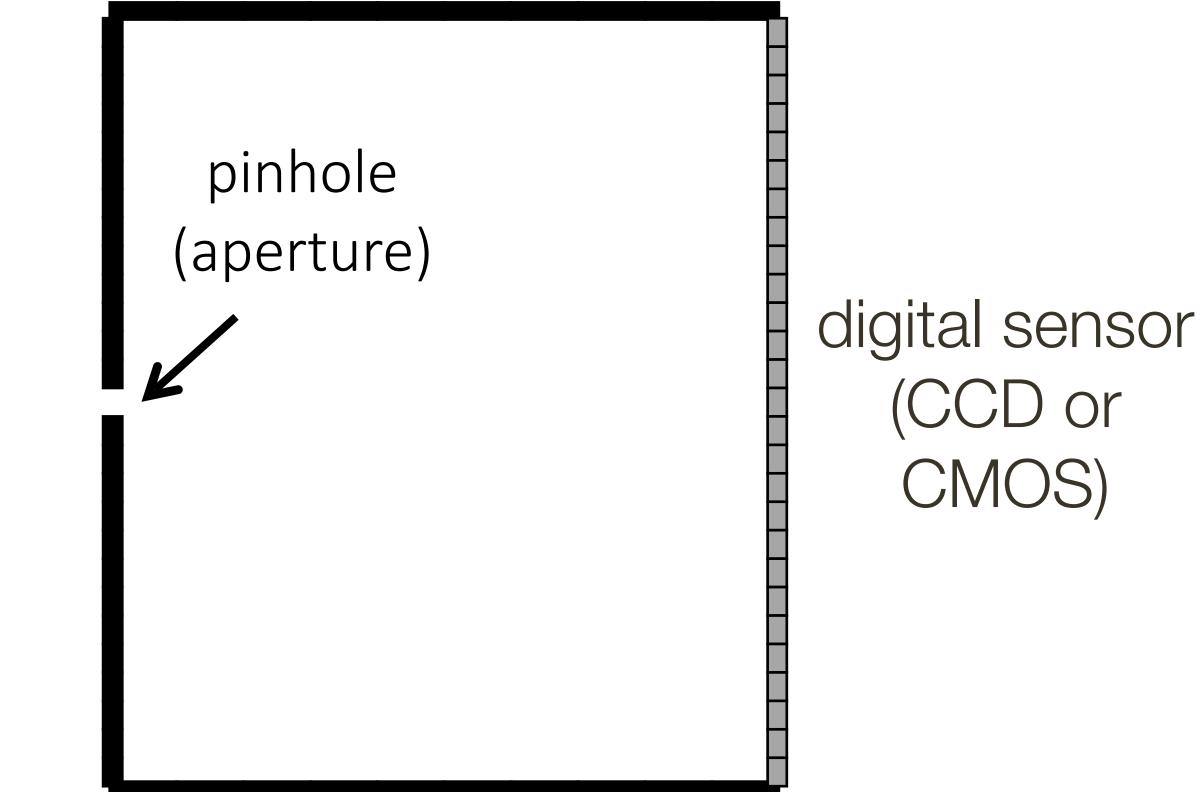
digital sensor (CCD or CMOS)

Bare-sensor imaging

All scene points contribute to all sensor pixels

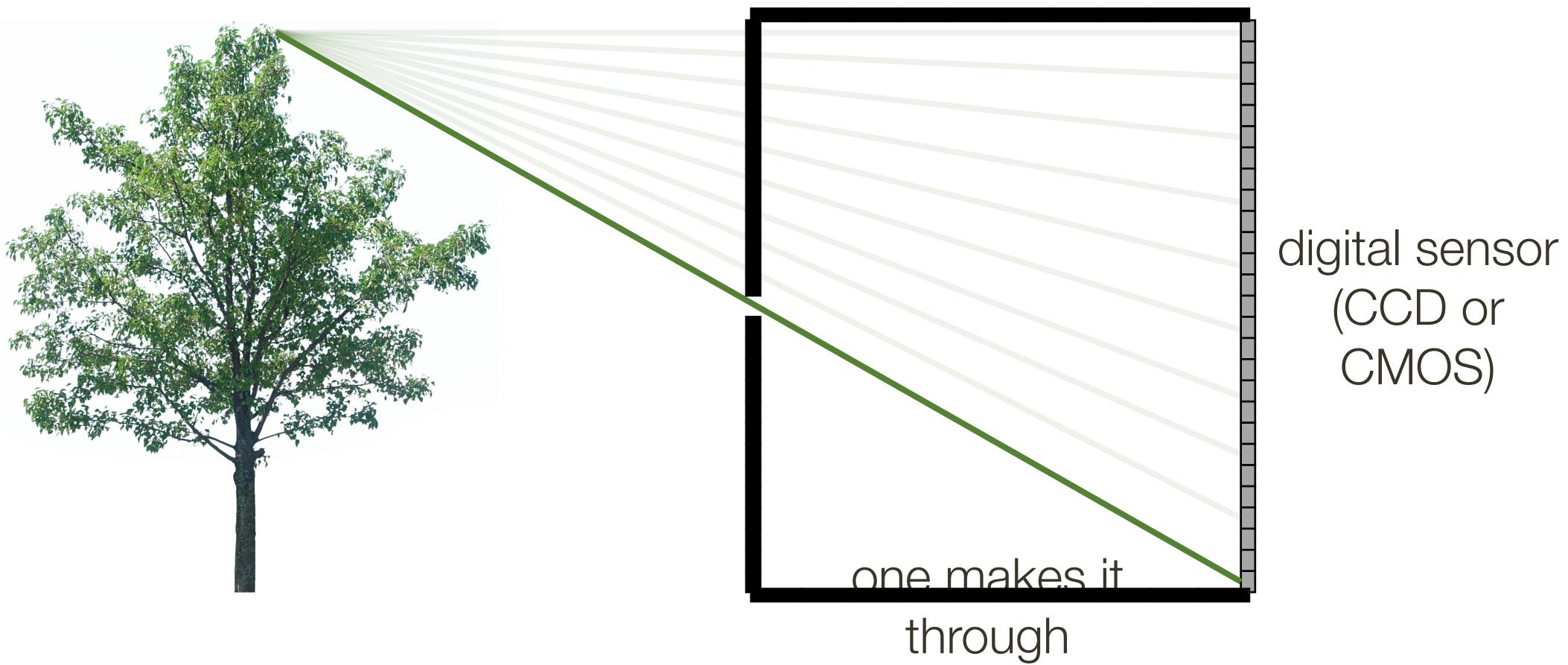
real-world object

barrier (diaphragm)

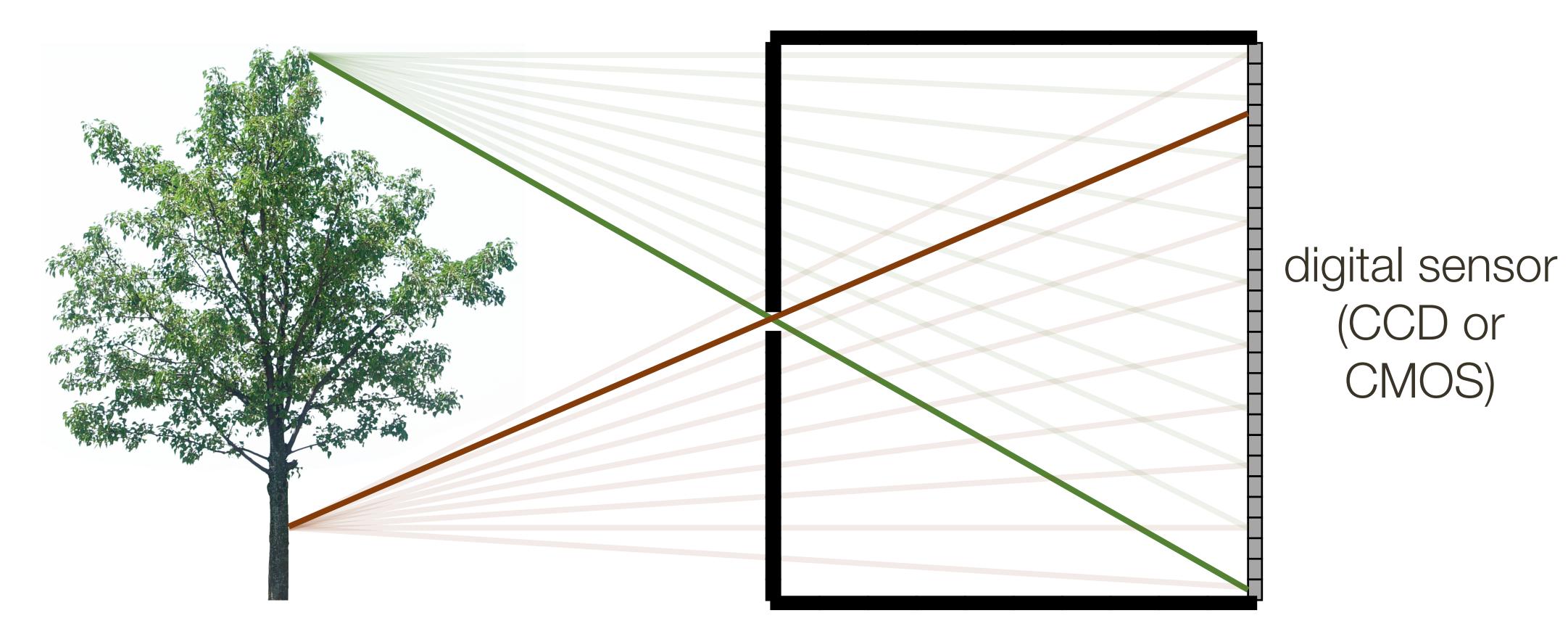


What would an image taken like this look like?

real-world object



most rays are blocked



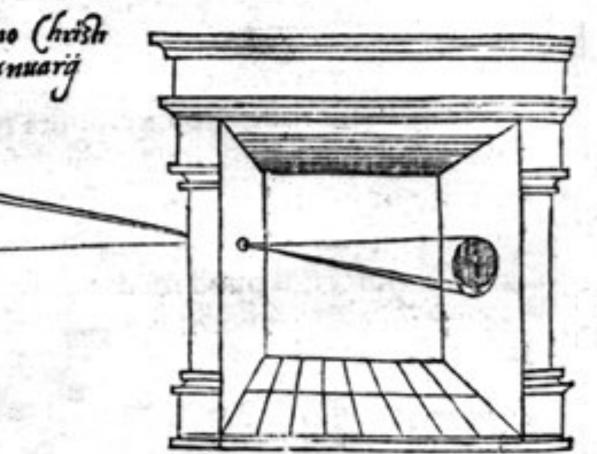
Each scene point contributes to only one sensor pixel

Camera Obscura (latin for "dark chamber")

illum in tabula per radios Solis, quam in cœlo contingit: hoc eft, fi in cœlo superior pars deliquiù patiatur, in radiis apparebit inferior deficere, vt ratio exigit optica. Sobs delignium Anno Christi 1544. Die 24: Januari onany

> Sic nos exacté Anno . 1544 . Louanii cclipfim Solis observauimus, inuenimusq; deficere paulo plus g dex-

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January 24, 1544. He used this illustration in his book, "De Radio Astronomica et Geometrica," 1545. It is thought to be the first published illustration of a camera obscura.



Credit: John H., Hammond, "Th Camera Obscure, A Chronicle"

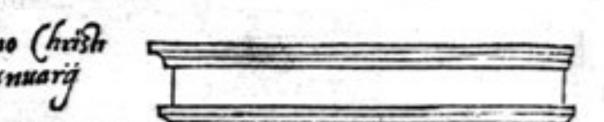
Camera Obscura (latin for "dark chamber")

illum in tabula per radios Solis, quam in cœlo contingit: hoc eft, fi in cœlo superior pars deliquiù patiatur, in radiis apparebit inferior deficere, vt ratio exigit optica.

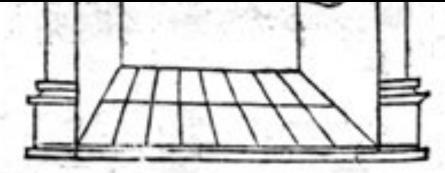
Solis delignium Anno (hrish 15 4.4. Die 24: Januari

Sic nos exacté Anno .1544. Louanii cclipfim Solis observauimus, inuenimusq; deficere paulo plus g dex-

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January 24, 1544. He used this illustration in his book, "De Radio Astronomica et Geometrica," 1545. It is thought to be the first published illustration of a camera obscura.



principles behind the pinhole camera or camera obscura were first mentioned by Chinese philosopher Mozi (Mo-Ti) (470 to 390 BCE)



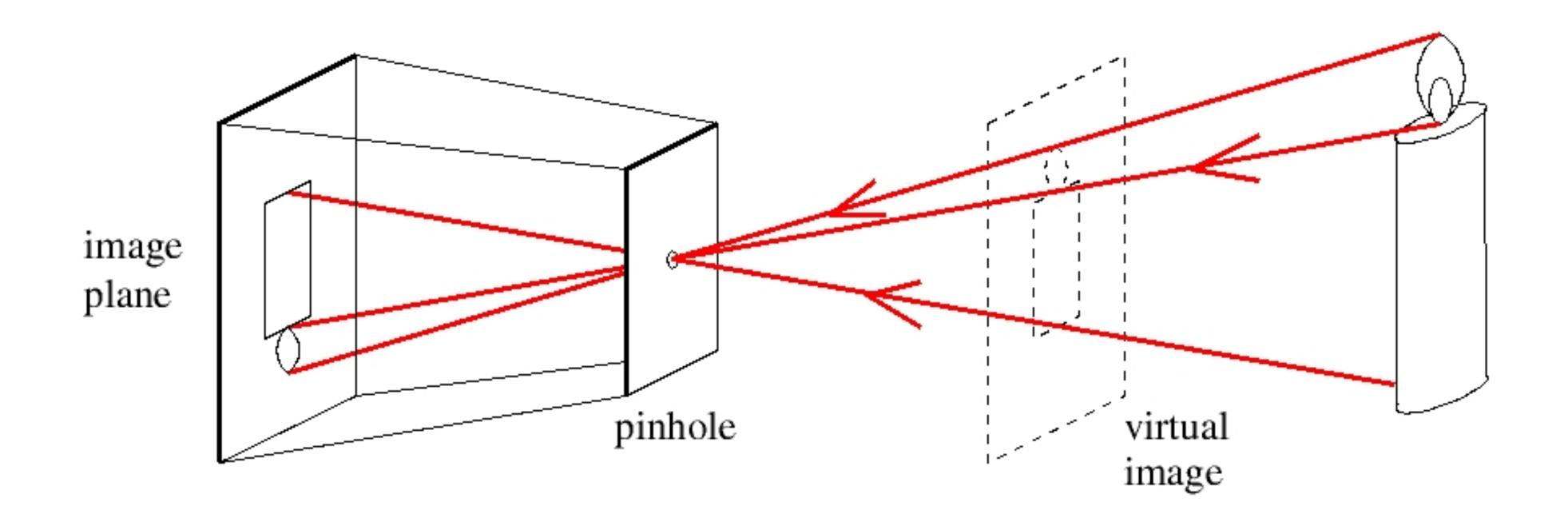
Credit: John H., Hammond, "Th Camera Obscure, A Chronicle"

First Photograph on Record

La table servie

Credit: Nicéphore Niepce, 1822

A pinhole camera is a box with a small hall (aperture) in it



A pinhole camera is a box with a small hall (aperture) in it

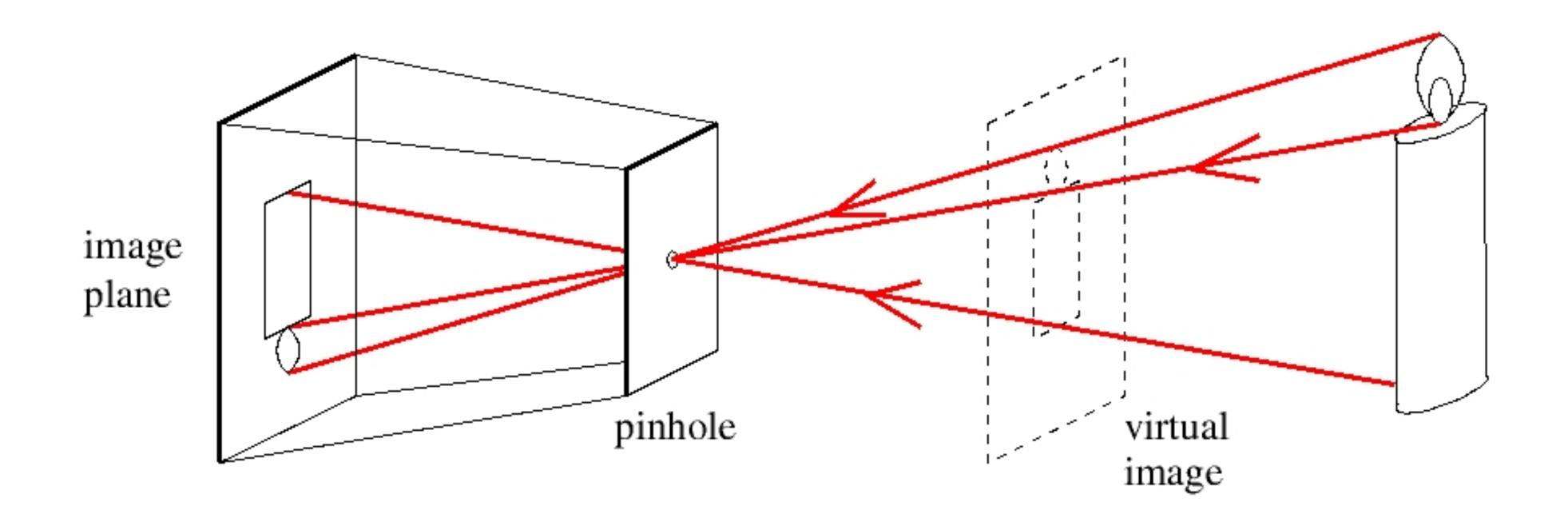
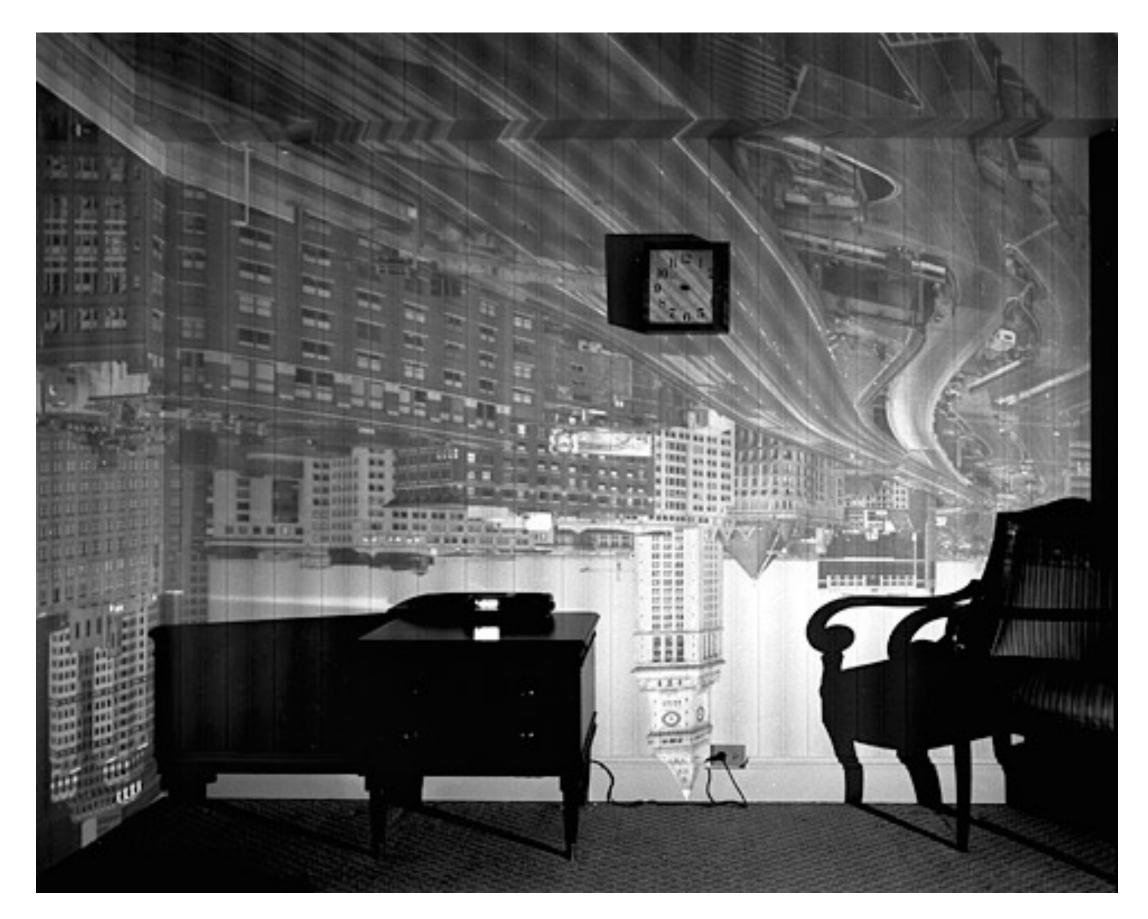


Image Formation

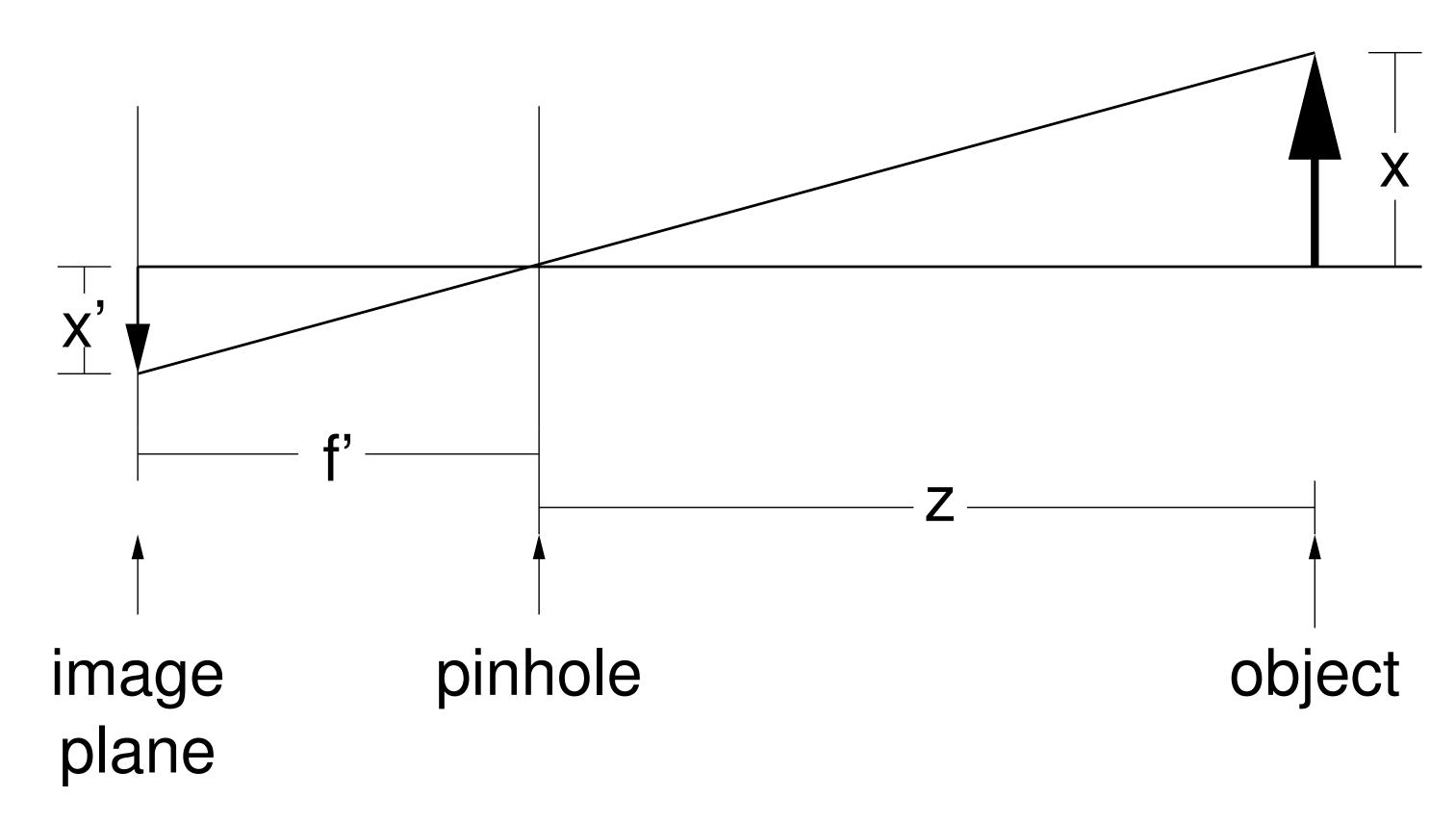
Forsyth & Ponce (2nd ed.) Figure 1.1

Credit: US Navy, Basic Optics and Optical Instruments. Dover, 1969

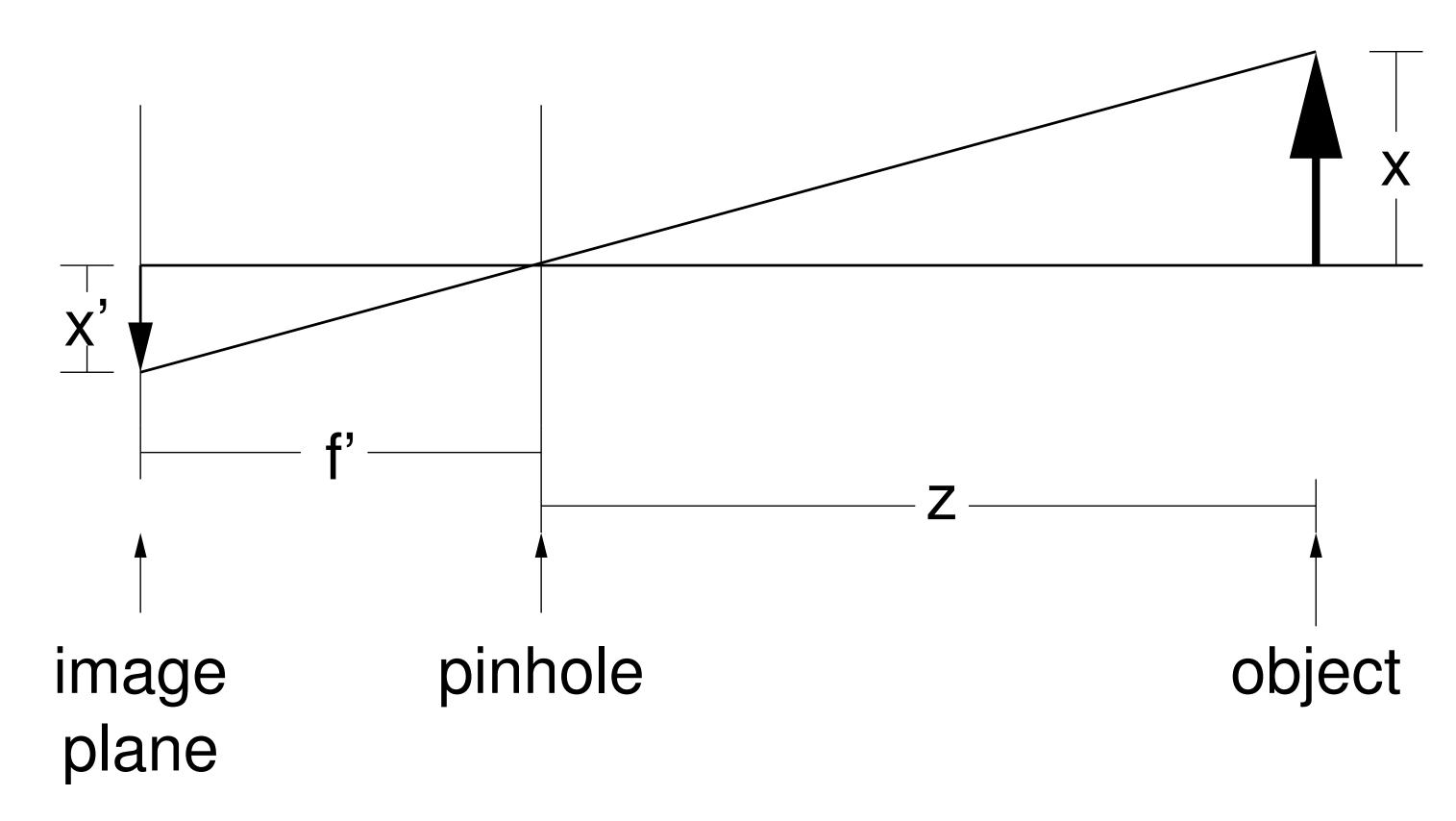
Accidental Pinhole Camera



f' is the **focal length** of the camera

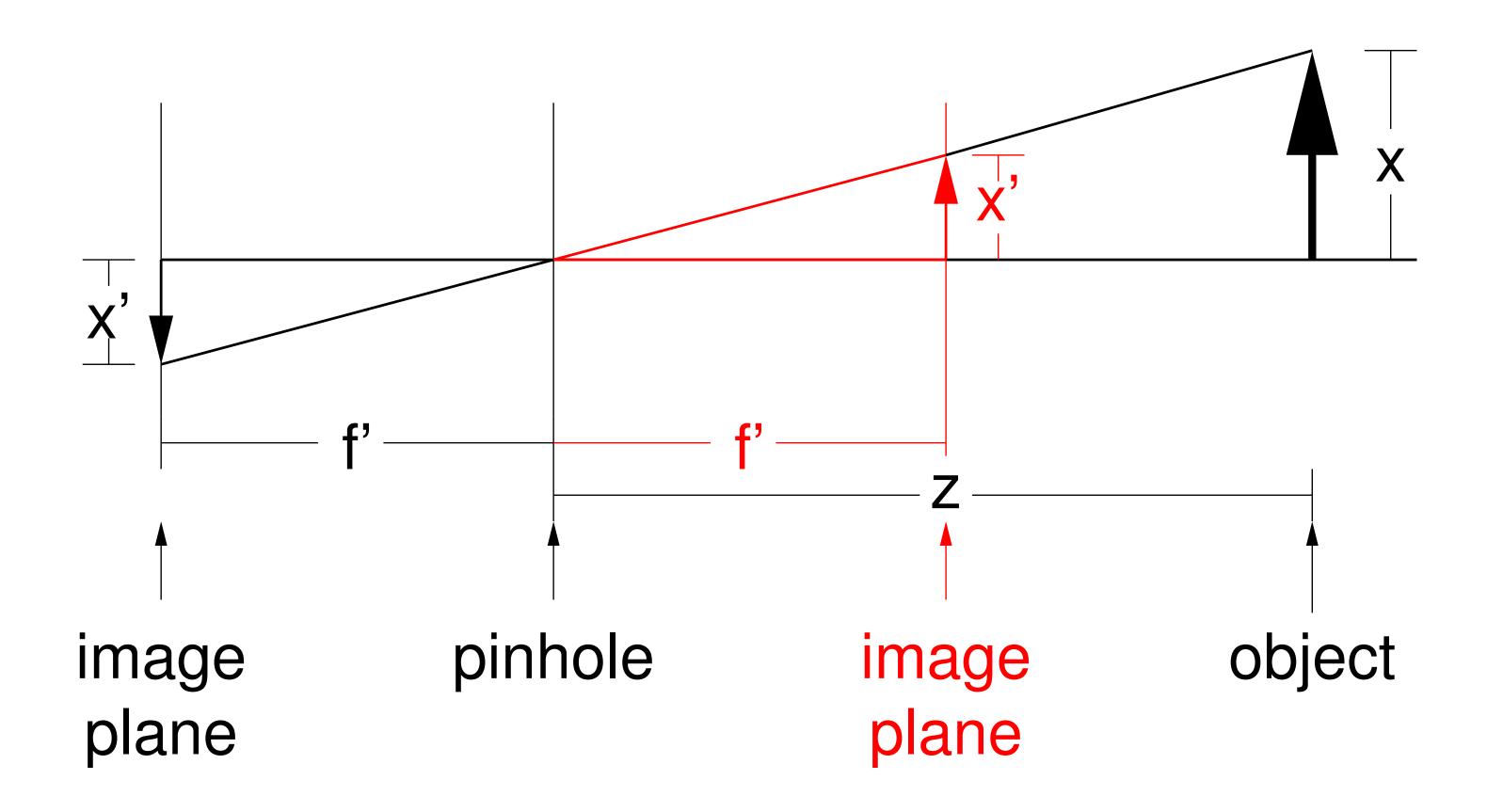


f' is the **focal length** of the camera

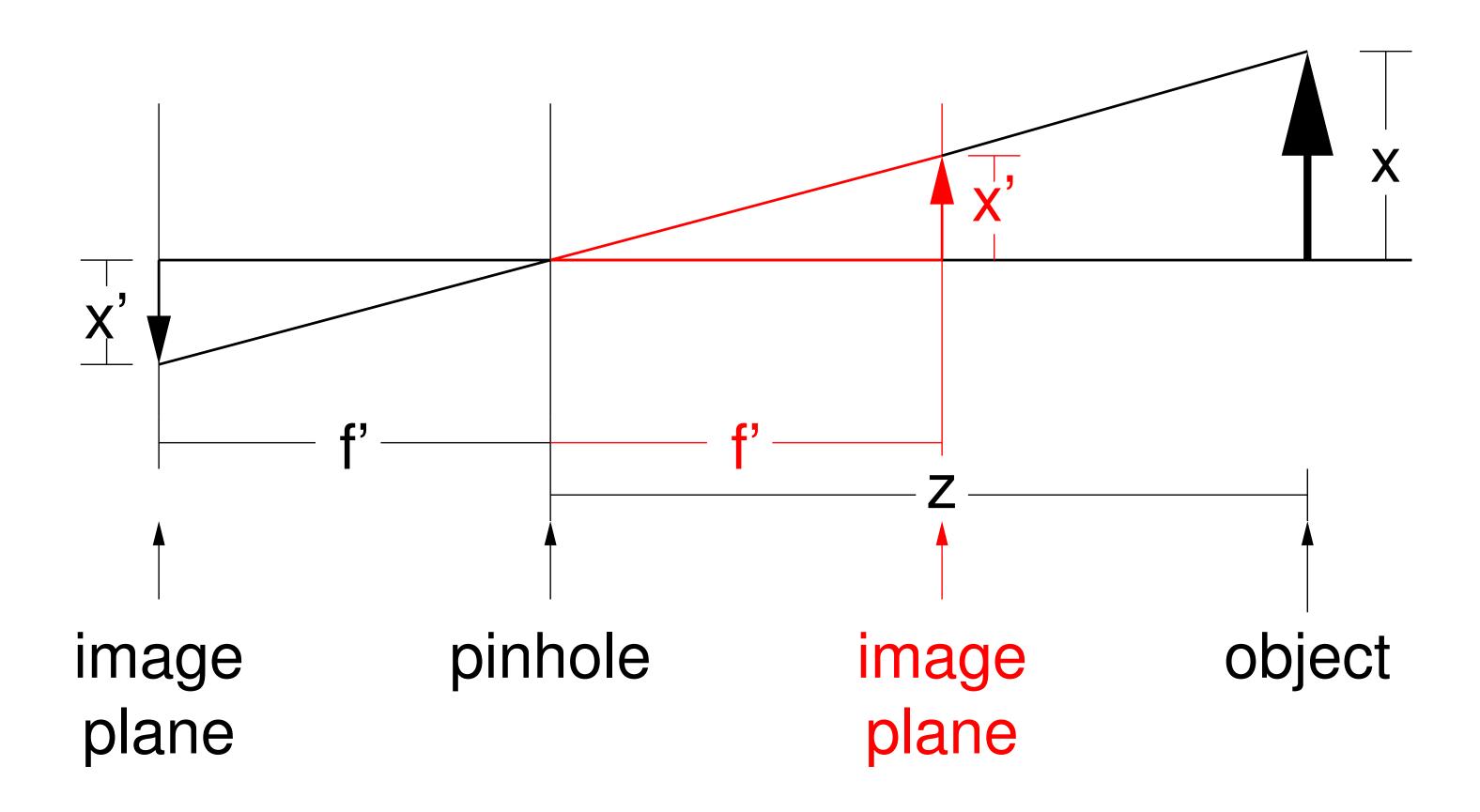


Note: In a pinhole camera we can adjust the focal length, all this will do is change the size of the resulting image

It is convenient to think of the **image plane** which is in from of the pinhole



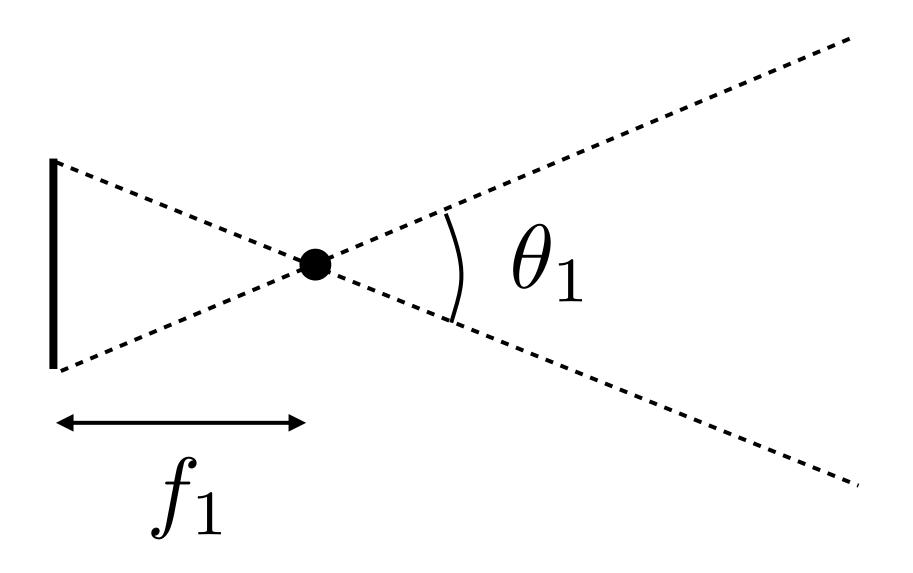
It is convenient to think of the **image plane** which is in from of the pinhole

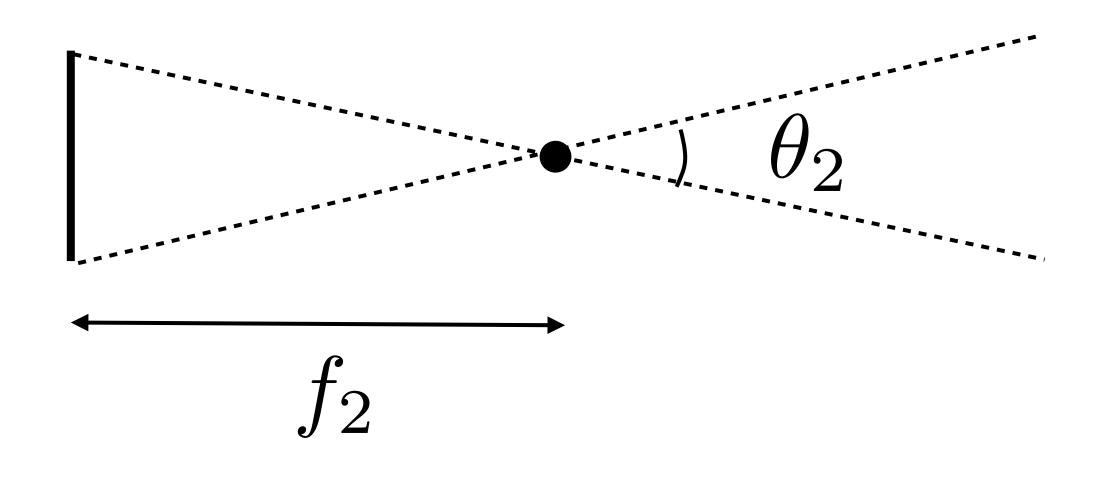


What happens if object moves towards the camera? Away from the camera?

Focal Length

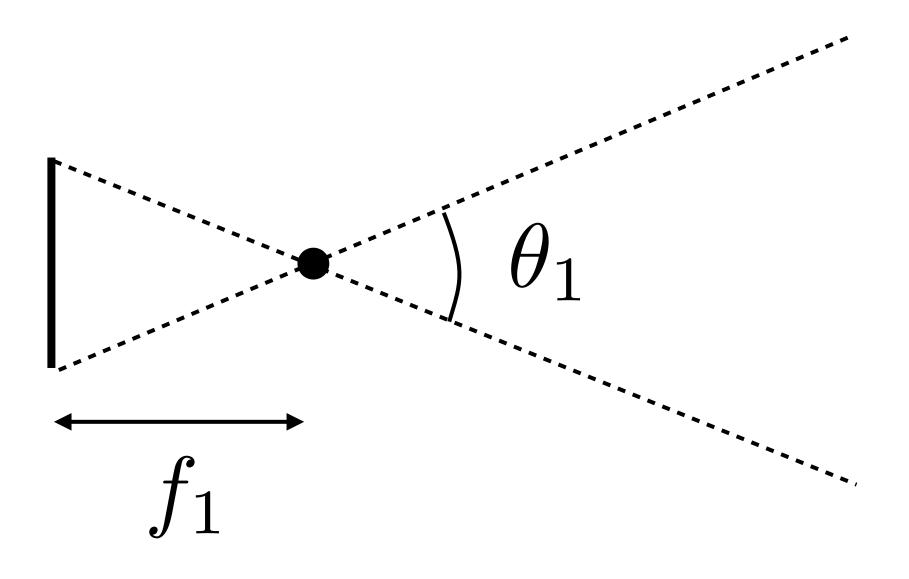
For a fixed sensor size, focal length determines the field of view (FoV)



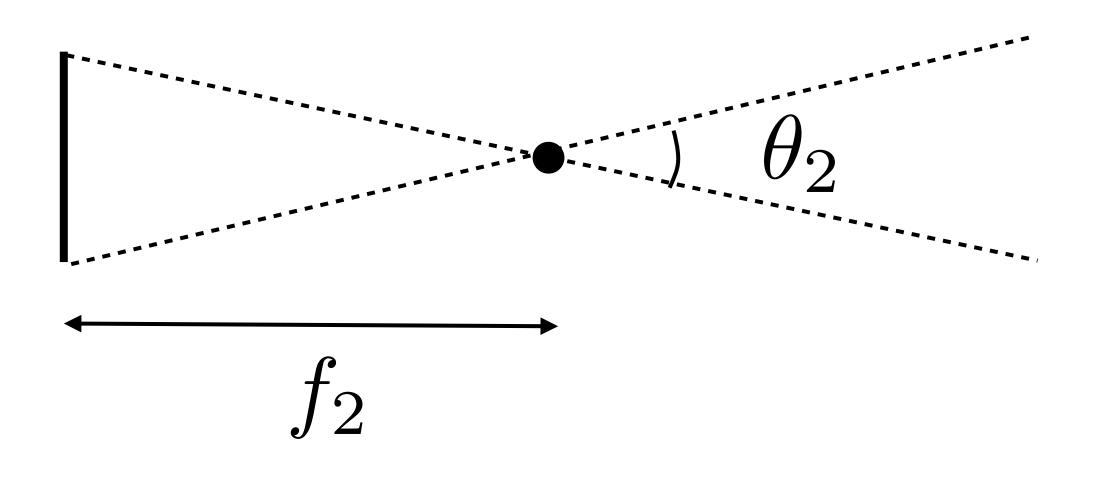


Focal Length

For a fixed sensor size, focal length determines the **field of view** (FoV)

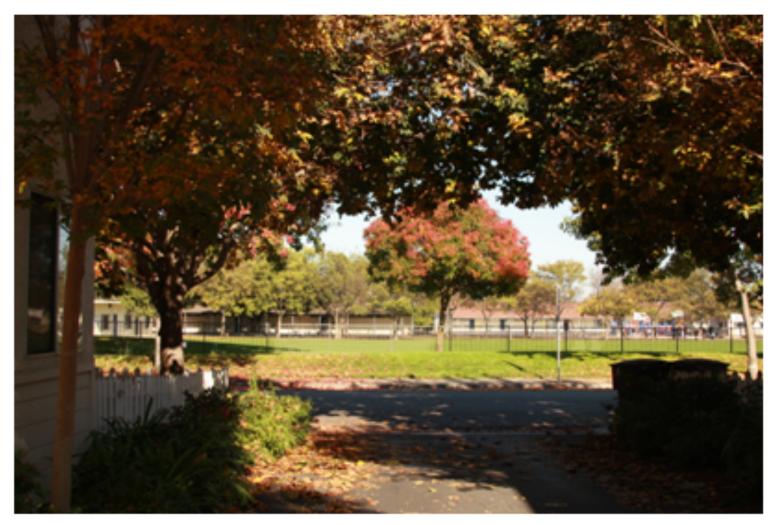


50mm lens? 100mm lens?

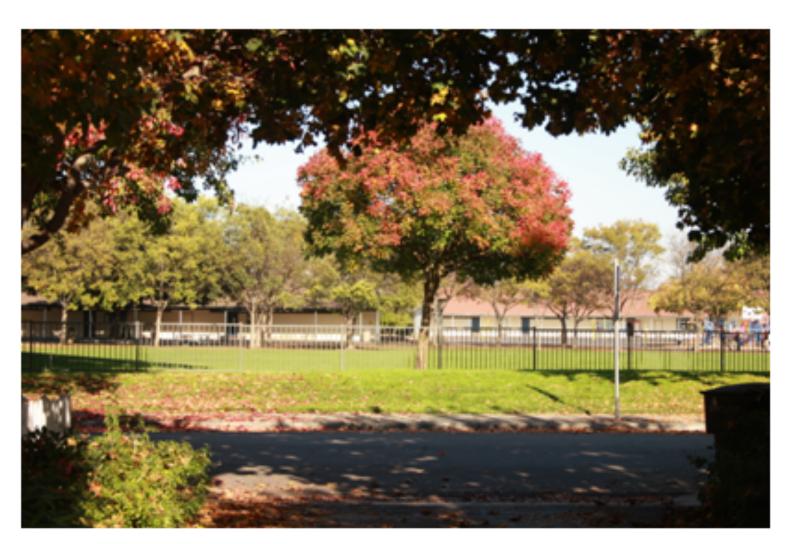


Exercise: What is the field of view of a full frame (35mm) camera with a

Focal Length



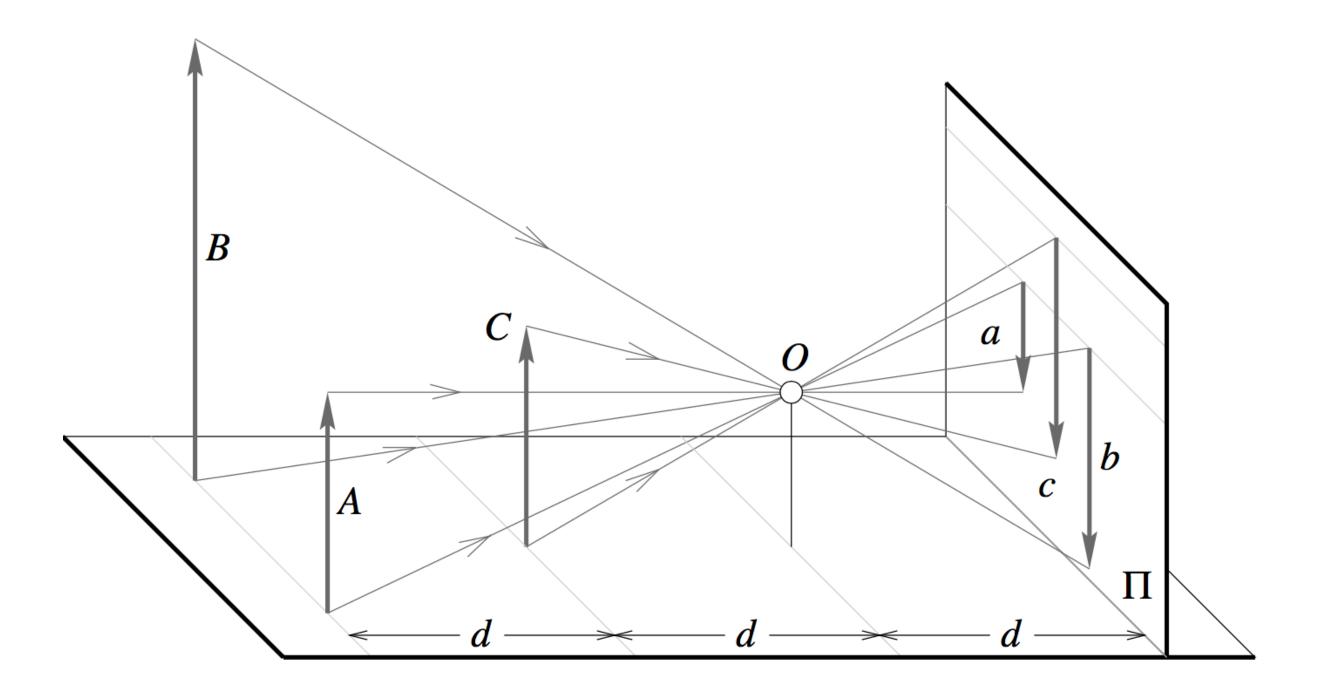
28 mm



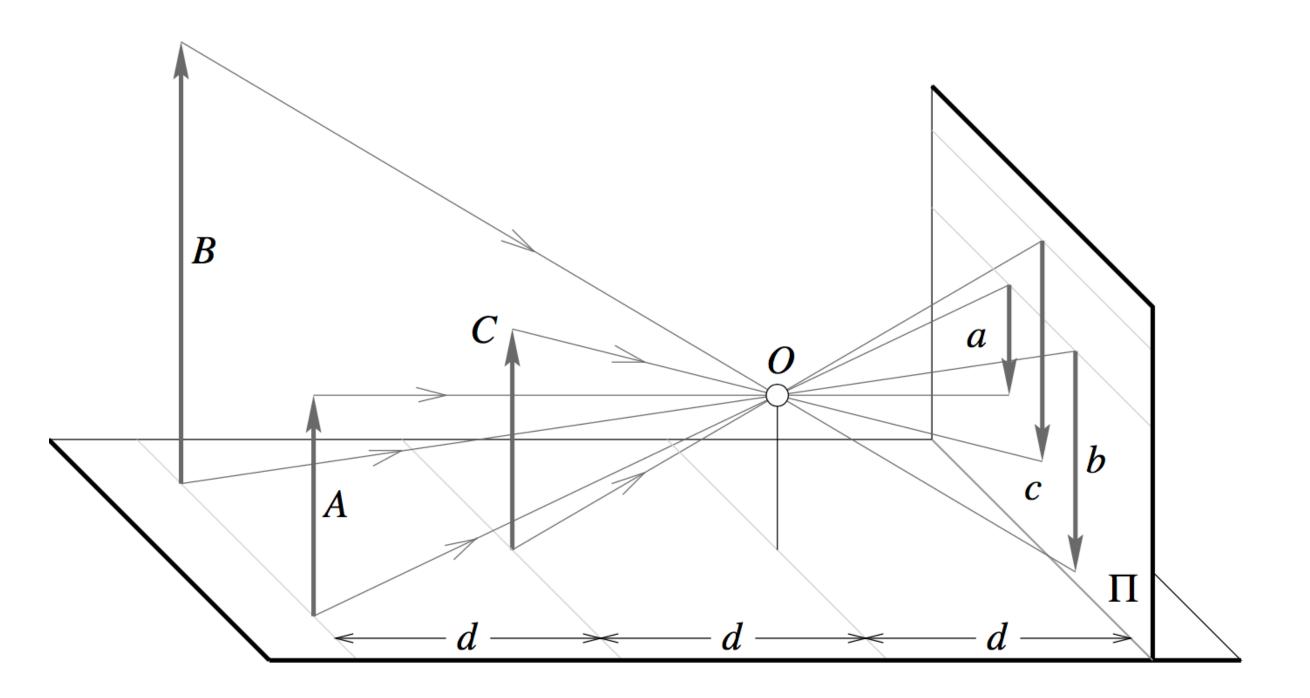
50 mm

35 mm

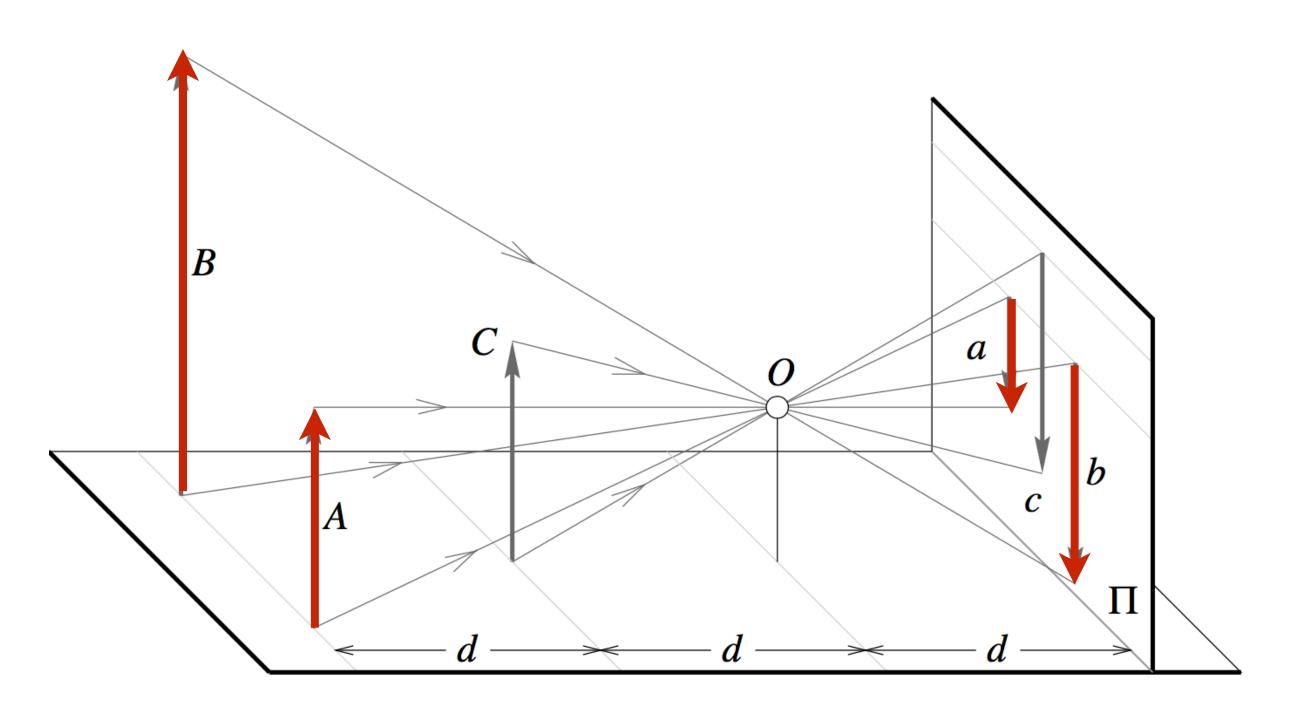
70 mm



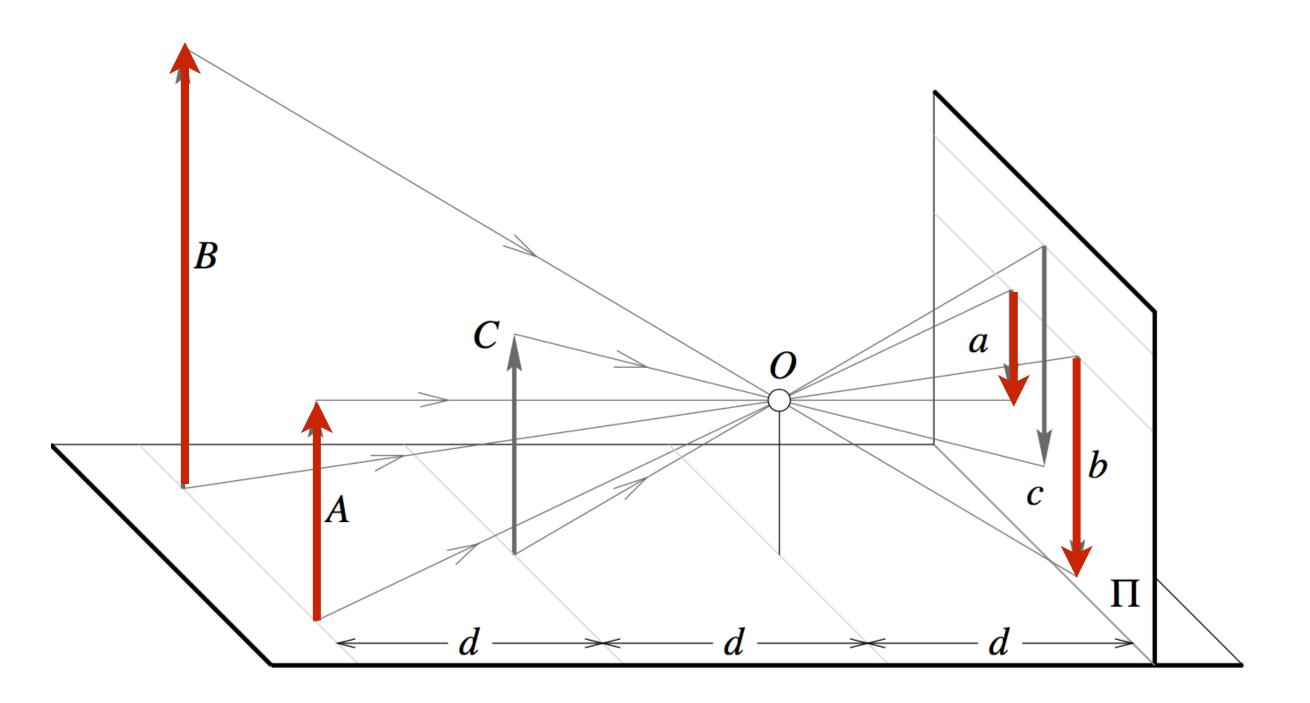
Far objects appear smaller than close ones



Far objects appear smaller than close ones

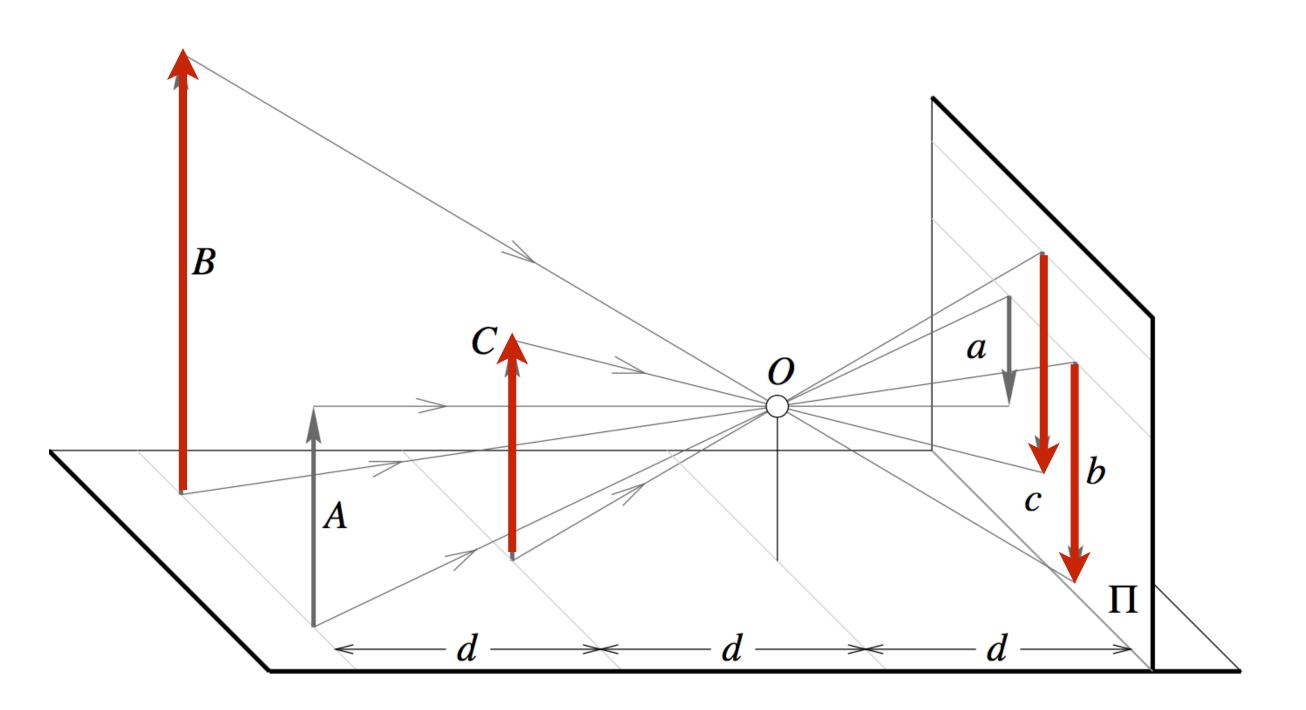


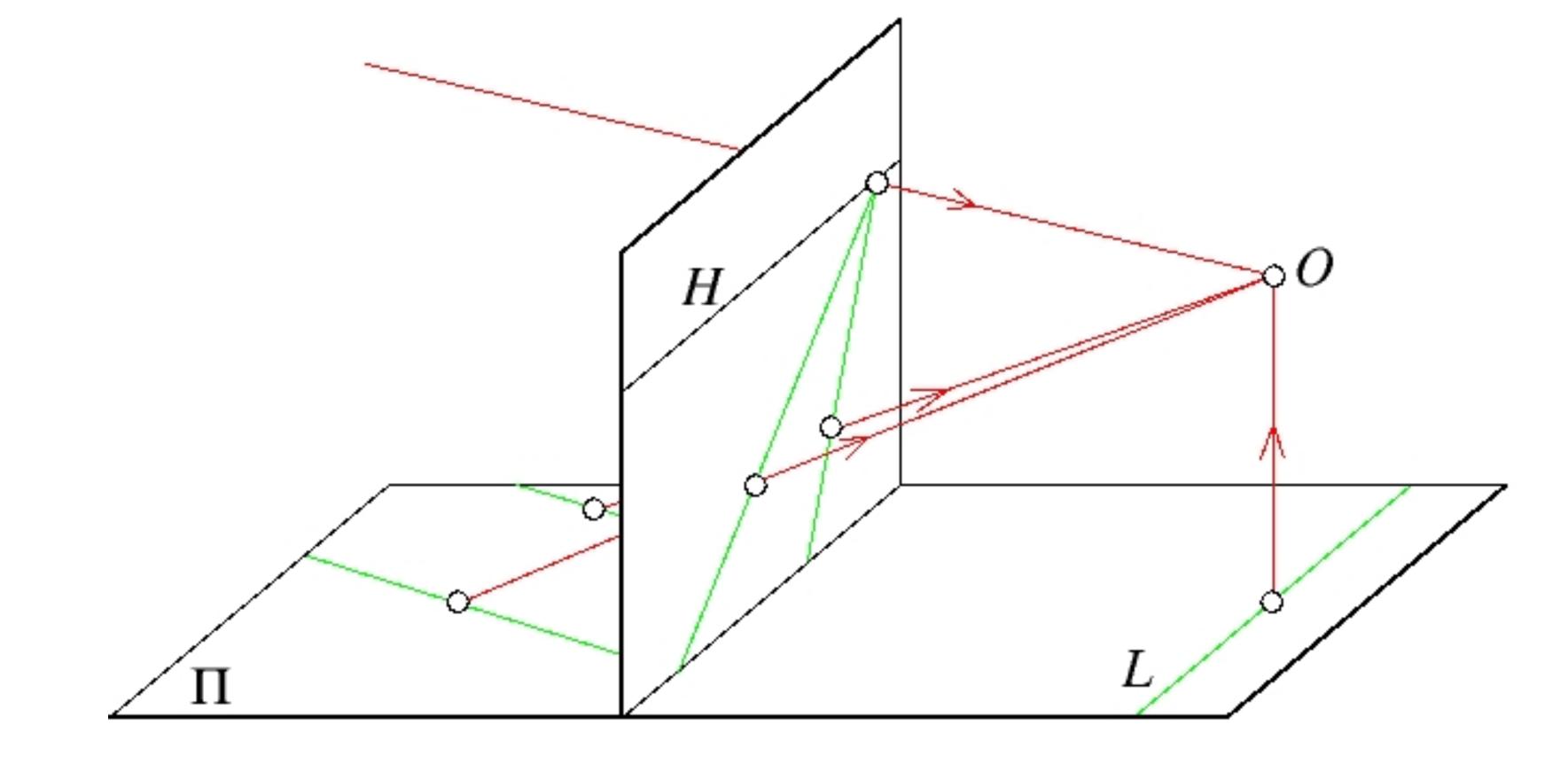
Far objects appear smaller than close ones



Size is **inversely** proportions to distance

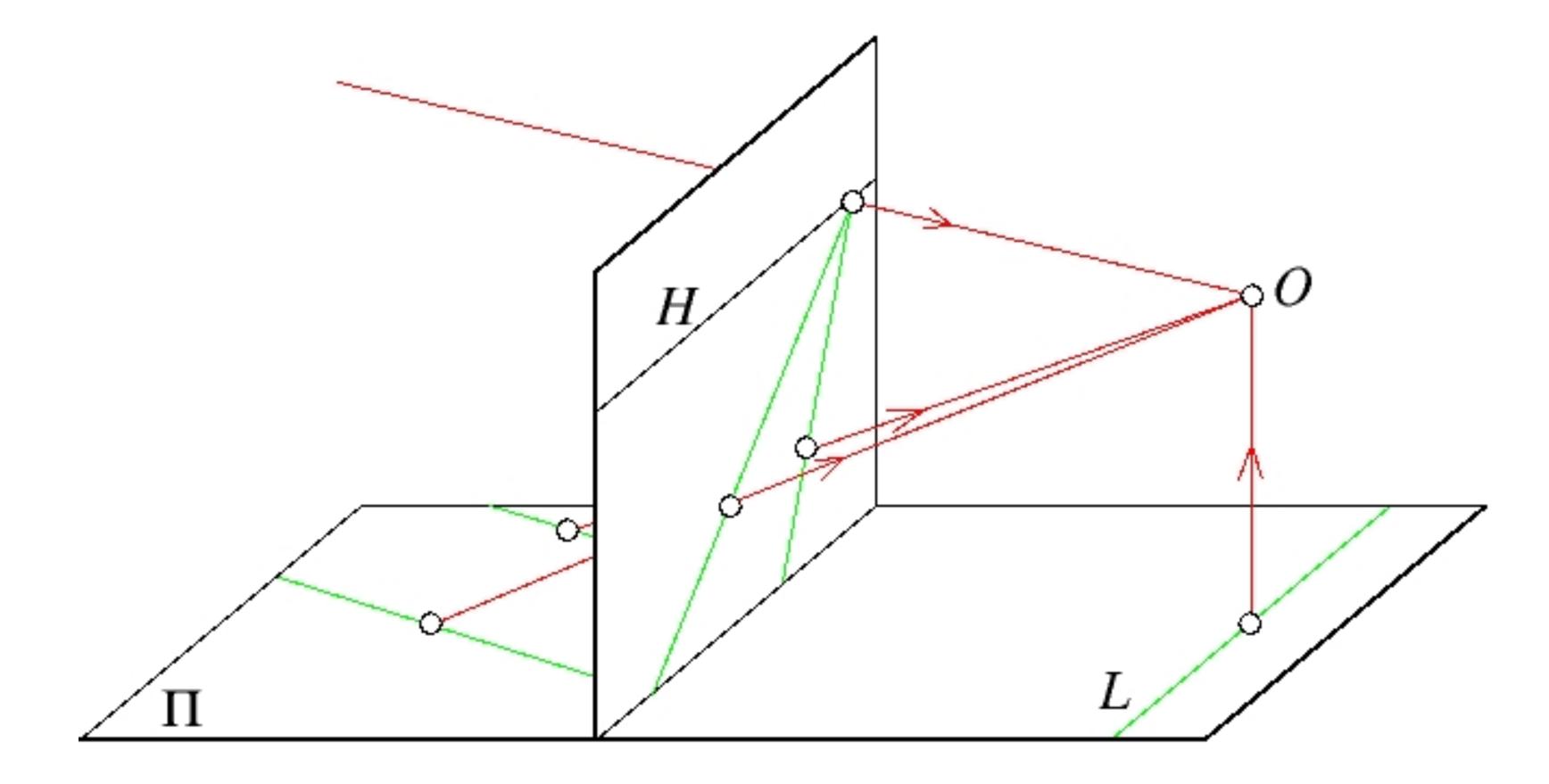
Far objects appear smaller than close ones





Forsyth & Ponce (1st ed.) Figure 1.3b

Parallel lines meet at a point (vanishing point)

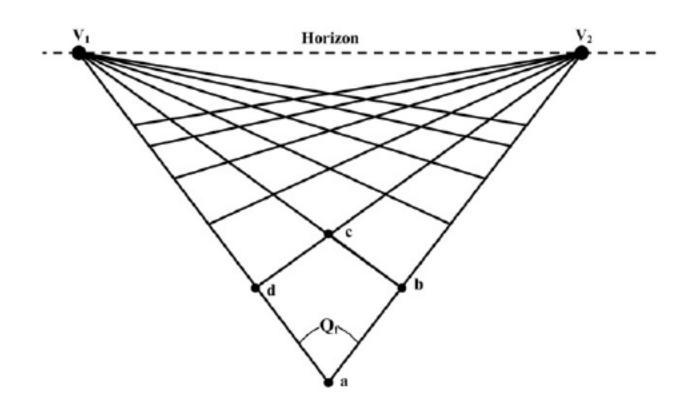


Forsyth & Ponce (1st ed.) Figure 1.3b

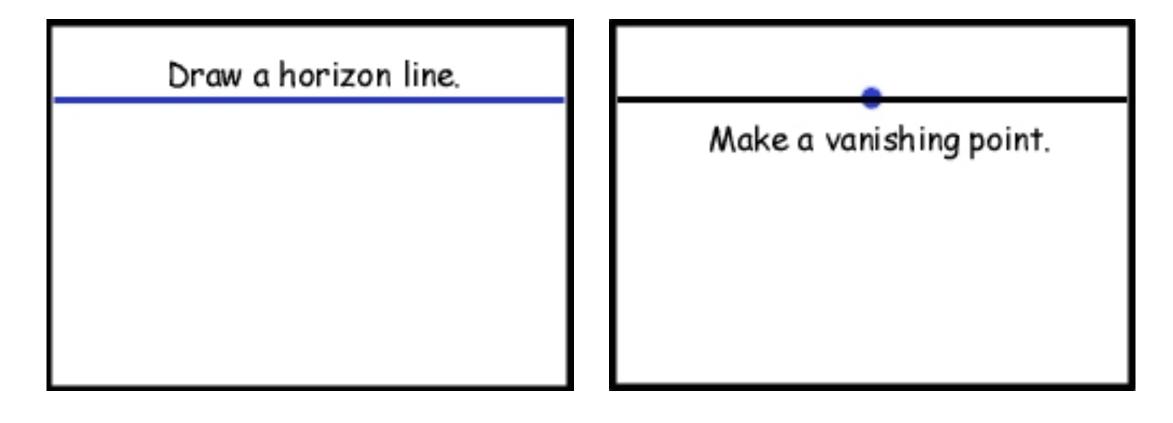
- Each set of parallel lines meet at a different point
- the point is called **vanishing point**

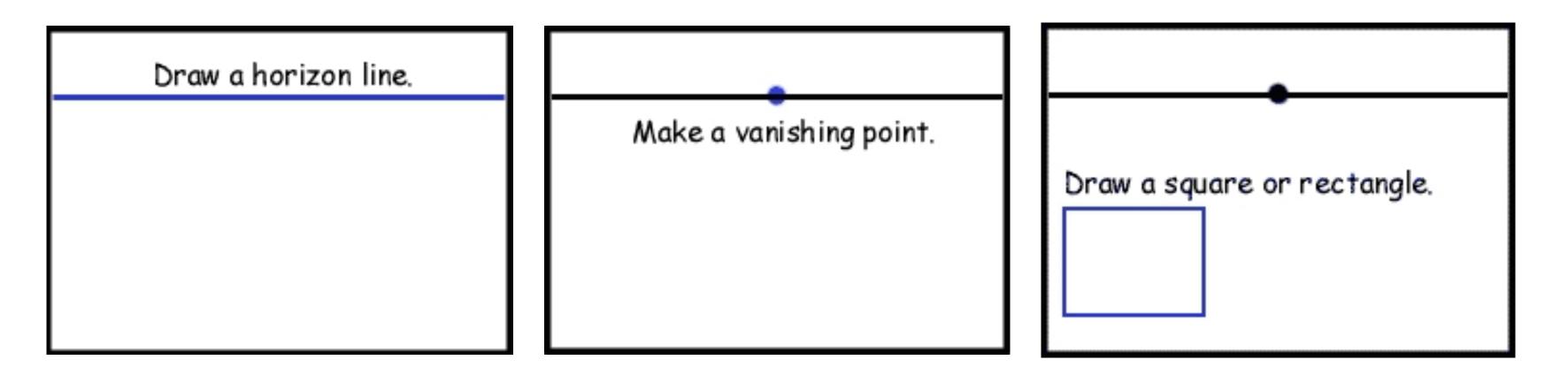
Each set of parallel lines meet at a different point - the point is called vanishing point

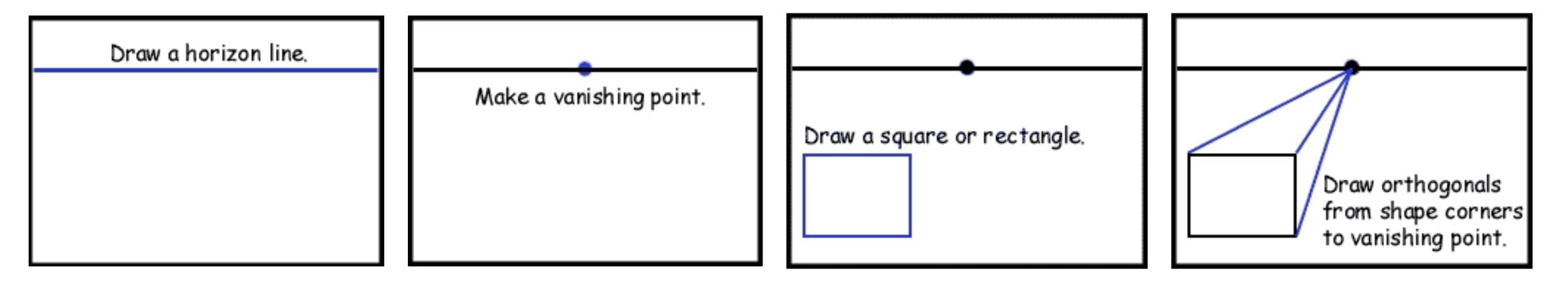
Sets of parallel lines on the same plane lead to **collinear** vanishing points - the line is called a **horizon** for that plane

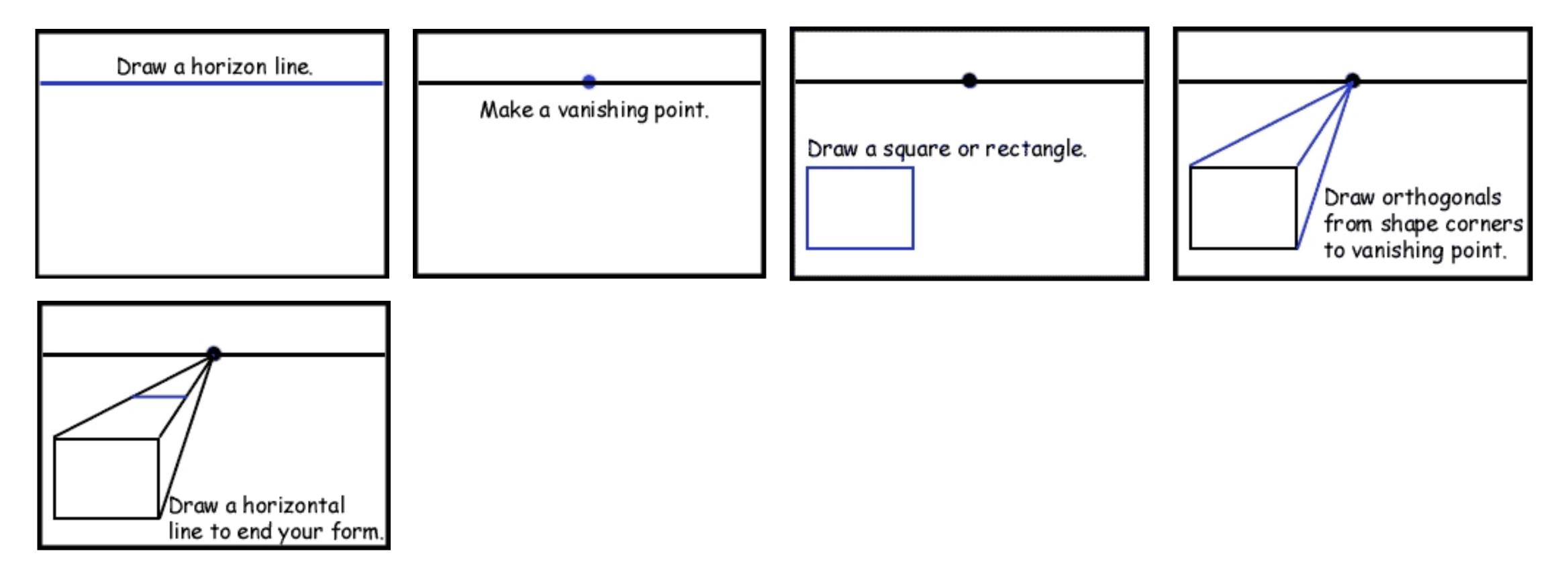


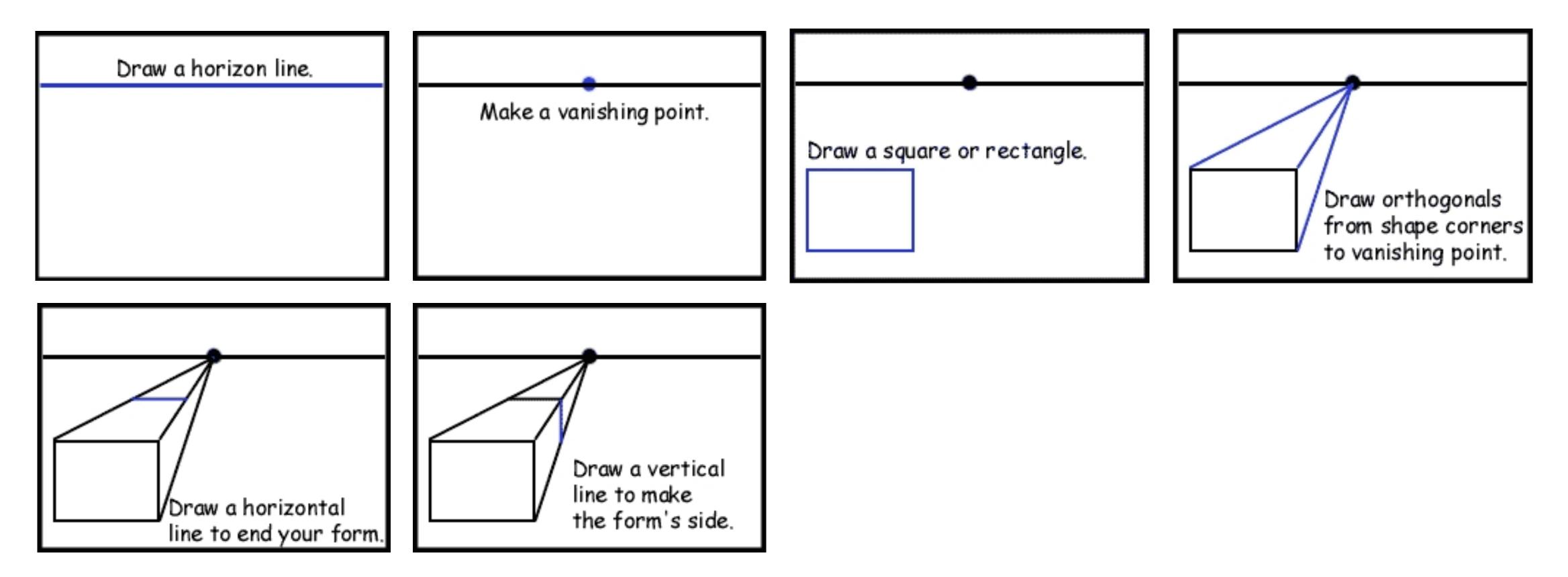
Draw a horizon line.

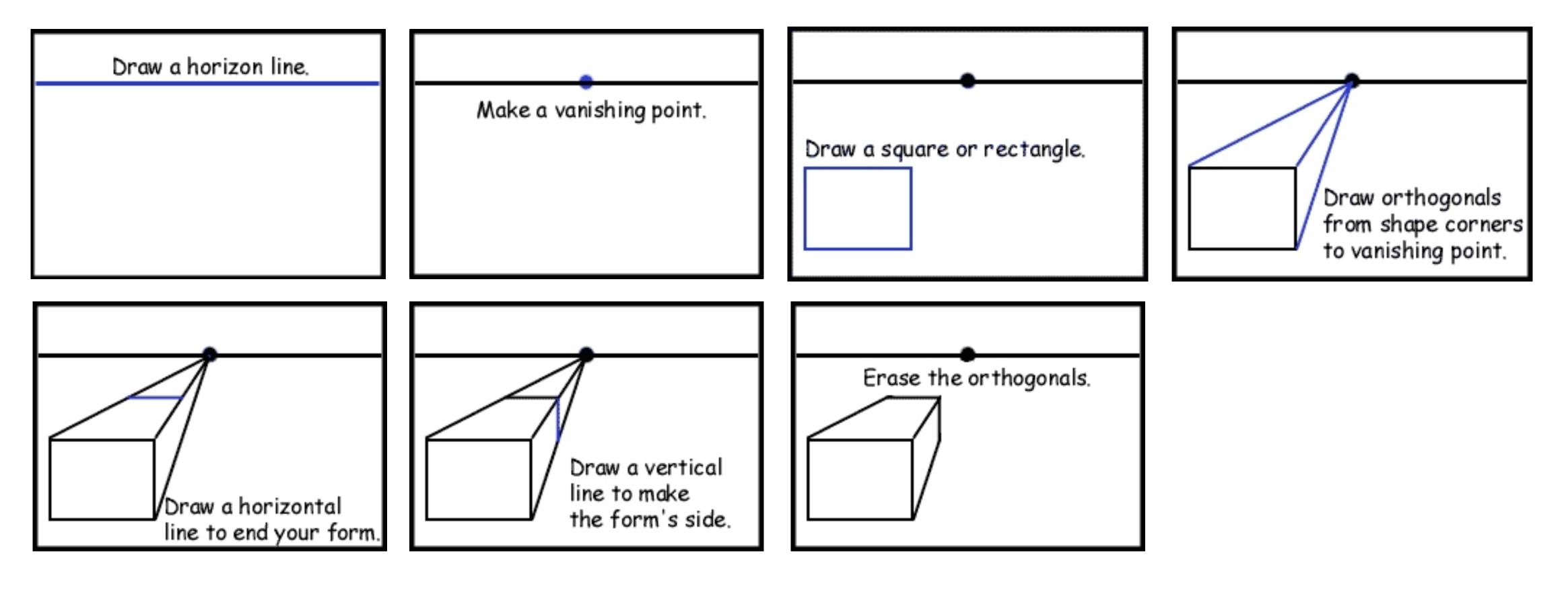


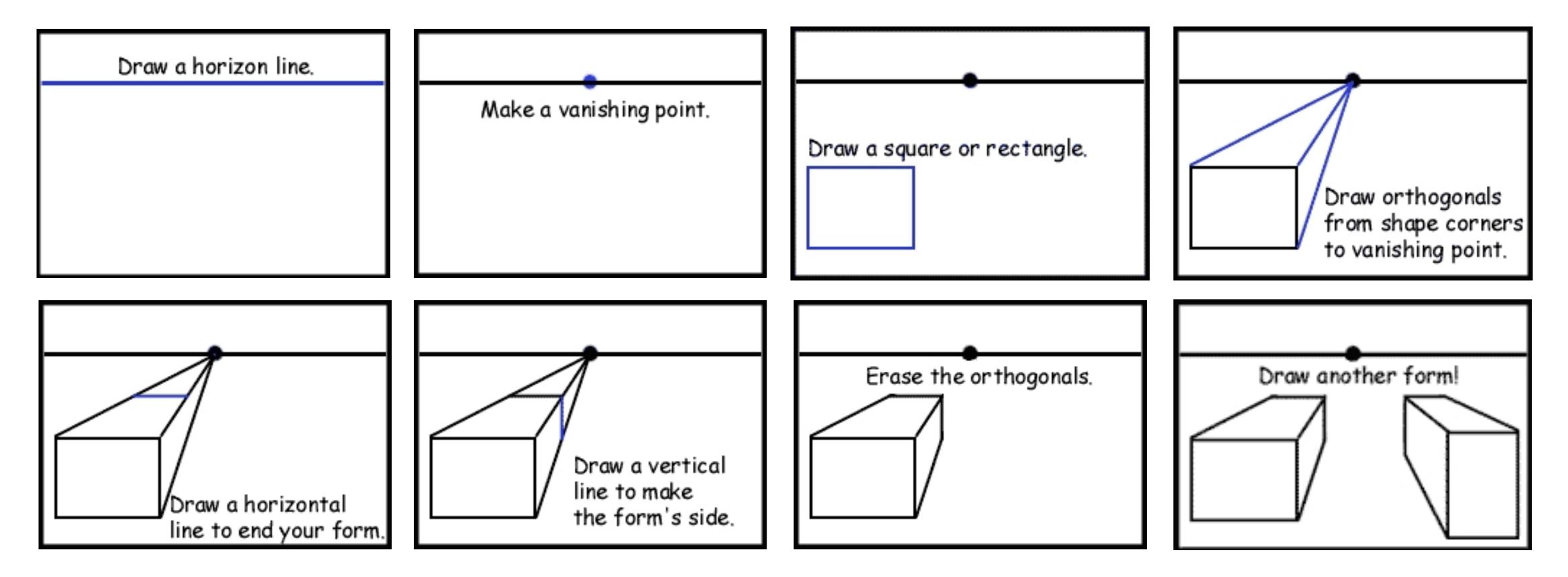


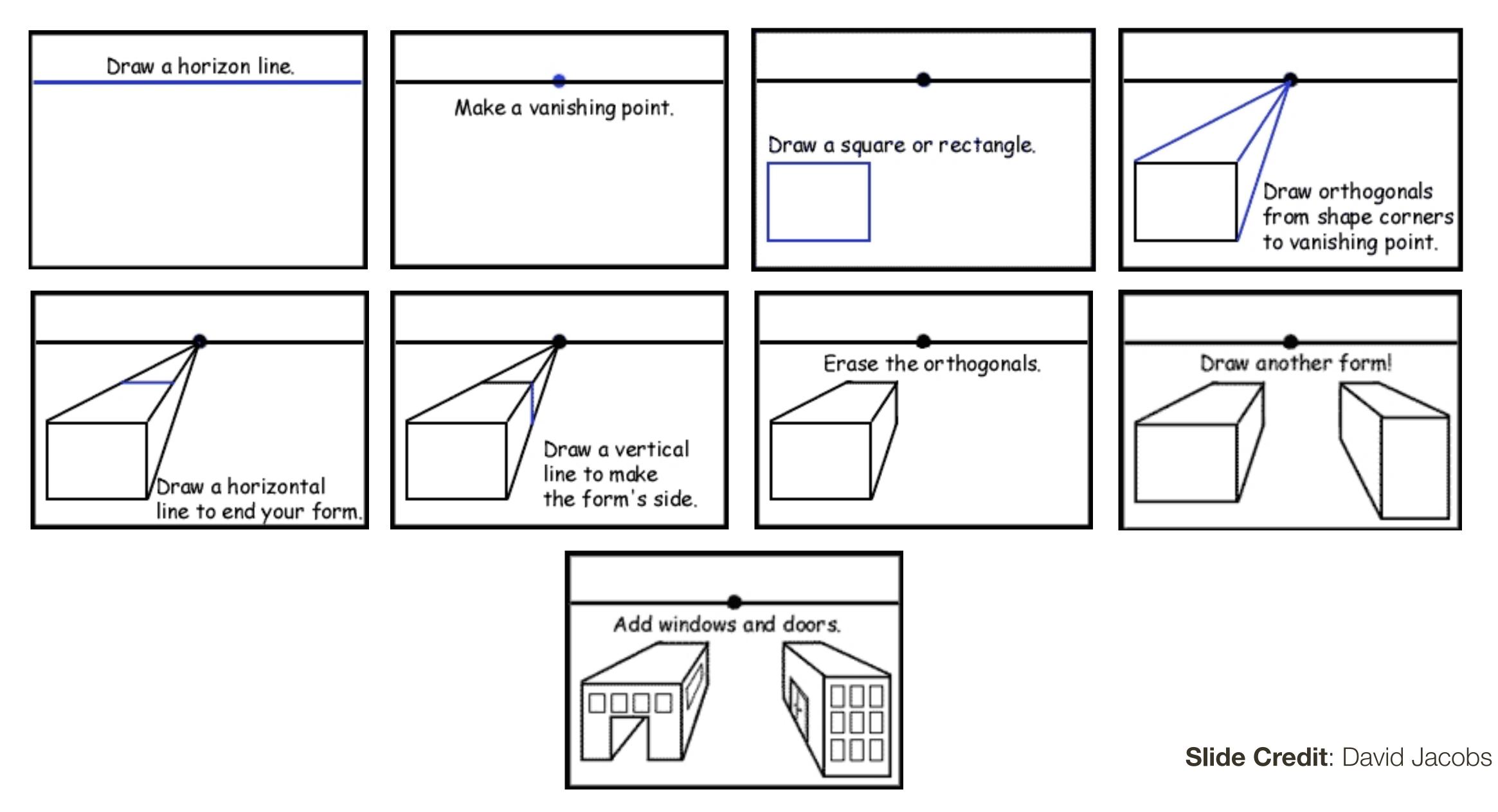








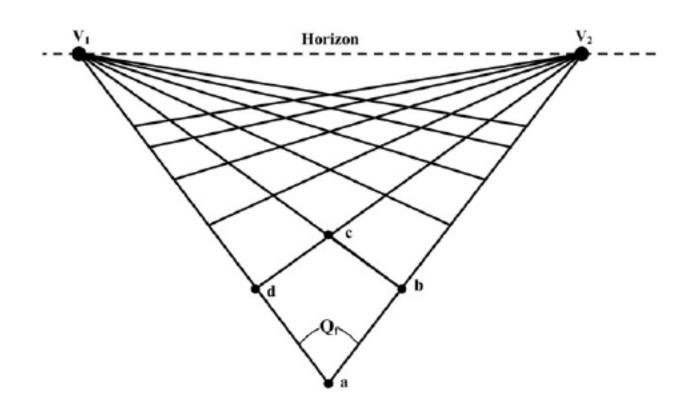




Each set of parallel lines meet at a different point - the point is called **vanishing point**

Sets of parallel lines one the same plane lead to **collinear** vanishing points — the line is called a **horizon** for that plane

Good way to **spot fake images** scale and perspective do not work vanishing points behave badly



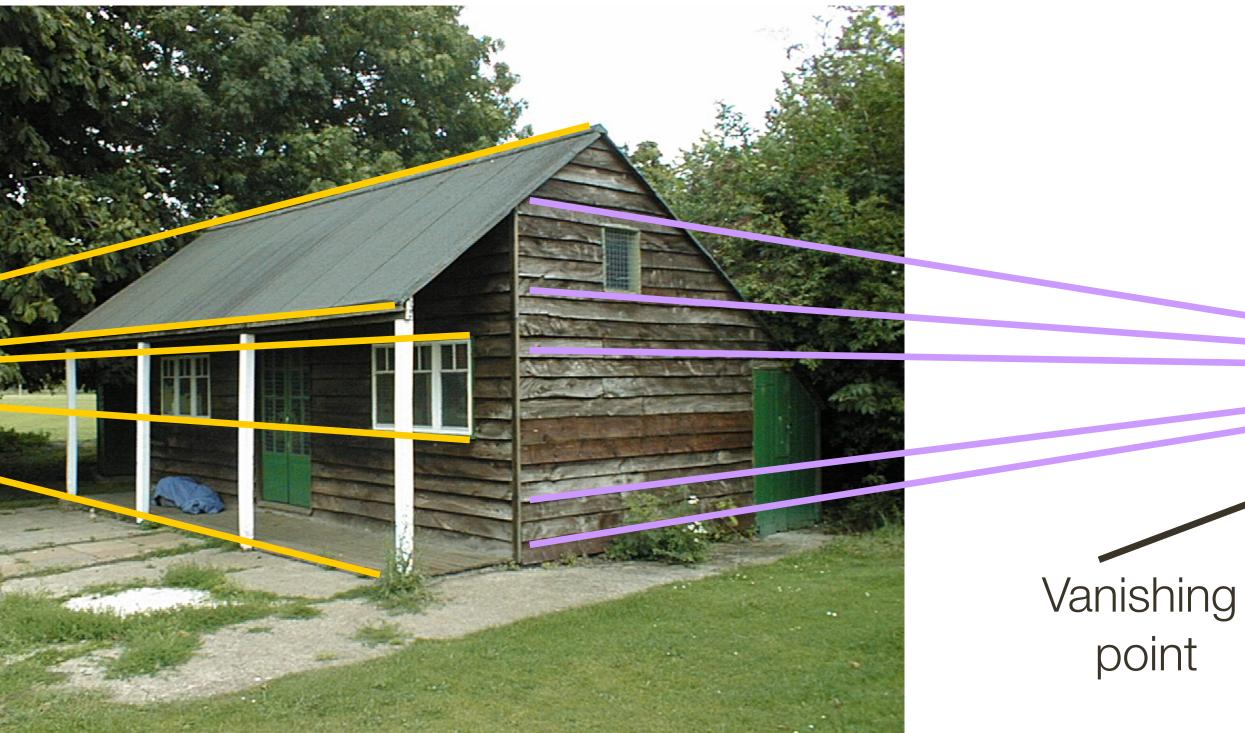
•

Slide Credit: Efros (Berkeley), photo from Criminisi

Vanishing point

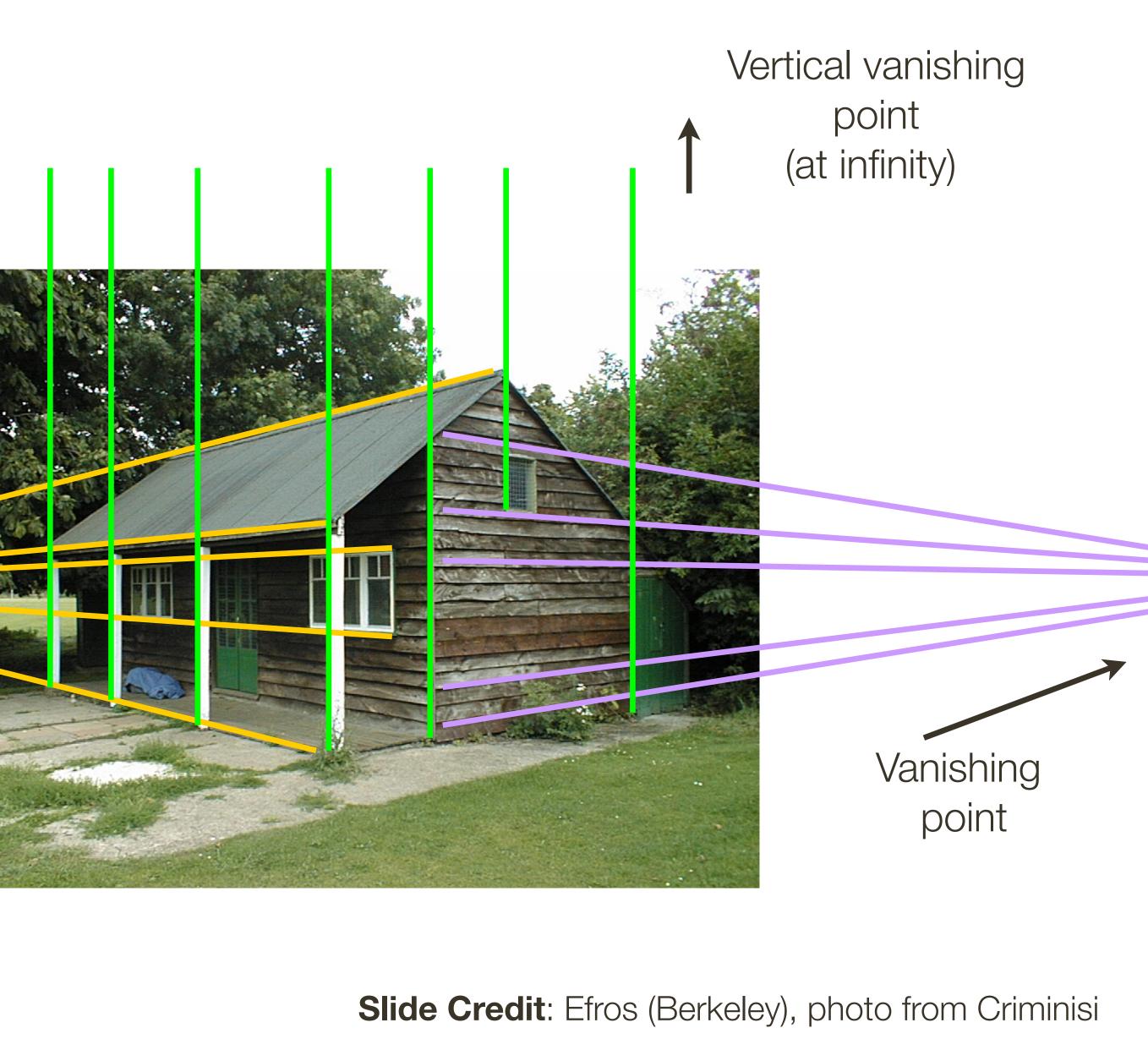
Slide Credit: Efros (Berkeley), photo from Criminisi

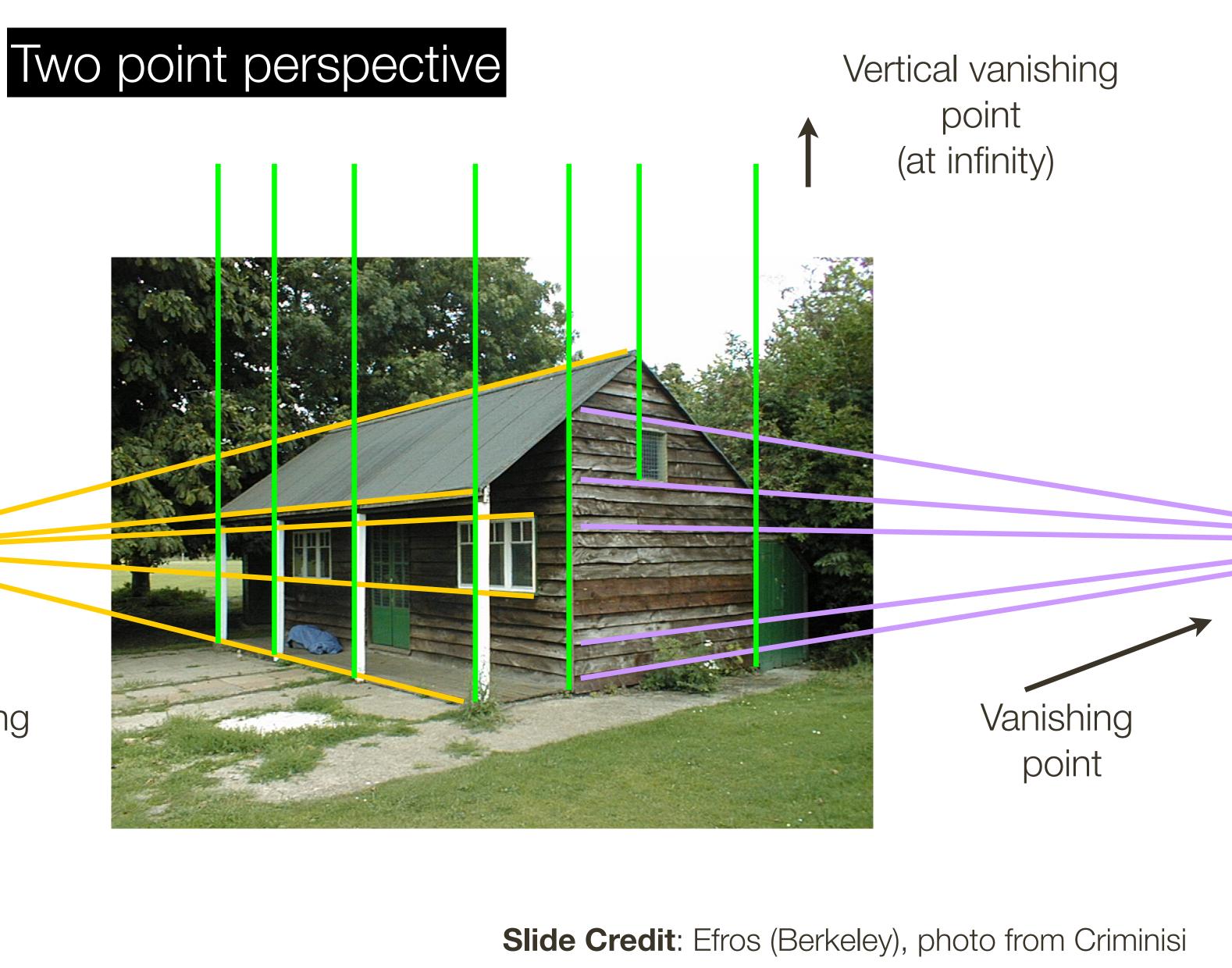
Vanishing point

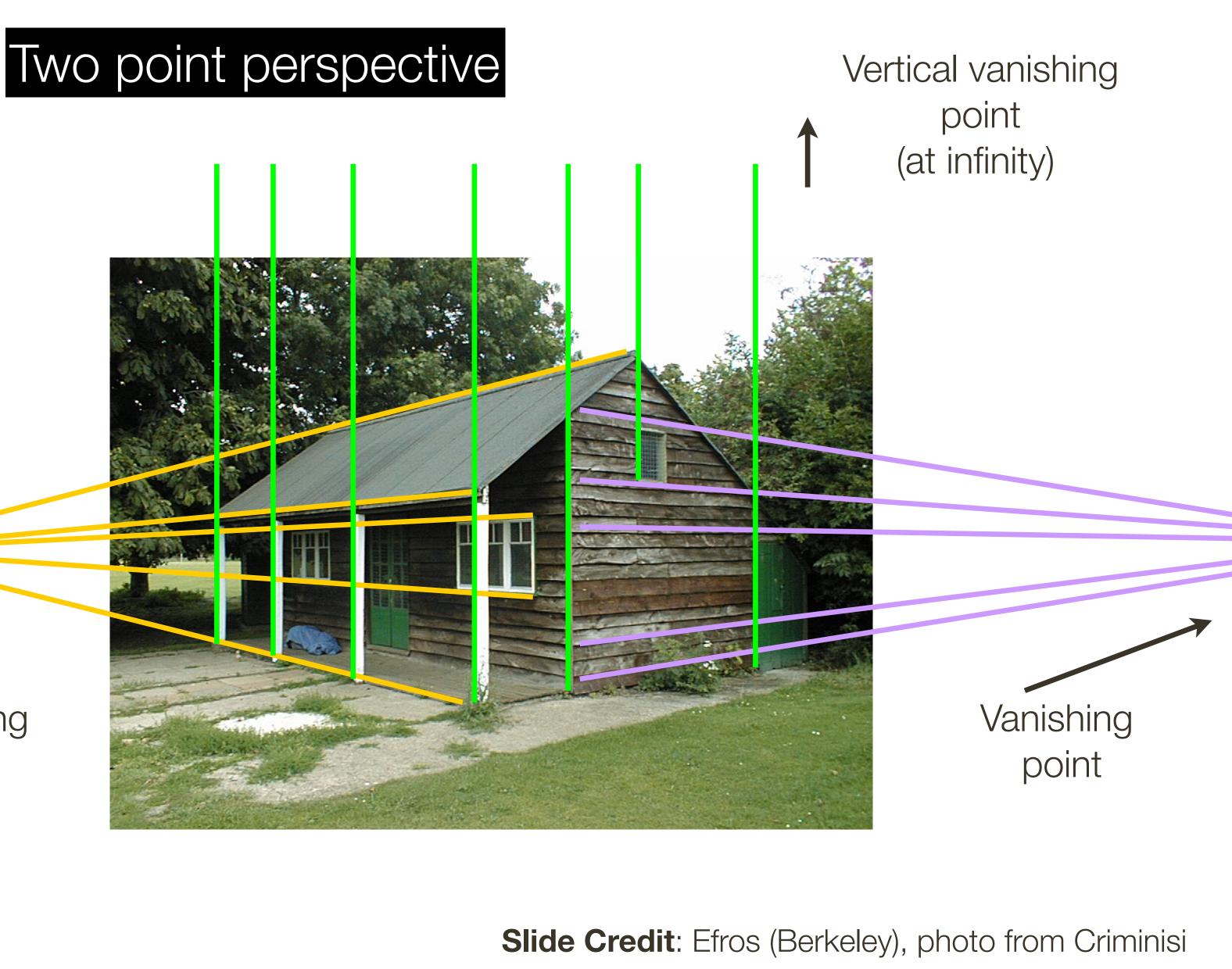


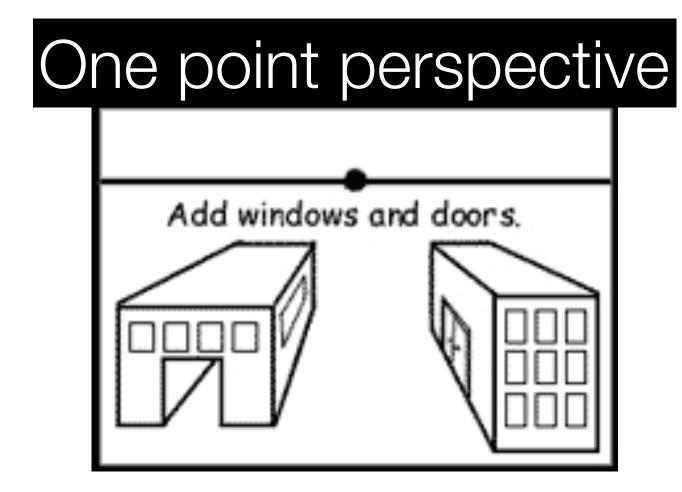
Slide Credit: Efros (Berkeley), photo from Criminisi

Vanishing point

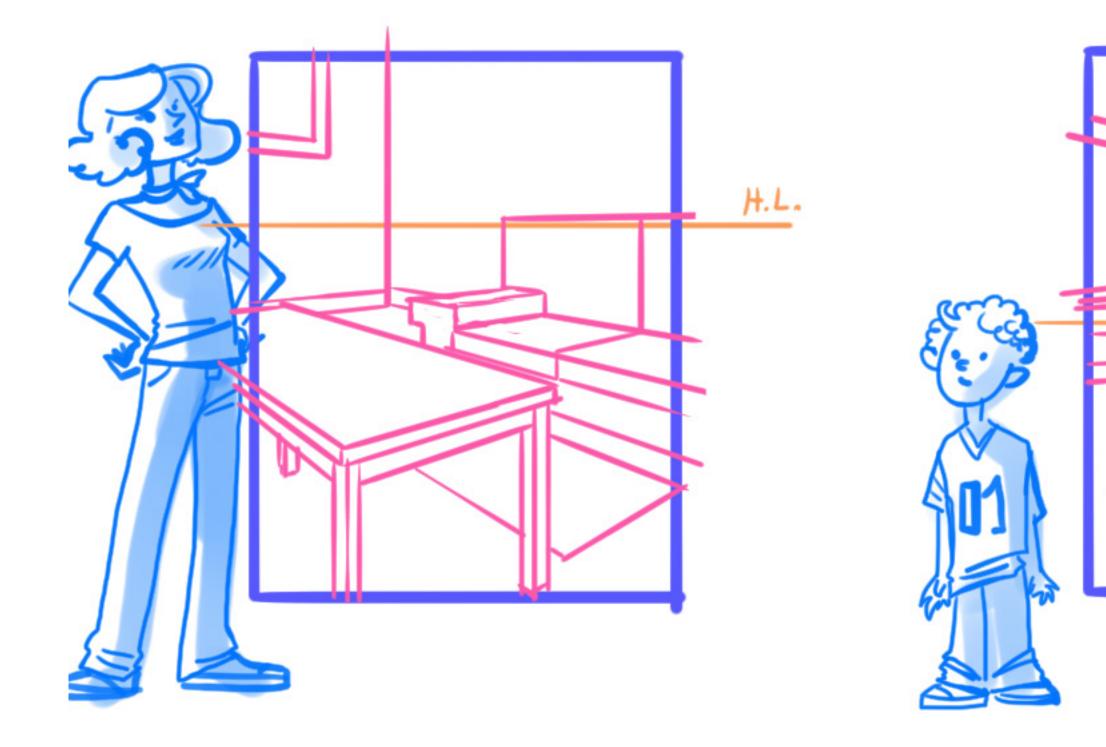








Perspective Aside



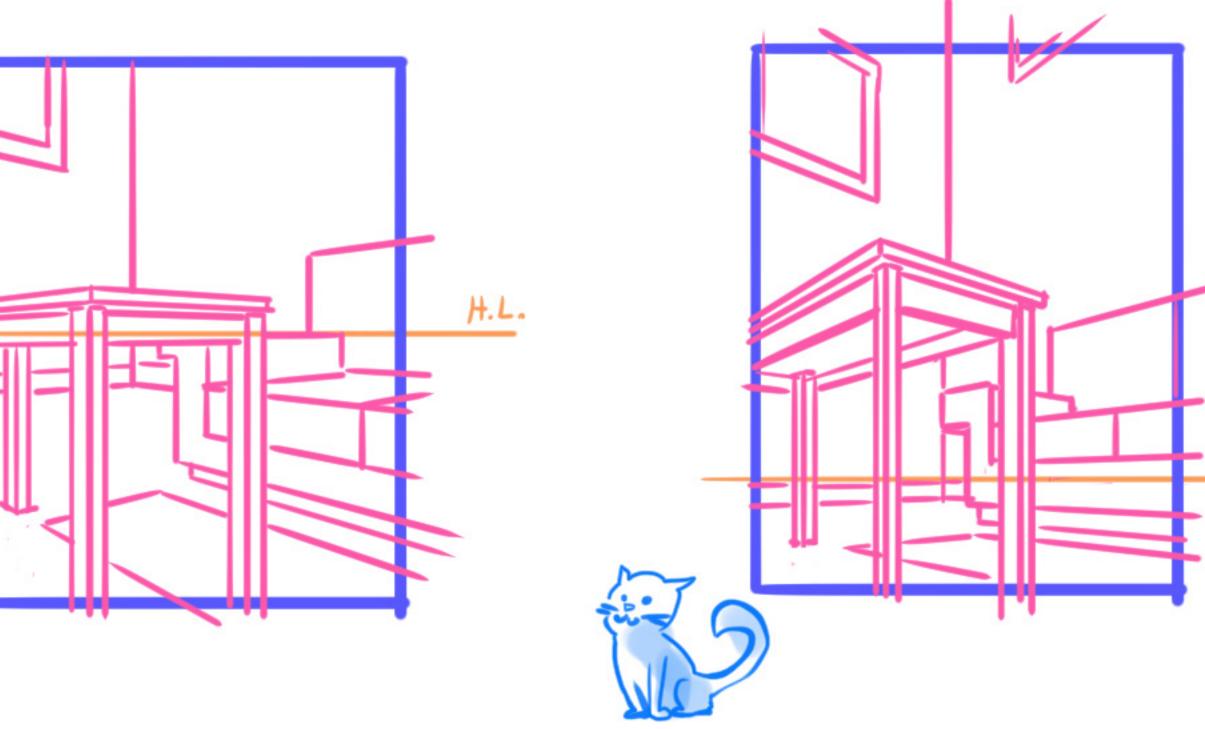


Image credit: http://www.martinacecilia.com/place-vanishing-points/

Perspective Aside

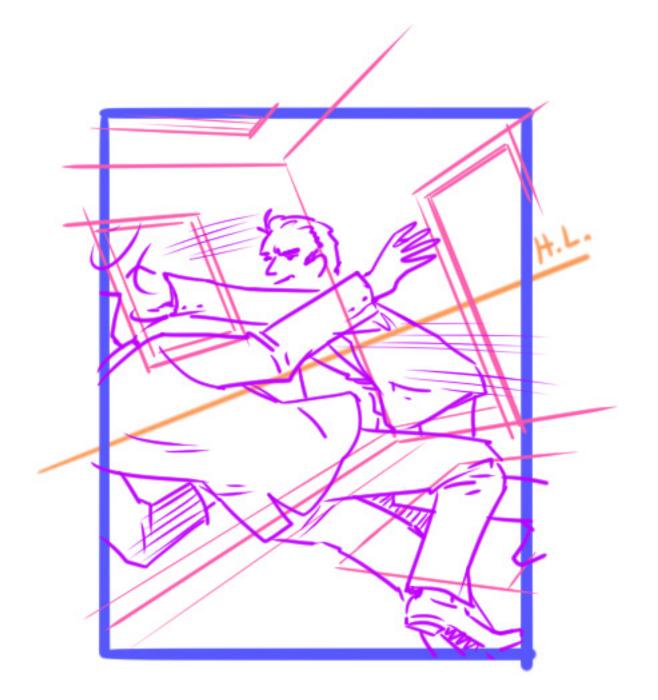




Image credit: http://www.martinacecilia.com/place-vanishing-points/

/

Properties of Projection

- Points project to points
- Lines project to lines
- Planes project to the whole or half image
- Angles are **not** preserved

Properties of Projection

- Points project to points
- Lines project to lines
- Planes project to the whole or half image
- Angles are **not** preserved

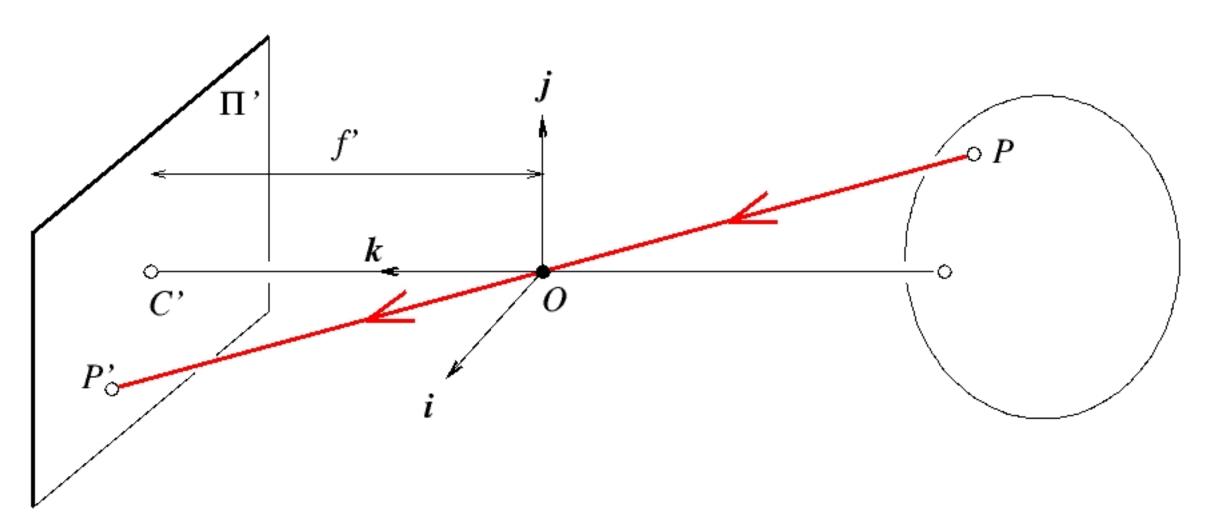
Degenerate cases

- Line through focal point projects to a point
- Plane through focal point projects to a line

Projection Illusion

Projection Illusion

Perspective Projection

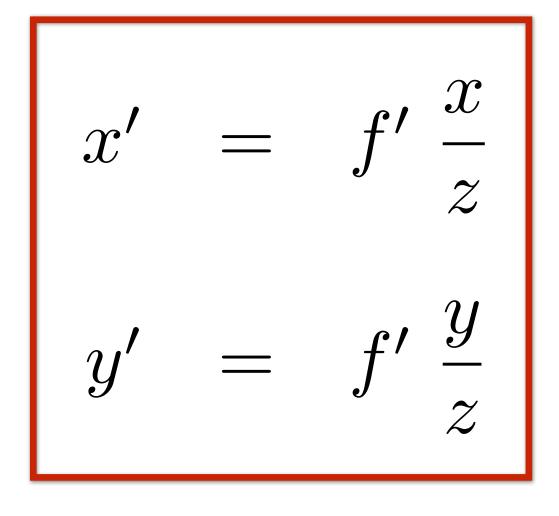


3D object point

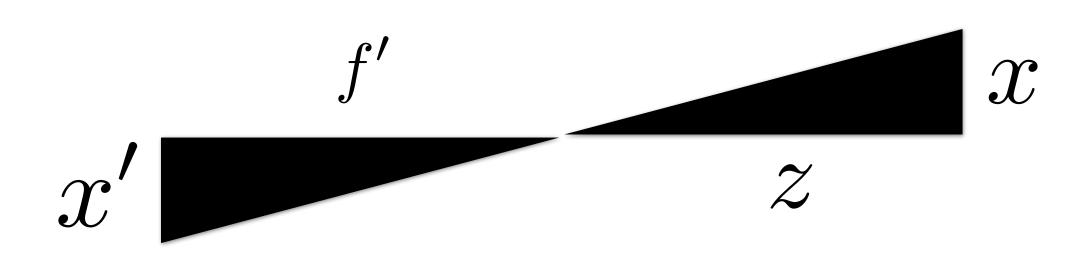
 $P = \left| \begin{array}{c} x \\ y \\ z \end{array} \right| \text{ projects to 2D image point } P' = \left[\begin{array}{c} x' \\ y' \end{array} \right] \text{ where }$

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame

Forsyth & Ponce (1st ed.) Figure 1.4

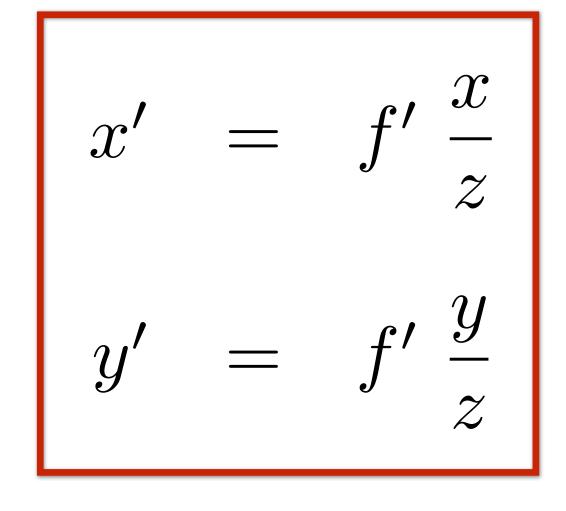


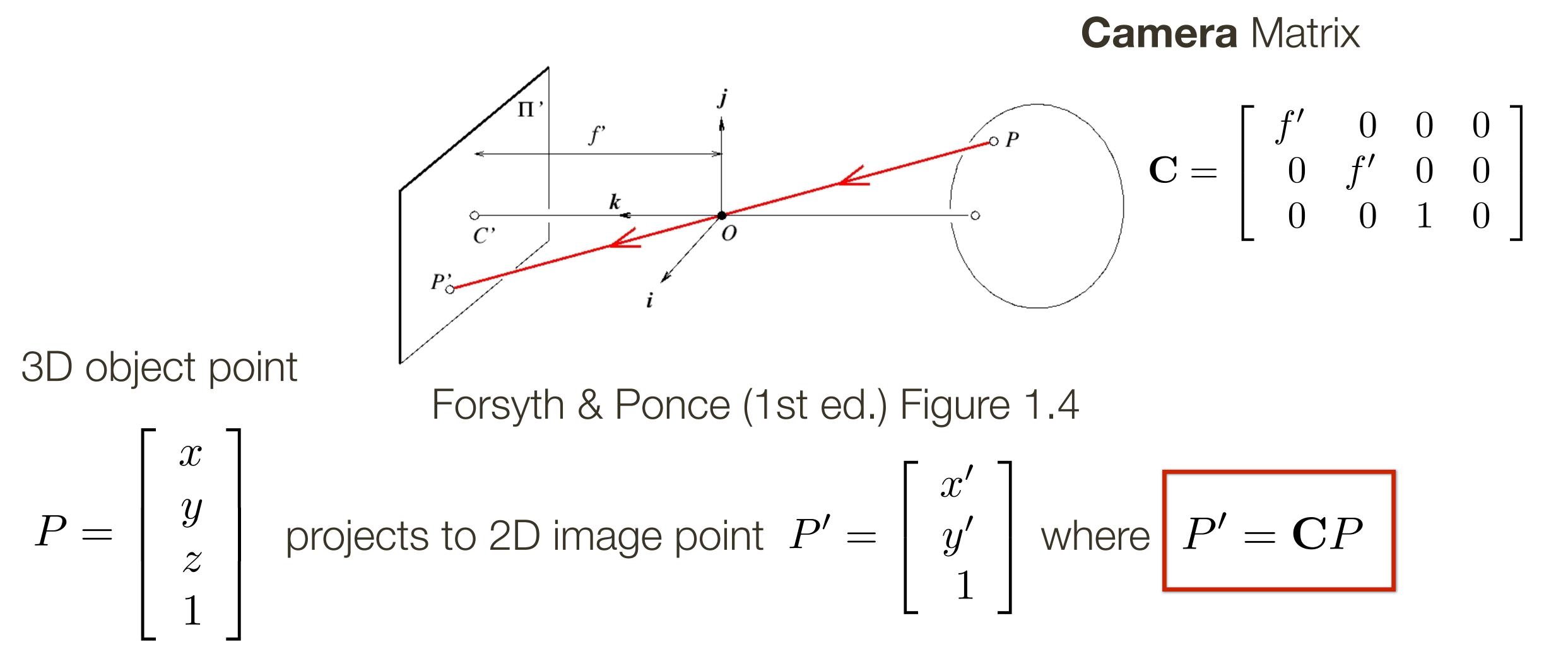
Perspective Projection: Proof



3D object point Forsyth & Ponce (1st ed.) Figure 1.4 For syth & Ponce (1st ed.) Figure 1.4 $P = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ projects to 2D image point } P' = \begin{bmatrix} x' \\ y' \end{bmatrix} \text{ where } \begin{cases} x' \\ y' \end{bmatrix} = f' \frac{x}{z}$

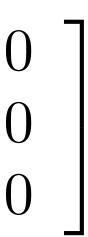
Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame



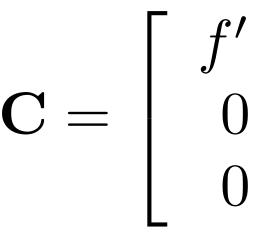


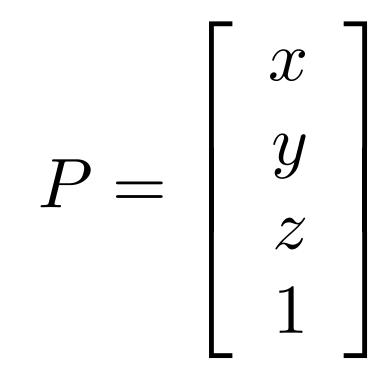
Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame

pint
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $P' = \mathbf{C}P$



Camera Matrix



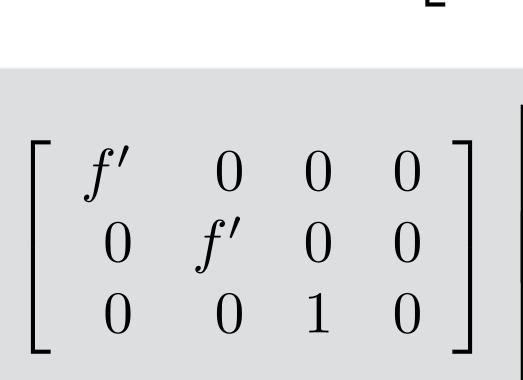


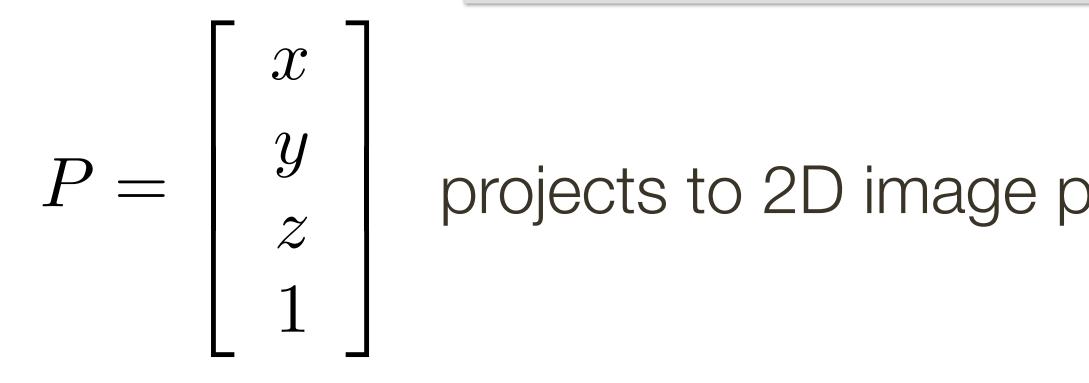
 $\begin{array}{rcl} x' &=& f' \; \frac{x}{z} \\ y' &=& f' \; \frac{y}{z} \end{array}$

$\mathbf{C} = \begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

 $P = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ projects to 2D image point } P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \text{ where } P' = \mathbf{C}P$

Camera Matrix





 $\mathbf{C} = \begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

 $\begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} f'x \\ f'y \\ z \\ z \end{bmatrix} = \begin{bmatrix} \frac{f'x}{z} \\ \frac{f'y}{z} \\ 1 \end{bmatrix}$

point
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $P' = \mathbf{C}P$

 $\begin{array}{rcl} x' &=& f' \; \frac{x}{z} \\ y' &=& f' \; \frac{y}{z} \end{array}$

Camera Matrix

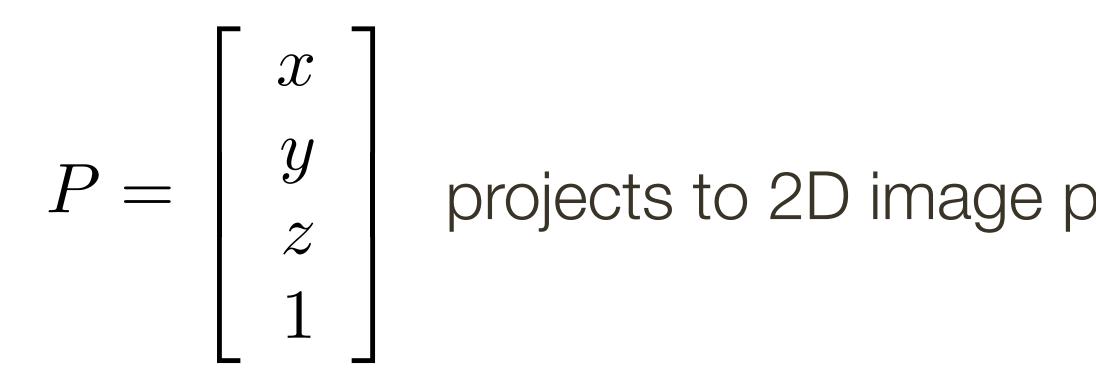
projects to 2D image

$$P = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- $\mathbf{C} = \left[\begin{array}{cccc} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$
- Pixels are squared / lens is perfectly symmetric
 - Sensor and pinhole perfectly aligned
 - Coordinate system centered at the pinhole

point
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $P' = \mathbf{C}P$

Camera Matrix

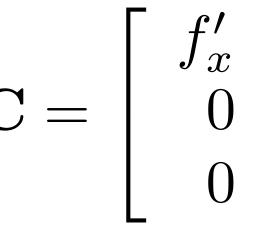


$\mathbf{C} = \begin{bmatrix} f'_x & 0 & 0 & 0 \\ 0 & f'_y & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

- Pixels are squared / lens is perfectly symmetric
 - Sensor and pinhole perfectly aligned
 - Coordinate system centered at the pinhole

point
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $P' = \mathbf{C}P$

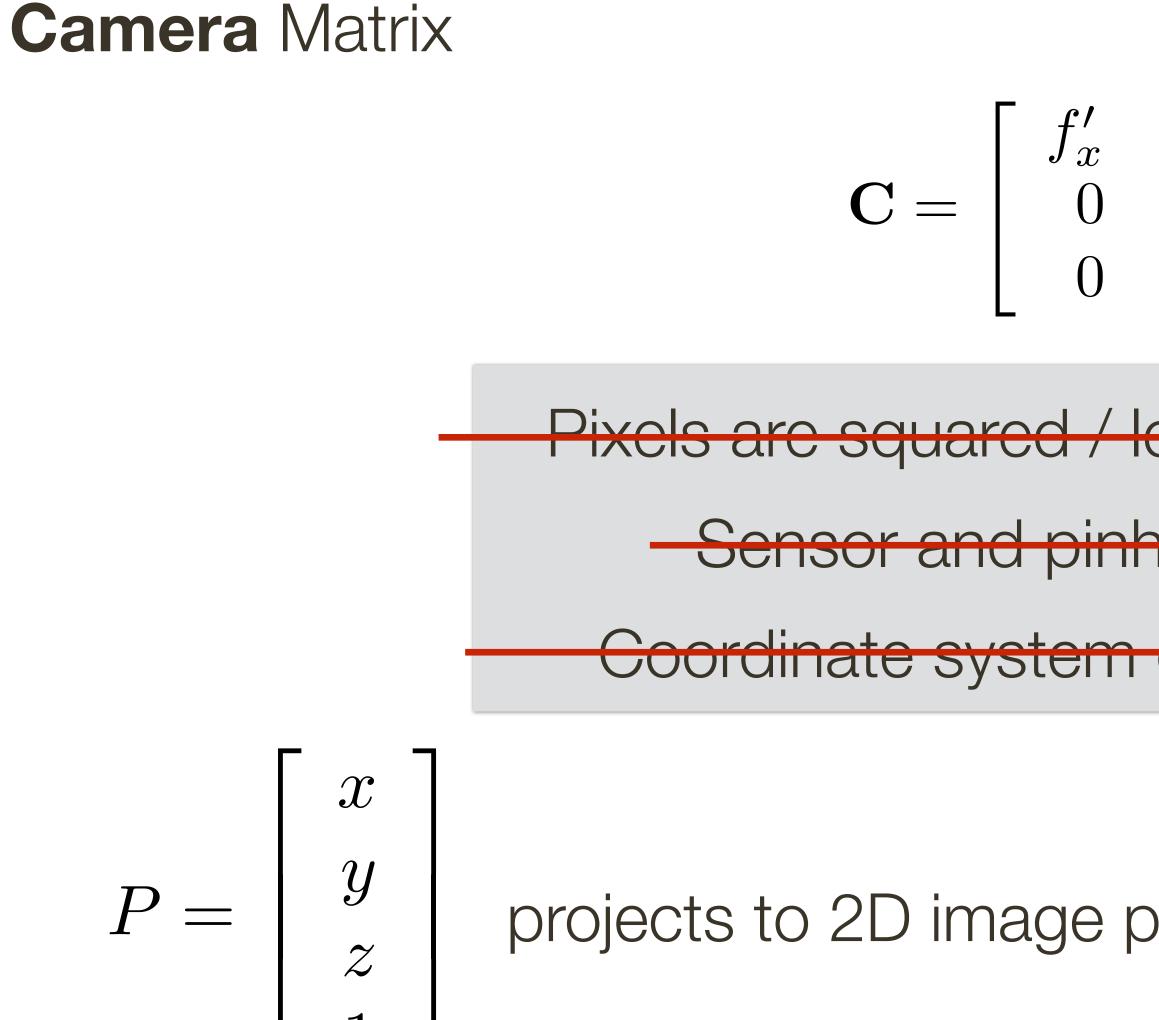
Camera Matrix



$P = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ projects to 2D image } \mathfrak{r}$

- $\mathbf{C} = \begin{bmatrix} f'_x & 0 & 0 & c_x \\ 0 & f'_y & 0 & c_y \\ 0 & 0 & 1 & 0 \end{bmatrix}$
- Pixels are squared / lens is perfectly symmetric
 - Sensor and pinhole perfectly aligned
 - Coordinate system centered at the pinhole

point
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $P' = \mathbf{C}P$



$$\begin{bmatrix} 0 & 0 & c_x \\ f'_y & 0 & c_y \\ 0 & 1 & 0 \end{bmatrix} \mathbb{R}_{4 \times 4}$$

Pixels are squared / lens is perfectly symmetric

Sensor and pinhole perfectly aligned

Coordinate system centered at the pinhole

point
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $P' = \mathbf{C}P$

Camera Matrix

Camera calibration is the process of estimating parameters of the camera matrix based on set of 3D-2D correspondences (usually requires a pattern whos structure and size is known)

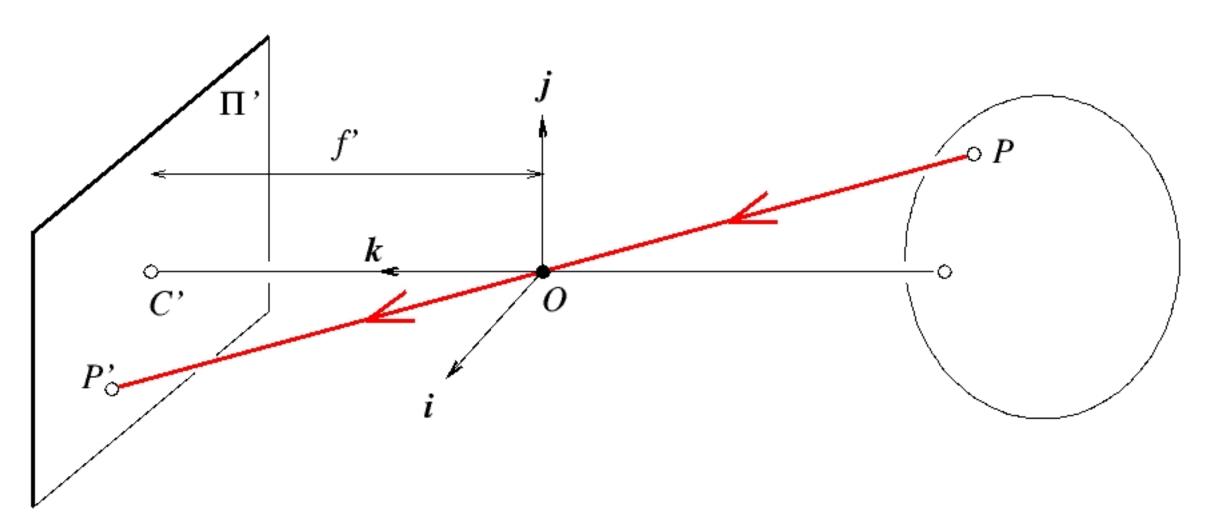
$$P = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

projects to 2D image p

$\mathbf{C} = \begin{bmatrix} f'_{x} & 0 & 0 & c_{x} \\ 0 & f'_{y} & 0 & c_{y} \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbb{R}_{4 \times 4}$

point
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $P' = \mathbf{C}P$

Perspective Projection

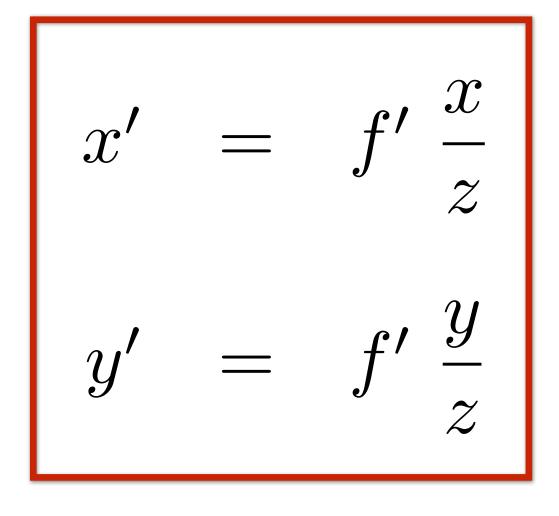


3D object point

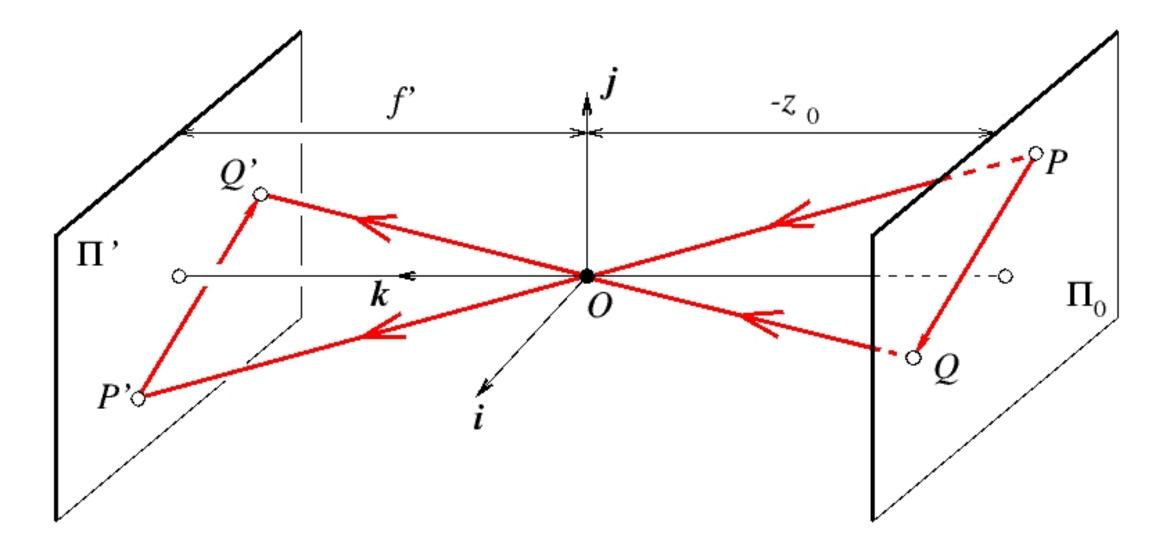
 $P = \left| \begin{array}{c} x \\ y \\ z \end{array} \right| \text{ projects to 2D image point } P' = \left[\begin{array}{c} x' \\ y' \end{array} \right] \text{ where }$

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame

Forsyth & Ponce (1st ed.) Figure 1.4



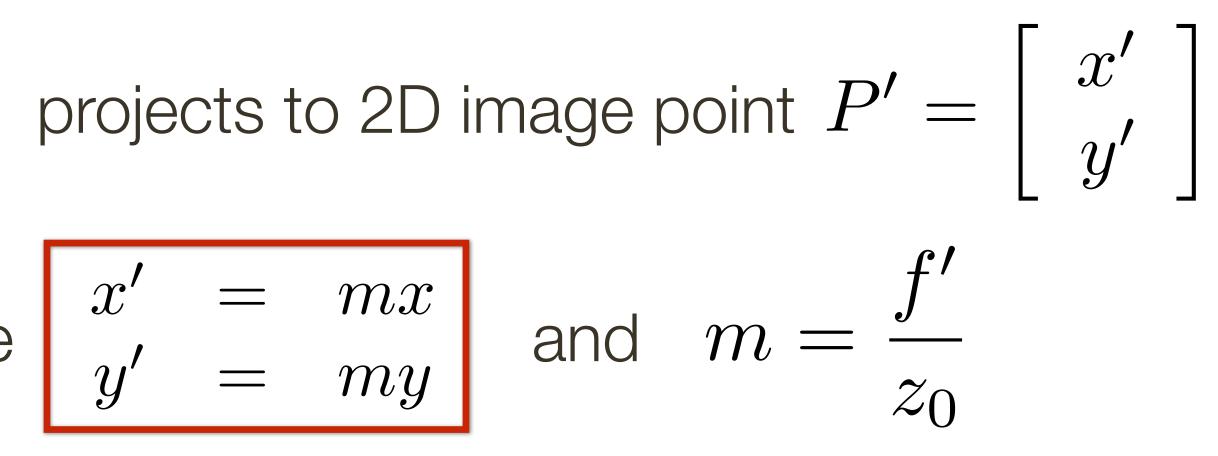
Weak Perspective



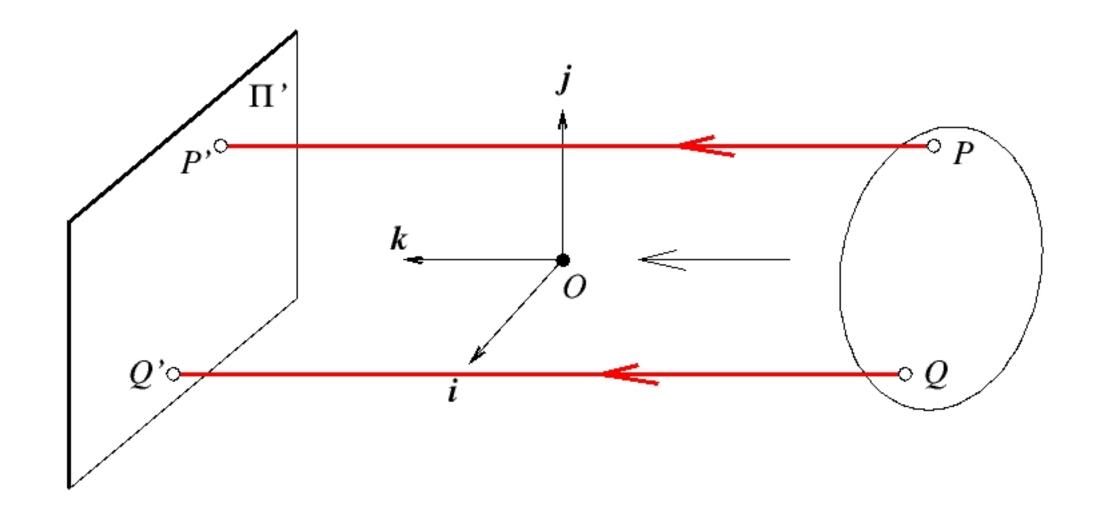
Forsyth & Ponce (1st ed.) Figure 1.5

3D object point
$$P = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 in Π_0

where



Orthographic Projection



3D object point
$$P = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 projects to 2D image point $P' = \begin{bmatrix} x' \\ y' \end{bmatrix}$

where

Forsyth & Ponce (1st ed.) Figure 1.6

Summary of **Projection Equations**

Perspective

Weak Perspective

Orthographic

3D object point $P = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ projects to 2D image point $P' = \begin{bmatrix} x' \\ y' \end{bmatrix}$ where

$$x' = f' \frac{x}{z}$$

$$y' = f' \frac{y}{z}$$

$$x' = mx$$

$$m = \frac{f'}{z_0}$$

$$y' = my$$

$$x' = x$$

$$y' = y$$

Projection Models: Pros and Cons

- Weak perspective (including orthographic) has simpler mathematics accurate when object is small and/or distant
- useful for recognition

Perspective is more accurate for real scenes

details of a particular camera

- When **maximum accuracy** is required, it is necessary to model additional
- use perspective projection with additional parameters (e.g., lens distortion)

Why **Not** a Pinhole Camera?

- If pinhole is **too big** then many directions are averaged, blurring the image

- If pinhole is **too small** then diffraction becomes a factor, also blurring the image

— Generally, pinhole cameras are **dark**, because only a very small set of rays from a particular scene point hits the image plane

- Pinhole cameras are **slow**, because only a very small amount of light from a particular scene point hits the image plane per unit time

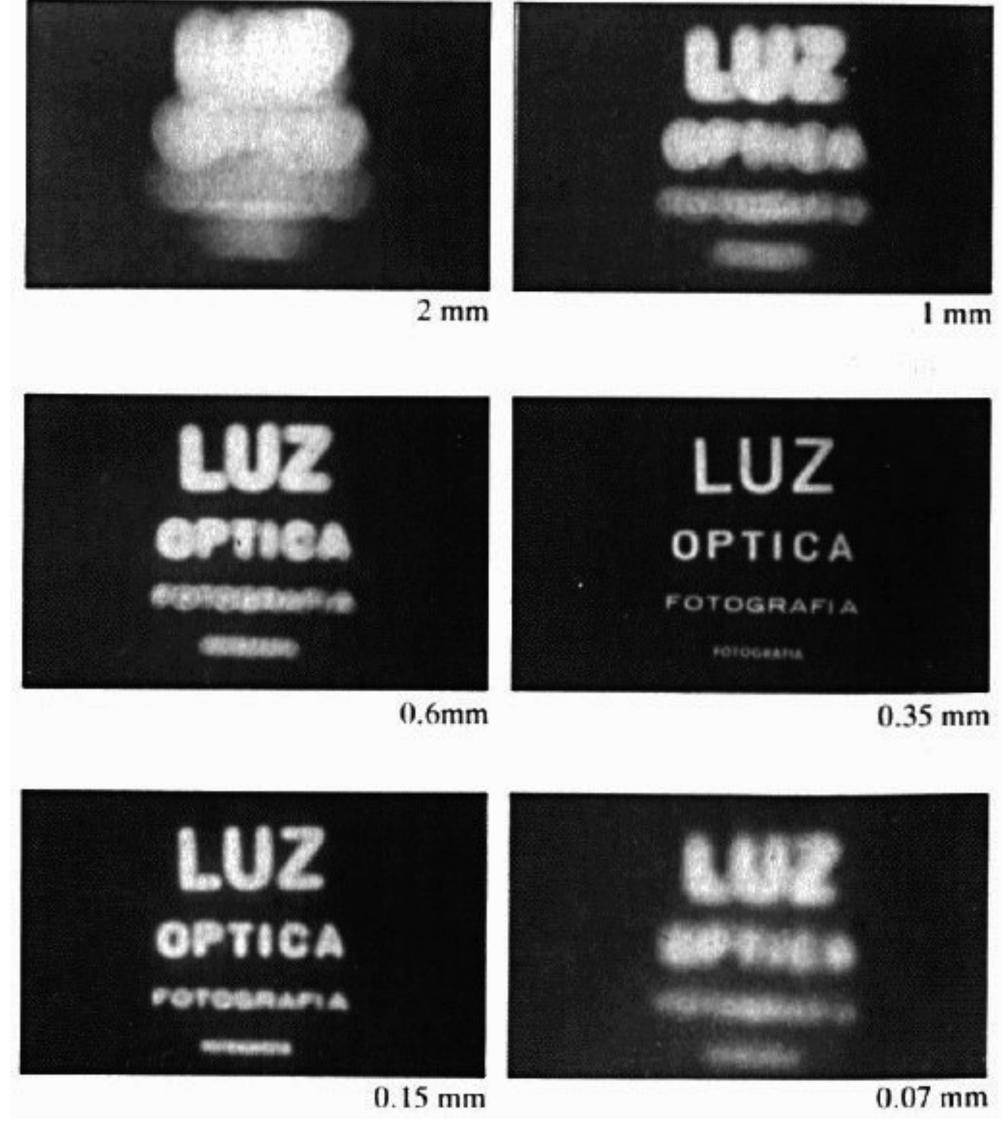
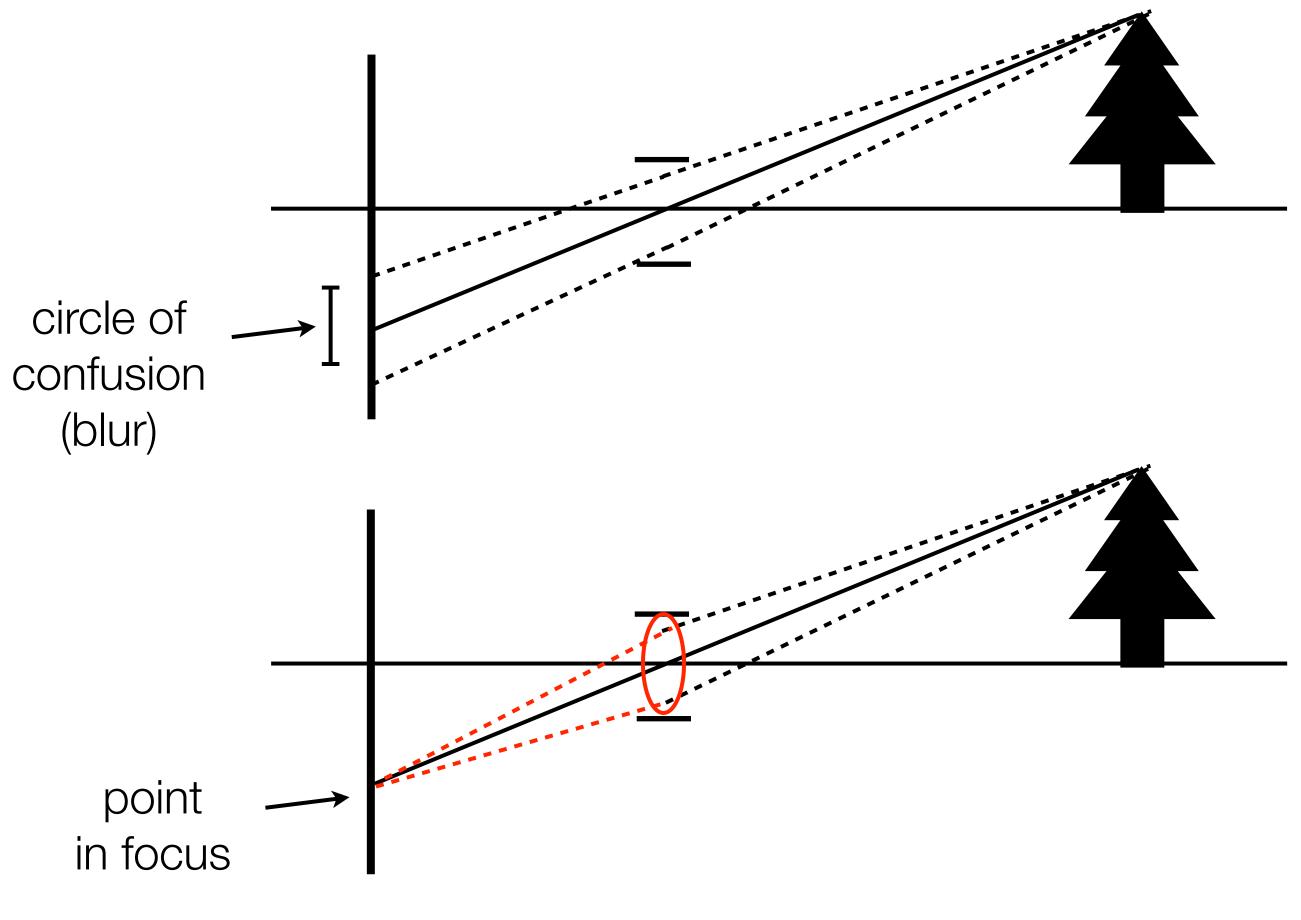


Image Credit: Credit: E. Hecht. "Optics," Addison-Wesley, 1987

Reason for Lenses

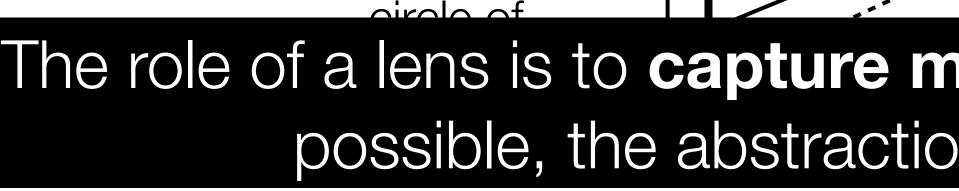
A real camera must have a finite aperture to get enough light, but this causes blur in the image

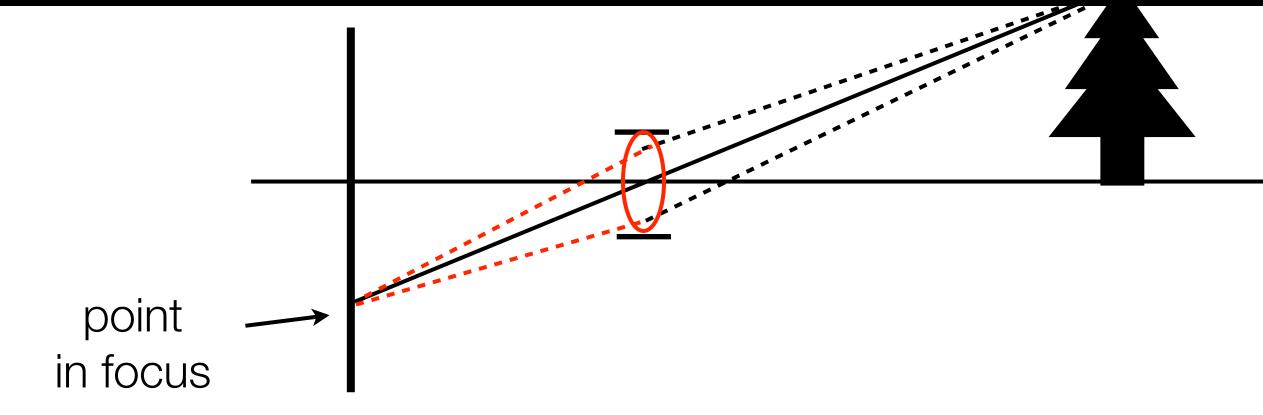


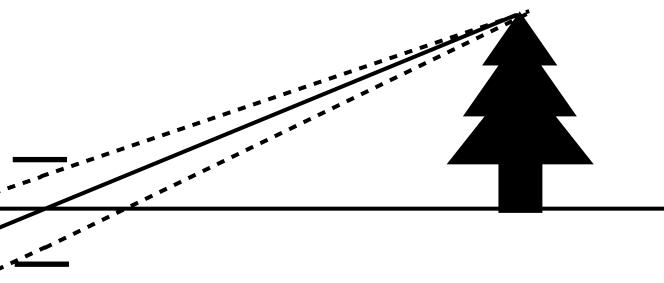
Solution: use a lens to focus light onto the image plane

Reason for **Lenses**

A real camera must have a finite aperture to get enough light, but this causes blur in the image



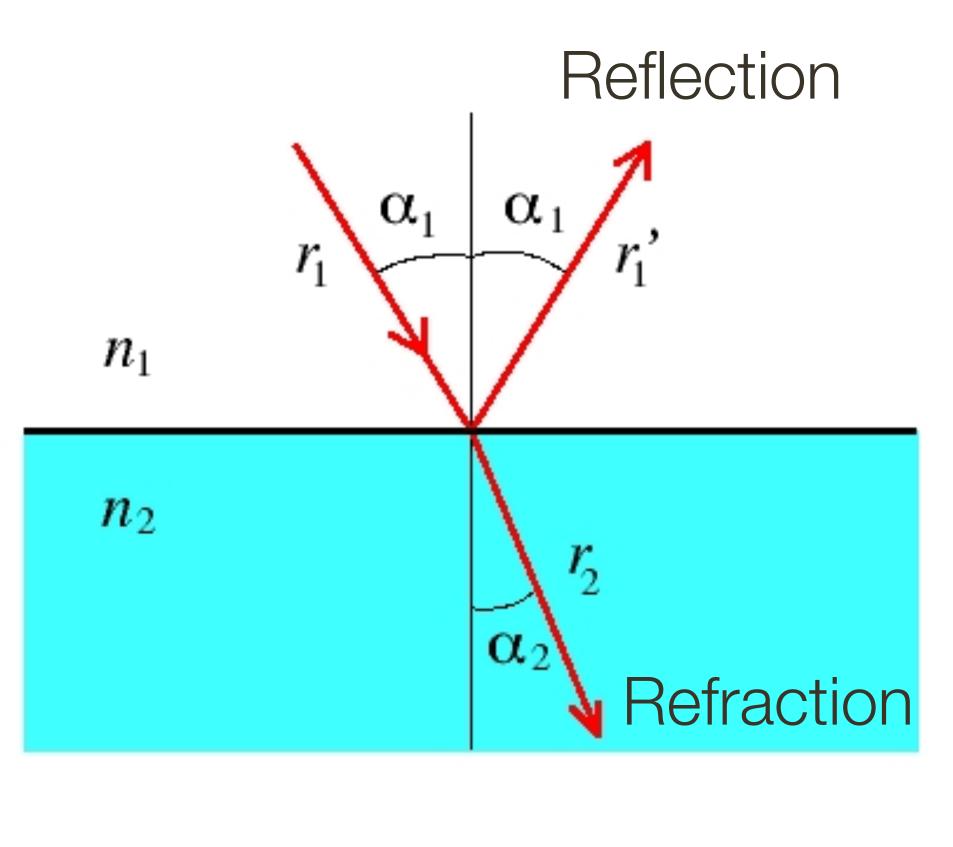




The role of a lens is to capture more light while preserving, as much as possible, the abstraction of an ideal pinhole camera.

Solution: use a **lens** to focus light onto the image plane

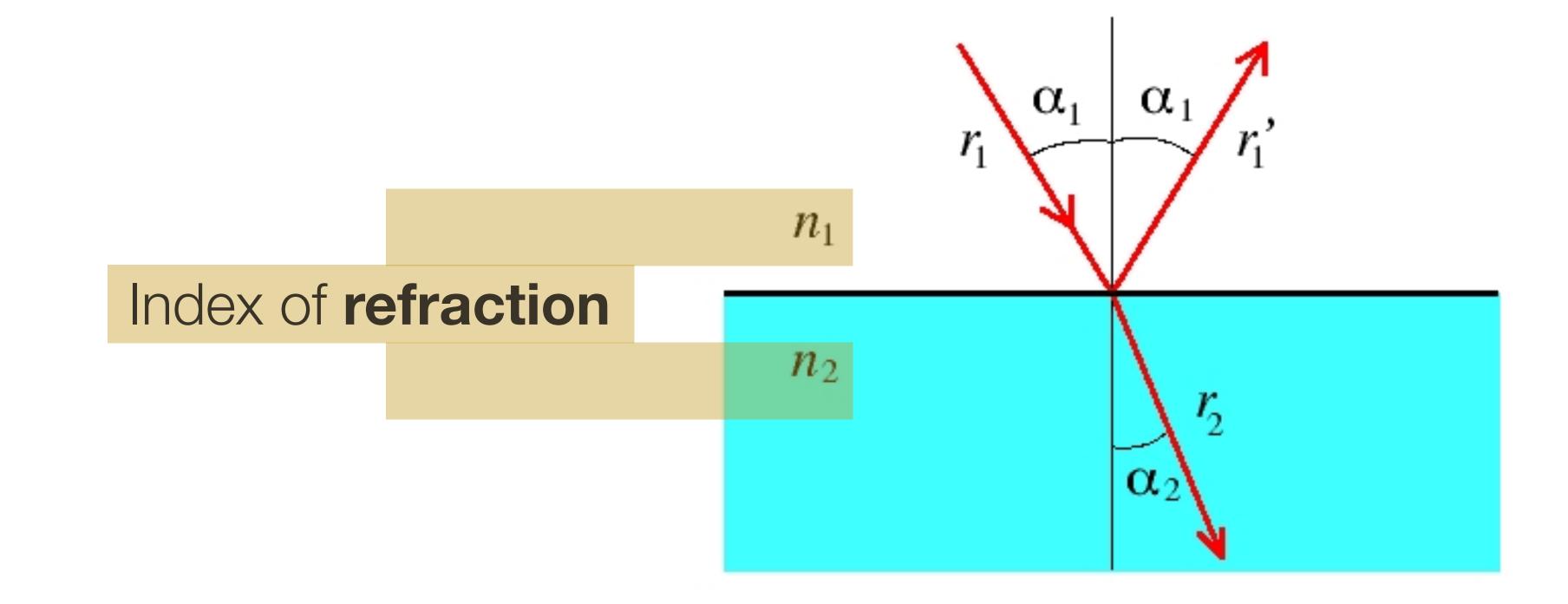
Snell's Law



 $n_1 \sin lpha_1$

$$n_1 = n_2 \sin \alpha_2$$

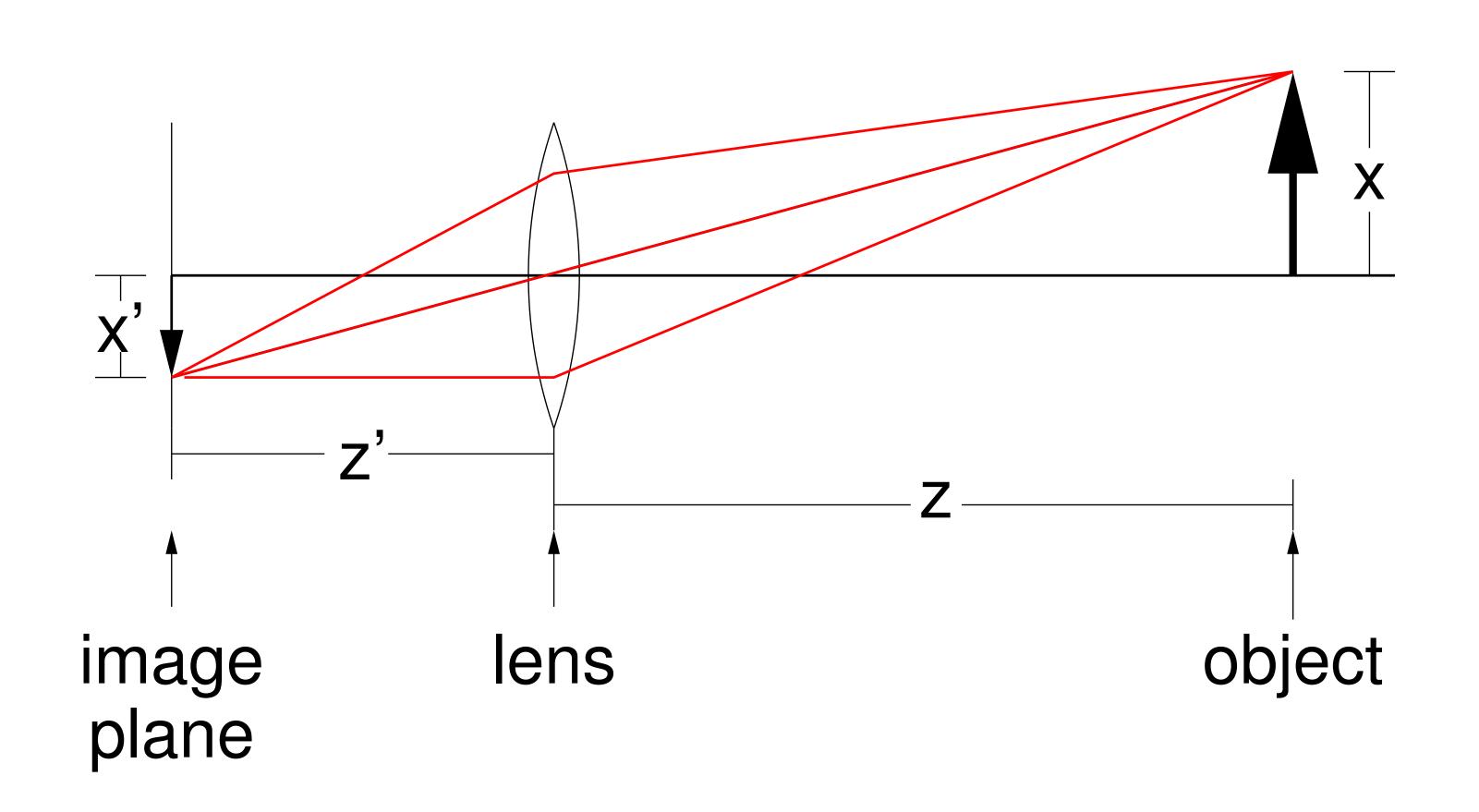
Snell's Law



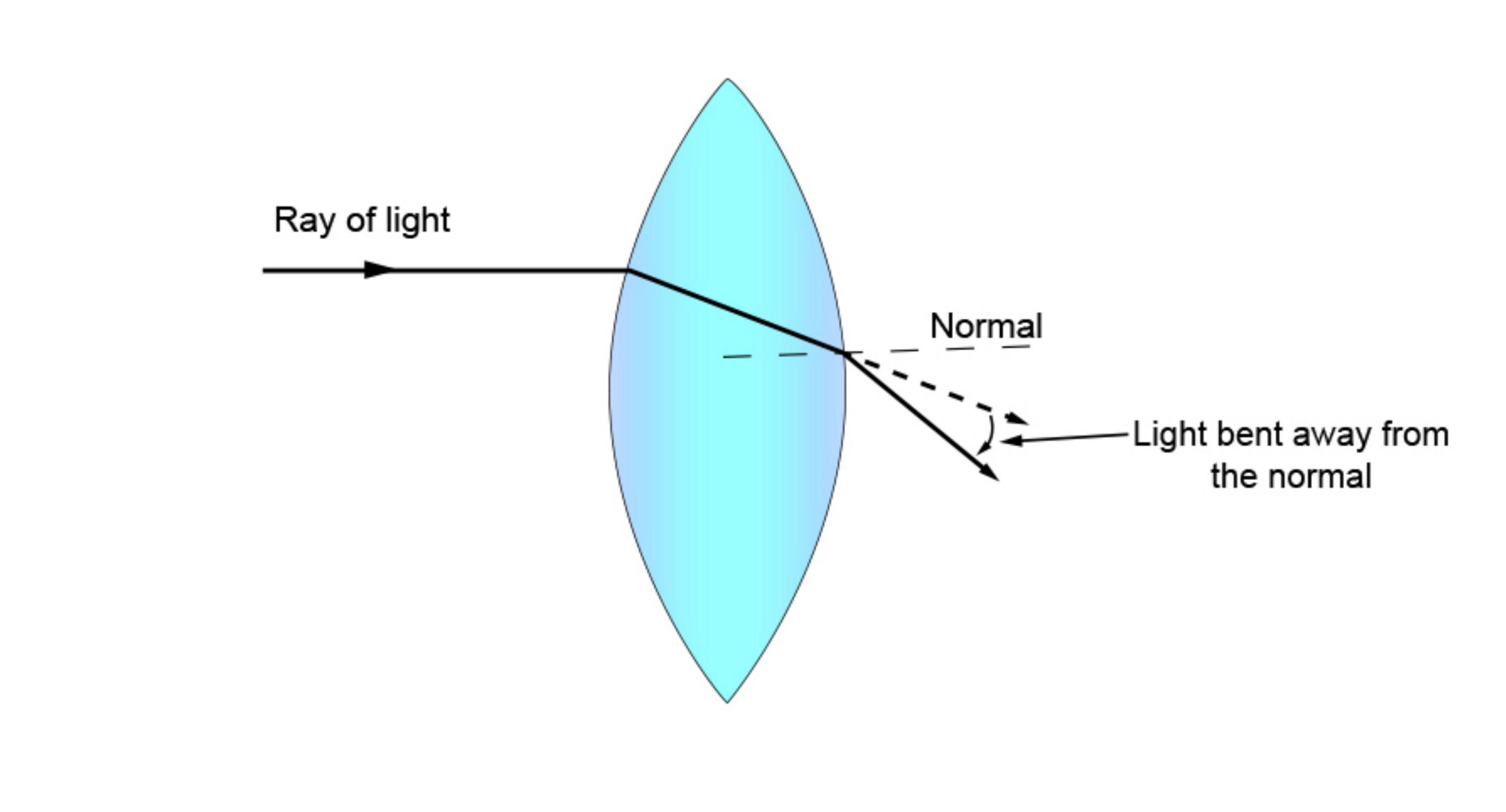
 $n_1 \sin \alpha_1$

$$n_1 = n_2 \sin \alpha_2$$

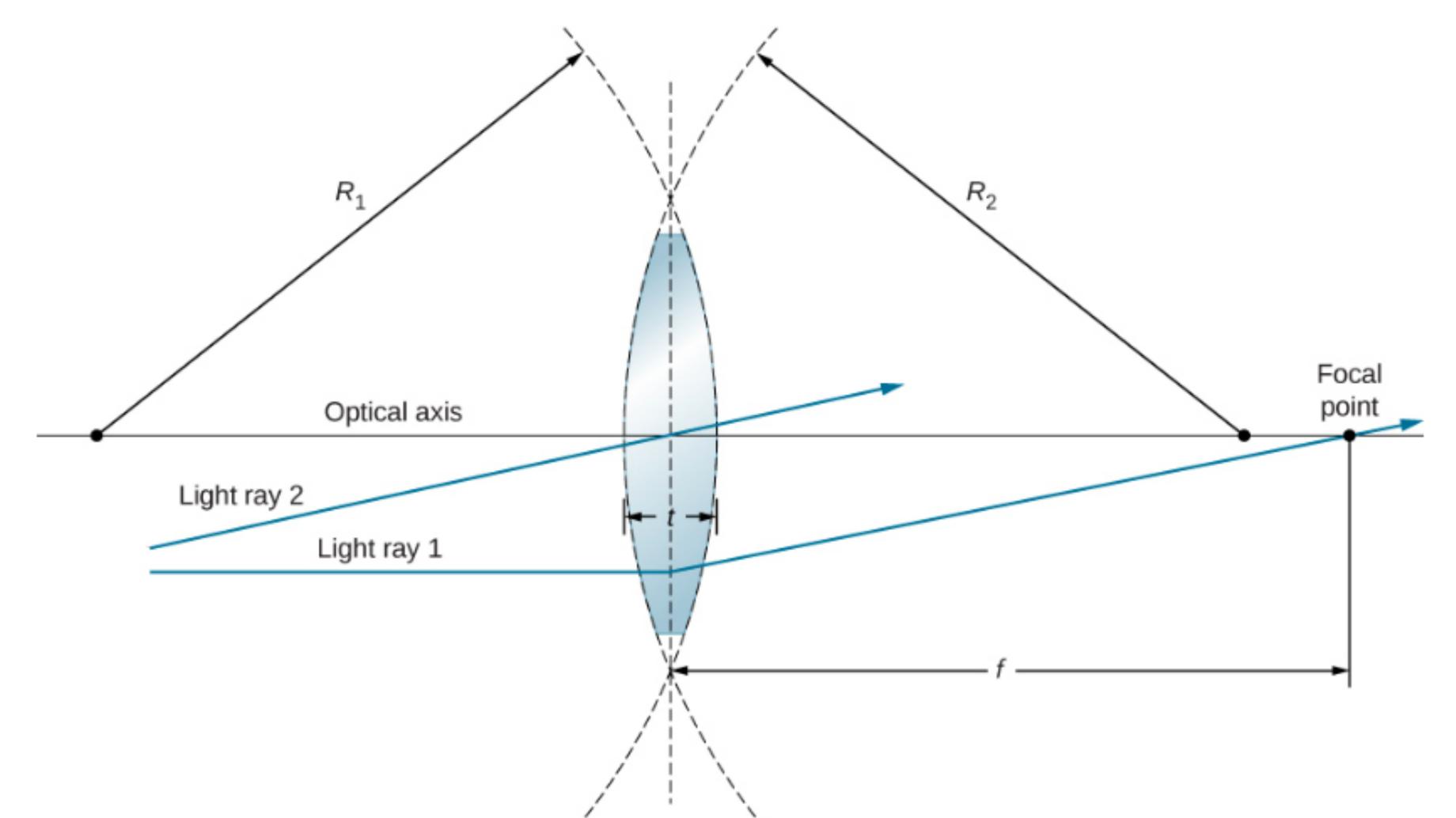
Pinhole Model (Simplified) with Lens



General Lens



Thin Lens

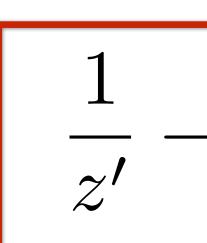


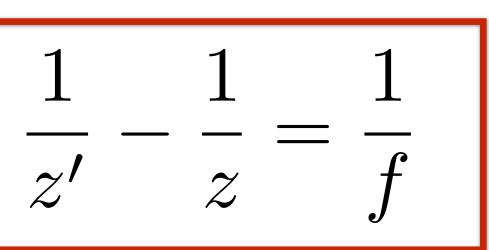
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/02%3A_Geometric_Optics_and_Image_Formation/2.05%3A_Thin_Lenses

.

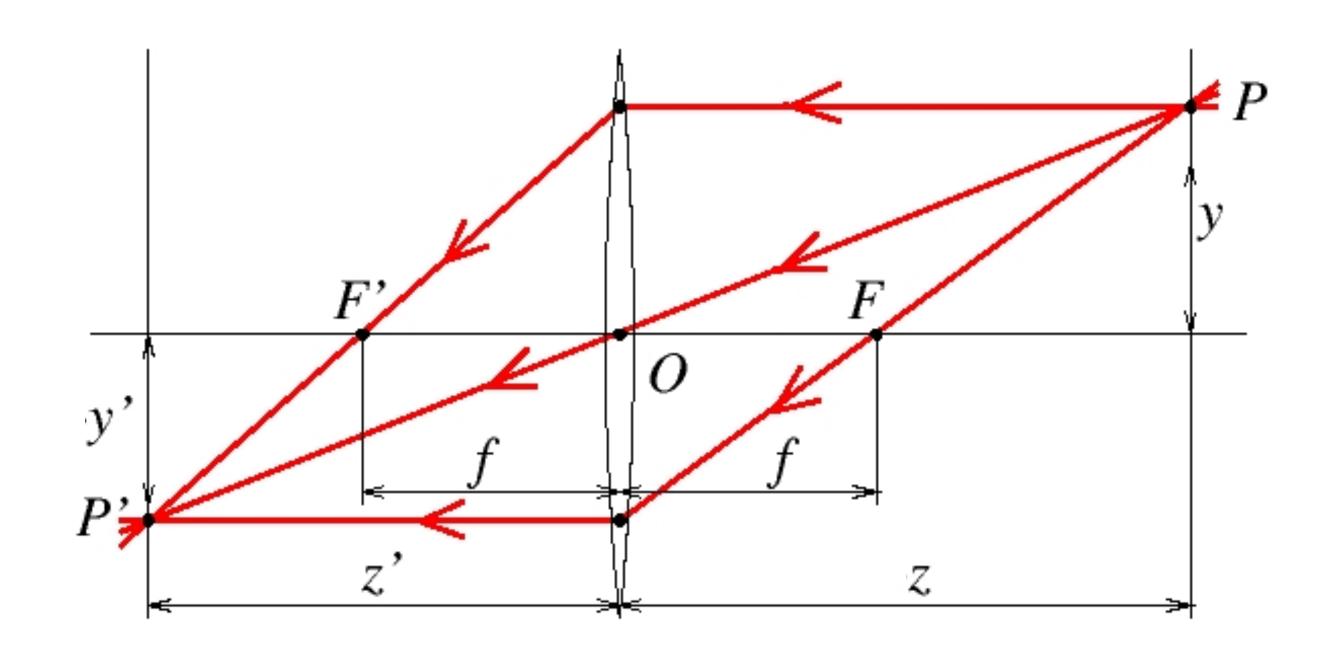
Thin Lens Equation

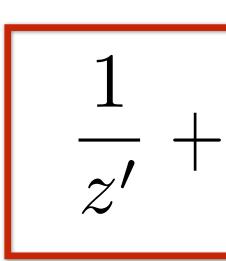


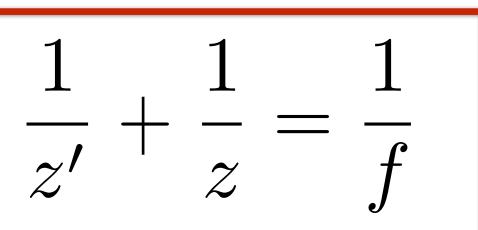




Thin Lens Equation

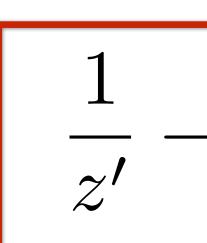


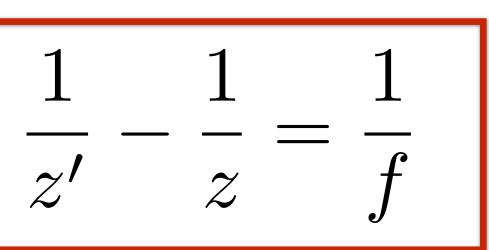


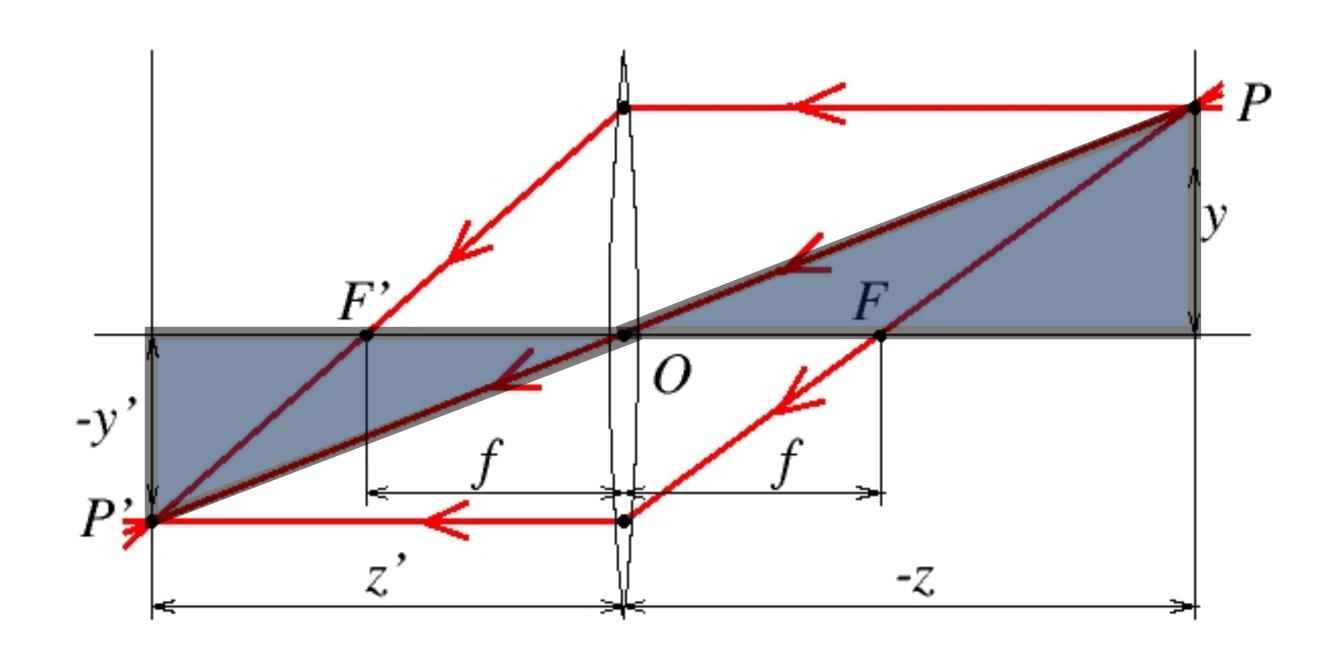


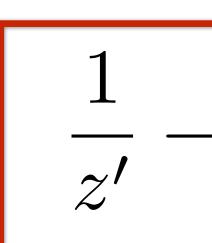
Thin Lens Equation

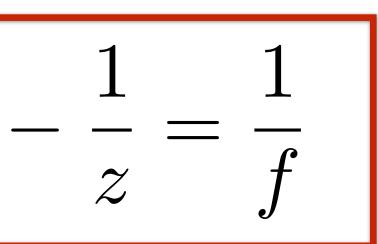




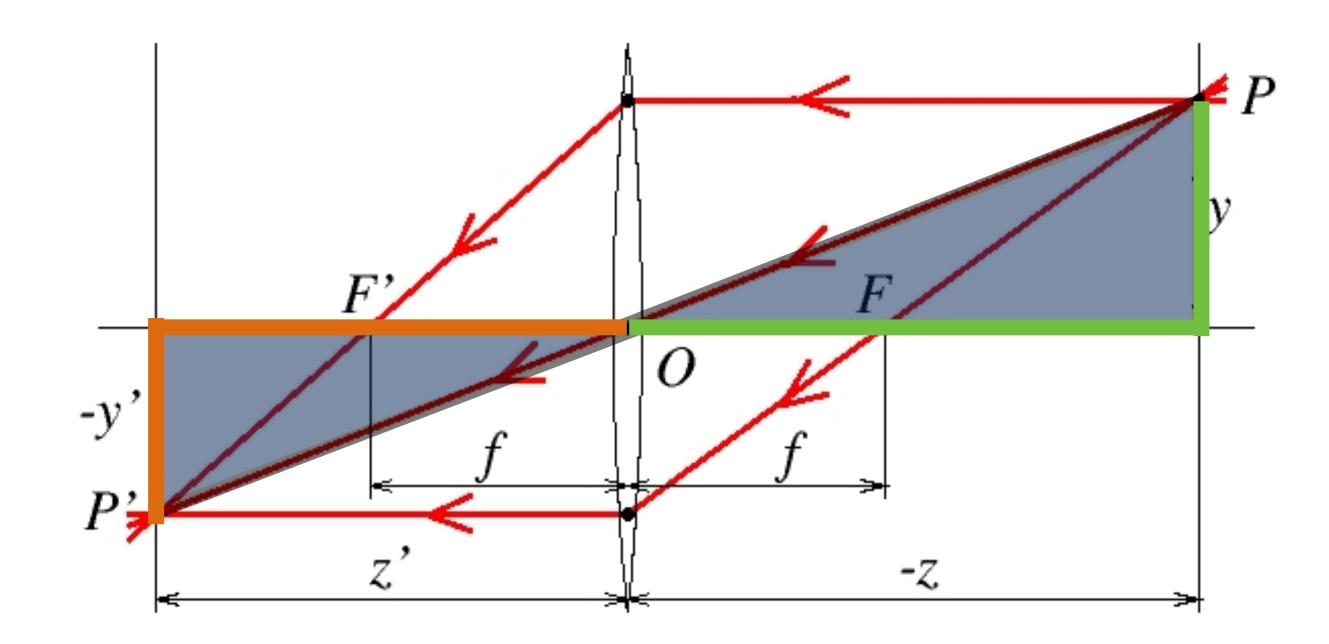




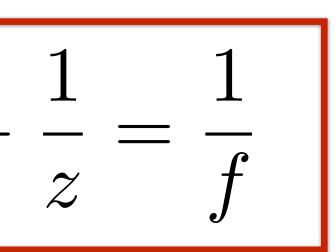




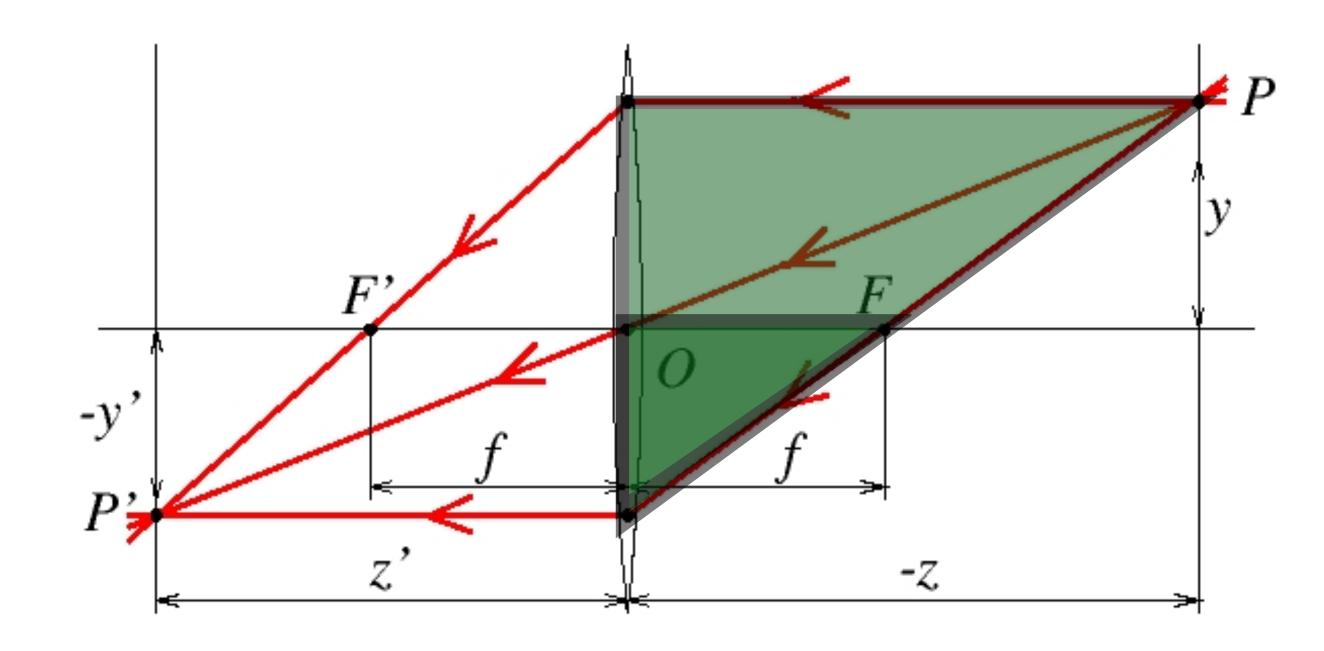
$$\frac{y}{-z} = \frac{-y'}{z'}$$
$$\frac{y}{y'} = \frac{z}{z'}$$



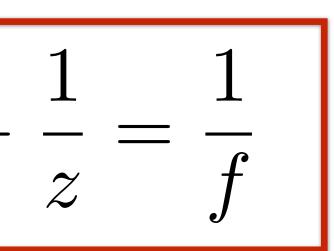
$$\frac{1}{z'}$$



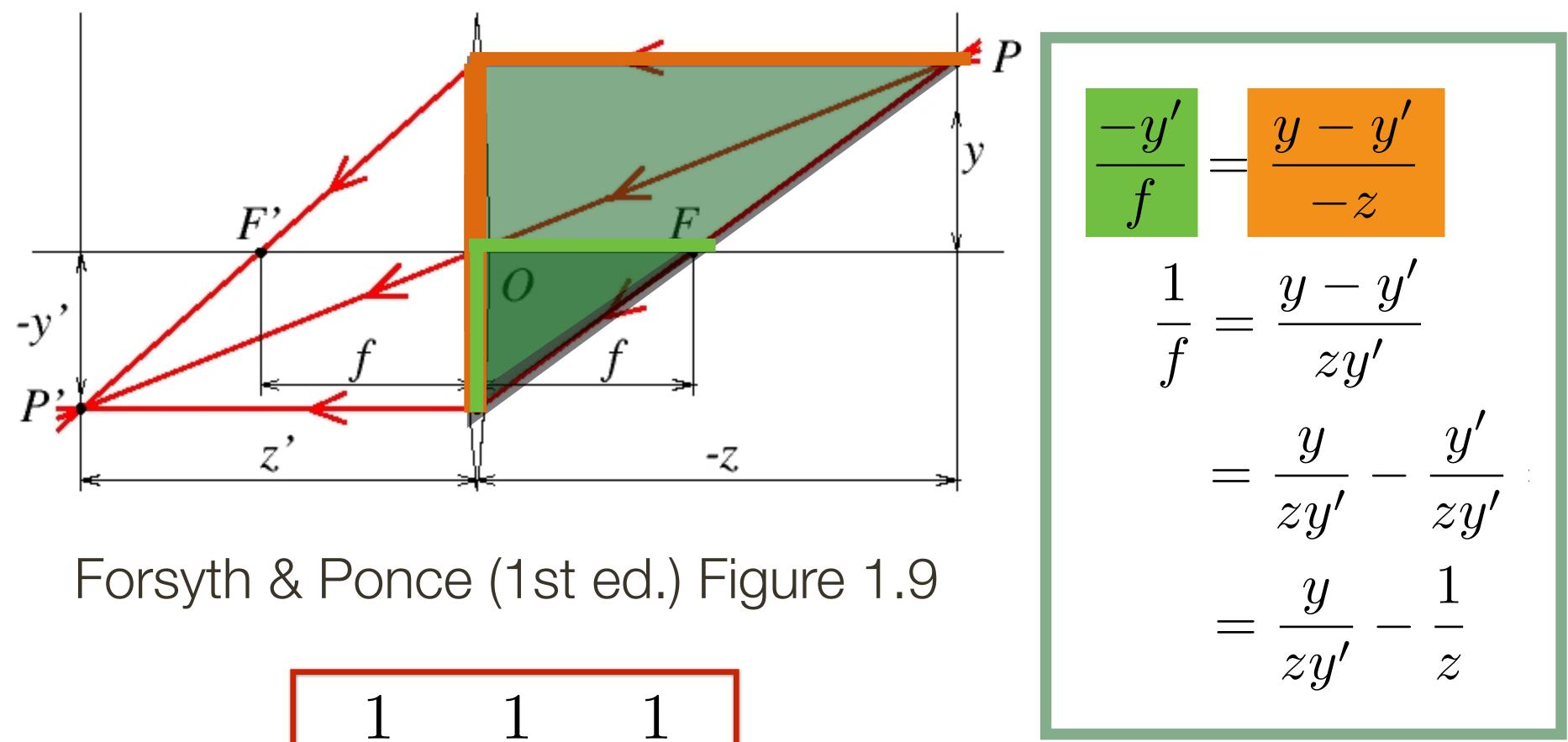
 \mathcal{Y} z' \mathcal{Z} \mathcal{Y} z'



$$\frac{1}{z'}$$



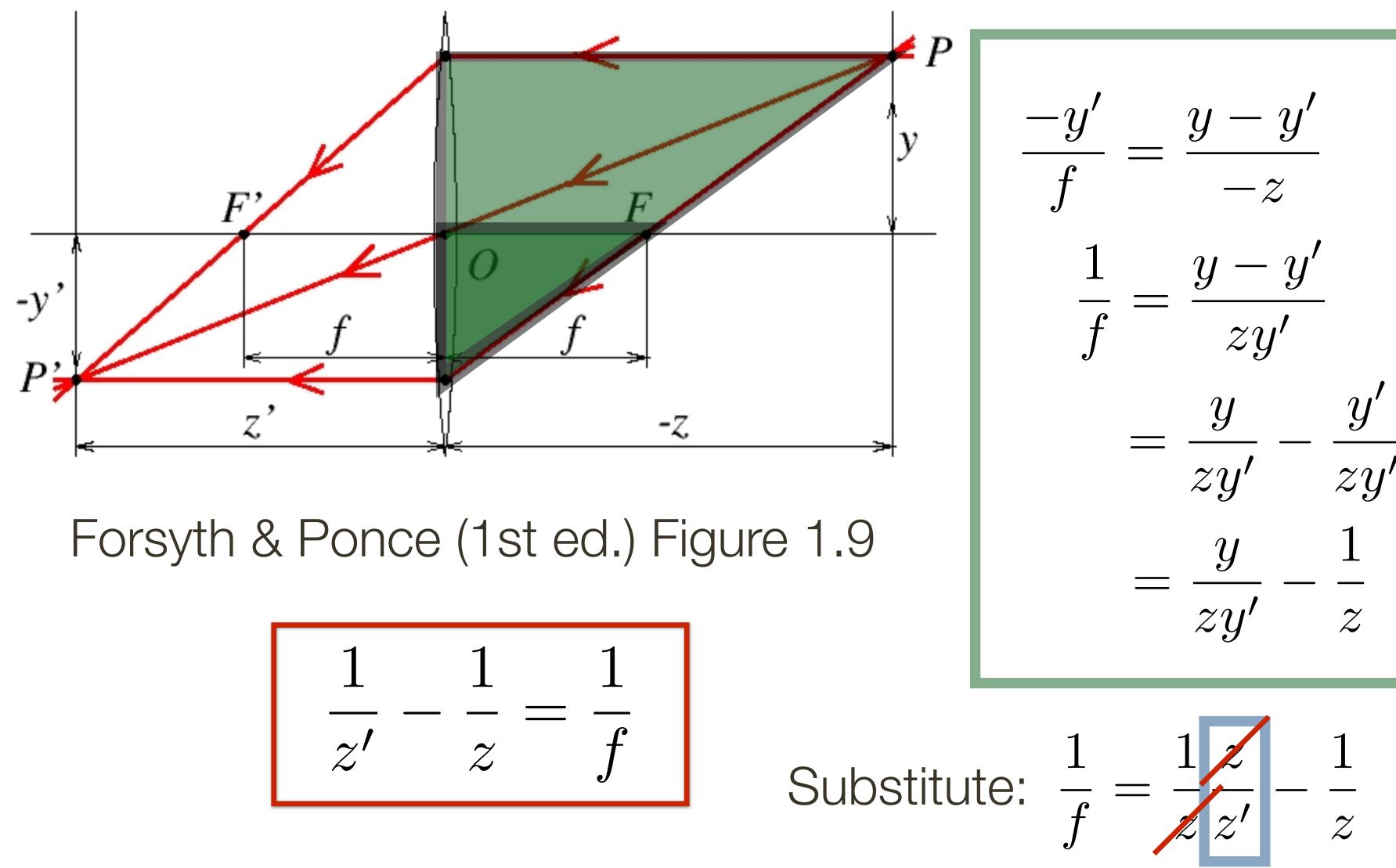
Y z' \mathcal{Z} \mathcal{Y} z'



$$\frac{1}{z'}$$

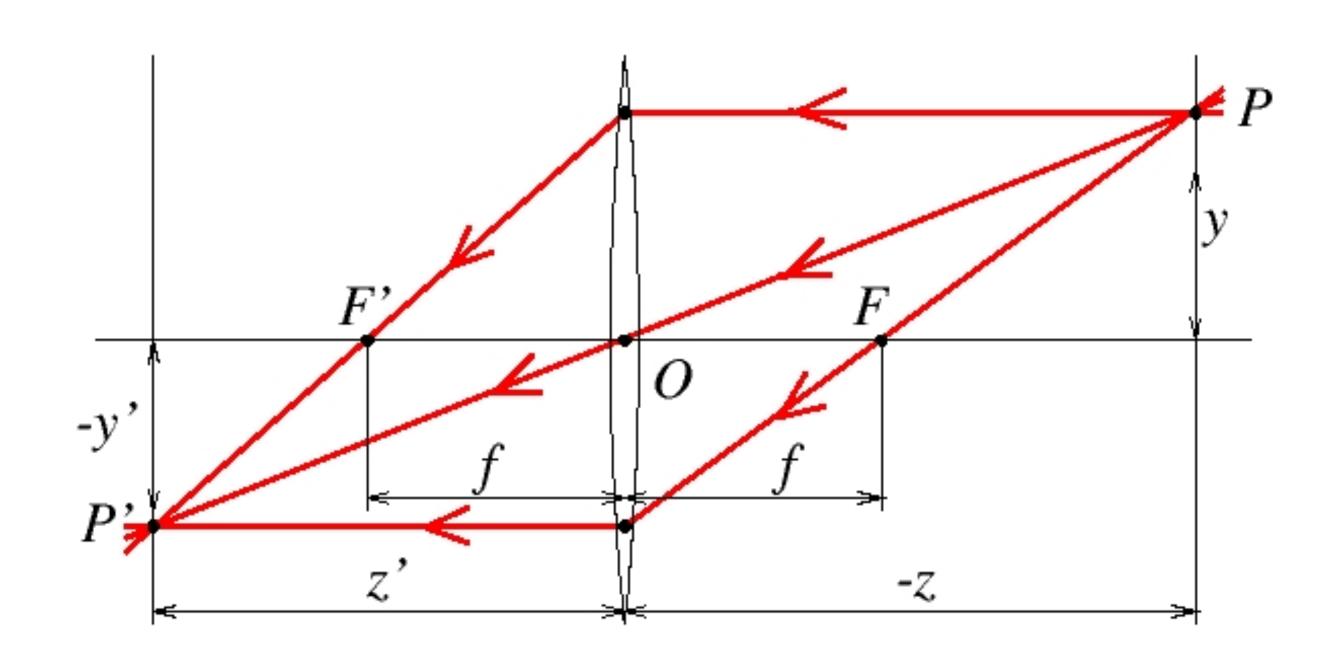
$$\frac{1}{z} = \frac{1}{f}$$

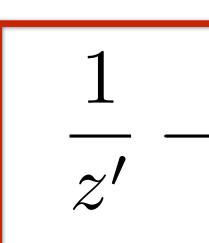
z' \mathcal{Z} \mathcal{Y} z'

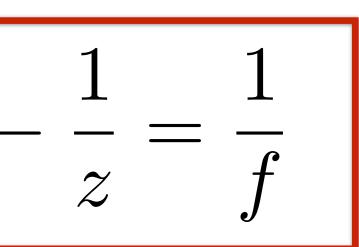


$$\frac{1}{z'}$$

Possible Uses of Thin Lens Abstraction

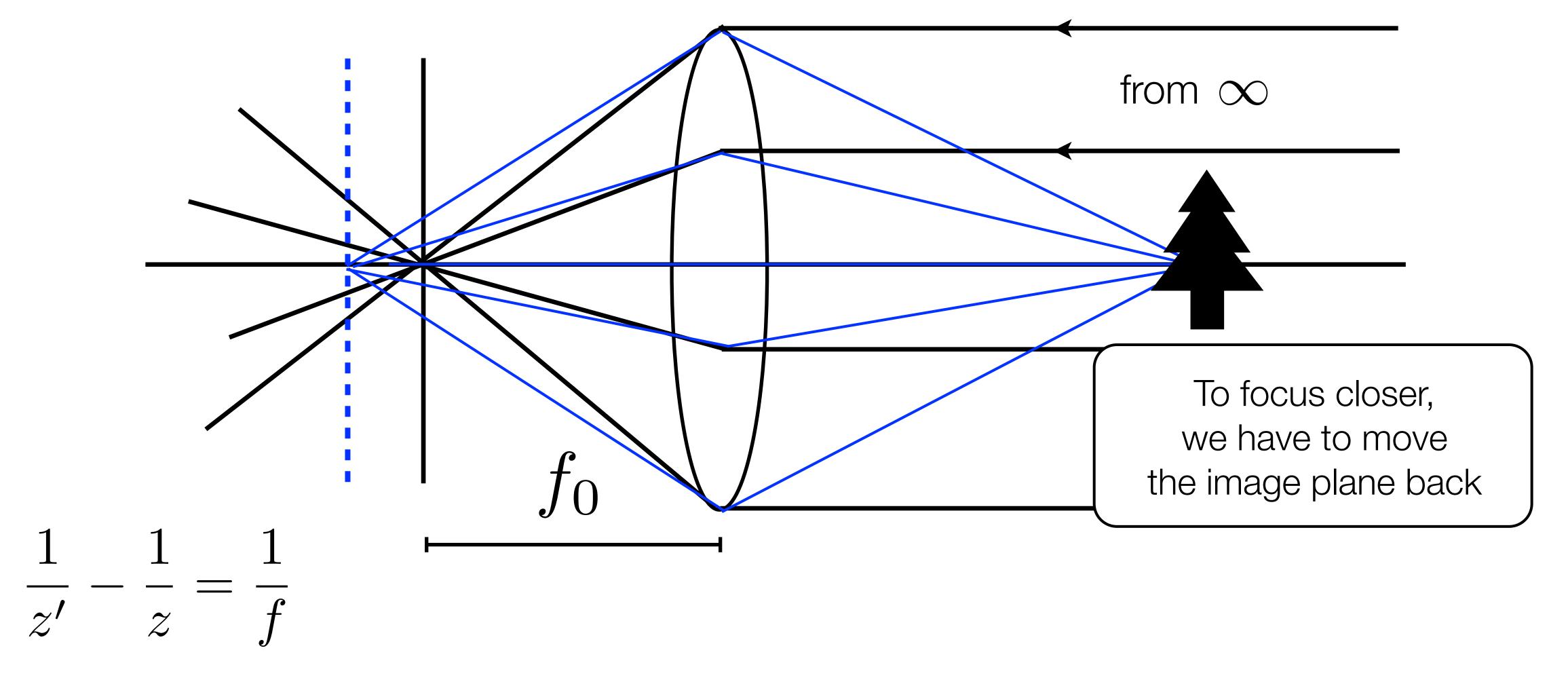




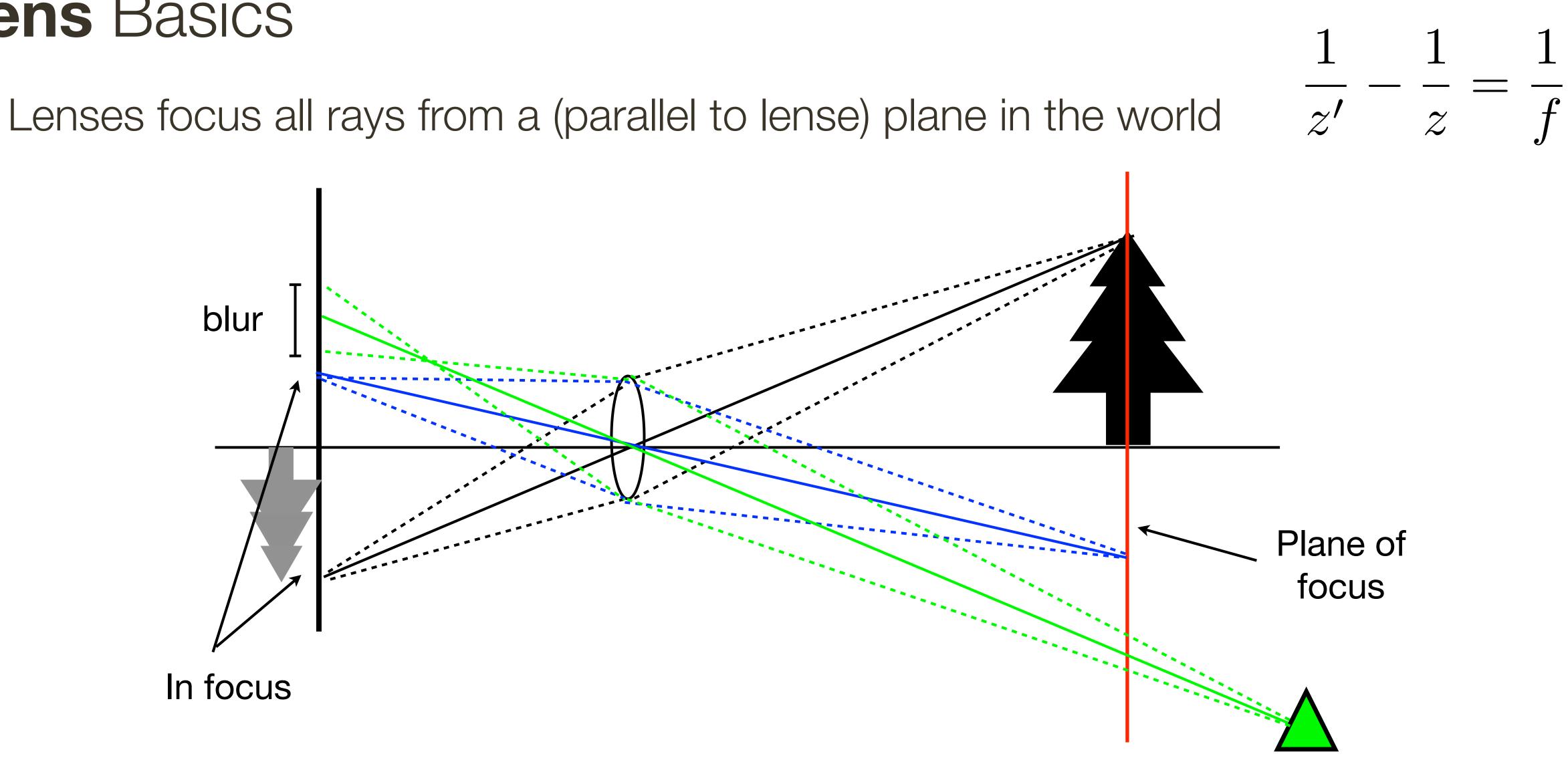


Lens Basics

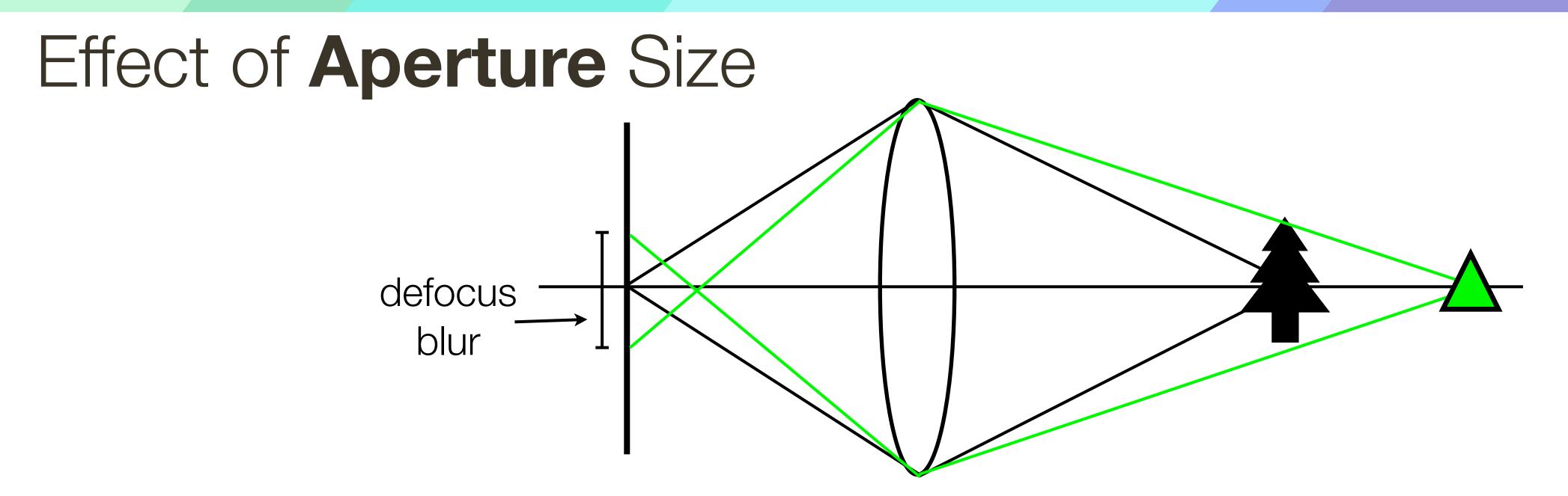
A lens focuses parallel rays (from points at infinity) at focal length of the lens Rays passing through the center of the lens are not bent

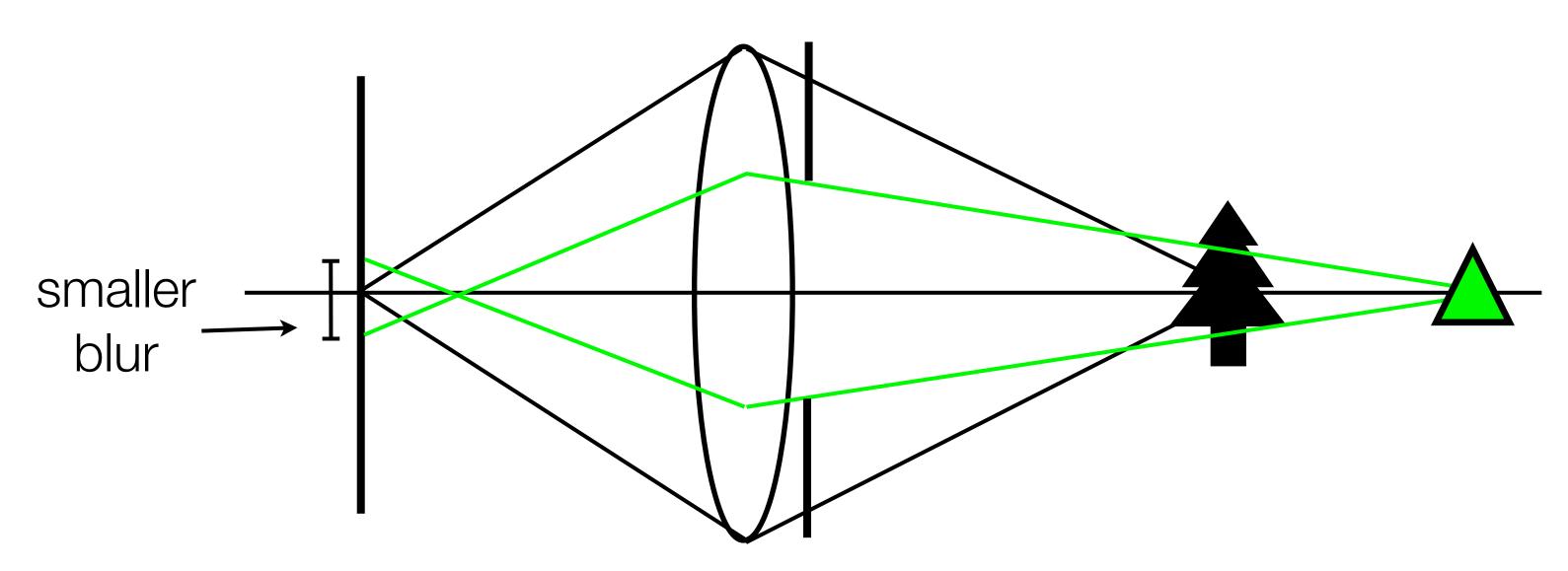


Lens Basics



Objects off the plane are blurred depending on the distance





Smaller aperture \Rightarrow smaller blur, larger **depth of field**

Depth of Field

Aperture size = f/N, \Rightarrow large N = small aperture

