
Lecture 2: Image Formation

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today (January 11, 2022)
Topics: 

— Image Formation 
— Cameras and Lenses

Redings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 1.1.1 — 1.1.3  
— Next Lecture:       Forsyth & Ponce (2nd ed.) 4.1, 4.5 

Reminders: 

— Complete Assignment 0 (ungraded) by Monday, January 1  
— Please sign up for Piazza (116 students signed up so far) 
— CoLab and Jupyter Notebooks for assignments  

— Projection 



Today’s “fun” Example



Today’s “fun” Example

Photo credit: reddit user Liammm 



Today’s “fun” Example: Eye Sink Illusion 

Photo credit: reddit user Liammm 
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reid
olia



Salvador Dali — Pareidolia



Types of computer vision problems: 

— Computing properties of the 3D world from visual data (measurement) 
— Recognition of objects and scenes (perception and interpretation)  
— Search and interact with visual data (search and organization) 
— Manipulation or creation of image or video content (visual imagination)  

Computer vision challenges: 

— Fundamentally ill-posed 
— Enormous computation and scale  
— Lack of fundamental understanding of how human perception works

Lecture 1: Re-cap



Computer vision technologies have moved from research labs into 
commercial products and services. Examples cited include: 

— broadcast television sports 
— electronic games (Microsoft Kinect)  

— biometrics 
— image search 
— visual special effects 
— medical imaging 
— robotics   

… many others 

Lecture 1: Re-cap



Lecture 2: Goal

To understand how images are formed 
  

(and develop relevant mathematical 
concepts and abstractions)



What is Computer Vision?
Compute vision, broadly speaking, is a research field aimed to enable computers 
to process and interpret visual data, as sighted humans can.

Image Credit: https://www.flickr.com/photos/flamephoenix1991/8376271918 blue sky,  
trees,  
fountains, 
UBC, …

Image (or video)

Sensing Device Interpreting Device

Interpretation

https://www.flickr.com/photos/flamephoenix1991/8376271918
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Overview: Image Formation, Cameras and Lenses

The image formation process that produces a particular image depends on 

— Lightening condition 

— Scene geometry 

— Surface properties  

— Camera optics and viewpoint

Sensor (or eye) captures amount of light reflected from the object

source

surface 
element

normal

sensor

eye



Light and Color: A Short Preview 
Visible light is electromagnetic radiation in the 
400nm-700nm band of wavelengths 



Light and Color: A Short Preview 
Visible light is electromagnetic radiation in the 
400nm-700nm band of wavelengths 
— Black is the absence of light  
— Sunlight is a spectrum of light
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Light and Color: A Short Preview 
Visible light is electromagnetic radiation in the 
400nm-700nm band of wavelengths 

Sunlight

Light also behaves as particles with specific wavelengths 
— photons; that travel in straight lines within a medium
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(small) Graphics Review
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L =
⇢d
⇡
I(~i · ~n)

Question: What are the simplifying assumptions we are making here? 

1. BRDF is the same everywhere (i.e., surface has 
identical properties everywhere) 

2. Light spectra is absorbed uniformly by the 
surface (no change in color)



Surface reflection depends on both the viewing              and illumination 
direction, with Bidirectional Reflection Distribution Function: 

(small) Graphics Review
(✓i,�i)(✓r,�r)

Lambertian surface: 
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(✓v,�v) = (✓r,�r)Mirror surface: all incident light reflected in one directions 
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Old school film camera
Digital CCD/CMOS camera
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Let’s say we have a sensor …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Let’s say we have a sensor …

digital sensor 
(CCD or 
CMOS)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Digital CCD/CMOS camera



… and the object we would like to photograph

digital sensor 
(CCD or 
CMOS)

real-world 
object

What would an image taken like this look like?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Bare-sensor imaging 
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Bare-sensor imaging 

digital sensor 
(CCD or 
CMOS)

real-world 
object

All scene points contribute to all sensor pixels
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Bare-sensor imaging 

All scene points contribute to all sensor pixels
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



barrier (diaphragm)

pinhole 
(aperture)

digital sensor 
(CCD or 
CMOS)

real-world 
object

What would an image taken like this look like?

Pinhole Camera  

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



digital sensor 
(CCD or 
CMOS)

real-world 
object

Pinhole Camera  
most rays are 

blocked

one makes it 
through

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



digital sensor 
(CCD or 
CMOS)

real-world 
object

Pinhole Camera  

Each scene point contributes to only one sensor pixel

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Camera Obscura (latin for “dark chamber”)

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January 
24, 1544. He used this illustration in his book, “De Radio Astronomica et 
Geometrica,” 1545. It is thought to be the first published illustration of a camera 
obscura.  

Credit: John H., Hammond, “Th Camera Obscure, A Chronicle”



Camera Obscura (latin for “dark chamber”)

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January 
24, 1544. He used this illustration in his book, “De Radio Astronomica et 
Geometrica,” 1545. It is thought to be the first published illustration of a camera 
obscura.  

Credit: John H., Hammond, “Th Camera Obscure, A Chronicle”

principles behind the pinhole camera or camera obscura were first 
mentioned by Chinese philosopher Mozi (Mo-Ti) (470 to 390 BCE)



First Photograph on Record

Credit: Nicéphore Niepce, 1822

La table servie 



Pinhole Camera

Forsyth & Ponce (2nd ed.) Figure 1.2 

A pinhole camera is a box with a small hall (aperture) in it 



Forsyth & Ponce (2nd ed.) Figure 1.2 

A pinhole camera is a box with a small hall (aperture) in it 

Pinhole Camera



Image Formation

Forsyth & Ponce (2nd ed.) Figure 1.1 

Credit: US Navy, Basic Optics and Optical Instruments. Dover, 1969 



Accidental Pinhole Camera

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Pinhole Camera (Simplified) 

x’

x

zf’

image
plane

pinhole object

f’ is the focal length of the camera 



Pinhole Camera (Simplified) 

x’

x

zf’

image
plane

pinhole object

f’ is the focal length of the camera 

Note: In a pinhole camera we can adjust the focal length, all this will do is change the size of the resulting image 
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Pinhole Camera (Simplified) 
It is convenient to think of the image plane which is in from of the pinhole



x’

x

zf’

image
plane

pinhole object

f’

x’

image
plane

Pinhole Camera (Simplified) 
It is convenient to think of the image plane which is in from of the pinhole

What happens if object moves towards the camera? Away from the camera? 



Focal Length
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For a fixed sensor size, focal length determines the field of view (FoV)



Focal Length

✓2

f2

✓1

f1

For a fixed sensor size, focal length determines the field of view (FoV)

Exercise: What is the field of view of a full frame (35mm) camera with a 
50mm lens? 100mm lens?



Focal Length



Perspective Effects 

Forsyth & Ponce (2nd ed.) Figure 1.3a 
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Forsyth & Ponce (2nd ed.) Figure 1.3a 

Far objects appear smaller than close ones
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Perspective Effects 

Forsyth & Ponce (2nd ed.) Figure 1.3a 

Far objects appear smaller than close ones

Size is inversely proportions to distance 



Perspective Effects 

Forsyth & Ponce (2nd ed.) Figure 1.3a 

Far objects appear smaller than close ones



Perspective Effects 

Forsyth & Ponce (1st ed.) Figure 1.3b 



Perspective Effects 

Forsyth & Ponce (1st ed.) Figure 1.3b 

Parallel lines meet at a point (vanishing point)



Vanishing Points 

Each set of parallel lines meet at a different point 

— the point is called vanishing point  
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Each set of parallel lines meet at a different point 

— the point is called vanishing point  

Sets of parallel lines on the same plane lead to collinear vanishing points 

— the line is called a horizon for that plane  
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Vanishing Points

Slide Credit: David Jacobs 



Vanishing Points 

Each set of parallel lines meet at a different point 

— the point is called vanishing point  

Sets of parallel lines one the same plane lead to collinear vanishing points 

— the line is called a horizon for that plane  

Good way to spot fake images 

— scale and perspective do not work 
— vanishing points behave badly 



Vanishing Points

Slide Credit: Efros (Berkeley), photo from Criminisi
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Slide Credit: Efros (Berkeley), photo from Criminisi
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Two point perspective
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Vanishing 
 point

 Vertical vanishing 
 point 

(at infinity)
One point perspective

Slide Credit: Efros (Berkeley), photo from Criminisi

Two point perspective



Perspective Aside

Image credit: http://www.martinacecilia.com/place-vanishing-points/
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Image credit: http://www.martinacecilia.com/place-vanishing-points/



Properties of Projection

— Points project to points  

— Lines project to lines 

— Planes project to the whole or half image 

— Angles are not preserved  



Properties of Projection

— Points project to points  

— Lines project to lines 

— Planes project to the whole or half image 

— Angles are not preserved  

Degenerate cases 

— Line through focal point projects to a point 
— Plane through focal point projects to a line



Projection Illusion
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Perspective Projection

P =

2

4
x
y
z

3

5P 0 =


x0

y0

� x0 = f 0 x

z

y0 = f 0 y

z

Forsyth & Ponce (1st ed.) Figure 1.4 

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image 
coordinate frame aligned with the camera coordinate frame
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Perspective Projection: Proof
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Forsyth & Ponce (1st ed.) Figure 1.4 

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image 
coordinate frame aligned with the camera coordinate frame

projects to 2D image point whereP =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5

P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5

Camera Matrix

3D object point 

Aside: Camera Matrix



projects to 2D image point whereP =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5

P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5

Camera Matrix

Aside: Camera Matrix



projects to 2D image point whereP =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5

P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5

Camera Matrix

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5

2

664

x
y
z
1

3

775 =

2

4
f 0x
f 0y
z

3

5 =

2

4
f 0x
z

f 0y
z
1

3

5 =

2

4
x0

y0

1

3

5

Aside: Camera Matrix



projects to 2D image point whereP =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5

P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5

Camera Matrix

Pixels are squared / lens is perfectly symmetric
Sensor and pinhole perfectly aligned

Coordinate system centered at the pinhole 

Aside: Camera Matrix



C =

2

4
f 0
x 0 0 0
0 f 0

y 0 0
0 0 1 0

3

5

projects to 2D image point whereP =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5

Camera Matrix

Pixels are squared / lens is perfectly symmetric
Sensor and pinhole perfectly aligned

Coordinate system centered at the pinhole 

Aside: Camera Matrix



C =

2

4
f 0
x 0 0 cx
0 f 0

y 0 cy
0 0 1 0

3

5

projects to 2D image point whereP =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5

Camera Matrix

Pixels are squared / lens is perfectly symmetric
Sensor and pinhole perfectly aligned

Coordinate system centered at the pinhole 

Aside: Camera Matrix



C =

2

4
f 0
x 0 0 cx
0 f 0

y 0 cy
0 0 1 0

3

5R4⇥4

projects to 2D image point whereP =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5P =

2

664

x
y
z
1

3

775P 0 =

2

4
x0

y0

1

3

5P 0 = CPC =

2

4
f 0 0 0 0
0 f 0 0 0
0 0 1 0

3

5

Camera Matrix

Pixels are squared / lens is perfectly symmetric
Sensor and pinhole perfectly aligned

Coordinate system centered at the pinhole 

Aside: Camera Matrix
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Aside: Camera Matrix

Camera calibration is the process of estimating parameters of the 
camera matrix based on set of 3D-2D correspondences  

(usually requires a pattern whos structure and size is known)



Perspective Projection
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Forsyth & Ponce (1st ed.) Figure 1.4 

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image 
coordinate frame aligned with the camera coordinate frame

3D object point 
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Weak Perspective 

Forsyth & Ponce (1st ed.) Figure 1.5 
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Orthographic Projection
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Forsyth & Ponce (1st ed.) Figure 1.6 



Summary of Projection Equations 
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Projection Models: Pros and Cons

Weak perspective (including orthographic) has simpler mathematics 

— accurate when object is small and/or distant 
— useful for recognition 

Perspective is more accurate for real scenes 

When maximum accuracy is required, it is necessary to model additional 
details of a particular camera 
— use perspective projection with additional parameters (e.g., lens distortion) 



Why Not a Pinhole Camera?

— If pinhole is too big then many directions 
are averaged, blurring the image  

— If pinhole is too small then diffraction 
becomes a factor, also blurring the image  

— Generally, pinhole cameras are dark, 
because only a very small set of rays from a 
particular scene point hits the image plane  

— Pinhole cameras are slow, because only a 
very small amount of light from a particular 
scene point hits the image plane per unit time 

Image Credit: Credit: E. Hecht. “Optics,” Addison-Wesley, 1987 



Reason for Lenses

circle of  
confusion 

(blur)

point  
in focus

A real camera must have a finite aperture to get enough light, but this causes 
blur in the image

Solution: use a lens to focus light onto the image plane



Reason for Lenses

circle of  
confusion 

(blur)

point  
in focus

A real camera must have a finite aperture to get enough light, but this causes 
blur in the image

Solution: use a lens to focus light onto the image plane

The role of a lens is to capture more light while preserving, as much as 
possible, the abstraction of an ideal pinhole camera.



Snell’s Law

n1 sin↵1 = n2 sin↵2

Reflection

Refraction



Snell’s Law

n1 sin↵1 = n2 sin↵2

Index of refraction



Pinhole Model (Simplified) with Lens

x’

x

z

image
plane

objectlens

z’



General Lens



Thin Lens

https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_III_-
_Optics_and_Modern_Physics_(OpenStax)/02%3A_Geometric_Optics_and_Image_Formation/2.05%3A_Thin_Lenses



Thin Lens Equation

Forsyth & Ponce (1st ed.) Figure 1.9 
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Thin Lens Equation: Derivation

Forsyth & Ponce (1st ed.) Figure 1.9 
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Thin Lens Equation: Derivation
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Thin Lens Equation: Derivation

Forsyth & Ponce (1st ed.) Figure 1.9 
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Thin Lens Equation: Derivation
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Possible Uses of Thin Lens Abstraction

Forsyth & Ponce (1st ed.) Figure 1.9 
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Lens Basics 

from 1

f0

To focus closer,  
we have to move  

the image plane back

A lens focuses parallel rays (from points at infinity) at focal length of the lens

Rays passing through the center of the lens are not bent
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f



Plane of 

focus

In focus

blur

Lenses focus all rays from a (parallel to lense) plane in the world

Objects off the plane are blurred depending on the distance

Lens Basics 1

z0
� 1

z
=

1

f



Effect of Aperture Size 

defocus 
blur

smaller 
blur

Smaller aperture ⇒ smaller blur,  larger depth of field



Depth of Field

Aperture size = f/N, ⇒ large N = small aperture


