CPSC 425: Computer Vision

Lecture 2: Image Formation
(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today (January 11, 2022)

Topics:

- Image Formation
- Projection
- Cameras and Lenses

Redings:

- Today's Lecture: Forsyth \& Ponce (2nd ed.) 1.1.1 - 1.1.3
- Next Lecture: Forsyth \& Ponce (2nd ed.) 4.1, 4.5

Reminders:

- Complete Assignment 0 (ungraded) by Monday, January 1
- Please sign up for Piazza (116 students signed up so far)
- CoLab and Jupyter Notebooks for assignments

Today’s "fun" Example

Today’s "fun" Example

Photo credit: reddit user Liammm

Today’s "fun" Example: Eye Sink Illusion

Salvador Dali - Pareidolia

Lecture 1: Re-cap

Types of computer vision problems:

- Computing properties of the 3D world from visual data (measurement)
- Recognition of objects and scenes (perception and interpretation)
- Search and interact with visual data (search and organization)
- Manipulation or creation of image or video content (visual imagination)

Computer vision challenges:

- Fundamentally ill-posed
- Enormous computation and scale
- Lack of fundamental understanding of how human perception works

Lecture 1: Re-cap

Computer vision technologies have moved from research labs into commercial products and services. Examples cited include:

- broadcast television sports
- electronic games (Microsoft Kinect)
- biometrics
- image search
- visual special effects
- medical imaging
- robotics
... many others

Lecture 2: Goal

To understand how images are formed

(and develop relevant mathematical concepts and abstractions)

What is Computer Vision?

Compute vision, broadly speaking, is a research field aimed to enable computers to process and interpret visual data, as sighted humans can.

Sensing Device Interpreting Device

What is Computer Vision?

Compute vision, broadly speaking, is a research field aimed to enable computers to process and interpret visual data, as sighted humans can.

Overview: Image Formation, Cameras and Lenses

The image formation process that produces a particular image depends on

- Lightening condition
- Scene geometry
- Surface properties
- Camera optics and viewpoint
source

Sensor (or eye) captures amount of light reflected from the object

Light and Color: A Short Preview

Visible light is electromagnetic radiation in the 400nm-700nm band of wavelengths

Light and Color: A Short Preview

Visible light is electromagnetic radiation in the 400nm-700nm band of wavelengths

- Black is the absence of light
- Sunlight is a spectrum of light

Light and Color: A Short Preview

Visible light is electromagnetic radiation in the 400nm-700nm band of wavelengths

Light and Color: A Short Preview

Visible light is electromagnetic radiation in the 400nm-700nm band of wavelengths

Light also behaves as particles with specific wavelengths

- photons; that travel in straight lines within a medium

Overview: Image Formation, Cameras and Lenses

The image formation process that produces a particular image depends on

- Lightening condition
- Scene geometry
- Surface properties
- Camera optics and viewpoint
source

Sensor (or eye) captures amount of light reflected from the object

(small) Graphics Review

(small) Graphics Review

(small) Graphics Review

(small) Graphics Review

Surface reflection depends on both the viewing $\left(\theta_{v}, \phi_{v}\right)$ and illumination $\left(\theta_{i}, \phi_{i}\right)$ direction, with Bidirectional Reflection Distribution Function: $\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)$

(small) Graphics Review

Surface reflection depends on both the viewing $\left(\theta_{v}, \phi_{v}\right)$ and illumination $\left(\theta_{i}, \phi_{i}\right)$ direction, with Bidirectional Reflection Distribution Function: $\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)$

(small) Graphics Review

Surface reflection depends on both the viewing (θ_{v}, ϕ_{v}) and illumination $\left(\theta_{i}, \phi_{i}\right)$ direction, with Bidirectional Reflection Distribution Function: $\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)$

(small) Graphics Review

Surface reflection depends on both the viewing $\left(\theta_{v}, \phi_{v}\right)$ and illumination $\left(\theta_{i}, \phi_{i}\right)$ direction, with Bidirectional Reflection Distribution Function: $\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)$
source

Lambertian surface:

$\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)=\frac{\rho_{d}}{\pi}$

$$
L=\frac{\rho_{d}}{\pi} I(\vec{i} \cdot \vec{n})
$$

(small) Graphics Review

Question: What are the simplifying assumptions we are making here?
source

Lambertian surface:

$\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)=\frac{\rho_{d}}{\pi}$

$$
L=\frac{\rho_{d}}{\pi} I(\vec{i} \cdot \vec{n})
$$

Slide adopted from: Ioannis (Yannis) Gkioulekas (CMU)

(small) Graphics Review

Question: What are the simplifying assumptions we are making here?

1. BRDF is the same everywhere (i.e., surface has identical properties everywhere)
source

Lambertian surface:
2. Light spectra is absorbed uniformly by the surface (no change in color)

$$
\begin{aligned}
& \operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)=\frac{\rho_{d}}{\pi} \\
& L=\frac{\rho_{d}}{\pi} I(\vec{i} \cdot \vec{n})
\end{aligned}
$$

(small) Graphics Review

Surface reflection depends on both the viewing $\left(\theta_{v}, \phi_{v}\right)$ and illumination $\left(\theta_{i}, \phi_{i}\right)$ direction, with Bidirectional Reflection Distribution Function: $\operatorname{BRDF}\left(\theta_{i}, \phi_{i}, \theta_{v}, \phi_{v}\right)$

Lambertian surface:

Mirror surface: all incident light reflected in one directions $\left(\theta_{v}, \phi_{v}\right)=\left(\theta_{r}, \phi_{r}\right)$

Cameras

Old school film camera
Digital CCD/CMOS camera

Cameras

Old school film camera
Digital CCD/CMOS camera

Let's say we have a sensor ...

Digital CCD/CMOS camera

Let's say we have a sensor ...

Digital CCD/CMOS camera

Let's say we have a sensor ...

Digital CCD/CMOS camera

digital sensor (CCD or CMOS)

... and the object we would like to photograph

What would an image taken like this look like?

Bare-sensor imaging

Bare-sensor imaging

Bare-sensor imaging

Bare-sensor imaging

All scene points contribute to all sensor pixels

Bare-sensor imaging

All scene points contribute to all sensor pixels

Pinhole Camera

What would an image taken like this look like?

Pinhole Camera

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Pinhole Camera

Each scene point contributes to only one sensor pixel

Camera Obscura (latin for "dark chamber")

illum in tabula per radios Solis, quam in coelo contingit: hoc eft,fil in ccelo fuperior pars deliquiū patiatur, in radiis apparebit inferior deficere, vt ratio exigit optica.

Sic nos exactè Anno.1544. Louanii celipfim Solis obferuauimus, inuenimusq́; deficere paulò plus $\not \approx$ dex-

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January 24, 1544. He used this illustration in his book, "De Radio Astronomica et Geometrica," 1545. It is thought to be the first published illustration of a camera obscura.

Camera Obscura (latin for "dark chamber")

```
illum in tabula per radios Solis, quamm in coelo contin- git: hoc eft,fil in ccelo fuperior pars deliquiū patiatur, in radiis apparebit inferior deficere,vt ratio exigit optica.
Soles delignuinm Amo Chirin
154.4. Dio 24. Januarí
Conami
principles behind the pinhole camera or camera obscura were first mentioned by Chinese philosopher Mozi (Mo-Ti) (470 to 390 BCE)
```


Sic nos exactè Anno.1544. Louanii celipfim Solis obferuauimus, inuenimuśq; deficere paulò plus $\underset{q}{\text { q. }}$ dex-

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January 24, 1544. He used this illustration in his book, "De Radio Astronomica et Geometrica," 1545. It is thought to be the first published illustration of a camera obscura.

First Photograph on Record

La table servie

Pinhole Camera

A pinhole camera is a box with a small hall (aperture) in it

Forsyth \& Ponce (2nd ed.) Figure 1.2

Pinhole Camera

A pinhole camera is a box with a small hall (aperture) in it

Forsyth \& Ponce (2nd ed.) Figure 1.2

Image Formation

Forsyth \& Ponce (2nd ed.) Figure 1.1

Accidental Pinhole Camera

Pinhole Camera (Simplified)

f' is the focal length of the camera

Pinhole Camera (Simplified)

f' is the focal length of the camera

Note: In a pinhole camera we can adjust the focal length, all this will do is change the size of the resulting image

Pinhole Camera (Simplified)

It is convenient to think of the image plane which is in from of the pinhole

Pinhole Camera (Simplified)

It is convenient to think of the image plane which is in from of the pinhole

What happens if object moves towards the camera? Away from the camera?

Focal Length

For a fixed sensor size, focal length determines the field of view (FoV)

Focal Length

For a fixed sensor size, focal length determines the field of view (FoV)

Exercise: What is the field of view of a full frame (35 mm) camera with a 50 mm lens? 100 mm lens?

Focal Length

28 mm

50 mm

35 mm

70 mm

Perspective Effects

Forsyth \& Ponce (2nd ed.) Figure 1.3a

Perspective Effects

Far objects appear smaller than close ones

Forsyth \& Ponce (2nd ed.) Figure 1.3a

Perspective Effects

Far objects appear smaller than close ones

Forsyth \& Ponce (2nd ed.) Figure 1.3a

Perspective Effects

Far objects appear smaller than close ones

Forsyth \& Ponce (2nd ed.) Figure 1.3a
Size is inversely proportions to distance

Perspective Effects

Far objects appear smaller than close ones

Forsyth \& Ponce (2nd ed.) Figure 1.3a

Perspective Effects

Forsyth \& Ponce (1st ed.) Figure 1.3b

Perspective Effects

Parallel lines meet at a point (vanishing point)

Forsyth \& Ponce (1st ed.) Figure 1.3b

Vanishing Points

Each set of parallel lines meet at a different point

- the point is called vanishing point

Vanishing Points

Each set of parallel lines meet at a different point

- the point is called vanishing point

Sets of parallel lines on the same plane lead to collinear vanishing points

- the line is called a horizon for that plane

Vanishing Points

Vanishing Points

Each set of parallel lines meet at a different point

- the point is called vanishing point

Sets of parallel lines one the same plane lead to collinear vanishing points

- the line is called a horizon for that plane

Good way to spot fake images

- scale and perspective do not work
- vanishing points behave badly

Vanishing Points

Perspective Aside

Perspective Aside

Properties of Projection

- Points project to points
- Lines project to lines
- Planes project to the whole or half image
- Angles are not preserved

Properties of Projection

- Points project to points
- Lines project to lines
- Planes project to the whole or half image
- Angles are not preserved

Degenerate cases

- Line through focal point projects to a point
- Plane through focal point projects to a line

Projection Illusion

Projection Illusion

Perspective Projection

3D object point

Forsyth \& Ponce (1st ed.) Figure 1.4

$$
P=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { projects to 2D image point } P^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \text { where }
$$

$$
\begin{aligned}
x^{\prime} & =f^{\prime} \frac{x}{z} \\
y^{\prime} & =f^{\prime} \frac{y}{z}
\end{aligned}
$$

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame

Perspective Projection: Proof

3D object point
Forsyth \& Ponce (1st ed.) Figure 1.4

$$
P=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { projects to 2D image point } P^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right] \text { where }
$$

$$
\begin{aligned}
& x^{\prime}=f^{\prime} \frac{x}{z} \\
& y^{\prime}=f^{\prime} \frac{y}{z}
\end{aligned}
$$

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame

Aside: Camera Matrix

Camera Matrix

Forsyth \& Ponce (1st ed.) Figure 1.4
$P=\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$ projects to 2D image point $P^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]$ where $P^{\prime}=\mathbf{C} P$

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame

Aside: Camera Matrix

Camera Matrix

$$
\begin{aligned}
& x^{\prime}=f^{\prime} \frac{x}{z} \\
& y^{\prime}=f^{\prime} \frac{y}{z}
\end{aligned}
$$

$$
\mathbf{C}=\left[\begin{array}{rrrr}
f^{\prime} & 0 & 0 & 0 \\
0 & f^{\prime} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$P=\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$ projects to 2D image point $P^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]$ where $P^{\prime}=\mathbf{C} P$

Aside: Camera Matrix

Camera Matrix

$$
\begin{aligned}
& x^{\prime}=f^{\prime} \frac{x}{z} \\
& y^{\prime}=f^{\prime} \frac{y}{z}
\end{aligned}
$$

$$
\mathbf{C}=\left[\begin{array}{rrrr}
f^{\prime} & 0 & 0 & 0 \\
0 & f^{\prime} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{rrrr}
f^{\prime} & 0 & 0 & 0 \\
0 & f^{\prime} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
f^{\prime} x \\
f^{\prime} y \\
z
\end{array}\right]=\left[\begin{array}{c}
\frac{f^{\prime} x}{f^{z}} \\
\frac{f^{\prime} y}{z} \\
1
\end{array}\right]
$$

$$
P=\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \text { projects to 2D image point } P^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] \text { where } P^{\prime}=\mathbf{C} P
$$

Aside: Camera Matrix

Camera Matrix

$$
\mathbf{C}=\left[\begin{array}{rrrr}
f^{\prime} & 0 & 0 & 0 \\
0 & f^{\prime} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Pixels are squared / lens is perfectly symmetric
Sensor and pinhole perfectly aligned
Coordinate system centered at the pinhole

Aside: Camera Matrix

Camera Matrix

$$
\mathbf{C}=\left[\begin{array}{rrrr}
f_{x}^{\prime} & 0 & 0 & 0 \\
0 & f_{y}^{\prime} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Sensor and pinhole perfectly aligned
Coordinate system centered at the pinhole

Aside: Camera Matrix

Camera Matrix

$$
\mathbf{C}=\left[\begin{array}{rrrr}
f_{x}^{\prime} & 0 & 0 & c_{x} \\
0 & f_{y}^{\prime} & 0 & c_{y} \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Aside: Camera Matrix

Camera Matrix

$$
\mathbf{C}=\left[\begin{array}{rrrr}
f_{x}^{\prime} & 0 & 0 & c_{x} \\
0 & f_{y}^{\prime} & 0 & c_{y} \\
0 & 0 & 1 & 0
\end{array}\right] \mathbb{R}_{4 \times 4}
$$

$$
P=\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \text { projects to 2D image point } P^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] \text { where } P^{\prime}=\mathbf{C} P
$$

Aside: Camera Matrix

Camera Matrix

$$
\mathbf{C}=\left[\begin{array}{rrrr}
f_{x}^{\prime} & 0 & 0 & c_{x} \\
0 & f_{y}^{\prime} & 0 & c_{y} \\
0 & 0 & 1 & 0
\end{array}\right] \mathbb{R}_{4 \times 4}
$$

Camera calibration is the process of estimating parameters of the camera matrix based on set of 3D-2D correspondences (usually requires a pattern whos structure and size is known)

$$
P=\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \text { projects to 2D image point } P^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] \text { where } P^{\prime}=\mathbf{C} P
$$

Perspective Projection

3D object point

Forsyth \& Ponce (1st ed.) Figure 1.4

$$
P=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { projects to 2D image point } P^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \text { where }
$$

$$
\begin{aligned}
x^{\prime} & =f^{\prime} \frac{x}{z} \\
y^{\prime} & =f^{\prime} \frac{y}{z}
\end{aligned}
$$

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame

Weak Perspective

Forsyth \& Ponce (1st ed.) Figure 1.5

3D object point $P=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ in Π_{0} projects to 2D image point $P^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime}\end{array}\right]$
where $\begin{aligned} & \begin{array}{l}x^{\prime}=m x \\ y^{\prime}=m y\end{array}\end{aligned}$ and $m=\frac{f^{\prime}}{z_{0}}$

Orthographic Projection

Forsyth \& Ponce (1st ed.) Figure 1.6

3D object point $P=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
projects to 2D image point $P^{\prime}=\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$
where $\left.\begin{array}{l}\left.\begin{array}{l}x^{\prime}= \\ y^{\prime}= \\ \end{array}\right]\end{array}\right]$

Summary of Projection Equations

3D object point $P=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ projects to 2D image point $P^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime}\end{array}\right]$ where

Perspective

$$
\begin{aligned}
& x^{\prime}=f^{\prime} \frac{x}{z} \\
& y^{\prime}=f^{\prime} \frac{y}{z} \\
& x^{\prime}=m x \quad m=\frac{f^{\prime}}{z_{0}} \\
& y^{\prime}=m y
\end{aligned}
$$

Orthographic

$$
x^{\prime}=x
$$

$$
y^{\prime}=y
$$

Projection Models: Pros and Cons

Weak perspective (including orthographic) has simpler mathematics

- accurate when object is small and/or distant
- useful for recognition

Perspective is more accurate for real scenes

When maximum accuracy is required, it is necessary to model additional details of a particular camera

- use perspective projection with additional parameters (e.g., lens distortion)

Why Not a Pinhole Camera?

- If pinhole is too big then many directions are averaged, blurring the image
- If pinhole is too small then diffraction becomes a factor, also blurring the image
- Generally, pinhole cameras are dark, because only a very small set of rays from a
 particular scene point hits the image plane
- Pinhole cameras are slow, because only a very small amount of light from a particular scene point hits the image plane per unit time

Reason for Lenses

A real camera must have a finite aperture to get enough light, but this causes blur in the image

Solution: use a lens to focus light onto the image plane

Reason for Lenses

A real camera must have a finite aperture to get enough light, but this causes blur in the image

The role of a lens is to capture more light while preserving, as much as possible, the abstraction of an ideal pinhole camera.

Solution: use a lens to focus light onto the image plane

Snell's Law

$$
n_{1} \sin \alpha_{1}=n_{2} \sin \alpha_{2}
$$

Snell's Law

$$
n_{1} \sin \alpha_{1}=n_{2} \sin \alpha_{2}
$$

Pinhole Model (Simplified) with Lens

General Lens

Ray of light

Thin Lens

https://phys.libretexts.org/Bookshelves/University Physics/Book\%3A University Physics_(OpenStax)/Map\%3A University Physics_III__Optics_and_Modern_Physics_(OpenStax)/02\%3A_Geometric_Optics_and_Image_Formation/2.05\%3A_Thin_Lenses

Thin Lens Equation

Forsyth \& Ponce (1st ed.) Figure 1.9

$$
\frac{1}{z^{\prime}}-\frac{1}{z}=\frac{1}{f}
$$

Thin Lens Equation

Forsyth \& Ponce (1st ed.) Figure 1.9

$$
\frac{1}{z^{\prime}}+\frac{1}{z}=\frac{1}{f}
$$

Thin Lens Equation

Forsyth \& Ponce (1st ed.) Figure 1.9

$$
\frac{1}{z^{\prime}}-\frac{1}{z}=\frac{1}{f}
$$

Thin Lens Equation: Derivation

Forsyth \& Ponce (1st ed.) Figure 1.9

$$
\frac{1}{z^{\prime}}-\frac{1}{z}=\frac{1}{f}
$$

Thin Lens Equation: Derivation

$$
\begin{array}{|l|l|}
\hline \frac{y}{-z}-\frac{-y^{\prime}}{-z^{\prime}} \\
\frac{y}{y^{\prime}}=\frac{z}{z^{\prime}}
\end{array}
$$

Forsyth \& Ponce (1st ed.) Figure 1.9

$$
\frac{1}{z^{\prime}}-\frac{1}{z}=\frac{1}{f}
$$

Thin Lens Equation: Derivation

$$
\frac{1}{z^{\prime}}-\frac{1}{z}=\frac{1}{f}
$$

Thin Lens Equation: Derivation

Thin Lens Equation: Derivation

Possible Uses of Thin Lens Abstraction

Forsyth \& Ponce (1st ed.) Figure 1.9

$$
\frac{1}{z^{\prime}}-\frac{1}{z}=\frac{1}{f}
$$

Lens Basics

A lens focuses parallel rays (from points at infinity) at focal length of the lens
Rays passing through the center of the lens are not bent

Lens Basics

Lenses focus all rays from a (parallel to lense) plane in the world

$$
\frac{1}{z^{\prime}}-\frac{1}{z}=\frac{1}{f}
$$

Objects off the plane are blurred depending on the distance

Effect of Aperture Size

Smaller aperture \Rightarrow smaller blur, larger depth of field

Depth of Field

Aperture size $=\mathrm{f} / \mathrm{N}, \Rightarrow$ large $\mathrm{N}=$ small aperture

