

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 19: Classification (part2)

Menu for Today

Topics:

- Scene Classification
- Bag of Words Representation

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9
- Next Lecture:

Reminders:

— Assignment 5 is out — it will take time to run

Decision Tree Boosting

Forsyth & Ponce (2nd ed.) 17.1–17.2

Lecture 18: Re-cap (Image Classification)

Classify images containing single **objects**, the same techniques can be applied to classify natural **scenes** (e.g. beach, forest, harbour, library).

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

Image Classification

- **Classification** Algorithms
- Bayes' Classifier
- Nearest Neighbor Classifier
- SVM Classifier

- Representation of Images
- Image pixels directly
- Bag of Words

Lecture 18: Re-cap (Vector Space Model)

Many algorithms for image classification accumulate evidence on the basis of **visual words**.

To classify a text document (e.g. as an article on sports, entertainment, business, politics) we might find patterns in the occurrences of certain words.

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

> **Classify**: Train data using BOWs

Input: large collection of images (they don't even need to be training images)

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

> **Classify**: Train data using BOWs

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Output: dictionary of visual words

Input: large collection of images (they don't even need to be training images)

Input: training images, dictionary

airplane	1	14	-	X	1	+	2	-1		-
automobile					-	The				*>
bird	S	ſ	12			4	1	N.	12	4
cat	a sta		4	50		<u>E</u>		Å.	A.S.	20
deer	6	48	X	M	Ĩ	Y	Y	1	-	
dog	1	1	-		(A)	(a)		N?	A	The second
frog	2	19						3K)		5
horse	- Mar	T.	A	2	1	107AB	1	24	6	N.
ship	-		ditte	-	144		2	12	and in	
truck			1						013	ALL.

Encode: \rightarrow build Bags-of-Words (BOW) vectors \rightarrow for each image

Classify: Train data using BOWs

Dictionary Learning: Learn Visual Words using clustering

Output: dictionary of visual words

Output: histogram representation for each training image

airplane automobile bird deer dog frog horse ship truck

Input: histogram representation for each training image + labels

Encode: **Output:** histogram representation \rightarrow build Bags-of-Words (BOW) vectors \rightarrow for each training image for each image

> **Classify**: **Output:** parameters if the classifier Train data using BOWs

Input: large collection of images (they don't even need to be training images)

Input: test image, dictionary

Dictionary Learning: Learn Visual Words using clustering

Encode: \rightarrow build Bags-of-Words (BOW) vectors \rightarrow for each image

> **Classify**: Test data using BOWs

Output: dictionary of visual words

Output: histogram representation for test image

Input: large collection of images (they don't even need to be training images)

Dictionary Learning: Learn Visual Words using clustering

Input: test image, dictionary

Input: histogram representation for test image, trained classifier

Output: dictionary of visual words

Classify: Train and test data using BOWs

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

1. Dictionary Learning: Learn Visual Words using Clustering

1. extract features (e.g., SIFT) from images

1. Dictionary Learning: Learn Visual Words using Clustering

2. Learn visual dictionary (e.g., K-means clustering)

Extracting SIFT Patches

Compute SIFT descriptor

[Lowe'99]

Normalize patch

Detect patches

[Mikojaczyk and Schmid '02] [Mata, Chum, Urban & Pajdla, '02] [Sivic & Zisserman, '03]

Extracting SIFT Patches

Creating **Dictionary**

Creating **Dictionary**

Creating **Dictionary**

Example Visual Dictionary

Source: B. Leibe

Example Visual Dictionary

Source: B. Leibe

Classify: Train and test data using BOWs

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

2. Encode: build Bag-of-Words (BOW) vectors for each image

1. Quantization: image features gets associated to a visual word (nearest cluster center)

2. Encode: build Bag-of-Words (BOW) vectors for each image

2. Histogram: count the number of visual word occurrences

2. Encode: build Bag-of-Words (BOW) vectors for each image

frequency

codewords

Classify: Train and test data using BOWs

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

3. Classify: Train and text classifier using BOWs

K nearest neighbors

Bag-of-Words Representation

Algorithm:

Initialize an empty K-bin histogram, where K is the number of codewords Extract local descriptors (e.g. SIFT) from the image For each local descriptor **x**

Map (Quantize) **x** to its closest codeword \rightarrow **c**(**x**) Increment the histogram bin for c(x)Return histogram

vector machine or k-Nearest Neighbor classifier

We can then classify the histogram using a trained classifier, e.g. a support

Spatial Pyramid

The bag of words representation does not preserve any spatial information

The **spatial pyramid** is one way to incorporate spatial information into the image descriptor.

A spatial pyramid partitions the image and counts codewords within each grid box; this is performed at multiple levels

Spatial Pyramid

Fig. 16.8 in Forsyth & Ponce (2nd ed.). Original credit: Lazebnik et al., 2006

Compute Bag-of-Words histograms for each quadrant and then concatenate them

VLAD (Vector of Locally Aggregated Descriptors)

histogram bin

to their visual words

we increment it by the **residual** vector **x** – **c(x)**

- There are more advanced ways to 'count' visual words than incrementing its
- For example, it might be useful to describe how local descriptors are quantized
- In the VLAD representation, instead of incrementing the histogram bin by one,

Example: VLAD

VLAD (Vector of Locally Aggregated Descriptors)

The dimensionality of a **VLAD** descriptor is *Kd*

- K: number of codewords
- -d: dimensionality of the local descriptor

codewords

VLAD characterizes the distribution of local descriptors with respect to the

Rule Based **Classifier**: Distance + Threshold

There is nothing really to "learn" (no need for training data), just measure similarity using favorite distance and choose threshold based on validation set

There is nothing really to "learn" (no need for training data), just measure similarity using favorite distance and choose threshold based on validation set

Rule Based **Classifier**: Distance + Threshold

More robust, to lighting, but basically same

There is nothing really to "learn" (no need for training data), just measure similarity using favorite distance and choose threshold based on validation set

Rule Based **Classifier**: Distance + Threshold

> Rule Based **Classifier**: Distance + Threshold

More expressive, but basically same

- No real learning, mostly parameter/design tuning using validation set
- Empirically engineered features with desired properties

- Pragmatically defined models (classifiers) that either defined by hand or require test time optimization

Bayes — estimate *parametric* form of distribution (requires training data) for each class

Bayes — estimate *parametric* form of distribution (requires training data) for each class **kNN** — <u>non-parametric</u> form of distribution (requires training data) for each class

Learned Classifier: Bayes, kNN, Linear SVM

> Learned Classifier: Bayes, kNN, Linear SVM

Learned Classifier: Bayes, kNN, Linear SVM

Bayes — estimate *parametric* form of distribution (requires training data) for each class More expressive **kNN** — <u>non-parametric</u> form of distribution (requires training data) for each class Linear SVM — *parametric* form of classifier (requires training data) with implicit feature selection / weighting

Learned Classifier: Bayes, kNN, Linear SVM

> Learned Classifier: Bayes, kNN, Linear SVM

Learned Classifier: Bayes, kNN, Linear SVM

- 2. Histogram of histograms of gradients (i.e., simple hierarchical aggregation)

- 2. Histogram of histograms of gradients (i.e., simple hierarchical aggregation)

Recognition Overview: Convolutional Neural Nets (next week)

for a specific task (classification, detection, segmentation)

Deeper hierarchies of features (obtained by learned filters) **learned together with the classifier**

Recognition Overview: Foundational Models

2. "Fine-tuning" (optimizing again from a warm start) to get good performance on the task

1. "Pre-training" (optimizing) in an unsupervised / self-supervised manner (to get good feature extractors)

Let's do a bit of a case study ...

Tiny Image Dataset

 80 million images collected via ima from WordNet (labels are noisy)

- Very small images (32x32xRGB) used to minimise storage
- Note human performance is still quite good at this scale!

- 80 million images collected via image search using 75,062 noun synsets

sed to minimise storage uite good at this scale!

[Torralba Freeman Fergus 2008]

CIFAR10 Dataset

 Hand labelled set of 10 categories from Tiny Images dataset - 60,000 32x32 images in 10 classes (50k train, 10k test)

airplane	
automobile	
bird	
cat	
deer	
dog	W. 1.
frog	
horse	
ship	
truck	

Good test set for visual recognition problems

CIFAR10 Classification

Let's build an image classifier

airplane automobile

bird

cat

deer

Start by vectorizing the data x = 3072 element vector of 0-255

 $32 \times 32 \times RGB$ (8 bit) image \rightarrow x = [65 102 33 57 54 ...]

x = 3072 element vector of 0-255

truck

dog

frog

horse

Nearest Mean Classifier

Compute a single "average" template per class

Nearest Mean Classifier

Find the nearest mean and assign class:

CIFAR10 class means:

$c_q = \arg\min_i |\mathbf{x}_q - \mathbf{m}_i|^2$

Nearest Mean Classifier

Find the nearest mean and assign class:

CIFAR10 class means:

Performance:

Chance performance: 10% ~94% Human performance: Nearest Mean Classifier (pixels): 37%

Nearest Neighbor Classifier

We can view each image as a point in a high dimensional space

bird

Nearest Neighbor Classifier

Find nearest neighbour in training set:

Assign class to class of the nearest neighbour:

Calculate $|\mathbf{x}_q - \mathbf{x}_i|$ for all training data

- $i_{NN} = \arg\min_{i} |\mathbf{x}_{q} \mathbf{x}_{i}|$

 - $\hat{y}(\mathbf{x}_q) = y(\mathbf{x}_{i_N N})$

Nearest Neighbor Classifier

Find nearest neighbour in training set:

Assign class to class of the nearest neighbour:

Performance:

Chance performance: Human performance:

Source: https://cran.r-project.org/web/packages/KernelKnn/vignettes/image_classification_using_MNIST_CIFAR_data.html

- $i_{NN} = \arg\min_{i} |\mathbf{x}_{q} \mathbf{x}_{i}|$

 - $\hat{y}(\mathbf{x}_q) = y(\mathbf{x}_{i_N N})$

10% ~94% Nearest Neighbor (pixels): 40.8% Nearest Neighbor (HoG): 58.3%

Query

7900

Query

7900

790,000

7900

790,000

Tiny Image Recognition

Nearest neighbour becomes increasingly accurate as N increases, but do we need to store a dataset of 80 million images?

[Torralba, Fergus, Freeman '08]

yellow = 7900, red = 790,000, blue = 79,000,000

bird

cat

bird

cat

bird

bird

1-vs-All Linear SVM

bird

1-vs-All Linear SVM

bird

1-vs-All Linear SVM

[1] https://proceedings.neurips.cc/paper_files/paper/2010/file/4558dbb6f6f8bb2e16d03b85bde76e2c-Paper.pdf

[2] https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf

Hard voting: $f_k(x) = \begin{cases} 1 & \text{if } k = \arg\min_j ||c^{(j)} - x||_2^2 \\ 0 & \text{otherwise.} \end{cases}$

Soft voting: $f_k(x) = \max\{0, \mu(z) - z_k\}$

L2 distance to centroid k

- 10% Chance performance: Human performance: ~94%
- **37.3**% [2] / **39.5**%*[1] Linear SVM (pixels): **65.6**%*[1] Linear SVM (SIFT):
- Linear SVM (BoW /w SIFT, 1600 words, hard voting): 68.6% [2] Linear SVM (BoW /w SIFT, 1600 words, soft voting): 77.9% [2]
- Linear SVM (BoW /w SIFT, 4000 words, soft voting): 79.6% [2]

Deep Learning

Query:

Performance:

[3] <u>https://arxiv.org/pdf/2203.12054.pdf</u>

- 10% Chance performance: ~94% Human performance:
- Linear SVM (pixels): **37.3**% [2] / **39.5**%*[1] Linear SVM (SIFT): **65.6**%*[1] Linear SVM (BoW /w SIFT, 1600 words, hard voting): 68.6% [2] Linear SVM (BoW /w SIFT, 1600 words, soft voting): 77.9% [2] Linear SVM (BoW /w SIFT, 4000 words, soft voting): 79.6% [2] *Convolutional Neural Net (CNN): **91.3**% [3] *DINO [Caron et al., 2021]: **94.4**% [3] *RandSAC [Hua et al., 2023]: **96.9**% [3]

Take home **messages** ...

- Both classification and feature representation play significant role
- Classifiers need to be expressive to do well, but so do the features
- Parametric classifiers are much easier to work with (they are faster)
- Which is more significant, in part, depends on the amount of available data

More complex classifiers ...

Lets look at more expressive classifiers that, for example, explicitly do feature selection

A decision tree is a simple non-linear parametric classifier

A data point starts at the root and recursively proceeds to the child node determined by the feature test, until it reaches a leaf node

- Consists of a tree in which each internal node is associated with a feature test
- The leaf node stores a class label or a probability distribution over class labels

Learning a decision tree from a training set involves selecting an efficient sequence of feature tests

Example: Waiting for a restaurant table

Example					At	tributes	;				Target
Lincompio	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Т	Some	\$\$\$	F	Т	French	0–10	T 🌒
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F 🗕
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	
X_5	T	F	T	F	Full	\$\$\$	F	Т	French	>60	F 🗕
X_6	F	T	F	T	Some	\$\$	Т	Т	Italian	0–10	Τ •
X_7	F	T	F	F	None	\$	Т	F	Burger	0–10	F 🗕
X_8	F	F	F	T	Some	\$\$	Т	Т	Thai	0–10	Τ •
X_9	F	T	T	F	Full	\$	Т	F	Burger	>60	F 🗕
X_{10}	T	T	T	T	Full	\$\$\$	F	Т	Italian	10–30	F 🗕
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F 🗕
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	Τ •

Learning a decision tree from a training set involves selecting an efficient sequence of feature tests

Example: Waiting for a restaurant table

1

Is there an alternative restaurant near by?

Example	•				At	tributes	5				Target
Linompio	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Т	Some	\$\$\$	F	Т	French	0–10	T 🌒
X_2	T	F	F	Т	Full	\$	F	F	Thai	30–60	F 🗕
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	
X_4	T	F	T	Т	Full	\$	F	F	Thai	10–30	
X_5	T	F	T	F	Full	\$\$\$	F	Т	French	>60	F 🗕
X_6	F	T	F	Т	Some	\$\$	T	Т	Italian	0–10	
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F 🗕
X_8	F	F	F	Т	Some	\$\$	T	Т	Thai	0–10	
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F •
X_{10}	T	T	T	Т	Full	\$\$\$	F	Т	Italian	10–30	F 🗕
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F •
X_{12}	T	T	T	Т	Full	\$	F	F	Burger	30–60	Τ •

Learning a decision tree from a training set involves selecting an efficient sequence of feature tests

Example: Waiting for a restaurant table

Is there a bar at the restaurant?

Example		↓ ↓			At	tributes	3				Target
Linompio	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Т	Some	\$\$\$	F	Т	French	0–10	T 🌒
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F 🗕
X_3	F		F	F	Some	\$	F	F	Burger	0–10	
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F 🗕
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	Τ •
X_7	F	T	F	F	None	\$		F	Burger	0–10	F 🗕
X_8	F	F	F	T	Some	\$\$		T	Thai	0–10	Τ •
X_9	F		T	F	Full	\$		F	Burger	>60	F 🗕
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F 🗕
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F 🗕
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	Τ •

Learning a decision tree from a training set involves selecting an efficient sequence of feature tests

Example: Waiting for a restaurant table

Is it Friday night?

											1
Example			¥		At	tributes	3			Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	Т	French	0–10	T 🌒
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F 🗕
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	Τ •
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F 🗕
X_6	F	T	F	T	Some	\$\$		T	Italian	0–10	Τ •
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F 🗕
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	Τ •
X_9	F	T	T	F	Full	\$		F	Burger	>60	F 🗕
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F 🗕
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F 🔴
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	Τ •

Learning a decision tree from a training set involves selecting an efficient sequence of feature tests

Example: Waiting for a restaurant table

Example		Attributes											
Lincompio	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait		
X_1	T	F	F	Т	Some	\$\$\$	F	Т	French	0–10	T 🌒		
X_2	T	F	F	Т	Full	\$	F	F	Thai	30–60	F 🗕		
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10			
X_4	T	F	T	Т	Full	\$	F	F	Thai	10–30			
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F 🗕		
X_6	F	T	F	Т	Some	\$\$	T	T	Italian	0–10	Τ •		
X_7	F	T	F	F	None	\$	Т	F	Burger	0–10	F 🗕		
X_8	F	F	F	Т	Some	\$\$	T	T	Thai	0–10	Τ •		
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F 🗕		
X_{10}	T	T	T	Т	Full	\$\$\$	F	T	Italian	10–30	F 🗕		
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F 🗕		
X_{12}	T	T	T	Т	Full	\$	F	F	Burger	30–60	Τ •		

How many people in the restaurant?

Which test is more helpful?

Figure credit: Russell and Norvig (3rd ed.)

The **entropy** of a set S of data samples is defined as

H(S) = -

where C is the set of classes represented in S, and p(c) is the empirical distribution of class c in S

and zero when all data samples are from the same class.

$$\sum_{c \in C} p(c) \log(p(c))$$

Entropy is highest when data samples are spread equally across all classes,

Entropy at each node ... Which test is more helpful?

Figure credit: Russell and Norvig (3rd ed.)

$$I = H(S) -$$

In the previous example, the information gains of the two candidate tests are:

$I_{Patrons} = 0.541$

So we choose the 'Patrons' test.

In general we try to select the feature test that maximizes the **information gain**:

$$\sum_{i \in \{children\}} \frac{|S^i|}{|S|} H(S^i)$$

$$I_{Type} = 0$$

$$I = H(S) -$$

In the previous example, the information gains of the two candidate tests are:

 $I_{Patrons} = 0.541$

So we choose the 'Patrons' test.

Build a tree in a greedy recursive manner by maximizing information gain at each node

In general we try to select the feature test that maximizes the **information gain**:

$$\sum_{i \in \{children\}} \frac{|S^i|}{|S|} H(S^i)$$

$$I_{Type} = 0$$

Following this construction procedure we obtain the final decision tree:

Figure credit: Russell and Norvig (3rd ed.)

A random forest is an ensemble of decision trees.

Randomness is incorporated via training set sampling and/or generation of the candidate binary tests

The prediction of the random forest is obtained by averaging over all decision trees.

Forsyth & Ponce (2nd ed.) Figure 14.19. Original credit: J. Shotton et al., 2011

Kinect allows users of Microsoft's Xbox 360 console to interact with games using natural body motions instead of a traditional handheld controller. The pose (joint positions) of the user is predicted using a random forest trained on depth features.

Figure credit: J. Shotton et al., 2011

1

Kinect allows users of Microsoft's Xbox 360 console to interact with games using natural body motions instead of a traditional handheld controller. The pose (joint positions) of the user is predicted using a random forest trained on depth features.

Jamie Shotton

Figure credit: J. Shotton et al., 2011

Simple test: threshold on the difference of two depth values at an offset from a target pixel ...

 $f_{\theta}(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$

Figure credit: J. Shotton et al., 2011

•••

What are the parameters of this test?

 $f_{\theta}(I, \mathbf{x}) > \Theta_j$

$$q(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$$

What are the parameters of this test?

 $f_{\theta}(I, \mathbf{x}) > \Theta_{j}$

 $f_{\theta}(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$

What are the parameters of this test?

How many such tests can we have?

 $f_{\theta}(I, \mathbf{x}) > \Theta_{i}$

 $f_{\theta}(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$

What are the parameters of this test?

How many such tests can we have?

(# pix) x (# pix) x (# threshold)

 $f_{\theta}(I, \mathbf{x}) > \Theta_{i}$

 $f_{\theta}(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$

What are the parameters of this test?

How many such tests can we have?

(# pix) x (# pix) x (# threshold)

Learning is slow (weeks)!

 $f_{\theta}(I, \mathbf{x}) > \Theta_{j}$

 $f_{\theta}(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$

What are the parameters of this test?

How many such tests can we have?

(# pix) x (# pix) x (# threshold)

Learning is slow (weeks)!

Inference is fast (real-time)!

 $f_{\theta}(I,\mathbf{x}) > \Theta_{i}$

 $f_{\theta}(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$

....

 $f_{\theta}(I, \mathbf{x}) > \Theta_j$

$$q(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$$

•••• ••• •••

 $f_{\theta}(I, \mathbf{x}) > \Theta_j$

$$q(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$$

•••• ••• •••

 $f_{\theta}(I, \mathbf{x}) > \Theta_j$

$$q(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$$

....

$$g(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$$

Figure credit: J. Shotton et al., 2011