
Lecture 19: Visual Classification 1, Bag of Words

CPSC 425: Computer Vision

1

Menu for Today
Topics:

— Visual Classification

Readings:

— Today’s Lecture: Szeliski 11.4, 12.3-12.4, 9.3, 5.1-5.2

Reminders:
— Assignment 2 graded and posted
— Assignment 3 will be graded by the end of the week
— Assignment 4 is due today
— Assignment 5: Scene Recognition with Bag of Words is now available

— Bag of Words Representations

Today’s “fun” Example:

Today’s “fun” Example:

Object Recognition / Detection

Non-max suppress!!⇤
+ threshold

Template matching …

Object Recognition / Detection

Object recognition with SIFT features and RANSAC [Lowe 1999]

What is present? Where? What orientation?

Figure 4: Top row shows model images for 3D objects with
outlines found by background segmentation. Bottom image
shows recognition results for 3D objectswithmodel outlines
and image keys used for matching.

mined by solving the corresponding normal equations,

which minimizes the sum of the squares of the distances
from the projected model locations to the corresponding im-
age locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of
articulated and flexible objects [12].
Outliers can now be removed by checking for agreement

between each image feature and themodel, given the param-
eter solution. Each match must agree within 15 degrees ori-
entation, change in scale, and 0.2 times maximummodel
size in terms of location. If fewer than 3 points remain after
discarding outliers, then thematch is rejected. If any outliers
are discarded, the least-squares solution is re-solvedwith the
remaining points.

Figure5: Examples of 3D object recognitionwith occlusion.

7. Experiments
The affine solution provides a good approximation to per-
spective projection of planar objects, so planar models pro-
vide a good initial test of the approach. The top row of Fig-
ure 3 shows three model images of rectangular planar faces
of objects. The figure also shows a cluttered image contain-
ing the planar objects, and the same image is shown over-
layed with the models following recognition. The model
keys that are displayed are the ones used for recognition and
final least-squares solution. Since only 3 keys are needed
for robust recognition, it can be seen that the solutions are
highly redundant and would survive substantial occlusion.
Also shown are the rectangular borders of themodel images,
projected using the affine transform from the least-square
solution. These closely agree with the true borders of the
planar regions in the image, except for small errors intro-
duced by the perspective projection. Similar experiments
have been performed formany images of planar objects, and
the recognition has proven to be robust to at least a 60 degree
rotation of the object in any direction away from the camera.
Although the model images and affine parameters do not

account for rotation in depth of 3D objects, they are still
sufficient to perform robust recognition of 3D objects over
about a 20 degree range of rotation in depth away from each
model view. An example of three model images is shown in

6

Figure 4: Top row shows model images for 3D objects with
outlines found by background segmentation. Bottom image
shows recognition results for 3D objectswithmodel outlines
and image keys used for matching.

mined by solving the corresponding normal equations,

which minimizes the sum of the squares of the distances
from the projected model locations to the corresponding im-
age locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of
articulated and flexible objects [12].
Outliers can now be removed by checking for agreement

between each image feature and themodel, given the param-
eter solution. Each match must agree within 15 degrees ori-
entation, change in scale, and 0.2 times maximummodel
size in terms of location. If fewer than 3 points remain after
discarding outliers, then thematch is rejected. If any outliers
are discarded, the least-squares solution is re-solvedwith the
remaining points.

Figure5: Examples of 3D object recognitionwith occlusion.

7. Experiments
The affine solution provides a good approximation to per-
spective projection of planar objects, so planar models pro-
vide a good initial test of the approach. The top row of Fig-
ure 3 shows three model images of rectangular planar faces
of objects. The figure also shows a cluttered image contain-
ing the planar objects, and the same image is shown over-
layed with the models following recognition. The model
keys that are displayed are the ones used for recognition and
final least-squares solution. Since only 3 keys are needed
for robust recognition, it can be seen that the solutions are
highly redundant and would survive substantial occlusion.
Also shown are the rectangular borders of themodel images,
projected using the affine transform from the least-square
solution. These closely agree with the true borders of the
planar regions in the image, except for small errors intro-
duced by the perspective projection. Similar experiments
have been performed formany images of planar objects, and
the recognition has proven to be robust to at least a 60 degree
rotation of the object in any direction away from the camera.
Although the model images and affine parameters do not

account for rotation in depth of 3D objects, they are still
sufficient to perform robust recognition of 3D objects over
about a 20 degree range of rotation in depth away from each
model view. An example of three model images is shown in

6

Figure 4: Top row shows model images for 3D objects with
outlines found by background segmentation. Bottom image
shows recognition results for 3D objectswithmodel outlines
and image keys used for matching.

mined by solving the corresponding normal equations,

which minimizes the sum of the squares of the distances
from the projected model locations to the corresponding im-
age locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of
articulated and flexible objects [12].
Outliers can now be removed by checking for agreement

between each image feature and themodel, given the param-
eter solution. Each match must agree within 15 degrees ori-
entation, change in scale, and 0.2 times maximummodel
size in terms of location. If fewer than 3 points remain after
discarding outliers, then thematch is rejected. If any outliers
are discarded, the least-squares solution is re-solvedwith the
remaining points.

Figure5: Examples of 3D object recognitionwith occlusion.

7. Experiments
The affine solution provides a good approximation to per-
spective projection of planar objects, so planar models pro-
vide a good initial test of the approach. The top row of Fig-
ure 3 shows three model images of rectangular planar faces
of objects. The figure also shows a cluttered image contain-
ing the planar objects, and the same image is shown over-
layed with the models following recognition. The model
keys that are displayed are the ones used for recognition and
final least-squares solution. Since only 3 keys are needed
for robust recognition, it can be seen that the solutions are
highly redundant and would survive substantial occlusion.
Also shown are the rectangular borders of themodel images,
projected using the affine transform from the least-square
solution. These closely agree with the true borders of the
planar regions in the image, except for small errors intro-
duced by the perspective projection. Similar experiments
have been performed formany images of planar objects, and
the recognition has proven to be robust to at least a 60 degree
rotation of the object in any direction away from the camera.
Although the model images and affine parameters do not

account for rotation in depth of 3D objects, they are still
sufficient to perform robust recognition of 3D objects over
about a 20 degree range of rotation in depth away from each
model view. An example of three model images is shown in

6

Figure 4: Top row shows model images for 3D objects with
outlines found by background segmentation. Bottom image
shows recognition results for 3D objectswithmodel outlines
and image keys used for matching.

mined by solving the corresponding normal equations,

which minimizes the sum of the squares of the distances
from the projected model locations to the corresponding im-
age locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of
articulated and flexible objects [12].
Outliers can now be removed by checking for agreement

between each image feature and themodel, given the param-
eter solution. Each match must agree within 15 degrees ori-
entation, change in scale, and 0.2 times maximummodel
size in terms of location. If fewer than 3 points remain after
discarding outliers, then thematch is rejected. If any outliers
are discarded, the least-squares solution is re-solvedwith the
remaining points.

Figure5: Examples of 3D object recognitionwith occlusion.

7. Experiments
The affine solution provides a good approximation to per-
spective projection of planar objects, so planar models pro-
vide a good initial test of the approach. The top row of Fig-
ure 3 shows three model images of rectangular planar faces
of objects. The figure also shows a cluttered image contain-
ing the planar objects, and the same image is shown over-
layed with the models following recognition. The model
keys that are displayed are the ones used for recognition and
final least-squares solution. Since only 3 keys are needed
for robust recognition, it can be seen that the solutions are
highly redundant and would survive substantial occlusion.
Also shown are the rectangular borders of themodel images,
projected using the affine transform from the least-square
solution. These closely agree with the true borders of the
planar regions in the image, except for small errors intro-
duced by the perspective projection. Similar experiments
have been performed formany images of planar objects, and
the recognition has proven to be robust to at least a 60 degree
rotation of the object in any direction away from the camera.
Although the model images and affine parameters do not

account for rotation in depth of 3D objects, they are still
sufficient to perform robust recognition of 3D objects over
about a 20 degree range of rotation in depth away from each
model view. An example of three model images is shown in

6

Figure 4: Top row shows model images for 3D objects with
outlines found by background segmentation. Bottom image
shows recognition results for 3D objectswithmodel outlines
and image keys used for matching.

mined by solving the corresponding normal equations,

which minimizes the sum of the squares of the distances
from the projected model locations to the corresponding im-
age locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of
articulated and flexible objects [12].
Outliers can now be removed by checking for agreement

between each image feature and themodel, given the param-
eter solution. Each match must agree within 15 degrees ori-
entation, change in scale, and 0.2 times maximummodel
size in terms of location. If fewer than 3 points remain after
discarding outliers, then thematch is rejected. If any outliers
are discarded, the least-squares solution is re-solvedwith the
remaining points.

Figure5: Examples of 3D object recognitionwith occlusion.

7. Experiments
The affine solution provides a good approximation to per-
spective projection of planar objects, so planar models pro-
vide a good initial test of the approach. The top row of Fig-
ure 3 shows three model images of rectangular planar faces
of objects. The figure also shows a cluttered image contain-
ing the planar objects, and the same image is shown over-
layed with the models following recognition. The model
keys that are displayed are the ones used for recognition and
final least-squares solution. Since only 3 keys are needed
for robust recognition, it can be seen that the solutions are
highly redundant and would survive substantial occlusion.
Also shown are the rectangular borders of themodel images,
projected using the affine transform from the least-square
solution. These closely agree with the true borders of the
planar regions in the image, except for small errors intro-
duced by the perspective projection. Similar experiments
have been performed formany images of planar objects, and
the recognition has proven to be robust to at least a 60 degree
rotation of the object in any direction away from the camera.
Although the model images and affine parameters do not

account for rotation in depth of 3D objects, they are still
sufficient to perform robust recognition of 3D objects over
about a 20 degree range of rotation in depth away from each
model view. An example of three model images is shown in

6

Figure 4: Top row shows model images for 3D objects with
outlines found by background segmentation. Bottom image
shows recognition results for 3D objectswithmodel outlines
and image keys used for matching.

mined by solving the corresponding normal equations,

which minimizes the sum of the squares of the distances
from the projected model locations to the corresponding im-
age locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of
articulated and flexible objects [12].
Outliers can now be removed by checking for agreement

between each image feature and themodel, given the param-
eter solution. Each match must agree within 15 degrees ori-
entation, change in scale, and 0.2 times maximummodel
size in terms of location. If fewer than 3 points remain after
discarding outliers, then thematch is rejected. If any outliers
are discarded, the least-squares solution is re-solvedwith the
remaining points.

Figure5: Examples of 3D object recognitionwith occlusion.

7. Experiments
The affine solution provides a good approximation to per-
spective projection of planar objects, so planar models pro-
vide a good initial test of the approach. The top row of Fig-
ure 3 shows three model images of rectangular planar faces
of objects. The figure also shows a cluttered image contain-
ing the planar objects, and the same image is shown over-
layed with the models following recognition. The model
keys that are displayed are the ones used for recognition and
final least-squares solution. Since only 3 keys are needed
for robust recognition, it can be seen that the solutions are
highly redundant and would survive substantial occlusion.
Also shown are the rectangular borders of themodel images,
projected using the affine transform from the least-square
solution. These closely agree with the true borders of the
planar regions in the image, except for small errors intro-
duced by the perspective projection. Similar experiments
have been performed formany images of planar objects, and
the recognition has proven to be robust to at least a 60 degree
rotation of the object in any direction away from the camera.
Although the model images and affine parameters do not

account for rotation in depth of 3D objects, they are still
sufficient to perform robust recognition of 3D objects over
about a 20 degree range of rotation in depth away from each
model view. An example of three model images is shown in

6

Object Recognition / Detection

PASCAL Visual Object Classes Challenges [2005-2012]

What is present? Where? What orientation?

Object Classification and Detection
Classification: Label per image, e.g., ImageNet

Detection: Label per region, e.g., PASCAL VOC

[Krizhevsky et al 2011][Ren et al 2016]

4

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

conv feature map

intermediate layer
256-d

2k scores 4k coordinates

sliding window

reg layercls layer

k anchor boxes

bus : 0.996

person : 0.736

boat : 0.970

person : 0.989

person : 0.983
person : 0.983

person : 0.925

cat : 0.982

dog : 0.994

Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

anchors. An anchor is centered at the sliding window
in question, and is associated with a scale and aspect
ratio (Figure 3, left). By default we use 3 scales and
3 aspect ratios, yielding k = 9 anchors at each sliding
position. For a convolutional feature map of a size
W ⇥H (typically ⇠2,400), there are WHk anchors in
total.

Translation-Invariant Anchors
An important property of our approach is that it

is translation invariant, both in terms of the anchors
and the functions that compute proposals relative to
the anchors. If one translates an object in an image,
the proposal should translate and the same function
should be able to predict the proposal in either lo-
cation. This translation-invariant property is guaran-
teed by our method5. As a comparison, the MultiBox
method [27] uses k-means to generate 800 anchors,
which are not translation invariant. So MultiBox does
not guarantee that the same proposal is generated if
an object is translated.

The translation-invariant property also reduces the
model size. MultiBox has a (4 + 1)⇥ 800-dimensional
fully-connected output layer, whereas our method has
a (4 + 2) ⇥ 9-dimensional convolutional output layer
in the case of k = 9 anchors. As a result, our output
layer has 2.8 ⇥ 104 parameters (512 ⇥ (4 + 2) ⇥ 9
for VGG-16), two orders of magnitude fewer than
MultiBox’s output layer that has 6.1⇥ 106 parameters
(1536 ⇥ (4 + 1) ⇥ 800 for GoogleNet [34] in MultiBox
[27]). If considering the feature projection layers, our
proposal layers still have an order of magnitude fewer
parameters than MultiBox6. We expect our method
to have less risk of overfitting on small datasets, like
PASCAL VOC.

5. As is the case of FCNs [7], our network is translation invariant
up to the network’s total stride.

6. Considering the feature projection layers, our proposal layers’
parameter count is 3 ⇥ 3 ⇥ 512 ⇥ 512 + 512 ⇥ 6 ⇥ 9 = 2.4 ⇥ 106;
MultiBox’s proposal layers’ parameter count is 7⇥ 7⇥ (64 + 96 +
64 + 64)⇥ 1536 + 1536⇥ 5⇥ 800 = 27⇥ 106.

Multi-Scale Anchors as Regression References
Our design of anchors presents a novel scheme

for addressing multiple scales (and aspect ratios). As
shown in Figure 1, there have been two popular ways
for multi-scale predictions. The first way is based on
image/feature pyramids, e.g., in DPM [8] and CNN-
based methods [9], [1], [2]. The images are resized at
multiple scales, and feature maps (HOG [8] or deep
convolutional features [9], [1], [2]) are computed for
each scale (Figure 1(a)). This way is often useful but
is time-consuming. The second way is to use sliding
windows of multiple scales (and/or aspect ratios) on
the feature maps. For example, in DPM [8], models
of different aspect ratios are trained separately using
different filter sizes (such as 5⇥7 and 7⇥5). If this way
is used to address multiple scales, it can be thought
of as a “pyramid of filters” (Figure 1(b)). The second
way is usually adopted jointly with the first way [8].

As a comparison, our anchor-based method is built
on a pyramid of anchors, which is more cost-efficient.
Our method classifies and regresses bounding boxes
with reference to anchor boxes of multiple scales and
aspect ratios. It only relies on images and feature
maps of a single scale, and uses filters (sliding win-
dows on the feature map) of a single size. We show by
experiments the effects of this scheme for addressing
multiple scales and sizes (Table 8).

Because of this multi-scale design based on anchors,
we can simply use the convolutional features com-
puted on a single-scale image, as is also done by
the Fast R-CNN detector [2]. The design of multi-
scale anchors is a key component for sharing features
without extra cost for addressing scales.

3.1.2 Loss Function
For training RPNs, we assign a binary class label
(of being an object or not) to each anchor. We as-
sign a positive label to two kinds of anchors: (i) the
anchor/anchors with the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or (ii) an
anchor that has an IoU overlap higher than 0.7 with

4

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

conv feature map

intermediate layer
256-d

2k scores 4k coordinates

sliding window

reg layercls layer

k anchor boxes

bus : 0.996

person : 0.736

boat : 0.970

person : 0.989

person : 0.983
person : 0.983

person : 0.925

cat : 0.982

dog : 0.994

Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

anchors. An anchor is centered at the sliding window
in question, and is associated with a scale and aspect
ratio (Figure 3, left). By default we use 3 scales and
3 aspect ratios, yielding k = 9 anchors at each sliding
position. For a convolutional feature map of a size
W ⇥H (typically ⇠2,400), there are WHk anchors in
total.

Translation-Invariant Anchors
An important property of our approach is that it

is translation invariant, both in terms of the anchors
and the functions that compute proposals relative to
the anchors. If one translates an object in an image,
the proposal should translate and the same function
should be able to predict the proposal in either lo-
cation. This translation-invariant property is guaran-
teed by our method5. As a comparison, the MultiBox
method [27] uses k-means to generate 800 anchors,
which are not translation invariant. So MultiBox does
not guarantee that the same proposal is generated if
an object is translated.

The translation-invariant property also reduces the
model size. MultiBox has a (4 + 1)⇥ 800-dimensional
fully-connected output layer, whereas our method has
a (4 + 2) ⇥ 9-dimensional convolutional output layer
in the case of k = 9 anchors. As a result, our output
layer has 2.8 ⇥ 104 parameters (512 ⇥ (4 + 2) ⇥ 9
for VGG-16), two orders of magnitude fewer than
MultiBox’s output layer that has 6.1⇥ 106 parameters
(1536 ⇥ (4 + 1) ⇥ 800 for GoogleNet [34] in MultiBox
[27]). If considering the feature projection layers, our
proposal layers still have an order of magnitude fewer
parameters than MultiBox6. We expect our method
to have less risk of overfitting on small datasets, like
PASCAL VOC.

5. As is the case of FCNs [7], our network is translation invariant
up to the network’s total stride.

6. Considering the feature projection layers, our proposal layers’
parameter count is 3 ⇥ 3 ⇥ 512 ⇥ 512 + 512 ⇥ 6 ⇥ 9 = 2.4 ⇥ 106;
MultiBox’s proposal layers’ parameter count is 7⇥ 7⇥ (64 + 96 +
64 + 64)⇥ 1536 + 1536⇥ 5⇥ 800 = 27⇥ 106.

Multi-Scale Anchors as Regression References
Our design of anchors presents a novel scheme

for addressing multiple scales (and aspect ratios). As
shown in Figure 1, there have been two popular ways
for multi-scale predictions. The first way is based on
image/feature pyramids, e.g., in DPM [8] and CNN-
based methods [9], [1], [2]. The images are resized at
multiple scales, and feature maps (HOG [8] or deep
convolutional features [9], [1], [2]) are computed for
each scale (Figure 1(a)). This way is often useful but
is time-consuming. The second way is to use sliding
windows of multiple scales (and/or aspect ratios) on
the feature maps. For example, in DPM [8], models
of different aspect ratios are trained separately using
different filter sizes (such as 5⇥7 and 7⇥5). If this way
is used to address multiple scales, it can be thought
of as a “pyramid of filters” (Figure 1(b)). The second
way is usually adopted jointly with the first way [8].

As a comparison, our anchor-based method is built
on a pyramid of anchors, which is more cost-efficient.
Our method classifies and regresses bounding boxes
with reference to anchor boxes of multiple scales and
aspect ratios. It only relies on images and feature
maps of a single scale, and uses filters (sliding win-
dows on the feature map) of a single size. We show by
experiments the effects of this scheme for addressing
multiple scales and sizes (Table 8).

Because of this multi-scale design based on anchors,
we can simply use the convolutional features com-
puted on a single-scale image, as is also done by
the Fast R-CNN detector [2]. The design of multi-
scale anchors is a key component for sharing features
without extra cost for addressing scales.

3.1.2 Loss Function
For training RPNs, we assign a binary class label
(of being an object or not) to each anchor. We as-
sign a positive label to two kinds of anchors: (i) the
anchor/anchors with the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or (ii) an
anchor that has an IoU overlap higher than 0.7 with

Object Classification and Detection
Classification: Label per image, e.g., ImageNet

Detection: Label per region, e.g., PASCAL VOC

[Krizhevsky et al 2011][Ren et al 2016]

4

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

conv feature map

intermediate layer
256-d

2k scores 4k coordinates

sliding window

reg layercls layer

k anchor boxes

bus : 0.996

person : 0.736

boat : 0.970

person : 0.989

person : 0.983
person : 0.983

person : 0.925

cat : 0.982

dog : 0.994

Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

anchors. An anchor is centered at the sliding window
in question, and is associated with a scale and aspect
ratio (Figure 3, left). By default we use 3 scales and
3 aspect ratios, yielding k = 9 anchors at each sliding
position. For a convolutional feature map of a size
W ⇥H (typically ⇠2,400), there are WHk anchors in
total.

Translation-Invariant Anchors
An important property of our approach is that it

is translation invariant, both in terms of the anchors
and the functions that compute proposals relative to
the anchors. If one translates an object in an image,
the proposal should translate and the same function
should be able to predict the proposal in either lo-
cation. This translation-invariant property is guaran-
teed by our method5. As a comparison, the MultiBox
method [27] uses k-means to generate 800 anchors,
which are not translation invariant. So MultiBox does
not guarantee that the same proposal is generated if
an object is translated.

The translation-invariant property also reduces the
model size. MultiBox has a (4 + 1)⇥ 800-dimensional
fully-connected output layer, whereas our method has
a (4 + 2) ⇥ 9-dimensional convolutional output layer
in the case of k = 9 anchors. As a result, our output
layer has 2.8 ⇥ 104 parameters (512 ⇥ (4 + 2) ⇥ 9
for VGG-16), two orders of magnitude fewer than
MultiBox’s output layer that has 6.1⇥ 106 parameters
(1536 ⇥ (4 + 1) ⇥ 800 for GoogleNet [34] in MultiBox
[27]). If considering the feature projection layers, our
proposal layers still have an order of magnitude fewer
parameters than MultiBox6. We expect our method
to have less risk of overfitting on small datasets, like
PASCAL VOC.

5. As is the case of FCNs [7], our network is translation invariant
up to the network’s total stride.

6. Considering the feature projection layers, our proposal layers’
parameter count is 3 ⇥ 3 ⇥ 512 ⇥ 512 + 512 ⇥ 6 ⇥ 9 = 2.4 ⇥ 106;
MultiBox’s proposal layers’ parameter count is 7⇥ 7⇥ (64 + 96 +
64 + 64)⇥ 1536 + 1536⇥ 5⇥ 800 = 27⇥ 106.

Multi-Scale Anchors as Regression References
Our design of anchors presents a novel scheme

for addressing multiple scales (and aspect ratios). As
shown in Figure 1, there have been two popular ways
for multi-scale predictions. The first way is based on
image/feature pyramids, e.g., in DPM [8] and CNN-
based methods [9], [1], [2]. The images are resized at
multiple scales, and feature maps (HOG [8] or deep
convolutional features [9], [1], [2]) are computed for
each scale (Figure 1(a)). This way is often useful but
is time-consuming. The second way is to use sliding
windows of multiple scales (and/or aspect ratios) on
the feature maps. For example, in DPM [8], models
of different aspect ratios are trained separately using
different filter sizes (such as 5⇥7 and 7⇥5). If this way
is used to address multiple scales, it can be thought
of as a “pyramid of filters” (Figure 1(b)). The second
way is usually adopted jointly with the first way [8].

As a comparison, our anchor-based method is built
on a pyramid of anchors, which is more cost-efficient.
Our method classifies and regresses bounding boxes
with reference to anchor boxes of multiple scales and
aspect ratios. It only relies on images and feature
maps of a single scale, and uses filters (sliding win-
dows on the feature map) of a single size. We show by
experiments the effects of this scheme for addressing
multiple scales and sizes (Table 8).

Because of this multi-scale design based on anchors,
we can simply use the convolutional features com-
puted on a single-scale image, as is also done by
the Fast R-CNN detector [2]. The design of multi-
scale anchors is a key component for sharing features
without extra cost for addressing scales.

3.1.2 Loss Function
For training RPNs, we assign a binary class label
(of being an object or not) to each anchor. We as-
sign a positive label to two kinds of anchors: (i) the
anchor/anchors with the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or (ii) an
anchor that has an IoU overlap higher than 0.7 with

4

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

conv feature map

intermediate layer
256-d

2k scores 4k coordinates

sliding window

reg layercls layer

k anchor boxes

bus : 0.996

person : 0.736

boat : 0.970

person : 0.989

person : 0.983
person : 0.983

person : 0.925

cat : 0.982

dog : 0.994

Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

anchors. An anchor is centered at the sliding window
in question, and is associated with a scale and aspect
ratio (Figure 3, left). By default we use 3 scales and
3 aspect ratios, yielding k = 9 anchors at each sliding
position. For a convolutional feature map of a size
W ⇥H (typically ⇠2,400), there are WHk anchors in
total.

Translation-Invariant Anchors
An important property of our approach is that it

is translation invariant, both in terms of the anchors
and the functions that compute proposals relative to
the anchors. If one translates an object in an image,
the proposal should translate and the same function
should be able to predict the proposal in either lo-
cation. This translation-invariant property is guaran-
teed by our method5. As a comparison, the MultiBox
method [27] uses k-means to generate 800 anchors,
which are not translation invariant. So MultiBox does
not guarantee that the same proposal is generated if
an object is translated.

The translation-invariant property also reduces the
model size. MultiBox has a (4 + 1)⇥ 800-dimensional
fully-connected output layer, whereas our method has
a (4 + 2) ⇥ 9-dimensional convolutional output layer
in the case of k = 9 anchors. As a result, our output
layer has 2.8 ⇥ 104 parameters (512 ⇥ (4 + 2) ⇥ 9
for VGG-16), two orders of magnitude fewer than
MultiBox’s output layer that has 6.1⇥ 106 parameters
(1536 ⇥ (4 + 1) ⇥ 800 for GoogleNet [34] in MultiBox
[27]). If considering the feature projection layers, our
proposal layers still have an order of magnitude fewer
parameters than MultiBox6. We expect our method
to have less risk of overfitting on small datasets, like
PASCAL VOC.

5. As is the case of FCNs [7], our network is translation invariant
up to the network’s total stride.

6. Considering the feature projection layers, our proposal layers’
parameter count is 3 ⇥ 3 ⇥ 512 ⇥ 512 + 512 ⇥ 6 ⇥ 9 = 2.4 ⇥ 106;
MultiBox’s proposal layers’ parameter count is 7⇥ 7⇥ (64 + 96 +
64 + 64)⇥ 1536 + 1536⇥ 5⇥ 800 = 27⇥ 106.

Multi-Scale Anchors as Regression References
Our design of anchors presents a novel scheme

for addressing multiple scales (and aspect ratios). As
shown in Figure 1, there have been two popular ways
for multi-scale predictions. The first way is based on
image/feature pyramids, e.g., in DPM [8] and CNN-
based methods [9], [1], [2]. The images are resized at
multiple scales, and feature maps (HOG [8] or deep
convolutional features [9], [1], [2]) are computed for
each scale (Figure 1(a)). This way is often useful but
is time-consuming. The second way is to use sliding
windows of multiple scales (and/or aspect ratios) on
the feature maps. For example, in DPM [8], models
of different aspect ratios are trained separately using
different filter sizes (such as 5⇥7 and 7⇥5). If this way
is used to address multiple scales, it can be thought
of as a “pyramid of filters” (Figure 1(b)). The second
way is usually adopted jointly with the first way [8].

As a comparison, our anchor-based method is built
on a pyramid of anchors, which is more cost-efficient.
Our method classifies and regresses bounding boxes
with reference to anchor boxes of multiple scales and
aspect ratios. It only relies on images and feature
maps of a single scale, and uses filters (sliding win-
dows on the feature map) of a single size. We show by
experiments the effects of this scheme for addressing
multiple scales and sizes (Table 8).

Because of this multi-scale design based on anchors,
we can simply use the convolutional features com-
puted on a single-scale image, as is also done by
the Fast R-CNN detector [2]. The design of multi-
scale anchors is a key component for sharing features
without extra cost for addressing scales.

3.1.2 Loss Function
For training RPNs, we assign a binary class label
(of being an object or not) to each anchor. We as-
sign a positive label to two kinds of anchors: (i) the
anchor/anchors with the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or (ii) an
anchor that has an IoU overlap higher than 0.7 with

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Segmentation

Segmentation: Label per pixel, e.g., MS COCO

[Hu et al 2017]

VN\�����

EXLOGLQJ�����

WUXFN�����

SROH�����

WUHH�����
EXLOGLQJ�����

WUHH�����

WUHH�����

FDU�����

FRQH�����FRQH�����FRQH�����

FDU�����
FRQH����� FRQH�����FRQH�����

VLJQ�����

WUXFN�����

EHQFK�����

WUXFN�����

WUHH����� WUHH�����

WLUH�����
WLUH�����

ZLQGRZ�����ZLQGRZ�����

WLUH�����

PDQ�����

VKLUW�����ELF\FOH����� ELF\FOH�����

ELF\FOH�����

PDQ�����

ELF\FOH�����

PDQ�����
VKLUW�����

KHOPHW����� KHOPHW�����

KHOPHW�����KHOPHW�����
KHOPHW�����KHOPHW�����

KHOPHW�����
KHOPHW�����

VKRUWBSDQWV�����
KHOPHW�����KHOPHW�����

KHOPHW����� KHOPHW�����

IORRU�����

FHLOLQJ�����

ZDOO�����

IORRU�����

ZDOO�����
GRRUZD\�����ZLQGRZ�����

SLOORZ�����SLOORZ�����

GRRU�����

WRZHO�����

SLOORZ�����

PDQ�����

WUHH�����

ZRPDQ�����PDQ�����

MHDQ�����
MHDQ�����

VKLUW�����VKLUW�����

MHDQ�����

VKLUW�����

VKRH�����

IULVEHH�����

IULVEHH�����

EHDUG�����

KDW�����

Figure 5. Example mask predictions from our MaskX R-CNN on 3000 classes in Visual Genome. The green boxes are the 80 classes

that overlap with COCO (set A with mask training data) while the red boxes are the remaining 2920 classes not in COCO (set B without

mask training data). It can be seen that our model generates reasonable mask predictions on many classes in set B. See §5 for details.

the model does a reasonable job segmenting isolated trees,
but tends to fail at segmentation when the detected ‘tree’ is
more like a forest. Finally, the detector does a reasonable
job at segmenting whole objects and parts of those objects,
such as windows of a trolley car or handles of a refrigera-
tor. Compared to a detector trained on 80 COCO categories,
these results illustrate the exciting potential of systems that
can recognize and segment thousands of concepts.

6. Conclusion

This paper addresses the problem of large-scale instance
segmentation by formulating a partially supervised learn-
ing paradigm in which only a subset of classes have in-
stance masks during training while the rest have box an-

notations. We propose a novel transfer learning approach,
where a learned weight transfer function predicts how each
class should be segmented based on parameters learned
for detecting bounding boxes. Experimental results on the
COCO dataset demonstrate that our method greatly im-
proves the generalization of mask prediction to categories
without mask training data. Using our approach, we build a
large-scale instance segmentation model over 3000 classes
in the Visual Genome dataset. The qualitative results are en-
couraging and illustrate an exciting new research direction
into large-scale instance segmentation. They also reveal that
scaling instance segmentation to thousands of categories,
without full supervision, is an extremely challenging prob-
lem with ample opportunity for improved methods.

4240

EXLOGLQJ�����
WUHH�����

EXLOGLQJ�����

EXV�����

WUHH�����

WUHH�����

EXV�����

WUHH�����

SROH�����

ELF\FOH�����

VLJQ�����

ZLQGRZ�����ZLQGRZ�����ZLQGRZ�����

ZLQGRZ�����

ZLQGRZ�����

ZLQGRZ�����

ZLQGRZ�����

ZLQGRZ�����

ZLQGRZ�����
ZLQGRZ�����

VLJQ�����
PDQ�����

WUHH�����WUHH����� SROH�����

ELF\FOH�����

FDU�����PDQ�����
PDQ�����

VLJQ�����

VLJQ�����

VLJQ�����

VLJQ�����

MDFNHW����� FDU�����

VLJQ�����

VLJQ�����

ZLQGRZ�����ZLQGRZ�����

VLJQ�����

VLJQ�����

ZLQGRZ�����

ZLQGRZ�����

ZLQGRZ�����

VLJQ�����

PDQ�����PDQ�����

PDQ�����

ODSWRS�����

VXLW�����

PDQ�����

WURXVHU�����

NH\ERDUG�����

EDJ�����

KDLU�����

PDQ�����

QHFNODFH�����

DFFRXQWDQW�����

QHFNWLH�����

VKRH�����

QHFNWLH�����

EXWWRQ�����

EXWWRQ�����EXWWRQ�����

VN\�����

EXLOGLQJ�����

WUXFN�����

SROH�����

WUHH�����
EXLOGLQJ�����

WUHH�����

WUHH�����

FDU�����

FRQH�����FRQH�����FRQH�����

FDU�����
FRQH����� FRQH�����FRQH�����

VLJQ�����

WUXFN�����

EHQFK�����

WUXFN�����

WUHH����� WUHH�����

WLUH�����
WLUH�����

ZLQGRZ�����ZLQGRZ�����

WLUH�����

PDQ�����

VKLUW�����ELF\FOH����� ELF\FOH�����

ELF\FOH�����

PDQ�����

ELF\FOH�����

PDQ�����
VKLUW�����

KHOPHW����� KHOPHW�����

KHOPHW�����KHOPHW�����
KHOPHW�����KHOPHW�����

KHOPHW�����
KHOPHW�����

VKRUWBSDQWV�����
KHOPHW�����KHOPHW�����

KHOPHW����� KHOPHW�����

Figure 5. Example mask predictions from our MaskX R-CNN on 3000 classes in Visual Genome. The green boxes are the 80 classes

that overlap with COCO (set A with mask training data) while the red boxes are the remaining 2920 classes not in COCO (set B without

mask training data). It can be seen that our model generates reasonable mask predictions on many classes in set B. See §5 for details.

the model does a reasonable job segmenting isolated trees,
but tends to fail at segmentation when the detected ‘tree’ is
more like a forest. Finally, the detector does a reasonable
job at segmenting whole objects and parts of those objects,
such as windows of a trolley car or handles of a refrigera-
tor. Compared to a detector trained on 80 COCO categories,
these results illustrate the exciting potential of systems that
can recognize and segment thousands of concepts.

6. Conclusion

This paper addresses the problem of large-scale instance
segmentation by formulating a partially supervised learn-
ing paradigm in which only a subset of classes have in-
stance masks during training while the rest have box an-

notations. We propose a novel transfer learning approach,
where a learned weight transfer function predicts how each
class should be segmented based on parameters learned
for detecting bounding boxes. Experimental results on the
COCO dataset demonstrate that our method greatly im-
proves the generalization of mask prediction to categories
without mask training data. Using our approach, we build a
large-scale instance segmentation model over 3000 classes
in the Visual Genome dataset. The qualitative results are en-
couraging and illustrate an exciting new research direction
into large-scale instance segmentation. They also reveal that
scaling instance segmentation to thousands of categories,
without full supervision, is an extremely challenging prob-
lem with ample opportunity for improved methods.

4240

ILHOG����� PDQ�����

XQLIRUP�����

WURXVHU�����

WURXVHU�����

EDW�����

VRFN�����VRFN�����

VKRH�����
VKRH�����

FDS�����

VKRH�����

FDS�����

VKRH�����

FDS�����

EDW�����

JORYH�����EHOW�����

KDQG�����

KDQG�����

Figure 5. Example mask predictions from our MaskX R-CNN on 3000 classes in Visual Genome. The green boxes are the 80 classes

that overlap with COCO (set A with mask training data) while the red boxes are the remaining 2920 classes not in COCO (set B without

mask training data). It can be seen that our model generates reasonable mask predictions on many classes in set B. See §5 for details.

the model does a reasonable job segmenting isolated trees,
but tends to fail at segmentation when the detected ‘tree’ is
more like a forest. Finally, the detector does a reasonable
job at segmenting whole objects and parts of those objects,
such as windows of a trolley car or handles of a refrigera-
tor. Compared to a detector trained on 80 COCO categories,
these results illustrate the exciting potential of systems that
can recognize and segment thousands of concepts.

6. Conclusion

This paper addresses the problem of large-scale instance
segmentation by formulating a partially supervised learn-
ing paradigm in which only a subset of classes have in-
stance masks during training while the rest have box an-

notations. We propose a novel transfer learning approach,
where a learned weight transfer function predicts how each
class should be segmented based on parameters learned
for detecting bounding boxes. Experimental results on the
COCO dataset demonstrate that our method greatly im-
proves the generalization of mask prediction to categories
without mask training data. Using our approach, we build a
large-scale instance segmentation model over 3000 classes
in the Visual Genome dataset. The qualitative results are en-
couraging and illustrate an exciting new research direction
into large-scale instance segmentation. They also reveal that
scaling instance segmentation to thousands of categories,
without full supervision, is an extremely challenging prob-
lem with ample opportunity for improved methods.

4240

visualgenome.org [Krishna et al 2017]

Structured Image Understanding
“Girl feeding large elephant”
“A man taking a picture behind girl”

http://visualgenome.org

Object Classification
Classification: Label per image, e.g., ImageNet

Detection: Label per region, e.g., PASCAL VOC

[Krizhevsky et al 2011][Ren et al 2016]Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Classification: Instance vs. Category

Instance of Aeroplane (Wright Flyer)

Category of Aeroplane [Caltech 101]

Classification: Instance vs. Category

Instance of a cat

Category of domestic cats

Taxonomy of Cats

European Wildcat
[the wasp factory]

Ocelot
[Jitze Couperus]

Bengal Tiger
[Omveer Choudhary]

[inaturalist.org]14

http://inaturalist.org

Problem:
Assign new observations into one of a fixed set of categories (classes)

Key Idea(s):
Build a model of data in a given category based on observations of
instances in that category

Classification

Classification

Classification

Classification

A classifier is a procedure that accepts as input a set of features and outputs a
class label (probability over class labels)

Classifiers can be binary (face vs. not-face) or multi-class (cat, dog, horse, ...).

We build a classifier using a training set of labelled examples , where
each is a feature vector and each is a class label.

Given a previously unseen observation, we use the classifier to predict its class
label.

{(xi, yi)}
xi yi

[1, 0, 0, 0, ...][0]/[1]Binary: Multi-class: (one-hot)

Classification

A classifier is a procedure that accepts as input a set of features and outputs a
class label (probability over class labels)

Classifiers can be binary (face vs. not-face) or multi-class (cat, dog, horse, ...).

We build a classifier using a training set of labelled examples , where
each is a feature vector and each is a class label.

Given a previously unseen observation, we use the classifier to predict its class
label.

{(xi, yi)}
xi yi

[1, 0, 0, 0, ...][0]/[1]Binary: Multi-class: (one-hot)

Classification

A classifier is a procedure that accepts as input a set of features and outputs a
class label (probability over class labels)

Classifiers can be binary (face vs. not-face) or multi-class (cat, dog, horse, ...).

We build a classifier using a training set of labelled examples , where
each is a feature vector and each is a class label.

Given a previously unseen observation, we use the classifier to predict its class
label.

{(xi, yi)}
xi yi

[1, 0, 0, 0, ...][0]/[1]Binary: Multi-class: (one-hot)

Classification

A classifier is a procedure that accepts as input a set of features and outputs a
class label (probability over class labels)

Classifiers can be binary (face vs. not-face) or multi-class (cat, dog, horse, ...).

We build a classifier using a training set of labelled examples , where
each is a feature vector and each is a class label.

Given a previously unseen observation, we use the classifier to predict its class
label.

{(xi, yi)}
xi yi

[1, 0, 0, 0, ...][0]/[1]Binary: Multi-class: (one-hot)

Classification
— Collect a database of images with labels
— Use ML to train an image classifier
— Evaluate the classifier on test images

Label

Feature vector
computed from
the image

Example 1: A Toy Classification Problem

Categorize images of fish
— “Atlantic salmon” vs “Pacific salmon”

Use features such as length, width, lightness,
fin shape & number, mouth position, etc.

Given a previously unobserved image of a
salmon, use the learned classifier to guess
whether it is an Atlantic or Pacific salmon

Figure credit: Duda & Hart

Example 2: Real Classification Problem

SUN Dataset

- 131K images

- 908 scene categories

Example 3: Real Classification Problem

ImageNet Dataset

- 14 Million images

- 21K object categories

Example 3: Real Classification Problem

ImageNet Dataset

- 14 Million images

- 21K object categories

Closed-world problem

Issue: Classification assumes that incoming image belongs to one of k classes.
However, in practice it is impossible to enumerate all relevant classes in the
world, nor would doing so be useful. So how do we deal with images which
don’t belong?

Solution: Create an “unknown” or “irrelevant” class.

Image Classification

Classification Algorithms

— Bayes’ Classifier
— Nearest Neighbor Classifier
— SVM Classifier

Representation of Images

— Image pixels directly
— Bag of Words

Bayes Rule (Review and Definitions)

P (c|x) = P (x|c)p(c)
P (x)

posterior probability

Let c be the class label and let x be the measurement (i.e., evidence)

Bayes Rule (Review and Definitions)

P (c|x) = P (x|c)p(c)
P (x)

prior probabilityclass−conditional probability
(a.k.a. likelihood)

unconditional probability
(a.k.a. marginal likelihood)posterior probability

Let c be the class label and let x be the measurement (i.e., evidence)

Bayes Rule (Review and Definitions)

P (c|x) = P (x|c)p(c)
P (x)

Let c be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification; i.e.,
— features are 1D; i.e.,

c 2 {1, 2}
x 2 R

Bayes Rule (Review and Definitions)

P (c|x) = P (x|c)p(c)
P (x)

Let c be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification; i.e.,
— features are 1D; i.e.,

c 2 {1, 2}
x 2 R

Classify x as

1 if p(1|x) > p(2|x) 2 if p(1|x) < p(2|x)

Bayes Rule (Review and Definitions)

P (c|x) = P (x|c)p(c)
P (x)

Let c be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification; i.e.,
— features are 1D; i.e.,

General case:
— multi-class; i.e.,
— features are high-dimensional; i.e.,

c 2 {1, ..., 1000}

c 2 {1, 2}
x 2 R

x 2 R2,000+

Assume we have two classes:
We have a person who’s gender we don’t know, who’s name is drew

Example: Discrete Bayes Classifier
c2 = femalec1 = male

Example from: Eamonn Keogh

Assume we have two classes:
We have a person who’s gender we don’t know, who’s name is drew

c2 = femalec1 = male

Example: Discrete Bayes Classifier

Example from: Eamonn Keogh

Assume we have two classes:
We have a person who’s gender we don’t know, who’s name is drew

Classifying drew as being male or female is equivalent to asking is it more
probable that drew is male or female, i.e. which is greater

c2 = femalec1 = male

p(male|drew) = p(drew|male)p(male)

p(drew)
p(female|drew) = p(drew|female)p(female)

p(drew)

Example: Discrete Bayes Classifier

Example from: Eamonn Keogh

Assume we have two classes:
We have a person who’s gender we don’t know, who’s name is drew

Classifying drew as being male or female is equivalent to asking is it more
probable that drew is male or female, i.e. which is greater

c2 = femalec1 = male

p(male|drew) = p(drew|male)p(male)

p(drew)
p(female|drew) = p(drew|female)p(female)

p(drew)

Example: Discrete Bayes Classifier

p(male|drew) = p(drew|male)p(male)

p(drew)

Example from: Eamonn Keogh

Example: Discrete Bayes Classifier

p(male|drew) = p(drew|male)p(male)

p(drew)

Name Gender
Drew	 Male

Claudia Female

Drew Female

Drew Female

Alberto Male

Karin Female	

Nina Female	

Sergio Male

Example from: Eamonn Keogh

Example: Discrete Bayes Classifier

p(male|drew) = p(drew|male)p(male)

p(drew)

Name Gender
Drew	 Male

Claudia Female

Drew Female

Drew Female

Alberto Male

Karin Female	

Nina Female	

Sergio Male

p(male) =
3

8

p(drew|male) =
1

3

p(drew) =
3

8

Example from: Eamonn Keogh

Example: Discrete Bayes Classifier

p(male|drew) = p(drew|male)p(male)

p(drew)

Name Gender
Drew	 Male

Claudia Female

Drew Female

Drew Female

Alberto Male

Karin Female	

Nina Female	

Sergio Male

p(male) =
3

8

p(drew|male) =
1

3

p(drew) =
3

8

Example from: Eamonn Keogh

Example: Discrete Bayes Classifier

p(male|drew) = p(drew|male)p(male)

p(drew)

Name Gender
Drew	 Male

Claudia Female

Drew Female

Drew Female

Alberto Male

Karin Female	

Nina Female	

Sergio Male

p(male) =
3

8

p(drew|male) =
1

3

p(drew) =
3

8

Example from: Eamonn Keogh

Example: Discrete Bayes Classifier

p(male|drew) = p(drew|male)p(male)

p(drew)

Name Gender
Drew	 Male

Claudia Female

Drew Female

Drew Female

Alberto Male

Karin Female	

Nina Female	

Sergio Male

p(male) =
3

8

p(drew|male) =
1

3

p(drew) =
3

8

Example from: Eamonn Keogh

Example: Discrete Bayes Classifier

p(male|drew) = p(drew|male)p(male)

p(drew)

Name Gender
Drew	 Male

Claudia Female

Drew Female

Drew Female

Alberto Male

Karin Female	

Nina Female	

Sergio Male

p(male) =
3

8

p(drew|male) =
1

3

p(drew) =
3

8

= 0.125

Example from: Eamonn Keogh

Name Gender
Drew	 Male

Claudia Female

Drew Female

Drew Female

Alberto Male

Karin Female	

Nina Female	

Sergio Male

p(male|drew) = p(drew|male)p(male)

p(drew)

p(male) =
3

8

p(drew|male) =
1

3

p(drew) =
3

8

= 0.125

p(female|drew) = p(drew|female)p(female)

p(drew)

p(drew|female) =
2

5

p(female) =
5

8

Example: Discrete Bayes Classifier

= 0.25

Example from: Eamonn Keogh

Example: 2D Bayes Classifier

17 samples of grass
15 samples of sky

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Blue color
channel value

Green color
channel value

Blue color
channel value

Green color
channel value

Example: 2D Bayes Classifier

These could be (g,b) pixel value of an image patch with grass

These could be (g,b) pixel value of an image patch with sky

Given a (g,b) pixel value from a
new patch is it more likely to be
be grass or sky?

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

17 samples of grass
15 samples of sky

Example: 2D Bayes Classifier

p(blue) =
17

17 + 15

p(green) =
15

17 + 15

Blue color
channel value

Green color
channel value

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

17 samples of grass
15 samples of sky

Example: 2D Bayes Classifier

p(blue) =
17

17 + 15

p(green) =
15

17 + 15

p(·|green) = N (µgreen,⌃green)

p(·|blue) = N (µblue,⌃blue)

Green color
channel value

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

17 samples of grass
15 samples of sky

Example: 2D Bayes Classifier

p(blue) =
17

17 + 15

p(green) =
15

17 + 15

p(·|green) = N (µgreen,⌃green)

p(·|blue) = N (µblue,⌃blue)

p(blue|) / N (;µblue,⌃blue)p(blue)

p(green|) / N (;µgreen,⌃green)p(green)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

17 samples of grass
15 samples of sky

Bayes Rule (Review and Definitions)

P (c|x) = P (x|c)p(c)
P (x)

Let c be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification; i.e.,
— features are 1D; i.e.,

General case:
— multi-class; i.e.,
— features are high-dimensional; i.e.,

c 2 {1, ..., 1000}

c 2 {1, 2}
x 2 R

x 2 R2,000+

Bayes’ Risk
Some errors may be inevitable: the minimum risk (shaded area) is called the
Bayes’ risk

Forsyth & Ponce (2nd ed.) Figure 15.1

Bayes’ Risk
Some errors may be inevitable: the minimum risk (shaded area) is called the
Bayes’ risk

Forsyth & Ponce (2nd ed.) Figure 15.1

samples of class 1
miss-classified as class 2

samples of class 2
miss-classified as class 1

Loss Functions and Classifiers

Loss

		 — Some errors may be more expensive than others
 Example: A fatal disease that is easily cured by a cheap medicine with no

side-effects. Here, false positives in diagnosis are better than false negatives

— We discuss two class classification:
 L(1 → 2) is the loss caused by calling 1 a 2

Total risk of using classifier s is

R(s) = Pr{1 → 2 | using s} L(1 → 2) + Pr{2 → 1 | using s} L(2 → 1)
Probability of Miss-classification

Loss
(i.e. cost of miss-classification)

Probability of Miss-classification
Loss

(i.e. cost of miss-classification)

Bayes’ Risk
Some errors may be inevitable: the minimum risk (shaded area) is called the
Bayes’ risk

Forsyth & Ponce (2nd ed.) Figure 15.1

Taxonomy of Cats

European Wildcat
[the wasp factory]

Ocelot
[Jitze Couperus]

Bengal Tiger
[Omveer Choudhary]

[inaturalist.org]55

http://inaturalist.org

Training Error, Testing Error, and Overfitting

Training error is the error a classifier makes on the training set

We want to minimize the testing error – the error the classifier makes on an
unseen testing set

Classifiers that have small training error may not necessarily have small testing
error

The phenomenon that causes testing error to be worse than training error is
called overfitting

Underfitting: model is too simple to represent all the relevant class
characteristics

Training Error, Testing Error, and Overfitting

Training data points

Testing data points

Underfitting: model is too simple to represent all the relevant class
characteristics

Overfitting: model is too complex and fits irrelevant characteristics (noise) in
the data

Training Error, Testing Error, and Overfitting

Training data points

Testing data points

Underfitting: model is too simple to represent all the relevant class
characteristics

Overfitting: model is too complex and fits irrelevant characteristics (noise) in
the data

Training Error, Testing Error, and Overfitting

Just right

Training data points

Testing data points

Cross-Validation

We cannot reliably estimate the error rate of the classifier using the training set

An alternative is to split some training data to form a validation set, then train
the classifier on the rest of the data and evaluate on the validation set

We cannot reliably estimate the error rate of the classifier using the training set

An alternative is to split some training data to form a validation set, then train
the classifier on the rest of the data and evaluate on the validation set

Cross-Validation

We cannot reliably estimate the error rate of the classifier using the training set

An alternative is to split some training data to form a validation set, then train
the classifier on the rest of the data and evaluate on the validation set

Cross-Validation

Cross-validation involves performing multiple splits and averaging the error
over all splits

Cross-Validation

Confusion Matrix
When evaluating a multi-class classifier, it may be useful to know how often
certain classes are often misclassified as others.

A confusion matrix is a table whose (i,j)th entry is the frequency (or
proportion) an item of true class i was labelled as j by the classifier.

Forsyth & Ponce (2nd ed.) Figure 15.3. Original credit: H. Zhang et al., 2006.

Classification strategies fall under two broad types: parametric and non-
parametric.

Classifier Strategies

Classification strategies fall under two broad types: parametric and non-
parametric.

Parametric classifiers are model driven. The parameters of the model are
learned from training examples. New data points are classified by the learned
model.
— fast, compact
— flexibility and accuracy depend on model assumptions

Classifier Strategies

Classification strategies fall under two broad types: parametric and non-
parametric.

Parametric classifiers are model driven. The parameters of the model are
learned from training examples. New data points are classified by the learned
model.
— fast, compact
— flexibility and accuracy depend on model assumptions

Non-parametric classifiers are data driven. New data points are classified by
comparing to the training examples directly. "The data is the model".
— slow
— highly flexible decision boundaries

Classifier Strategies

Nearest Neighbor Classifier
Given a new data point, assign the label of nearest training example in feature
space.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Nearest Neighbor Classifier
Given a new data point, assign the label of nearest training example in feature
space.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

k-Nearest Neighbor (kNN) Classifier

We can gain some robustness to noise by voting over multiple neighbours.

Given a new data point, find the k nearest training examples. Assign the label
by majority vote.

Simple method that works well if the distance measure correctly weights the
various dimensions

For large data sets, as k increases kNN approaches optimality in terms of
minimizing probability of error

kNN decision boundaries respond to local clusters where one class dominates
Figure credit: Hastie, Tibshirani & Friedman (2nd ed.)

k-Nearest Neighbor (kNN) Classifier

Classification strategies fall under two broad types: parametric and non-
parametric.

Parametric classifiers are model driven. The parameters of the model are
learned from training examples. New data points are classified by the learned
model.
— fast, compact
— flexibility and accuracy depend on model assumptions

Non-parametric classifiers are data driven. New data points are classified by
comparing to the training examples directly. "The data is the model".
— slow
— highly flexible decision boundaries

Classifier Strategies

Support Vector Machines (SVM)

Idea: Try to obtain the decision boundary directly

The decision boundary is parameterized as a separating hyperplane in
feature space.
— e.g. a separating line in 2D

We choose the hyperplane that is as far as possible from each class - that
maximizes the distance to the closest point from either class.

image features

weights

Linear Classifier

f(xi,W,b) = Wxi + b

Defines a score function:

bias vector
(parameters)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Linear Classifier

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Learn the decision boundary

Support Vector Machines (SVM)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Support Vector Machines (SVM)

What’s the best w ?

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

What’s the best w ?

Support Vector Machines (SVM)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

What’s the best w ?

Support Vector Machines (SVM)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

What’s the best w ?

Support Vector Machines (SVM)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

What’s the best w ?

Support Vector Machines (SVM)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intuitively, the line that is the farthest
from all interior points

What’s the best w ?

Support Vector Machines (SVM)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Want a hyperplane that is far away from ‘inner points’

support vectors

What’s the best w ?

Support Vector Machines (SVM)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Find hyperplane w such that …

the gap between parallel hyperplanes

margin

is maximized

Support Vector Machines (SVM)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image Classification

Classification Algorithms

— Bayes’ Classifier
— Nearest Neighbor Classifier
— SVM Classifier

Representation of Images

— Image pixels directly
— Bag of Words

Visual Words

Many algorithms for image classification accumulate evidence on the basis of
visual words.

To classify a text document (e.g. as an article on sports, entertainment,
business, politics) we might find patterns in the occurrences of certain words.

1 6 2 1 0 0 0 1

Tartan robot CHIMP CMU bio soft ankle sensor

0 4 0 1 4 5 3 2

Tartan robot CHIMP CMU bio soft ankle sensor

Vector Space Model
G. Salton. ‘Mathematics and Information Retrieval’ Journal of Documentation,1979

http://www.fodey.com/generators/newspaper/snippet.asp

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What is the similarity between two documents?

counts the number of occurrences just a histogram over words

Vector Space Model
A document (datapoint) is a vector of counts over each word (feature)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

A document (datapoint) is a vector of counts over each word (feature)

What is the similarity between two documents?

counts the number of occurrences just a histogram over words

Use any distance you want but the cosine distance is fast and well
designed for high-dimensional vector spaces:

Vector Space Model

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

In images, the equivalent of a word is a local image patch. The local image
patch is described using a descriptor such as SIFT.

We construct a vocabulary or codebook of local descriptors, containing
representative local descriptors.

Question: How might we construct such a codebook? Given a large sample of
SIFT descriptors, say 1 million, how can we choose a small number of
‘representative’ SIFT codewords, say 1000?

Visual Words

What Objects do These Parts Belong To?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

a collection of local features
(bag-of-features)

An object as

Some local feature are
very informative

• deals well with occlusion
• scale invariant
• rotation invariant

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

(not so) Crazy Assumption

spatial information of local features
can be ignored for object recognition (i.e., verification)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Recall: Texture Representation

Universal texton dictionary

histogram

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors

for each image

Classify:
 Train and test data using BOWs

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors

for each image

Classify:
 Train and test data using BOWs

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Dictionary Learning: Learn Visual Words using Clustering

1. Extract features (e.g., SIFT) from images

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

98

1. Dictionary Learning: Learn Visual Words using Clustering

2. Learn visual dictionary (e.g., K-means clustering)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What Features Should We Extract?

— Regular grid
Vogel & Schiele, 2003
Fei-Fei & Perona, 2005

— Interest point detector
Csurka et al. 2004
Fei-Fei & Perona, 2005
Sivic et al. 2005

— Other methods
Random sampling (Vidal-Naquet & Ullman,
2002)
Segmentation-based patches (Barnard et
al. 2003)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Extracting SIFT Patches

Normalize patch

Detect patches
[Mikojaczyk and Schmid ’02]
[Mata, Chum, Urban & Pajdla, ’02]
[Sivic & Zisserman, ’03]

Compute SIFT
descriptor

 [Lowe’99]

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

…

Extracting SIFT Patches

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Creating Dictionary

…

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Clustering

…

Creating Dictionary

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Clustering

Visual vocabulary
…

Creating Dictionary

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

K-means clustering

K-Means Clustering

Assume we know how many clusters there are in the data - denote by K

Each cluster is represented by a cluster center, or mean

Our objective is to minimize the representation error (or quantization error)
in letting each data point be represented by some cluster center

Minimize

X

i2clusters

8
<

:
X

j2ith cluster

||xj � µi||2
9
=

;

K-means clustering alternates between two steps:

 1. Assume the cluster centers are known (fixed). Assign each point to
the closest cluster center.

	 2. Assume the assignment of points to clusters is known (fixed).
Compute the best center for each cluster, as the mean of the points assigned
to the cluster.

The algorithm is initialized by choosing K random cluster centers

K-means converges to a local minimum of the objective function
— Results are initialization dependent

K-Means Clustering

Example 1: K-Means Clustering

−0.2 0 0.2 0.4 0.6 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

True Clusters

Example 1: K-Means Clustering

−0.2 0 0.2 0.4 0.6 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Clusters at iteration 1

Example 1: K-Means Clustering

−0.2 0 0.2 0.4 0.6 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Clusters at iteration 2

Example 1: K-Means Clustering

−0.2 0 0.2 0.4 0.6 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Clusters at iteration 3

Example 1: K-Means Clustering

−0.2 0 0.2 0.4 0.6 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Clusters at iteration 13

…

Source: B. Leibe

Example Visual Dictionary

Appearance codebook
…

…

…
…

…

Example Visual Dictionary

Source: B. Leibe

Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors

for each image

Classify:
 Train and test data using BOWs

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

2. Encode: build Bag-of-Words (BOW) vectors for each image

1. Quantization: image features gets associated
to a visual word (nearest cluster center)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

2. Histogram: count the number of visual word occurrences

2. Encode: build Bag-of-Words (BOW) vectors for each image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

…..

fr
eq

ue
nc
y

codewords

2. Encode: build Bag-of-Words (BOW) vectors for each image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors

for each image

Classify:
 Train and test data using BOWs

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

3. Classify: Train and text classifier using BOWs

K nearest
neighbors

Naïve
Bayes

Support
Vector

Machine

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

