THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 19: Visual Classification 1, Bag of Words



Menu for Today
Topics:

— Visual Classification — Bag of Words Representations

— Today’s Lecture: Szeliski 11.4, 12.3-12.4, 9.3, 5.1-5.2

Reminders:

— Assignment 2 graded and posted

— Assignment 3 will be graded by the end of the week
— Assignment 4 is due today
— Assignment 5. Scene Recognition with Bag of Words is now available



Today’s “fun” Example:

Audio-Visual Scene Analysis with
Selt-Supervised Multisensory Features

Andrew Owens Alexel A. Efros
UC Berkeley
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Object Recognition / Detection

Template matching ...
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Object Recognition / Detection

Object recognition with SIFT features and RANSAC [Lowe 1999]

What is present”? Where”? \WWhat orientation®



Object Recognition / Detection

PASCAL Visual Object Classes Challenges [2005-2012]

birdFrortalTrunc

hicycle

L

hicycleTrunc

What is present”? Where”? \WWhat orientation®



Object Classification and Detection

Detection: Label per region, e.qg., PASCAL VOC
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Object Classification and Detection

Classification: Label per image, e.g., ImageNet

container ship motor scooter pard - ill " mushroom

mite | container ship motor scooter ~ ledpard convertible agaric

B black widow lifeboat | | go-kart jaguar grille mushroom
cockroach amphibian| | moped cheetah pickup jelly fungus

[ tick fireboat bumper car snow leopard beach wagon gill fungus
[ starfish drilling platform golfcart Egyptian cat fire engine || dead-man's-fingers

Detection: Label per region, e.g., PASCAL VOC
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Segmentation

Segmentation: Label per pixel, e.g., MS COCO
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Structured Image Understanding

‘Girl feeding large elephant”

“A man taking a picture behind girl”

man
;-\\\\
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( large )

visualgenome.org [ Krishna et al 2017 ]


http://visualgenome.org

Object Classification

Classification: Label per image, e.g., ImageNet

’ 8.
LR T . Lo

container ship

motor scooter

grille

mushroom

mite |

container ship

motor scooter

black widow
cockroach
tick

starfish

lifeboat

amphibian
fireboat
drilling platform

go-kart
moped
bumper car
golfcart

cheetah
snow leopard
Egyptian cat

convertible

grille

pickup

beach wagon
fire engine

agaric

mushroom

ﬁ

jelly fungus
gill fungus
dead-man's-fingers

[Krizhevsky et al 20111l Ren et al 2016 |




Classification: Instance vs. Category

Category of Aeroplane [ Caltech 101 ]



Classification: Instance vs. Category

Category of domestic cats



Taxonomy of Cats

9 Mammals (Class Mammalia)

5 Therians (Subclass Theria) Bengal Tiger
& Placental Mammals (Infraclass Placentalia) [Omveer ChOUdharY]

“ Ungulates, Carnivorans, and Allies (Superorder Laurasiatheria)

'+ Carnivorans (Order Carnivora)

Ocelot
[Jitze Couperus]

= Felines (Family Felidae)
“ Small Cats (Subfamily Felinae)
— Genus Felis
— Chinese Mountain Cat (relis bieti)

-+ Domestic Cat (Felis catus)

“ Jungle Cat (relis chaus) Eu r’C)I:)ean Wlldcat

[the wasp factory]
—  African Wildcat (relis lybica)

L Sand Cat (Felis margarita)

' Black-footed Cat (relis nigripes)

> European Wildcat (relis silvestris) [ inatu ralist.org ] | 4


http://inaturalist.org

Classification

Problem:
Assign new observations into one of a fixed set of categories (classes)

Key Idea(s):

Build a model of data in a given category based on observations of
instances In that category



Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}
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Classification

A classifier is a procedure that accepts as input a set of features and outputs a
class label (probability over class labels)
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Classification

A classifier is a procedure that accepts as input a set of features and outputs a
class label (probability over class labels)

Classifiers can be binary (face vs. not-face) or multi-class (cat, dog, horse, ...).

We build a classifier using a training set of labelled examples { (x;, ¥:) }, where
each X; IS a feature vector and each vy; Is a class label.

Given a previously unseen observation, we use the classifier to predict its class
label.

Binary: |0]/[1] Multi-class: {1,0,0,0,...| (one-hot)



Classification

— Collect a database of images with labels
— Use ML to train an image classifier
— Evaluate the classitier on test images

Example training set

L abel hat

‘ : . . i!.,\,ﬁ
. X
Feature vector lﬁ. h’ - . ‘s _
computed from — ‘A, OB ol =) & ’C‘H ‘
— xg ’ — *' | " . . . .‘ ‘.

the image
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Example 1: A Toy Classification Problem

Categorize images of fish
— “Atlantic salmon” vs “Pacific salmon”

Use features such as length, width, lightness,
fin shape & number, mouth position, etc.

Given a previously unobserved image of a
salmon, use the learned classifier to guess
whether it Is an Atlantic or Pacific salmon

Figure credit: Duda & Hart



Example 2: Real Classification Problem

SUN Dataset
- 131K Images

- 908 scene categories

outdoor
natural

outdoor
man-made

workplace
(office building, factory, lab, etc.)

home or hotel

transportation
(vehicle interiors, stations, etc.)

sports and leisure

cultural (art, education, religion,
millitary, law, politics, etc.)

auto showroom

0\ bakery kitchen
e ' 44 bakery shop

| bank indoor

bank vault

banquet hall




Example 3: Real Classification Problem

ImageNet Dataset

14 Million images

21K object categories
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Closed-world problem

Issue: Classification assumes that incoming image belongs to one of k classes.
However, In practice it Is Impossible to enumerate all relevant classes In the
world, nor would doing so be useful. So how do we deal with images which
don’t belong”

Solution: Create an “unknown” or “irrelevant” class.



Image Classification

Classification Algorithms

— Bayes’ Classifier

— Nearest Neighbor Classifier
— SVM Classifier

Representation of Images

— |Image pixels directly
— Bag of Words



Bayes Rule (Review and Definitions)

L et ¢ be the class label and let x be the measurement (i.e., evidence)

P(clx) =

posterior probability



Bayes Rule (Review and Definitions)

Let ¢ be the class label and let x be the measurement (i.e., evidence)

prior probability

unconditional probabillity
(a.k.a. marginal likelihood)




Bayes Rule (Review and Definitions)
et ¢ be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification: i.e., ¢ € {1,2}
— features are 1D; 1.e., x € R
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Bayes Rule (Review and Definitions)
et ¢ be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification: i.e., ¢ € {1,2}
— features are 1D; 1.e., x € R

P(c|x) =

Classify x as

1 if p(1lx) > p(2|x) 2 if p(1x) < p(2|x)



Bayes Rule (Review and Definitions)
et ¢ be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification: i.e., ¢ € {1,2}
— features are 1D; 1.e., x € R

P(clx) =

General case:
— multi-class: i.e., ¢ € {1,...,1000}
— features are high-dimensional; i.e., z € R0+



Example: Discrete Bayes Classifier

Assume we have two classes: c1 = male co = female

We have a person who’s gender we don’t know, who’s name is drew

Example from: Eamonn Keogh
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Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

Assume we have two classes: c1 = male co = female

We have a person who’s gender we don’t know, who’s name is drew

Classifying drew as being male or female is equivalent to asking is it more
probable that drew is male or female, i.e. which is greater p(male|drew)

p(female|drew)

| VA
Drew Carey Drew Barrymore

Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

Assume we have two classes: c1 = male co = female

We have a person who’s gender we don’t know, who’s name is drew

Classifying drew as being male or female is equivalent to asking is it more
probable that drew is male or female, i.e. which is greater p(male|drew)

p(female|drew)

d 1 1
p(male|drew) — p(drew|male)p(male)

p(drew)

Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

p(drew|male)p(male)

le|d =
p(male|drew) o(drew)

Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

p(male) =

p(drew|male) =

p(drew) =

p(drew|male)p(male)

le|d =
p(male|drew) o(drew)

Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

3
p(male) — é

p(drew|male) =

p(drew) =

p(drew|male)p(male)

le|d =
p(male|drew) o(drew)

Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

3
le) = —
p(male) = o
1
p(drew|male) = —
p(drew) =

p(drew|male)p(male)

le|d =
p(male|drew) o(drew)

Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

3
le) = —
p(male) = o
1
p(drew|male) = —
p(drew) = g

p(drew|male)p(male)

le|d =
p(male|drew) o(drew)

Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

3
le) = —
p(male) = o
1
p(drew|male) = —
pldrewy= 2

d 1 1
p(male|drew) = pldrew|male)p(male) = 0.125

_pldre)”

Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

D
3 _°
p(male) - p(female) = ?

1 2

p(drew|male) = p(drew|female) = -

d 1 1
p(male|drew) = pldrew|male)p(male) = 0.125

_pldre)”
p(drew|female)p(female)

p(female|drew) = M = (0.25

Example from: Eamonn Keogh




Exam ple 2 D Bayes C‘assrﬂer Image Credit: loannis (Yannis) Gkioulekas (CMU)

Green color
channel value

O 17 samples of grass

O 15 samples of sky - 0
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Exam ple 2 D Bayes C‘assrﬂer Image Credit: loannis (Yannis) Gkioulekas (CMU)

Green color
T channel value

O 17 samples of grass These could be (g,b) pixel value of an image patch with grass

O 15 samples of sky - 0O
o O O 00
O O O

Given a (g,b) pixel value from a O O
new patch is it more likely to be o© o
be grass or sky? o %o O

O O o &

o O
O 0 O O
These could be (g,b) pixel value of an image patch with sky O Blue color

| O channel value



Exam ple 2 D Bayes C‘assrﬂer Image Credit: loannis (Yannis) Gkioulekas (CMU)

Green color
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o O O O
(blue) L7 o o o O
UE ) =
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O O
15 O o
plgreen) = 0=+ o © §
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O Blue color

channel value



Exam ple 2 D Bayes C‘assrﬂer Image Credit: loannis (Yannis) Gkioulekas (CMU)

Green color
channel value

O 17 samples of grass

.
............
- .
- L]
. .,
.

p(\green) — N(:ugreena Zgreen)
5o o .0

17 O
p(blue) = O O O
174+ 15 0O o

.............................
"
"
.
L]
']
]
.
L]
1]
]
]
]

]
.
]
.
"
"
. x
. PR "
. R .
. .* .
‘ o ]
. . .
. . k
. .
: .
. .

.
—— ¢ o .
. . .
* “‘ -
*
ot .
—
o* . .O
.
o . .
. . .
* .
. . .
. . .
¢ .
.
* .
.
M .
- . 1
. . .
. - .
* s *
N .
3 .,
* L]
. "
.
.

.
.
.
.
.
.
.
.
P
.

L]
L]
]
]
]
L]
---------
---------
-----------
-------------------



Example 2D Bayes C‘assrﬂer Image Credit: loannis (Yannis) Gkioulekas (CMU)
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Bayes Rule (Review and Definitions)
et ¢ be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification: i.e., ¢ € {1,2}
— features are 1D; 1.e., x € R

P(clx) =

General case:
— multi-class: i.e., ¢ € {1,...,1000}
— features are high-dimensional; i.e., z € R0+



Bayes' Risk

Some errors may be inevitable: the minimum risk (shaded area) is called the
Bayes’ risk

Decision Boundary Decision Boundary

p(1]x) p(2|x) p(1]x)

|
X X

Forsyth & Ponce (2nd ed.) Figure 15.1



Bayes' Risk

Some errors may be inevitable: the minimum risk (shaded area) is called the
Bayes’ risk

Decision Boundary Decision Boundary

p(1|x) p(2|x) p(1]x) ' p(2|x)

A

samples of class 2
| miss-classified as class 1

A

\
A\ samples of class 1
9 Miss-classified as class 2

//;-

A}.._

X

Forsyth & Ponce (2nd ed.) Figure 15.1



Loss Functions and Classifiers

Loss

— Some errors may be more expensive than others

Example: A fatal disease that is easily cured by a cheap medicine with no
side-effects. Here, false positives In diagnosis are better than false negatives

— We discuss two class classification:
L(1 — 2) Is the loss caused by calling 1 a 2

Total risk of using classitier s Is

R(s) = Pr{1 = 2 |using s} L(1 = 2) + Pr{2 = 1 | using s} L(2 — 1)

Probability of Miss-classification Probability of Miss-classification

Loss Loss
(i.e. cost of miss-classification) (i.e. cost of miss-classification)



Bayes' Risk

Some errors may be inevitable: the minimum risk (shaded area) is called the
Bayes’ risk

Decision Boundary Decision Boundary

p(1]x) p(2|x) p(1]x)

|
X X

Forsyth & Ponce (2nd ed.) Figure 15.1



Taxonomy of Cats

9 Mammals (Class Mammalia)

5 Therians (Subclass Theria) Bengal Tiger
& Placental Mammals (Infraclass Placentalia) [Omveer ChOUdharY]

“ Ungulates, Carnivorans, and Allies (Superorder Laurasiatheria)

'+ Carnivorans (Order Carnivora)

Ocelot
[Jitze Couperus]

= Felines (Family Felidae)
“ Small Cats (Subfamily Felinae)
— Genus Felis
— Chinese Mountain Cat (relis bieti)

-+ Domestic Cat (Felis catus)

“ Jungle Cat (relis chaus) Eu r’C)I:)ean Wlldcat

[the wasp factory]
—  African Wildcat (relis lybica)

L Sand Cat (Felis margarita)

' Black-footed Cat (relis nigripes)

— European Wildcat (relis silvestris) [ i natu ral iSt.O r'g ] 55


http://inaturalist.org

Training Error, Testing Error, and Overfitting

Training error is the error a classifier makes on the training set

We want to minimize the testing error — the error the classifier makes on an
unseen testing set

Classifiers that have small training error may not necessarily have small testing
error

The phenomenon that causes testing error to be worse than training error Is
called overfitting



Training Error, Testing Error, and Overfitting

Underfitting: model is too simple to represent all the relevant class
characteristics

Testing data points

Training data points
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the data
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Underfitting: model is too simple to represent all the relevant class
characteristics

Overfitting: model is too complex and fits irrelevant characteristics (noise) in
the data

® O ® Testing data points

Training data points




Cross-Validation

We cannot reliably estimate the error rate of the classifier using the training set

An alternative is to split some training data to form a validation set, then train
the classifier on the rest of the data and evaluate on the valigdation set

Try out what hyperparameters work best on test set.

|

train data test data




Cross-Validation

We cannot reliably estimate the error rate of the classifier using the training set

An alternative is to split some training data to form a validation set, then train
the classifier on the rest of the data and evaluate on the valigdation set

Trying out what hyperparameters work best on test set:
Very bad idea. The test set is a proxy for the generalization performance!
Use only VERY SPARINGLY, at the end.

\J

train data test data




Cross-Validation

We cannot reliably estimate the error rate of the classifier using the training set

An alternative is to split some training data to form a validation set, then train
the classifier on the rest of the data and evaluate on the valigdation set

train data test data

'
fold 1 fold 2 fold 3 fold 4 fold 5 test data

|

use to tune hyperparameters
evaluate on test set ONCE at the end




Cross-Validation

Cross-validation involves performing multiple splits and averaging the error
over all splits

train data test data

v
fold 1 fold 2 fold 3 fold 4 fold 5 test data

\x\ Cr;s-valiiiation

cycle through the choice of which fold
Is the validation fold, average results.




Confusion Matrix

When evaluating a multi-class classifier, it may be usetful to know how often
certain classes are often misclassified as others.

A confusion matrix is a table whose (i,|)th entry is the frequency (or
proportion) an item of true class | was labelled as | by the classifier.

Algorithm B confusion matrix with train=15 per class

X
Q

Forsyth & Ponce (2nd ed.) Figure 15.3. Original credit: H. Zhang et al., 2006.
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Classifier Strategies

Classification strategies fall under two broad types: parametric and non-
parametric.

Parametric classifiers are model driven. The parameters of the model are

learned from training examples. New data points are classified by the learned
mModel.

— fast, compact
— flexibility and accuracy depend on model assumptions

Non-parametric classifiers are data driven. New data points are classified by

comparing to the training examples directly. " 'he data is the model”.
— slow

— highly flexible decision boundaries



Nearest Neighbor Classifier

Given a new data point, assign the label of nearest training example in feature
space.
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Image Credit: loannis (Yannis) Gkioulekas (CMU)



Nearest Neighbor Classifier

Given a new data point, assign the label of nearest training example in feature
space.
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Image Credit: loannis (Yannis) Gkioulekas (CMU)



K-Nearest Neighbor (KNN) Classifier

We can gain some robustness to noise by voting over multiple neighbours.

Given a new data point, find the k nearest training examples. Assign the label
oy majority vote.

Simple method that works well if the distance measure correctly weights the
various dimensions

For large data sets, as k increases kNN approaches optimality in terms of
mMiNiMizing probability of error



K-Nearest Neighbor (kNN) Classifier

15-Nearest Neighbor Classifier

1-Nearest Neighbor Classifier

KNN decision boundaries respond to local clusters where one class dominates

Figure credit: Hastie, Tibshirani & Friedman (2nd ed.)



Classifier Strategies

Classification strategies fall under two broad types: parametric and non-
parametric.

Parametric classifiers are model driven. The parameters of the model are

learned from training examples. New data points are classified by the learned
mModel.

— fast, compact
— flexibility and accuracy depend on model assumptions

Non-parametric classifiers are data driven. New data points are classified by

comparing to the training examples directly. " 'he data is the model”.
— slow

— highly flexible decision boundaries



Support Vector Machines (SVM)

Idea: Iry to obtain the decision boundary directly

The decision boundary Is parameterized as a separating hyperplane in
feature space.
— e.g. a separating line in 2D

We choose the hyperplane that is as far as possible from each class - that
Mmaximizes the distance to the closest point from either class.



Linear Classifier

Deflnes a score function:

image features

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

input image

02 |-05| 01 | 20 5l5

15| 13 | 21 | 0.0 231
0 |[025]| 02 |-0.3 24
14 2

L

1 1 -96.8 | cat score

32 | — | 437 .9 dog score

-1.2 61.95 ship score
b f(mzy Wa b)

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

o O Learn the decision boundary

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?
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Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?
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Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?
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Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?

Intuitively, the line that Is the farthest
from all interior points

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?

‘/“ support vectors

Want a hyperplane that is far away from ‘inner points’

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

FINd hyperplane w such that ...

2
the gap between parallel hyperplanes Tw| 1S Maximizedo

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Image Classification

Classification Algorithms

— Bayes’ Classifier

— Nearest Neighbor Classifier
— SVM Classifier

Representation of Images

— |Image pixels directly
— Bag of Words



Visual Words

Many algorithms for image classification accumulate evidence on the basis of
visual words.

To classify a text document (e.g. as an article on sports, entertainment,
business, politics) we might find patterns in the occurrences of certain words.



Vector Space Model

G. Salton. ‘Mathematics and Information Retrieval’ Journal of Documentation, 1979
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Vector Space Model

A document (datapoint) is a vector of counts over each word (feature

— W1,d

What is the similarity between two documents”?

counts the number of occurrences
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just a histogram over words
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Visual Words

In Images, the equivalent of a word is a local image patch. The local image
patch is described using a descriptor such as SIFT.

We construct a vocabulary or codebook of local descriptors, containing
representative local descriptors.



What Objects do These Parts Belong To*

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Some local feature are
very Informative -

a collection of local features
(lbag-of-features)

e deals well with occlusion
e scale Invariant
e rotation invariant

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



(not so) Crazy Assumption

spatial information of local features
can be ignored for object recognition (i.e., verification)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Standard Bag-of-Words Pipeling (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each Image

Classify:
Train and test data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each image

Classify:
Train and test data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Dictionary Learning: Learn Visual Words using Clustering

1. Extract features (e.g., SIFT) from images

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Dictionary Learning: Learn Visual Words using Clustering

2. Learn visual dictionary (e.g., K-means clustering)

08 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What Features Should \We Extract?

— Regular grid
Vogel & Schiele, 2003
Fel-Fel & Perona, 2005

— Interest point detector
Csurka et al. 2004
Fel-Fel & Perona, 2005
Sivic et al. 2005

— Other methods

Random sampling (Vidal-Naqguet & Uliman,
2002)

Segmentation-based patches (Barnard et
al. 2003)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Extracting SIFT Patches

Compute SIFT  Normalize patch
descriptor

[Lowe’99]

Detect patches
Mikojaczyk and Schmid 02}
Mata, Chum, Urban & Pajdla, '02]
Sivic & Zisserman, 03]

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Extracting SIFT Patches

N | |

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Creating Dictionary
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Slide Credit: loannis (Yannis) Gkioulekas (CMU
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Clustering
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K-means clustering



K-Means Clustering

Assume we know how many clusters there are in the data - denote by K
Each cluster is represented by a cluster center, or mean

Our objective is to minimize the representation error (or quantization error)
N letting each data point be represented by some cluster center

Minimize

Z Z | — 1] |7

1€clusters | j€ith cluster



K-Means Clustering

K-means clustering alternates between two steps:

1. Assume the cluster centers are known (fixed). Assign each point to
the closest cluster center.

2. Assume the assignment of points to clusters is known (fixed).
Compute the best center for each cluster, as the mean of the points assigned
to the cluster.

The algorithm is initialized by choosing K random cluster centers

K-means converges to a local minimum of the objective function
— Results are Initialization dependent



Example 1: K-Means Clustering
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Example 1: K-Means Clustering
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Example 1: K-Means Clustering

Clusters at iteration 2
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Example 1: K-Means Clustering
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Example Visual Dictionary
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Example Visual Dictionary
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Standard Bag-of-Words Pipeline (or image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each Image

Classify:
Train and test data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

1. Quantization: image features gets associated
to a visual word (nearest cluster center)

) (¢

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

2. Histogram: count the number of visual word occurrences
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

frequency

TLUNENL, e

codewords

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipeline (or image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each Image

Classify:
Train and test data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



3. Classify: Train and text classifier using BOWs

Support
K nearest Vector
neighbors Machine

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



