THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 17: Optical Flow



Menu for Today

Topics:

— Optical Flow — Quiz 4

— Today’s Lecture: Szeliski 15.1, 15.2

Reminders:

— Midterm results are now posted on Canvas (we will review some questions)
— Assignment 4: RANSAC and Panoramas due March 20th



Midterm - Q8 (Projection)

A rectangle 1n the Y-plane in the world 1s defined by the following four points:

X 1 1 —1 —1
Y | =|[1],[1], 1 , 1 ,
_Z_ _2 | a _2 | a

where a 1s a variable.

(a) [2 marks] Compute the perspective projection of the rectangle in the image plane (1.e. give
numerical expression for the projected points in terms of a and focal length f where needed).



Midterm - Q8 (Projection)

Perspective Projection: 2’ == y =1

A rectangle 1n the Y-plane 1n the world 1s defined by the following four points:
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where a 1s a variable.

(a) [2 marks] Compute the perspective projection of the rectangle in the image plane (1.e. give
numerical expression for the projected points in terms of a and focal length f where needed).
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Perspective Projection: 2’ == y =1

A rectangle 1in the Y-plane in the world 1s defined by the following four points:
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Midterm - Q8 (Projection)

Perspective Projection: ' = —- Y

A rectangle 1in the Y-plane in the world 1s defined by the following four points:

where a 1s a variable.




Midterm - Q8 (Projection)

=l

(b) [2 marks] Sketch the projection in the imaging plane for f = 2 and a = 4.
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Midterm - Q8 (Projection)
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(¢) [2 marks] Describe both numerically and in terms of concepts we learned about in projec-
tion, what happens as a — oo. Sketch what a projection will look like at that point.
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Midterm - Q8 (Projection)
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(¢) [2 marks] Describe both numerically and in terms of concepts we learned about in projec-
tion, what happens as a — oo. Sketch what a projection will look like at that point.
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Midterm - Q8 (Projection)

(d) [3 marks] Consider what happens 1f the projection 1s not perspective, but rather weak per-
spective which 1s governed by a scaling parameter m, 1.e.,
P D'

_y’_:m_Y_' (1)

Compute an appropriate value for m in that case in terms of focal length f and a. Describe
what must be true of a and/or f for this to be a good (accurate) approximation.



Midterm - Q8 (Projection) Weak perspective: m= £
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(d) [3 marks] Consider what happens 1f the projection 1s not perspective, but rather weak per-
spective which 1s governed by a scaling parameter m, 1.e.,
P D'

_y’_:m_Y_' (1)

Compute an appropriate value for m in that case in terms of focal length f and a. Describe
what must be true of a and/or f for this to be a good (accurate) approximation.



Midterm - Q8 (Projection)

Weak perspective: m=zi
X1 |1 '1] '—1] [ —1

Y — ]. ] ]- , 1 9 1 y
L Z | <12 [a] [ 2] [ a

(d) [3 marks] Consider what happens 1f the projection 1s not perspective, but rather weak per-
spective which 1s governed by a scaling parameter m, 1.e.,

A B
_y’__m_Y_' (1)

Compute an appropriate value for m in that case in terms of focal length f and a. Describe
what must be true of a and/or f for this to be a good (accurate) approximation.



Midterm - Q8 (Projection)

Weak perspective: m= Zi

X1 [1] [1] [-11] [ -1
b [

(d) [3 marks] Consider what happens 1f the projection 1s not perspective, but rather weak per-
spective which 1s governed by a scaling parameter m, 1.e.,

:1+%d

A B
_y’__m_Y_' (1)

Compute an appropriate value for m in that case in terms of focal length f and a. Describe
what must be true of a and/or f for this to be a good (accurate) approximation.



Midterm - Q10 (Smoothing)

Consider making a smoothing filter out of the upside down cone defined by the following function:

2 2
Pr(xay) :1_\/x Y

r2

(2)

which 1s only defined on it’s positive domain of —r < z < r and —r < y < r, where parameter
r > (0 1s a radius of the cone base, which, similar to ¢ 1n a Gaussian, controls the amount of
smoothing.

(b) [4 marks] For a particular » = 5 we obtain the following 2D smoothing parabolic filter.
Briefly describe two things that are wrong with the filter and how they could be fixed.
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Midterm - Q10 (Smoothing)

Consider making a smoothing filter out of the upside down cone defined by the following function:

P.(z,y) =1 — \/ s )

r2

which 1s only defined on it’s positive domain of —r < z < r and —r < y < r, where parameter
r > (0 1s a radius of the cone base, which, similar to ¢ 1n a Gaussian, controls the amount of
smoothing.

(b) [4 marks] For a particular » = 5 we obtain the following 2D smoothing parabolic filter.
Briefly describe two things that are wrong with the filter and how they could be fixed.

043 | 0.55 | 0.60 | 0.55 | 043
0551 0.72 | 0.80 | 0.72 | 0.55 1. Values do not sum to 1
0.60 | 0.80 | 1.00 | 0.80 | 0.60 |
2. Extent of the filter does not capture
0.55 1 0.72 | 0.80 | 0.72 | 0.55 the full function
043 | 0.55 | 0.60 | 0.55 | 043




Midterm - Q10 (Smoothing)

(¢) [4 marks] Consider the central pixel in the following image patches. State whether the the
value of this center pixel will increase, decrease or stay the same in the case of smoothing
with standard filters:

Image Patch 1 Image Patch 2
220 10 10 ] [ 5 5 18
10 10 200 b 17 5
10 240 10 [ | 18 & o5

Box filter

Median filter

Gaussian filter (with o = 1)

Bilateral filter (with o, = 04 = 1)



Midterm - Q10 (Smoothing)

(¢) [4 marks] Consider the central pixel in the following image patches. State whether the the
value of this center pixel will increase, decrease or stay the same in the case of smoothing
with standard filters:

Image Patch 1 Image Patch 2
220 10 10] [ 5 5 18
10 10 200 5 17 5
I 10 240 10 ] I 18 5 5 ]
Box filter Increase Decrease

Median filter

Gaussian filter (with o = 1)

Bilateral filter (with o, = 04 = 1)



Midterm - Q10 (Smoothing)

(¢) [4 marks] Consider the central pixel in the following image patches. State whether the the
value of this center pixel will increase, decrease or stay the same in the case of smoothing
with standard filters:

Image Patch 1 Image Patch 2

220 10 10] [ 5 5 18
10 10 200 5 17 5

_10 240 10_ _18 5) 5_
Box filter Increase Decrease
Median filter Same Decrease

Gaussian filter (with o = 1)

Bilateral filter (with o, = 04 = 1)



Midterm - Q10 (Smoothing)

(¢) [4 marks] Consider the central pixel in the following image patches. State whether the the
value of this center pixel will increase, decrease or stay the same in the case of smoothing
with standard filters:

Image Patch 1 Image Patch 2

220 10 10] [ 5 5 18
10 10 200 5 17 5

_10 240 10_ _18 5) 5_
Box filter Increase Decrease
Median filter Same Decrease
Gaussian filter (with 0 = 1) Increase Decrease

Bilateral filter (with o, = 04 = 1)



Midterm - Q10 (Smoothing)

(¢) [4 marks] Consider the central pixel in the following image patches. State whether the the
value of this center pixel will increase, decrease or stay the same in the case of smoothing
with standard filters:

Image Patch 1 Image Patch 2

220 10 10] [ 5 5 18
10 10 200 5 17 5

_10 240 10_ _18 5) 5_
Box filter Increase Decrease
Median filter Same Decrease
Gaussian filter (with 0 = 1) Increase Decrease

Bilateral filter (with o, = 04 = 1) Same Increase



Midterm - Q13 (Texture)

Consider texture synthesis approach of Efros and Leung for filling in a pixel marked (q) 1n the
texture below. Assume we are using the rest of the 1mage as the source of texture for copying.

230 230 m 230 230 230 230 m 230 m
230 m 230 m 230 230 230 m
m 230 m 230 230 m 230 230 230 230
230 230 230 230 230 230 230 230 230
230 230 230 m 230 230 230 230 230 m
230 230 m 230 230 m 230 230 m 230
230 230 230 230 q 230 230 m 230 230
m 230 230 m 230 230 230 230 230 230
230 230 m 230 230 m 230 230 230 230
230 230 230 230 230 m 230 230 230 m

(a) [3 marks] Assuming we only consider exact matches and a 3 X 3 neighborhood, compute
the probability of the pixel g being each color:



Midterm - Q13 (Texture)

Consider texture synthesis approach of Efros and Leung for filling in a pixel marked (q) 1n the
texture below. Assume we are using the rest of the 1mage as the source of texture for copying.

230 230 m 230 230 230 230 m 230 m
230 m 230 m 230 230 230 m
m 230 m 230 230 m 230 230 230 230
230 230 230 230 230 230 230 230 230
230 230 230 230 230 m
230 230 m 230
230 m 230 230

230 230 230 230

230 230 230
230 230
230 230

230 230 230 230 230 230

230 230 230 230 230 m 230 230 230 m

(a) [3 marks] Assuming we only consider exact matches and a 3 X 3 neighborhood, compute
the probability of the pixel g being each color:



Midterm - Q13 (Texture)

Consider texture synthesis approach of Efros and Leung for filling in a pixel marked (q) 1n the
texture below. Assume we are using the rest of the 1mage as the source of texture for copying.

230 :ZN)l'I:I 230

230 230 230 230

230 230 230 230

230

230

230 230

230 230

(a) [3 marks] Assuming we only consider exact matches and a 3 X 3 neighborhood, compute
the probability of the pixel g being each color:



Midterm - Q13 (Texture)

Consider texture synthesis approach of Efros and Leung for filling in a pixel marked (q) 1n the
texture below. Assume we are using the rest of the 1mage as the source of texture for copying.

3
p(q = 230) = s
p(g =100) = -
230 230 p(q — O) — O

230 230

(a) [3 marks] Assuming we only consider exact matches and a 3 X 3 neighborhood, compute
the probability of the pixel g being each color:



Midterm - Q13 (Texture)

Consider texture synthesis approach of Efros and Leung for filling in a pixel marked (q) in the
texture below. Assume we are using the rest of the 1mage as the source of texture for copying.

230 230 m 230 230 230 230 m 230 m
230 m 230 m 230 230 230 m

m 230 m 230 230 m 230 230 230 230
230 230 230 230 230 230 230 230 230 230
230 230 m
230 m 230

230 230

230 230 230 230 230

230 230 m 230
230

q 230 230

230 230

230 230

230 230

230 230 230 230 230

LB 230 230 230 | 230 230 230

230 230 m

230 230 230 230 230

(b) [3 marks] Now consider a 5 X 5 neighborhood. Compute the probability of the pixel g being
each color now:



Midterm - Q13 (Texture)

Consider texture synthesis approach of Efros and Leung for filling in a pixel marked (q) in the
texture below. Assume we are using the rest of the 1mage as the source of texture for copying.

08 230 m
oo [ o

230 230 230

230 230 230 230 230 230

230 230 230

230 230 m 230

230 230 230 230 §230 230 230

230 230 m
—

230 230

230 BB 230 230 230

B 230 230 B0 R 230

230 230 q 230 230

230 m 230 230 230

B 230 230 B0 R 230

230 230

230 230

230 230 230

230 230 m

230 230 230 230 230 Byl

(b) [3 marks] Now consider a 5 X 5 neighborhood. Compute the probability of the pixel g being
each color now:



Midterm - Q13 (Texture)

Consider texture synthesis approach of Efros and Leung for filling in a pixel marked (q) 1n the
texture below. Assume we are using the rest of the 1mage as the source of texture for copying.

08 230 m

230 230
N p(g =230) =1

230 230 230

230 230 230 230 230 230

230 230 230

230 230 m 230

230 230 230 230 230

230 BB 230 230 230
)8 230 230 RUOE 230

230 230 q 230 230

230 m 230 230 230

B 230 230 B0 R 230

230 230 230 230 230

= =] = 100) =1

—

230 230

230 230

230 230

230 230 p(q — O) = ()

230 230

230 230 230

230 230 m

230 230 230 230 230 Byl

(b) [3 marks] Now consider a 5 X 5 neighborhood. Compute the probability of the pixel g being
each color now:



Optical Flow

Problem:
Determine how objects (and/or the camera itself) move in the 3D world

Key Idea(s):
lmages acquired as a (continuous) function of time provide additional
constraint. Formulate motion analysis as finding (dense) point correspondences

over time.



What is Optical Flow"

[ vision.middlebury.edu/flow ]


http://vision.middlebury.edu/flow

What is Optical Flow"




What is Optical Flow"
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Optical Flow and 2D Motion

Optical flow is the apparent motion of brightness patterns in the image

Applications
— Image and video stabilization in digital cameras, camcorders

— motion-compensated video compression schemes such as MPEG
— Image registration for medical imaging, remote sensing

— action recognition

— motion segmentation
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Optical Flow and 2D Motion

Motion is geometric

Optical flow is radiometric

Usually we assume that optical flow and 2-D motion coincide ... but this is not
always the case!



Optical Flow and 2D Motion

Optical flow but no motion . . .



Optical Flow and 2D Motion

Optical flow but no motion . . .
... moving light source(s), lights going on/off, inter-reflection, shadows



Optical Flow and 2D Motion

Optical flow but no motion . . .
... moving light source(s), lights going on/off, inter-reflection, shadows

Motion but no optical flow . . .



Optical Flow and 2D Motion

Optical flow but no motion . . .
... moving light source(s), lights going on/off, inter-reflection, shadows

Motion but no optical flow . . .

.. . Spinning sphere.



Optical Flow and 2D Motion

Here’s a video example of a very skilled Japanese contact juggler working with
a clear acrylic ball

Source: http://youtu.be/CtztrCGka:E?\}\}?t:% mZOs
A key element to the illusion is motion without corresponding optical flow



http://youtu.be/CtztrcGkCBw?t=1m20s

Optical Flow and 2D Motion

Here’s a video example of a very skilled Japanese contact juggler working with
a clear acrylic ball

Source: http://youtu.be/CtztrCGka:E?\}\}?t:% mZOs
A key element to the illusion is motion without corresponding optical flow



http://youtu.be/CtztrcGkCBw?t=1m20s

Example 1: Rotating Ellipse

a
_




Example 1: Three “Percepts”

1. Veridical:
— a 2-D rigid, flat, rotating ellipse

2. Amoeboid:
— a 2-D, non-rigid “gelatinous” smoothly deforming shape

3. Stereokinetic:
— a circular, rigid disk rolling in 3-D



Example 1: Rotating Ellipse

A narrow ellipse oscillating rigidly about its center appears rigid

Wass and Addson (A RVD 95)




Example 1: Rotating Ellipse

A narrow ellipse oscillating rigidly about its center appears rigid
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Example 1: Rotating Ellipse

However, a fat ellipse undergoing the same motion appears nonrigid

Wass and Addson (ARVD 95)

Video credits: Yair Welss



Example 1: Rotating Ellipse

However, a fat ellipse undergoing the same motion appears nonrigid

Wass and Addson (ARVD 95)

Video credits: Yair Welss



Example 1: Rotating Ellipse

The apparent nonrigidity of a fat ellipse is not really a "visual illusion”. A rotating
ellipse or a nonrigid pulsating ellipse can cause the exact same stimulation on

our retinas. In this sequence the ellipse contour Is always doing the same thing,
only the markers’ motion changes.

Wass and Addson (A RVD 95)

Video credits: Yair Welss



Example 1: Rotating Ellipse

The apparent nonrigidity of a fat ellipse is not really a "visual illusion”. A rotating
ellipse or a nonrigid pulsating ellipse can cause the exact same stimulation on

our retinas. In this sequence the ellipse contour Is always doing the same thing,
only the markers’ motion changes.

Wass and Addson (A RVD 95)

Video credits: Yair Welss



Example 1: Rotating Ellipse

The ellipse’'s motion can be influenced by features not physically connected to
the ellipse. In this sequence the ellipse Is always doing the same thing, only the
dots’ motion changes.

Video credits: Yair Welss



Example 1: Rotating Ellipse

The ellipse’'s motion can be influenced by features not physically connected to
the ellipse. In this sequence the ellipse Is always doing the same thing, only the
dots’ motion changes.

Video credits: Yair Welss



Example: Flying Insects and Birds

Bees have very limited stereo perception. How do they fly safely through narrow
passages”



Example: Flying Insects and Birds

Bees have very limited stereo perception. How do they fly safely through narrow
passages”

A simple strategy would be to balance the speeds of motion of the images of

the two walls. If wall A is moving faster than wall B, what should you (as a bee)
do”



Example: Flying Insects and Birds

Bee strategy: Balance the optical flow experienced by the two eyes

Figure credit: M. Srinivasan



Example: Flying Insects and Birds

How do bees land safely on surfaces?

During their approach, bees continually adjust their speed to hold constant the
optical flow In the vicinity of the target

— approach speed decreases as the target is approached and reduces to zero
at the point of touchdown

— NO need 1o estimate the distance to the target at any time



Example: Flying Insects and Birds

y

Bees approach the surface more slowly if the spiral is rotated to augment the rate of
expansion, and more quickly If the spiral is rotated in the opposite direction

Figure credit: M. Srinivasan



Example: Flying Insects and Birds

\ /. / / &

)
-
\
.
W
-

/« |
,«
’

.
)
'.
‘ B
‘P"
Y

Figure credit: M. Srinivasan



Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(x,y,t)
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Consider image intensity also to be a function of time, t. We write
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Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(z(t),y(t),t)
Applying the chain rule for differentiation, we obtain

dl(x,y,t) _ g dr I dy
dat  Cdt Vdt

where subscripts denote partial differentiation

I



Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(z(t),y(¢),1)
Applying the chain rule for differentiation, we obtain
dl(x,y,t) dx dy

=1, i i
dt da ' Var
where subscripts denote partial differentiation
d d
Define u = d—f and v = d—?Z Then |u, v] is the 2-D motion and the space of all

such v and v is the 2-D velocity space



Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(z(t),y(¢),1)
Applying the chain rule for differentiation, we obtain
dl(x,y,t) dx dy

G teg Thug T
where subscripts denote partial differentiation
Define u = Cji—f and v = % Then |u, v] is the 2-D motion and the space of all
such v and v is the 2-D velocity space
Suppose (a;’ y,t) _ 0 - Then we obtain the (classic) optical flow constraint
equation ' Lou+ To+ 1, =0



Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(z(t),y(¢),1)
Applying the chain rule for differentiation, we obtain
dl(x,y,t) dx dy

G teg Thug T
where subscripts denote partial differentiation
Define u = Z—f and v = % Then |u, v] is the 2-D motion and the space of all
such v and v is the 2-D velocity space
dl(z,y,t) _ 0 - Then we obtain the (classic) optical flow constraint

Suppose

; dt
equation Lou+ I+ I =0



Optical Flow Constraint Equation

What does this mean, and why is it reasonable”?

dI(x,y,t)
dt

Suppose — 0 - Then we obtain the (classic) optical flow constraint

equation Lou+ Iy + I =0



Optical Flow Constraint Equation

Scene point moving through image sequence

(z(k), y(k))
(x(2),y(2))
(z(1),y(1))

What does this mean, and why is it reasonable”?

dI(x,y,t)

y — (0 - Then we obtain the (classic) optical flow constraint
t

Suppose
equation

lyu+ Lyo+ 1 =0

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Optical Flow Constraint Equation

Scene point moving through image sequence

........................................................................................... R
g 5(2). 5(2))
(z(1),y(1))
I(z,y,1) I(z,y,2) [(z,y,k)

What does this mean, and why is it reasonable”?

dI(x,y,t)

y — (0 - Then we obtain the (classic) optical flow constraint
t

Suppose
equation

lyu+ Lyo+ 1 =0

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Optical Flow Constraint Equation

Brightness Constancy Assumption: Brightness of the point remains the same

............................................................................ B
g N
(z(1),y(1))
I(z,y,1) I(z,y,2) T
I(x(t),y(t),t) =C
constant

What does this mean, and why is it reasonable”?

dI(x,y,t)

y — (0 - Then we obtain the (classic) optical flow constraint
t

Suppose
equation

lyu+ Lyo+ 1 =0

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(x 4+ udt,y + vot,t + 6t) = I(x,y,t)

For small space-time step, brightness of a point is the same

1 (xHuot,y+vor)

(x, ) (x,y)
timet timet + 0t

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(x 4+ udt,y + vot,t + ét) = I(x,y,t)

For small space-time step, brightness of a point is the same

Insight:
f the time step Is really small,
we can linearize the intensity function
(and motion is really-small ... think less than a pixel)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(x + udt,y + vot,t + 0t) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(a:,y) o f(a'a b) T fa:(a'a b)(.’E o a’) o fy(aa b)(y T b)

- J

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(x + udt,y + vot,t + ot) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(zc,y) o f(a’a b) T fa:(a'a b)(.’E o a) o fy(aa b)(y T b)

g J

ol ol ol
I[(z,y,t) Py 0T 5 0t = I(x,y,t) assuming small motion
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(x + udt,y + vot,t + ot) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(zc,y) ~ f(a’a b) + fa:(a'a b)(.’E o a) o fy(aa b)(y T b)

g J

partial derivative

01 01 01
I(a';,y,t) | 83';5:8 | 6y5y | Y 0t =I(:v,y,t) assuming small motion

fixed point

cancel terms

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(x + udt,y + vot,t + ot) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(a:,y) ~ f(a’a b) + fa:(aa b)(.’L‘ o a) o fy(aa b)(y T b)

\_ J

ol ol ol
[(z,y,t) 0x t5t = I(z,y,t) assuming small motion

D
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 Ox 0
o ol ol
—dx 4 Sy - 3 = cancel terms
ox v oy d ot .

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(x + udt,y + vot,t + ot) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(a:,y) ~ f(a’a b) + fa:(aa b)(.’L‘ o a’) o fy(a'a b)(y T b)

\_ J

ol ol ol
[(z,y,t) 0x t5t = I(x,y,t) assuming small motion

D
S
%
S~

Oz %,
or . or_ ~oI_. divide by 6t
B_méx | Byéy Ot 0t =0 take limit 8¢ — 0

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(x 4+ udt,y + vot,t + 6t) = I(x,y,t)

f(z,y) = f(a,b) + fz(a,b)(z — a) — fy(a,b)(y — b)

ol ol ol
[(z,y,t) 0x 0y ; ot = I(x,y,t) assuming small motion

- Ox oy o,
or . or. or_. divide by 4t
8—a:5x | 8y5y Ot 0t =0 take limit 8¢ — 0

~

ol dx | ol dy | ol —0 Brightness Constancy
ox dt | Oy dt | Ot Equation

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




How do we compute ...

Iwu—l—ly’v—l—ft :O

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

Ia,’u,—l—fy’v—l—ft =0

.

Iy =

spatial derivative

- 01
~ By

_J

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

Ia;’U,-FIy’U-I-It =0

ol ol
IL=— I,=—
or 7 Oy

spatial derivative

Forward difference
Sobel filter
Scharr filter

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...
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How do we compute ...

lyu+L,v+1; =0
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Forward difference Frame differencing
Sobel filter

Scharr filter
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Frame Differencing: =xample

t+ 1

1

1

10
10

10
10

10
10

10 10 10

OO O O O O O
|
(@)

(example of a forward temporal difference)
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How do we compute ...

Iwu—l—ly’v—l—ft =0

- 2 - 2
I — ol I — o1 I ol
= 9. YT O U = 7 t = 9t
\ spatial derivative ) optical flow \ temporal derivative
y
Forward difference How do you compute this? Frame differencing
Sobel filter

Scharr filter
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How do we compute ...

Ia,’u,—l—fy’v—l—ft = ()
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spatial derivative optical flow temporal derivative
g J . J
Forward difference We need to solve for this! Frame differencing
Sobel filter (this is the unknown in the
Scharr filter optical flow problem)
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How do we compute ...

Ia,’u,—l—fy’v—l—ft = ()

- 2 - 2
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T = 5y YT Oy U = a7 t = 5t

\ spatial derivative ) optical flow \ temporal derivative )

Forward difference Frame differencing

Sobel filter Solution lies on a line

Scharr filter
Cannot be found uniquely

with a single constraint
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Optical Flow Constraint Equation

Iwu—FIyU-I-It:O

many combinations of u and v will satisty the equality u

Equation determines a straight line in velocity space
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Flow Ambiguity

® The stripes can be interpreted
as moving vertically, horizontally
(rotation), or somewhere in
between!

® The component of velocity
parallel to the edge is unknown
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Aperture Problem

In which direction is the line moving”

Image Credit: loannis (Yannis) Gkioulekas (CMU)
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Aperture Propblem
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Aperture Propblem
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Aperture Problem

— Without distinct features to track, the true visual motion is ambiguous

— Locally, one can compute only the component of the visual motion In the
direction perpendicular to the contour



Aperture Problem

Detected
direction

\

\

Receptive \ Motion
field < direction
(aperture) g

— Without distinct features to track, the true visual motion iIs ambiguous

— Locally, one can compute only the component of the visual motion In the
direction perpendicular to the contour



Lucas-Kanade

Observations:

1. The 2-D motion, |u, v, at a given point, |z, y], has two degrees-of-freedom
2. The partial derivatives, I, I,,, I;, provide one constraint

3. The 2-D motion, |u, v|, cannot be determined locally from I, 1,,, I; alone
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Lucas-Kanade

Observations:

1. The 2-D motion, |u, v, at a given point, |z, y], has two degrees-of-freedom
2. The partial derivatives, I, I,,, I;, provide one constraint

3. The 2-D motion, |u, v|, cannot be determined locally from I, 1,,, I; alone

Lucas—-Kanade Idea:

Obtain additional local constraint by computing the partial derivatives, 1, I,,, I,
in a window centered at the given |z, y|

Constant Flow Assumption: nearby pixels will likely have same optical flow



LucaS‘Kanade Optical Flow Constraint Equation: [, u + va + 1I; =0

Suppose [z1,y1] = [z,y] is the (original) center point in the window. Let [z2, y2]
be any other point in the window. This gives us two equations that we can write

Lp,u+ 1,0 =—1
lp,u+ 1,0 = —1,

and that can be solved locally for v and v as

I, I,
Ly, I

U
U

1

Ly

2

orovided that uw and v are the same In both equations and provided that the
required matrix inverse exists.



LucaS‘Kanade Optical Flow Constraint Equation: [, u + va + 1I; =0

Considering all n points in the window, one obtains

[pu+ 1, v=—1
lp,u+ 1,,v=—1,

I, u+1, v=—1

which can be written as the matrix equation

Av=DL
IfL‘l Iyl | ]t1
IfL‘2 I?JQ Itz
where v=[u,v]", A=| . . |and b=—|
]xn Iyn B ‘[tn




Lucas-Kanade

The standard least squares solution, v, to Is

v=(A"A)"'A'Db

again provided that v and v are the same In all equations and provided that the
rank of A A is 2 (so that the required inverse exists)



Lucas-Kanade
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The standard least squares solution, v, to is <~ 8 I. I.
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v=(A"A)"'A'Db

again provided that v and v are the same In all equations and provided that the
rank of A A is 2 (so that the required inverse exists)




Lucas-Kanade

Note that we can explicitly write down an expression for A* A as

N2 S ILI
ATA: Z T LY
_ > 1.1, Iy2

which 1s identical to the matrix C that we saw In the context of Harris corner
detection



Lucas-Kanade

Note that we can explicitly write down an expression for A* A as

N2 S ILI
ATA: Z T LY
_ > 1.1, Iy2

which 1S identical to the matrix C that we saw In the context of Harris corner
detection

What does that mean?



| ucas-Kanade Summary

A dense method to compute motion, [y, v] at every location in an image
Key Assumptions:

1. Motion Is slow enough and smooth enough that differential methods apply
(.e., that the partial derivatives, 1., I,,, I;, are well-defined)

dl(x,y,t
2. The optical flow constraint equation holds (i.e., (:; ty ) =0)

3. A window size is chosen so that motion, |u, v|. is constant in the window

4. A window size is chosen so that the rank of AY A is 2 for the window



Aside: Optical Flow Smoothness Constraint

Many methods trade off a ‘departure from the optical flow constraint” cost with
a ‘departure from smoothness’ cost.

The optimization objective to minimize becomes

E://gwuuyvut)zmmvu|\2+HwHQ)

where A IS a weighing parameter.



Horn-Schunck Optical Flow

smoothness brightness constancy

t weight
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Horn-Schunck Optical Flow

Brightness constancy Eq(t,7) = [Izui; + Lyvi; + Iy

Smoothness
Es(i,J) = i (wij — wig1,5)” + (wij — wijp1)? + (Vij — vig1,3)* + (Vij — vij11)°
i,7 + 1 j+1 @jfl J+1
(wij = wit1,5) (wij — wij+1) (Vij = Vit1,5) (Vij = ij+1)
s — R e I s O R
i, 7 — 1 ij—1 t,J —1 8,7 — 1
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Optical Flow and 2D Motion

Motion is geometric, Optical flow is radiometric

Usually we assume that optical flow and 2-D motion coincide ... but this is not
always the case!

Optical flow with no motion:
... moving light source(s), lights going on/off, inter-reflection, shadows

Motion with no optical flow:

. .. Spinning cylinder, sphere.



Optical Flow Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is,

given a scene point located at (xg, yo) in an image acquired at time to, what is
its position, (z1,y1), in an image acquired at time t17?

Assuming Image intensity does not change as a conseguence of motion, we
obtain the (classic) optical flow constraint equation

lyu+ 1Lyo+ 1 =0

where |u, v|, is the 2-D motion at a given point, |z, y|, and I, 1, I; are the partial
derivatives of intensity with respect to x, y, and ¢

Lucas—-Kanade is a dense method to compute the motion, |u, v|, at every
location In an Image



