CPSC 425: Computer Vision

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 16: Stereo

Menu for Today

Topics:

- Stereo Vision, Epipolar Geometry

Readings:

- Today’s Lecture: Szeliski 12.1, 12.3-12.4, 9.3

Reminders:

- Midterms are graded (Mean/Median: 69)
- Assignment 4: RANSAC and Panoramas due March 20th (but Assignment 5 dates will not move, i.e., overlap)

Today’s "fun" Example: Diffusion-based Story Generation

Today’s "fun" Example: Video Captioning /w Common Sense

Qualitative Result 1

Today’s "fun" Example: Video Captioning /w Common Sense

Qualitative Result 1

Today’s "fun" Example: Omnimatte 360

Inputs

RGB

Masks

Inputs

RGB

Masks

Stereo Vision

Problem Formulation:

Determine depth using two images acquired from (slightly) different viewpoints

Key Idea(s):

The 3D coordinates of each point imaged are constrained to lie along a ray. This is true also for a second image obtained from a (slightly) different viewpoint. Rays for the same point in the world intersect at the actual 3D location of that point

Stereo Vision

With two eyes, we acquire images of the world from slightly different viewpoints
We perceive depth based on differences in the relative position of points in the left image and in the right image

Binoculars

Binoculars enhance binocular depth perception in two distinct ways:

1. magnification
2. longer baseline (i.e., distance between entering light paths) compared to the normal human inter-pupillary distance

Stereo Vision

Task: Compute depth from two images acquired from (slightly) different viewpoints

Approach: "Match" locations in one image to those in another

Sub-tasks:

- Calibrate cameras and camera positions
- Find all corresponding points (the hardest part)
- Compute depth and surfaces

Stereo Vision

Stereo Vision

Triangulate on two images of the same point

Match correlation windows across scan lines

Point Grey Research Digiclops

2-view Geometry

How do we find dense correspondences between two views?

2-view Geometry

How do we find dense correspondences between two views?

Planar case: the mapping can be obtained by a homography

2-view Geometry

How do we find dense correspondences between two views?

Non-planar case: depends on the depth of the 3D point

2-view Geometry

How do we find dense correspondences between two views?

Non-planar case: depends on the depth of the 3D point

2-view Geometry

How do we find dense correspondences between two views?

Non-planar case: depends on the depth of the 3D point

2-view Geometry

How do we find dense correspondences between two views?

Non-planar case: depends on the depth of the 3D point

Epipolar Line

How do we find dense correspondences between two views?

A point in Image 1 must lie along the line in Image 2

The Epipolar Constraint

Matching points lie along corresponding epipolar lines
Reduces correspondence problem to 1D search along conjugate epipolar lines Greatly reduces cost and ambiguity of matching

The Epipolar Constraint

Matching points lie along corresponding epipolar lines
Reduces correspondence problem to 1D search along conjugate epipolar lines Greatly reduces cost and ambiguity of matching

The Epipolar Constraint

Matching points lie along corresponding epipolar lines
Reduces correspondence problem to 1D search along conjugate epipolar lines Greatly reduces cost and ambiguity of matching

The Epipolar Constraint

Matching points lie along corresponding epipolar lines
Reduces correspondence problem to 1D search along conjugate epipolar lines Greatly reduces cost and ambiguity of matching

The Epipolar Constraint

Matching points lie along corresponding epipolar lines
Reduces correspondence problem to 1D search along conjugate epipolar lines Greatly reduces cost and ambiguity of matching

2-view Stereo

Search over matches constrained to (epipolar) line

(reduces to 1d search)

2-view Stereo

Search over matches constrained to (epipolar) line

(reduces to 1d search)

2-view Stereo

Search over matches constrained to (epipolar) line

(reduces to 1d search)

2-view Stereo

Search over matches constrained to (epipolar) line

(reduces to 1d search)

2-view Stereo

Search over matches constrained to (epipolar) line

(reduces to 1d search)

2-view Stereo

Search over matches constrained to (epipolar) line

(reduces to 1d search)

2-view Stereo

Search over matches constrained to (epipolar) line

(reduces to 1d search)

2-view Stereo

Search over matches constrained to (epipolar) line

(reduces to 1d search)

2-view Stereo

Search over matches constrained to (epipolar) line

(reduces to 1d search)

2-view Stereo

Search over matches constrained to (epipolar) line

(reduces to 1d search)

Visualization of Epipolar Lines

[R. Cipolla]

Visualization of Epipolar Lines

[R. Cipolla]

Visualization of Epipolar Lines

[R. Cipolla]

Visualization of Epipolar Lines

[R. Cipolla]

Improving RANSAC + Alignment with Epipolar Geometry

Improving RANSAC + Alignment with Epipolar Geometry

Raw SIFT features and their matches

Improving RANSAC + Alignment with Epipolar Geometry

Instead of matching purely based on SIFT descriptor, leverage geometry to obtain matches close to epipolar lines

(gives more consistent geometrically valid matches)

Improving RANSAC + Alignment with Epipolar Geometry

Instead of matching purely based on SIFT descriptor, leverage geometry to obtain matches close to epipolar lines

(gives more consistent geometrically valid matches)

Improving RANSAC + Alignment with Epipolar Geometry

Instead of matching purely based on SIFT descriptor, leverage geometry to obtain matches close to epipolar lines

(gives more consistent geometrically valid matches)

Improving RANSAC + Alignment with Epipolar Geometry

Better matches lead to fewer iterations of RANSAC

(gives more consistent geometrically valid matches)

The Epipolar Constraint

Matching points lie along corresponding epipolar lines
Reduces correspondence problem to 1D search along conjugate epipolar lines Greatly reduces cost and ambiguity of matching

Simplest Case: Rectified Images

Image planes of cameras are parallel
Focal points are at same height
Focal lengths same
Then, epipolar lines fall along the horizontal scan lines of the images
We assume images have been rectified so that epipolar lines correspond to scan lines

- Simplifies algorithms
- Improves efficiency

Stereo Matching in Rectified Images

- In a standard stereo setup, where cameras are related by translation in the x direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matche
- Distance along the scanline (difference in \times coordinate) for a corresponding feature is called disparity

Stereo Matching in Rectified Images

- In a standard stereo setup, where cameras are related by translation in the x direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matche
- Distance along the scanline (difference in \times coordinate) for a corresponding feature is called disparity

Stereo Matching in Rectified Images

- In a standard stereo setup, where cameras are related by translation in the x direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matche
- Distance along the scanline (difference in \times coordinate) for a corresponding feature is called disparity

Stereo Matching in Rectified Images

- In a standard stereo setup, where cameras are related by translation in the x direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matche
- Distance along the scanline (difference in x coordinate) for a corresponding feature is called disparity

Stereo Matching in Rectified Images

- In a standard stereo setup, where cameras are related by translation in the x direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matche
- Distance along the scanline (difference in \times coordinate) for a corresponding feature is called disparity

Stereo Matching in Rectified Images

- In a standard stereo setup, where cameras are related by translation in the x direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matche
- Distance along the scanline (difference in \times coordinate) for a corresponding feature is called disparity

Stereo Matching in Rectified Images

- In a standard stereo setup, where cameras are related by translation in the x direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matche
- Distance along the scanline (difference in x coordinate) for a corresponding feature is called disparity

Stereo Matching in Rectified Images

- In a standard stereo setup, where cameras are related by translation in the x direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matche
- Distance along the scanline (difference in \times coordinate) for a corresponding feature is called disparity

Stereo Matching in Rectified Images

- In a standard stereo setup, where cameras are related by translation in the x direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matche
- Distance along the scanline (difference in \times coordinate) for a corresponding feature is called disparity

Stereo Matching in Rectified Images

- In a standard stereo setup, where cameras are related by translation in the x direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matche
- Distance along the scanline (difference in x coordinate) for a corresponding feature is called disparity

Stereo Matching in Rectified Images

- In a standard stereo setup, where cameras are related by translation in the x direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matche
- Distance along the scanline (difference in \times coordinate) for a corresponding feature is called disparity

Stereo Matching in Rectified Images

- In a standard stereo setup, where cameras are related by translation in the x direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matche
- Distance along the scanline (difference in \times coordinate) for a corresponding feature is called disparity

Rectified Stereo Pair

Any two camera views that overlap can be rectified so that epipolar lines correspond to scan lines (no special conditions must hold)

Rectified Stereo Pair

Reproject image planes onto a common plane parallel to the line between camera centers

Need two homographies (3×3 transform), one for each input image reprojection

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision.Computer Vision and Pattern Recognition, 1999.

Rectified Stereo Pair: Example

Before Rectification

After Rectification

Rectified Stereo Pair: Depth Estimate

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rectified Stereo Pair: Depth Estimate

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rectified Stereo Pair: Depth Estimate

$$
\begin{gathered}
\frac{X-b}{Z}=\frac{x^{\prime}}{f} \\
\frac{X}{Z}-\frac{b}{Z}=\frac{x^{\prime}}{f}
\end{gathered}
$$

Rectified Stereo Pair: Depth Estimate

Rectified Stereo Pair: Depth Estimate

$$
\frac{X}{Z}=\frac{x}{f}
$$

Rectified Stereo Pair: Depth Estimate

Disparity
(wit to camera origin of image plane) $\quad \begin{aligned} d & =x-x^{\prime} \\ & =\frac{b f}{Z}\end{aligned}$

$$
=\frac{b f}{Z}
$$

$$
\frac{x-x^{\prime}}{f}=\frac{b}{Z}
$$

Rectified Stereo Pair: Depth Estimate

Disparity

Rectified Stereo Pair: Depth Estimate

Disparity

(simple) Stereo Algorithm

1.Rectify images (make epipolar lines horizontal)
2.For each pixel
a.Find epipolar line
b.Scan line for best match
c. Compute depth from disparity $Z=\frac{b f}{d}$

(simple) Stereo Algorithm

1.Rectify images (make epipolar lines horizontal)
2.For each pixel
a.Find epipolar line
b.Scan line for best match
c.Compute depth from disparity $Z=\frac{b f}{d}$

Random Dot Stereograms

Julesz (1960) showed that recognition is not needed for stereo
"When viewed monocularly, the images appear completely random. But when viewed stereoscopically, the image pair gives the impression of a square markedly in front of (or behind) the surround."

Method: Pixel Matching

For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

This leaves too much ambiguity!

Block Matching: Sum of Squared (Pixel) Differences

Left

Right

\mathbf{w}_{L} and \mathbf{w}_{R} are corresponding $m \times m$ windows of pixels
Define the window function, $\mathbf{W}_{m}(x, y)$, by

$$
\mathbf{W}_{m}(x, y)=\left\{(u, v) \left\lvert\, x-\frac{m}{2} \leq u \leq x+\frac{m}{2}\right., y-\frac{m}{2} \leq v \leq y+\frac{m}{2}\right\}
$$

SSD measures intensity difference as a function of disparity:

$$
C_{R}(x, y, d)=\sum_{(u, v) \in \mathbf{W}_{m}(x, y)}\left[I_{L}(u, v)-I_{R}(u-d, v)\right]^{2}
$$

Image Normalization

$$
\begin{aligned}
& \bar{I}=\frac{1}{\left|\mathbf{W}_{m}(x, y)\right|} \sum_{(u, v) \in \mathbf{W}_{m}(x, y)} I(u, v) \quad \text { Average Pixel } \\
& \|I\|_{\mathbf{W}_{m}(x, y)}=\sqrt{\sum_{(u, v) \in \mathbf{W}_{m}(x, y)}[I(u, v)]^{2}} \quad \text { Window Magnitude }
\end{aligned}
$$

$$
\hat{I}(x, y)=\frac{I(x, y)-\bar{I}}{\|I-\bar{I}\|_{\mathbf{w}_{m}(x, y)}}
$$

Normalized Pixel: subtract the mean, normalize to unit length

Image Metrics

(Normalized) Sum of Squared Differences

(Normalized) Correlation

Image Metrics

Assume \mathbf{w}_{L} and $\mathbf{w}_{R}(d)$ are normalized to unit length (Normalized)

Sum of Squared Differences:

$$
\begin{aligned}
C_{S S D}(d) & =\sum_{(u, v) \in \mathbf{W}_{m}(x, y)}\left[\hat{I}_{L}(u, v)-\hat{I}_{R}(u-d, v)\right]^{2} \\
& =\left\|\mathbf{w}_{L}-\mathbf{w}_{R}(d)\right\|^{2}
\end{aligned}
$$

(Normalized) Correlation:

$$
\begin{aligned}
C_{N C}(d) & =\sum_{(u, v) \in \mathbf{W}_{m}(x, y)} \hat{I}_{L}(u, v) \hat{I}_{R}(u-d, v) \\
& =\mathbf{w}_{L} \cdot \mathbf{w}_{R}(d)=\cos \theta
\end{aligned}
$$

Image Metrics

Let d^{*} be the value of d that minimizes $C_{S S D}$

Then d^{*} also is the value of d that maximizes $C_{N C}$

That is,

$$
d^{*}=\arg \min _{d}\left\|\mathbf{w}_{L}-\mathbf{w}_{R}(d)\right\|^{2}=\arg \min _{d} \mathbf{w}_{L} \cdot \mathbf{w}_{R}(d)
$$

Method: Correlation

Similarity Measure

Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD
Normalized Cross Correlation (NCC)

Formula

$$
\frac{\sum_{(i, j) \in W} I_{1}(i, j) \cdot I_{2}(x+i, y+j)}{\sqrt[2]{\sum_{(i, j) \in W} I_{1}^{2}(i, j) \cdot \sum_{(i, j) \in W} I_{2}^{2}(x+i, y+j)}}
$$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

$$
\begin{aligned}
& \sum_{(i, k)=\mid} H_{1}(i, j)-L_{2}(x+i, y+j) \mid \\
& \sum_{(l, j=w}\left(f_{1}(t)-r_{2}(x+i, y+j)\right)^{2}
\end{aligned}
$$

Effect of Window Size

$$
W=3
$$

Smaller window

+ More detail
- More noise

$$
W=20
$$

Larger window

+ Smoother disparity maps
- Less detail
- Fails near boundaries

Effect of Window Size

$W=3$

$$
W=20
$$

Note: Some approaches use an adaptive window size - try multiple sizes and select best match

Ordering Constraints

Ordering constraint ...

Forsyth \& Ponce (2nd ed.) Figure 7.13

Ordering Constraints

Ordering constraint ...
.... and a failure case

Forsyth \& Ponce (2nd ed.) Figure 7.13

Block Matching Techniques: Result

Block matching

Ground truth

Block Matching Techniques: Result

Too many discontinuities.
We expect disparity values to change slowly.

Let's make an assumption: depth should change smoothly

Block matching

Ground truth

Stereo Matching as Energy Minimization

Stereo Matching as Energy Minimization

$$
\begin{aligned}
& E(d)=E_{d}(d)+\lambda E_{s}(d) \\
& H_{d}(d)=\sum_{(x, y) \in I \quad(x, y, d(x, y))} \\
& \text { and } J(x+d(x, y), y)
\end{aligned}
$$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Stereo Matching as Energy Minimization

$$
\underset{\text { smoothness term }}{E_{s}(d)}=\sum_{(p, q) \in \mathcal{E}} V\left(d_{p}, d_{q}\right)
$$

$$
\begin{gathered}
V\left(d_{p}, d_{q}\right)=\left|d_{p}-d_{q}\right| \\
V\left(d_{p}, d_{q}\right)= \begin{cases}0 & \text { if } d_{p}=d_{q} \\
1 & \text { if } d_{p} \neq d_{q}\end{cases}
\end{gathered}
$$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Stereo Matching as Energy Minimization: Solution

$$
E(d)=E_{d}(d)+\lambda E_{s}(d)
$$

Can minimize this independently per scanline using dynamic programming (DP)

Stereo Matching as Energy Minimization

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

Idea: Use More Cameras

Adding a third camera reduces ambiguity in stereo matching

Forsyth \& Ponce (2nd ed.) Figure 7.17

Point Grey Research Digiclops

Structured Light Imaging: Structured Light and One Camera

Projector acts like "reverse" camera

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Microsoft Kinect

Microsoft Kinect

Stereo Vision Summary

With two eyes, we acquire images of the world from slightly different viewpoints We perceive depth based on differences in the relative position of points in the left image and in the right image

Stereo algorithms work by finding matches between points along corresponding lines in a second image, known as epipolar lines.

A point in one image projects to an epipolar line in a second image
In an axis-aligned / rectified stereo setup, matches are found along horizontal scanlines

