CPSC 425: Computer Vision

Lecture 14: Planar Geometry and RANSAC

Menu for Today

Topics:

- Planar Geometry
- RANSAC
- Image Alignment, Object Recognition

Readings:

- Today’s Lecture: Szeliski 2.1, 8.1, Forsyth \& Ponce 10.4.2

Reminders:

- Assignment 3: due tonight
- Assignment 4: RANSAC and Panorama Stitching - available tonight
- Photos at the end of the class today

Today’s "fun" Example: Im2Calories

ICCV 2015 paper by Kevin Murphy

(UBC's former faculty)

Coincidently Kevin is also author of one of the most prominent ML books

Figure 1: Calorie Estimation Flowchart

Today’s "fun" Example: Im2Calories

Im2Calories: towards an automated mobile vision food diary
Austin Myers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban Nathan Silberman, Sergio Guadarrama, George Papandreou, Jonathan Huang, Kevin Murphy amyers@umd.edu, (nickj, rathodv,
kbanoop, gorban)@google.com (nsilberman, sguada, gpapan, jonathanhuang, kpmurphy)@google.com

Today’s "fun" Example: Im2Calories

Im2Calories: towards an automated mobile vision food diary
Austin Myers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban Nathan Silberman, Sergio Guadarrama, George Papandreou, Jonathan Huang, Kevin Murphy amyers@umd.edu, (nickj, rathodv,
kbanoop, gorban)@google.com (nsilberman, sguada, gpapan, jonathanhuang, kpmurphy)@google.com

Today’s "fun" Example: Im2Calories

Fun on-line demo: http://www.caloriemama.ai/api

Lecture 13: Re-Cap

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable

Lecture 13: Re-Cap

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable

The feature descriptor summarizes the local structure around the key point

- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations,
 image and photometric deformations

Lecture 13: Re-Cap

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable

The feature descriptor summarizes the local structure around the key point

- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations,
 image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.

Lecture 13: Re-Cap

- We motivated SIFT for identifying locally distinct keypoints in an image (detection)
- SIFT features (description) are invariant to translation, rotation, and scale; robust to 3D pose and illumination

> 1. Multi-scale extrema detection
> 2. Keypoint localization
> 3. Orientation assignment
> 4. Keypoint descriptor

Lecture 13: Re-Cap

Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection

- use DoG pyramid Output: (x, y, s) for each keypoint
- 3 scales/octave, down-sample by factor of 2 each octave

Lecture 13: Re-Cap

Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection

- use DoG pyramid Output: (x, y, s) for each keypoint
- 3 scales/octave, down-sample by factor of 2 each octave

2. Keypoint localization

- select stable keypoints (threshold on magnitude of extremum, ratio of principal curvatures) Output: Remove some (weak) keypoints

Lecture 13: Re-Cap

Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection

- use DoG pyramid

Output: ($\mathrm{x}, \mathrm{y}, \mathrm{s}$) for each keypoint

- 3 scales/octave, down-sample by factor of 2 each octave

2. Keypoint localization

- select stable keypoints (threshold on magnitude of extremum, ratio of principal curvatures) Output: Remove some (weak) keypoints

3. Keypoint orientation assignment

Output: Orientation for each keypoint

- based on histogram of local image gradient directions

Lecture 13: Re-Cap

Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection

- use DoG pyramid

Output: (x, y, s) for each keypoint

- 3 scales/octave, down-sample by factor of 2 each octave

2. Keypoint localization

- select stable keypoints (threshold on magnitude of extremum, ratio of principal curvatures) Output: Remove some (weak) keypoints

3. Keypoint orientation assignment

Output: Orientation for each keypoint

- based on histogram of local image gradient directions

4. Keypoint descriptor

- histogram of local gradient directions - vector with $8 \times(4 \times 4)=128 \mathrm{dim}$
- vector normalized (to unit length)

Output: 128D normalized vector characterizing the keypoint region

Lecture 13: Histogram of Oriented Gradients (HOG)

Pedestrian detection

> 64 pixels
> 8 cells
> 7 blocks

Redundant representation due to overlapping blocks

Lecture 13: ‘Speeded’ Up Robust Features

$$
\begin{gathered}
\text { Each cell is represented } \\
\text { by } 4 \text { values: } \\
{\left[\sum d_{x}, \sum d_{y}, \sum\left|d_{x}\right|, \sum\left|d_{y}\right|\right]}
\end{gathered}
$$

Haar wavelets filters
(Gaussian weighted from center)

How big is the SURF descriptor?
64 dimensions

Lecture 13: Summary

Keypoint Detection Algorithms	Representation	Keypoint Description Algorithms	Representation
Harris Corners	($\mathrm{x}, \mathrm{y}, \mathrm{s}$)	SIFT	128D
LoG / Blobs	($\mathrm{x}, \mathrm{y}, \mathrm{s}$)	Histogram of Oriented Gradients	3780D
SIFT	($\mathrm{x}, \mathrm{y}, \mathrm{s}$, theta)	SURF	64D

Image Alignment

Aim: Warp one image to align with another

Image Alignment

Aim: Warp one image to align with another using a 2D transformation

Image Alignment

Step 1: Find correspondences (matching points) across two images

Image Alignment

Step 2: Compute the transformation to align the two images

Image Alignment

Not all points will match across two images, we can also reject outliers

Image Alignment

Not all points will match across two images, we can also reject outliers

Planar Geometry

- 2D Linear + Projective transformations

Euclidean, Similarity, Affine, Homography

- Robust Estimation and RANSAC

Estimating 2D transforms with noisy correspondences

2D Transformations

- We will look at a family that can be represented by 3×3 matrices

- This group represents perspective projections of planar surfaces

Affine Transformation

- Transformed points are a linear function of the input points

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
a_{13} \\
a_{23}
\end{array}\right]
$$

Affine Transformation

- Transformed points are a linear function of the input points

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
a_{13} \\
a_{23}
\end{array}\right]
$$

- This can be written as a single matrix multiplication using homogeneous coordinates

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y_{1} \\
1
\end{array}\right]
$$

Linear Transformation

Linear Transformation

- Consider the action of the unit square under, sample transform $\left[\begin{array}{lll}3 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$

Linear (or Affine) Transformations

Translation, rotation, scale, shear (parallel lines preserved)

Linear (or Affine) Transformations

Translation, rotation, scale, shear (parallel lines preserved)

These transforms are not affine (parallel lines not preserved)

Linear (or Affine) Transformations

Consider a single point correspondence

Linear (or Affine) Transformations

Consider a single point correspondence

How many points are needed to solve for a?

Computing Affine Transform

Lets compute an affine transform from correspondences:

$$
\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right]
$$

Re-arrange unknowns into a vector

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
y_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{llllll}
a_{11} & a_{12} & a_{13} & a_{21} & a_{22} & a_{23}
\end{array}\right]\left[\begin{array}{cc}
0 & x_{1} \\
0 & y_{1} \\
0 & 1 \\
x_{2} & 0 \\
y_{2} & 0 \\
1 & 0
\end{array}\right]
$$

Computing Affine Transform

Linear system in the unknown parameters a

$$
\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{3} & y_{3} & 1
\end{array}\right]\left[\begin{array}{l}
a_{11} \\
a_{12} \\
a_{13} \\
a_{21} \\
a_{22} \\
a_{23}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
y_{2}^{\prime} \\
x_{3}^{\prime} \\
y_{3}^{\prime}
\end{array}\right]
$$

Of the form

$\mathrm{Ma}=\mathrm{y}$

Computing Affine Transform

Linear system in the unknown parameters a

$$
\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{3} & y_{3} & 1
\end{array}\right]\left[\begin{array}{l}
a_{11} \\
a_{12} \\
a_{13} \\
a_{21} \\
a_{22} \\
a_{23}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
y_{2}^{\prime} \\
x_{3}^{\prime} \\
y_{3}^{\prime}
\end{array}\right]
$$

Of the form

$\mathbf{M a}=\mathbf{y}$

Solve for a using Gaussian Elimination

Computing Affine Transform

Once we solve for a transform, we can now map any other points between the two images ... or resample one image in the coordinate system of the other

Computing Affine Transform

Once we solve for a transform, we can now map any other points between the two images ... or resample one image in the coordinate system of the other

This allows us to "stitch" the two images

Linear Transformations

Other linear transforms are special cases of affine transform:

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right]
$$

Linear Transformations

Other linear transforms are special cases of affine transform:

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right]
$$

e.g., $\quad\left[\begin{array}{ccc}s \cos \theta & s \sin \theta & a_{13} \\ -s \sin \theta & s \cos \theta & a_{23} \\ 0 & 0 & 1\end{array}\right]$
similarity transform

Linear Transformations

Other linear transforms are special cases of affine transform:

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right]
$$

e.g., $\quad\left[\begin{array}{ccc}\cos \theta & \sin \theta & a_{13} \\ -\sin \theta & \cos \theta & a_{23} \\ 0 & 0 & 1\end{array}\right]$
euclidian transform

Linear Transformations

Other linear transforms are special cases of affine transform:

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right]
$$

e.9.,

$$
\left[\begin{array}{ccc}
1 & 0 & a_{13} \\
0 & 1 & a_{23} \\
0 & 0 & 1
\end{array}\right]
$$

translation transform

2D Transformations

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths	
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles	
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

Example: Warping with Different Transformations

Translation

Affine

Projective (homography)

Aside: We can use homographies when ...

$1 \ldots$. the scene is planar; or

2.... the scene is very far or has small (relative) depth variation \rightarrow scene is approximately planar

Aside: We can use homographies when ...

3.... the scene is captured under camera rotation only (no translation or pose change)

Projective Transformation

General 3×3 matrix transformation

$$
\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right]
$$

Projective Transformation

General 3×3 matrix transformation

$$
\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right]
$$

Lets try an example:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\mathbf{H}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 2 & 1 & 2
\end{array}\right]} \\
& \text { Transformation } \\
& \text { Points } \\
& \text { Transformed Points }
\end{aligned}
$$

Projective Transformation

General 3×3 matrix transformation

$$
\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right]
$$

Lets try an example:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\mathbf{H}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 2 & 1 & 2
\end{array}\right]} \\
& \text { Transformation } \\
& \text { Points } \\
& \text { Transformed Points } \\
& \text { Divide by the last row: }\left[\begin{array}{cccc}
0 & 0 & 1 & 0.5 \\
0 & 0.5 & 0 & 0.5 \\
1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Compute H from Correspondences

Each match gives 2 equations to solve for $\mathbf{8}$ parameters

$$
\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right]
$$

$\rightarrow 4$ correspondences to solve for \mathbf{H} matrix
Solution uses Singular Value Decomposition (SVD)
In Assignment 4 you can compute this using cv2.findHomography

Image Alignment

Find corresponding (matching) points between the image

2 points for Similarity
$\mathbf{u}=\mathbf{H x}$ 3 for Affine

4 for Homography

Image Alignment

In practice we have many noisy correspondences + outliers

Image Alignment

In practice we have many noisy correspondences + outliers
e.g., for an affine transform we have a linear system in the parameters a:

$$
\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{3} & y_{3} & 1
\end{array}\right]\left[\begin{array}{l}
a_{11} \\
a_{12} \\
a_{13} \\
a_{21} \\
a_{22} \\
a_{23}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
y_{2}^{\prime} \\
x_{3}^{\prime} \\
y_{3}^{\prime}
\end{array}\right]
$$

It is overconstrained (more equations than unknowns) and subject to outliers (some rows are completely wrong)

Image Alignment

In practice we have many noisy correspondences + outliers
e.g., for an affine transform we have a linear system in the parameters a:

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{3} & y_{3} & 1
\end{array}\right]\left[\begin{array}{l}
a_{11} \\
a_{12} \\
a_{13} \\
a_{21} \\
a_{22} \\
a_{23}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
y_{2}^{\prime} \\
x_{3}^{\prime} \\
y_{3}^{\prime}
\end{array}\right]}
\end{gathered}
$$

It is overconstrained (more equations than unknowns) and subject to outliers (some rows are completely wrong)

Let's deal with these problems in a simpler context ...

Fitting a Model to Noisy Data

Suppose we are fitting a line to a dataset that consists of 50% outliers
We can fit a line using two points
If we draw pairs of points uniformly at random, what fraction of pairs will consist entirely of 'good' data points (inliers)?

Fitting a Model to Noisy Data

Suppose we are fitting a line to a dataset that consists of 50% outliers
We can fit a line using two points

- If we draw pairs of points uniformly at random, then about $1 / 4$ of these pairs will consist entirely of 'good' data points (inliers)
- We can identify these good pairs by noticing that a large collection of other points lie close to the line fitted to the pair
- A better estimate of the line can be obtained by refitting the line to the points that lie close to the line

RANSAC (RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a sample)
2. Points within some distance threshold, t , of model are a consensus set. Size of consensus set is model's support
3. Repeat for N samples; model with biggest support is most robust fit

- Points within distance t of best model are inliers
- Fit final model to all inliers

RANSAC (RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a sample)
2. Points within some distance threshold, t , of model are a consensus set. Size of consensus set is model's support
3. Repeat for N samples; model with biggest support is most robust fit

- Points within distance t of best model are inliers
- Fit final model to all inliers

RANSAC (RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a sample)

Fitting a Line: 2 points

2. Points within some distance threshold, t , of model are a consensus set. Size of consensus set is model's support
3. Repeat for N samples; model with biggest support is most robust fit

- Points within distance t of best model are inliers
- Fit final model to all inliers

Example 1: Fitting a Line

Figure Credit: Hartley \& Zisserman

Example 1: Fitting a Line

Figure Credit: Hartley \& Zisserman

Example 1: Fitting a Line

Figure Credit: Hartley \& Zisserman

Algorithm 10.4

This was Algorithm 15.4 in Forsyth \& Ponce (1st ed.)

Algorithm 15.4: RANSAC: fitting lines using random sample consensus
Determine:
n - the smallest number of points required
$k-$ the number of iterations required
t - the threshold used to identify a point that fits well
d - the number of nearby points required
to assert a model fits well
Until k iterations have occurred
Draw a sample of n points from the data
uniformly and at random
Fit to that set of n points
For each data point outside the sample
Test the distance from the point to the line
against $t ;$ if the distance from the point to the line
is less than t, the point is close
end
If there are d or more points close to the line
then there is a good fit. Refit the line using all
these points.
end
Use the best fit from this collection, using the
fitting error as a criterion

RANSAC: Fitting Lines Using Random Sample Consensus

RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)
Let n be the number of points needed to define hypothesis ($n=2$ for a line in the plane)

Suppose k samples are chosen
The probability that a single sample of n points is correct (all inliers) is

RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)
Let n be the number of points needed to define hypothesis ($n=2$ for a line in the plane)

Suppose k samples are chosen
The probability that a single sample of n points is correct (all inliers) is

$$
\omega^{n}
$$

The probability that all k samples fail is

RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)
Let n be the number of points needed to define hypothesis ($n=2$ for a line in the plane)

Suppose k samples are chosen
The probability that a single sample of n points is correct (all inliers) is

$$
\omega^{n}
$$

The probability that all k samples fail is

$$
\left(1-\omega^{n}\right)^{k}
$$

Choose k large enough (to keep this below a target failure rate)

RANSAC: k Samples Chosen $(p=0.99)$

Sample size	Proportion of outliers						
\mathbf{n}	$\mathbf{5 \%}$	$\mathbf{1 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{2 5 \%}$	$\mathbf{3 0 \%}$	$\mathbf{4 0 \%}$	$\mathbf{5 0 \%}$
$\mathbf{2}$	2	3	5	6	7	11	17
$\mathbf{3}$	3	4	7	9	11	19	35
$\mathbf{4}$	3	5	9	13	17	34	72
$\mathbf{5}$	4	6	12	17	26	57	146
$\mathbf{6}$	4	7	16	24	37	97	293
$\mathbf{7}$	4	8	20	33	54	163	588
$\mathbf{8}$	5	9	26	44	78	272	1177

Figure Credit: Hartley \& Zisserman

After RANSAC

RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers

Improve this initial estimate with estimation over all inliers (e.g., with standard least-squares minimization)

But this may change inliers, so alternate fitting with re-classification as inlier/ outlier

Example 2: Fitting a Line

Figure Credit: Hartley \& Zisserman

Example 2: Fitting a Line

Figure Credit: Hartley \& Zisserman

Image Alignment + RANSAC

In practice we have many noisy correspondences + outliers

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, yellow, orange, brown),

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 outliers (blue, light blue, purple, pink)

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, yellow, orange, brown),
4 outliers (blue, light blue, purple, pink)

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

choose light blue, purple

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

check match distances

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

check match distances

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

\#inliers = 2

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

choose pink, blue

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

warp image

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

check match distances

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

check match distances

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

check match distances
\#inliers $=2$

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

choose red, orange

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

warp image

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

check match distances

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

check match distances

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

check match distances
\#inliers = 4

Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

Image Alignment + RANSAC

Assignment 4

1. Match feature points between 2 views
2. Select minimal subset of matches*
3. Compute transformation T using minimal subset
4. Check consistency of all points with T - compute projected position and count \#inliers with distance < threshold
5. Repeat steps 2-4 to maximize \#inliers

* Similarity transform $=2$ points, Affine $=3$, Homography $=4$

RANSAC: k Samples Chosen $(p=0.99)$

Sample size	Proportion of outliers						
\mathbf{n}	$\mathbf{5 \%}$	$\mathbf{1 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{2 5 \%}$	$\mathbf{3 0 \%}$	$\mathbf{4 0 \%}$	$\mathbf{5 0 \%}$
$\mathbf{2}$	2	3	5	6	7	11	17
$\mathbf{3}$	3	4	7	9	11	19	35
$\mathbf{4}$	3	5	9	13	17	34	72
$\mathbf{5}$	4	6	12	17	26	57	146
$\mathbf{6}$	4	7	16	24	37	97	293
$\mathbf{7}$	4	8	20	33	54	163	588
$\mathbf{8}$	5	9	26	44	78	272	1177

Figure Credit: Hartley \& Zisserman

RANSAC: k Samples Chosen $(p=0.99)$

Sample size	Proportion of outliers						
\mathbf{n}	$\mathbf{5 \%}$	$\mathbf{1 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{2 5 \%}$	$\mathbf{3 0 \%}$	$\mathbf{4 0 \%}$	$\mathbf{5 0 \%}$
$\mathbf{2}$	2	3	5	6	7	11	17
$\mathbf{3}$	3	4	7	9	11	19	35
$\mathbf{4}$	3	5	9	13	17	34	72
$\mathbf{5}$	4	6	12	17	26	57	146
$\mathbf{6}$	4	7	16	24	37	97	293
$\mathbf{7}$	4	8	20	33	54	163	588
$\mathbf{8}$	5	9	26	44	78	272	1177

Figure Credit: Hartley \& Zisserman

2-view Rotation Estimation

Find features + raw matches, use RANSAC to find Similarity

2-view Rotation Estimation

Remove outliers, can now solve for R using least squares

2-view Rotation Estimation

Final rotation estimation

Object Instance Recognition

Database of planar objects

Instance recognition

Object Instance Recognition with SIFT

Match SIFT descriptors between query image and a database of known keypoints extracted from training examples

- use fast (approximate) nearest neighbour matching
- threshold based on ratio of distances between 1NN and 2NN

Use RANSAC to find a subset of matches that all agree on an object and geometric transform (e.g., affine transform)

Optionally refine pose estimate by recomputing the transformation using all the RANSAC inliers

Re-cap RANSAC

RANSAC is a technique to fit data to a model

- divide data into inliers and outliers
- estimate model from minimal set of inliers
- improve model estimate using all inliers
- alternate fitting with re-classification as inlier/outlier

RANSAC is a general method suited for a wide range of model fitting problems

- easy to implement
- easy to estimate/control failure rate

RANSAC only handles a moderate percentage of outliers without cost blowing up

