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Menu for Today
Topics:
— Correspondence Problem — Invariance, geometric, photometric
— Patch matching — SIFT = Scale Invariant Feature Transform

— Today’s Lecture: Szeliski Chapter 7, Forsyth & Ponce 5.4

Reminders:

— Midterm — we will be grading over the next week

— Assignment 3: Texture Synthesis due on Monday

— Assignment 4: RANSAC and Panorama Stitching out on Monday



Today’s “fun” Example: Recognizing Panoramas

Figure Credit: Matthew Brown and David Lowe
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Today’s “fun” Example: Recognizing Panoramas

Figure Credit: Matthew Brown and David Lowe



Correspondence Problem

A basic problem in Computer Vision is to establish matches (correspondences
between images.

This has many applications: rigid/non-rigid tracking, object recognition, image
registration, structure from motion, stereo...




Image Panoramas




Building Rome in a Day

The Colosseum: 2,106 images, 819,242 points matched



Building Rome in a Day

The Colosseum: 2,106 images, 819,242 points matched



Correspondence Problem

A basic problem in Computer Vision is to establish matches (correspondences
between images.

This has many applications: rigid/non-rigid tracking, object recognition, image
registration, structure from motion, stereo...




Back to Good Local Features

Where are the good features, and

how do we match them?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Photometric Iransformations

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Photometric Iransformations

What can we use to deal with this?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Geometric Transformations

Multiple View
Geometry

I COMAULer vision

AT ey o) Al oo Timanrr i an

objects will appear at different scales,
translation and rotation

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Geometric Transformations

How can we deal with this?

Multiple View
Geometry

I COMAULer vision

AT ey o) Al oo Timanrr i an

objects will appear at different scales,
translation and rotation

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lets assume for the moment we can figure out where the good features
(oatches) are ... how do we match them?
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Lets assume for the moment we can figure out where the good features
(oatches) are ... how do we match them?

How do we localize good features to match (think back 1-2 lectures)?

Harris, Blob are locally distinct (this is minimally what we need)



Back to Good Local Features

How do we know which corner goes with which?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Back to Good Local Features

How do we know which blob goes with which?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Back to Good Local Features

Patch around the local feature Is very informative

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Feature Detector

Corners/Blobs

Straight Lines




-eature Descriptor
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Shape Context

A: Feature network B: Metric network

Bottleneck FC3 + Softmax
FC2

FC1
Conv4
Conv3 C: MatchNet in training
Cross-Entropy Loss
Conv2

Pool1

Conv1

Pool0

Conv0

Preprocessing
Sampling

Learned Descriptors



Intensity Image

Just use the pixel values of the patch

= (FIEEORE - DEREYY)

vector of intensity values

Perfectly fine If geometry and appearance Is unchanged

(a.k.a. template matching)

What are the problems”?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Intensity Image

Just use the pixel values of the patch

= (FIEEORE - DEREYY)

vector of intensity values

Perfectly fine If geometry and appearance Is unchanged

(a.k.a. template matching)

What are the problems”?

How can you be less sensitive to absolute intensity values?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Image Gradients / Edges

Use pixel differences

vector of x derivatives

Feature Is invariant to absolute intensity values

What are the problems”?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Image Gradients / Edges

Use pixel differences

vector of x derivatives

Feature Is invariant to absolute intensity values

What are the problems”?

How can you be less sensitive to deformations®?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Geometric Transformations

Multiple View
Geometry

I COMAULer vision

AT ey o) Al oo Timanrr i an

objects will appear at different scales,
translation and rotation

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Geometric Transformations

How can we deal with this?

Multiple View
Geometry

I COMAULer vision

AT ey o) Al oo Timanrr i an

objects will appear at different scales,
translation and rotation

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Local Coordinate Frame

One way to achieve invariance is to use local coordinate frames that follow
the surface transformation (covariant) and compute features descriptors in them
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Strategy #1: Detecting Scale / Orientation

A common approach is to detect a local scale and orientation for each feature
poINt

e.g., extract Harris at multiple scales and align to the local gradient



Strategy #1: Detecting Scale / Orientation

A common approach is to detect a local scale and orientation for each feature
poINt

8 pixels
¢t

e.g., extract Harris at multiple scales and align to the local gradient



Strategy #2: Represent Distributions over Gradients

Use pixel differences

vector of x derivatives

Feature Is invariant to absolute intensity values



Where does SIFT fit In?

Representation Result is. .. Approach Technique
tamplate (normalized)
Intensity dense (2D) matghin correlation,
J SSD
relatively s 5
edge sparse (1D) derivatives v-@G, Canny
) . § locally distinct .
corner” / “blob sparse (0D) faatures Harris, SIFT




Object Recognition with Scale Invariant Feature Transform

Task: |dentify objects or scenes and determine their pose and model
parameters

Applications:

— Industrial automation and inspection
— Mobile robots, toys, user interfaces

— Location recognition

— Digital camera panoramas

— 3D scene modeling, augmented reality



David Lowe’s Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to
translation, rotation, scale, and other imaging parameters

SIFT Features



David Lowe’s Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to
translation, rotation, scale, and other imaging parameters
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David Lowe’s Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to
translation, rotation, scale, and other imaging parameters
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David Lowe’s Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to
translation, rotation, scale, and other imaging parameters
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David Lowe’s Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to
translation, rotation, scale, and other imaging parameters
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Advantages of Invariant Local Features

Locality: features are local, so robust to occlusion and clutter (no prior
segmentation)

Distinctiveness: individual features can be matched to a large database of
objects

Quantity: many features can be generated for even small objects

Efficiency: close to real-time performance



cale Invariant Feature Transform (SIFT

SIFT describes both a detector and descriptor

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Multi-scale Extrema Detection

Half the size
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1. Multi-scale Extrema Detection

Half the size
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Recall: Applying Laplacian Filter at Different Scales

sigma=2.1 sigma=4.2 sigma=6 sigma=9.8 sigma=15.5 sigma=17
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Slide Credit: loannis (Yannis) Gkioulekas (CMU



Searching over Scale-space
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Searching over Scale-space




Searching over Scale-space
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Searching over Scale-space
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1. Multi-scale Extrema Detection

Half the size
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1. Multi-scale Extrema Detection

Laplacian



1. Multi-scale Extrema Detection

Detect maxima and minima of Difference of Gaussian in scale space
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1. Multi-scale Extrema Detection — Sampling Frequency

More points are found as sampling frequency increases, but accuracy of matching
decreases after 3 scales/octave
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2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge
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How do we decide whether a keypoint is poorly localized, say along an edge,
vs. well-localized?



2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge,
vs. well-localized?
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2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge,
vs. well-localized?

— Lowe suggests computing the ratio of the eigenvalues of C (recall Harris
corners) and checking if it is greater than a threshold

— Aside: The ratio can be computed efficiently in fewer than 20 floating point
operations, using a trick involving the trace and determinant of C - no need to
explicitly compute the eigenvalues



2. Keypoint Localization

Example: (a) 233 x 189

_ . _ IS Image
pe— R extrema
Wy pe AR 2 ) (c) 729 left after

peak value
threshold

(d) 536 left after
testing ratio
of principal
curvatures




3. Orientation Assignment

— Create histogram of local gradient
directions computed at selected scale /

— Assign canonical orientation at peak
of smoothed histogram

— Each key specifies stable 2D
coordinates (x , y , scale, orientation)




3. Orientation Assignment

|
|
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Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)
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3. Orientation Assignment
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Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)



3. Orientation Assignment
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3. Orientation Assignment
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Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)



3. Orientation Assignment

|
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Arrows illustrate gradient orientation (direction) T
aﬂd gradient magnitUde (arI’OW |eﬂgth) ASSlgned Orientation



3. Orientation Assignment
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Arrows illustrate gradient orientation (direction) T T
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3. Orientation Assignment

Multiply gradient magnitude by a Gaussian kernel
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Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)




3. Orientation Assignment

— Histogram of 36 bins (10 degree
iIncrements)

— Size of the window is 1.5 scale (recall /
the Gaussian filter)

— Gaussian-weighted voting

— Highest peak and peaks above 80% of
highest also considered for calculating
dominant orientations




3. Keypoint Localization

Example: (a) 233 x 189

_ . _ IS Image
pe— R extrema
Wy pe AR 2 ) (c) 729 left after

peak value
threshold

(d) 536 left after
testing ratio
of principal
curvatures




cale Invariant Feature Transform (SIFT

SIFT describes both a detector and descriptor

67 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



4. Keypoint Description

We have seen how to assign a location, scale, and orientation to each key point
— keypoint detection

— The next step Is to compute a keypoint descriptor: should be robust to
local shape distortions, changes in illumination or 3D viewpoint

— Keypoint detection Is not the same as keypoint description, e.g. some
applications skip keypoint detection and extract SIFT descriptors on a regularly
spaced grid



4. SIFT Descriptor

— Image gradients are sampled over 16 x 16 array of locations in scale space
(weighted by a Gaussian with sigma half the size of the window)

— Create array of orientation histograms
— 8 orientations x 4 x 4 histogram array

Image gradients Keypoint descriptor



4. SIFT Descriptor

How many dimensions are there in a SIFT descriptor”?

(Hint: This diagram shows a 2 x 2 histogram array but the actual descriptor
uses a 4 x 4 histogram array)

Image gradients Keypoint descriptor



4. SIFT Descriptor — Photometric Invariance

Descriptor is normalized to unit length (l.e. magnitude of 1) to reduce the
effects of lllumination change

— If brightness values are scaled (multiplied) by a constant, the gradients are
scaled by the same constant, and the normalization cancels the change

— If brightness values are increased/decreased by a constant (additive), the
gradients do not change



SIFT Recap

Detector:
— FIind points that are maxima in a DOG pyramid
— Compute local orientation from gradient histogram

— This establishes a local coordinate frame with scale/orientation

Descriptor:
— Build histograms over gradient orientations (8 orientations, 4x4 grid)

— Normalise the final descriptor to reduce the effects of illumination change



SIFT Matching

Extract features from the image ...
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SIFT Matching

Goal: Find all correspondences between a pair of images




SIFT Matching

— Each SIFT feature is represented by 128-D vector (humbers)
— Feature matching becomes the task of finding the closest 128-D vector

— Nearest-neighbor matching:

NN (j) = argmin |X; — X;|, © # J

1

— This is expensive (linear time), but good approximation algorithms exist

e.g., Best Bin First K-d Tree [Beis Lowe 1997], FLANN (Fast Library for
Approximate Nearest Neighbours) [Muja Lowe 2009]




Match Ratio Test

Compare ratio of distance of nearest neighbour (1NN) to second nearest
(2NN) neighbour — this will be a non-matching point

Rule of thumb: d(1NN) < 0.8 * d(2NN) for good match
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Feature Stability to Noise

Match features after random change in image scale & orientation, with differing
levels of Image noise

FINnd nearest neighbour In database of 30,000 features
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Feature Stabllity to Affine Change

Match features after random change in image scale & orientation, with differing
levels of Image noise

FINnd nearest neighbour In database of 30,000 features
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Summary
Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection
— use DoG pyramid
— 3 scales/octave, down-sample by factor of 2 each octave
2. Keypoint localization

— select stable keypoints (threshold on magnitude of extremum, ratio of
principal curvatures)

3. Keypoint orientation assignment
— pased on histogram of local image gradient directions

4. Keypoint descriptor
— histogram of local gradient directions — vector with 8 x (4 x 4) = 128 dim
— vector normalized (to unit length)



Histogram of Oriented Gradients (HOG) Features ﬂ\

Dalal, Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005

histogram of
‘unsigned’
gradients

Cell

(8x8 pixels) (8 —=ilinals

gradient magnitude histogram
(one for each cell)

_ soft binning
(2x2 cells)

Concatenate and L-2 normalization

Single scale, no dominant orientation

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Histogram of Oriented Gradients (HOG) Features

1 cell step size visualization

Pedestrian detection

128 pixels 15X 7 x4 X9 =
10 cells 3780
15 blocks

64 pixels
8 cells
/ blocks

Redundant representation due to overlapping blocks
Slide Credit: loannis (Yannis) Gkioulekas (CMU)



'Speeded’ Up Robust Features (SURF)

4 x 4 cell grid

vl

7

1 5x5
sample
DOINtS

] ] ] ]

- Each cell Is represented
oy 4 values:

e Y, Y 1], Y1

Haar wavelets filters
(Gaussian weighted from center)

How big is the SURF descriptor?
04 dimensions

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



'Speeded’ Up Robust Features (SURF)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Keypoint Detectors vs. Descriptors

— Harris — SIFT
— Blob (Laplacian) — HoG
— SIFT — SURF



Learning Descriptors

® Deep networks for descriptor learning

Patch labels Image labels, also learns
interest function

A: Feature network B: Metric network

FC3 + Softmax DELF

000~ | B
{1

FC1

Bottleneck

Pool4

Conv4

. I
_ _ o '--qr—--- -y ---" I Geometric
e C: MatchNet in training m | Verification
Cross-Entropy Loss ﬁ Attention Scores G G
Conv2
Metric network
Pool1 [ . Features .:" 3 _n:i;;.“.ﬂ\'
Conv1 ‘ by
e a
¥
ConvO I

Preprocessing
Sampling

DELF Pipeline

[ MatchNet | DELF
Han et al 2015 ] Noh et al 2017 ]



Planar Object Instance Recognition

Datalbase of planar objects Instance recognition

BASAATI

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Recognition under Occlusion

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



