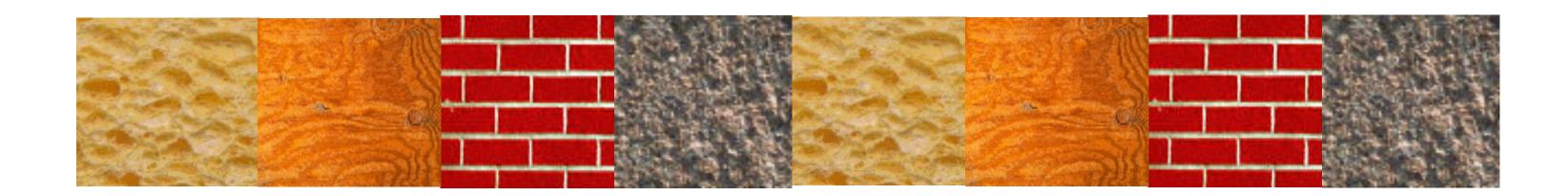


THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Lecture 12: Texture (cont.)

Menu for Today

Topics:

- **Texture** Synthesis & Analysis

Readings:

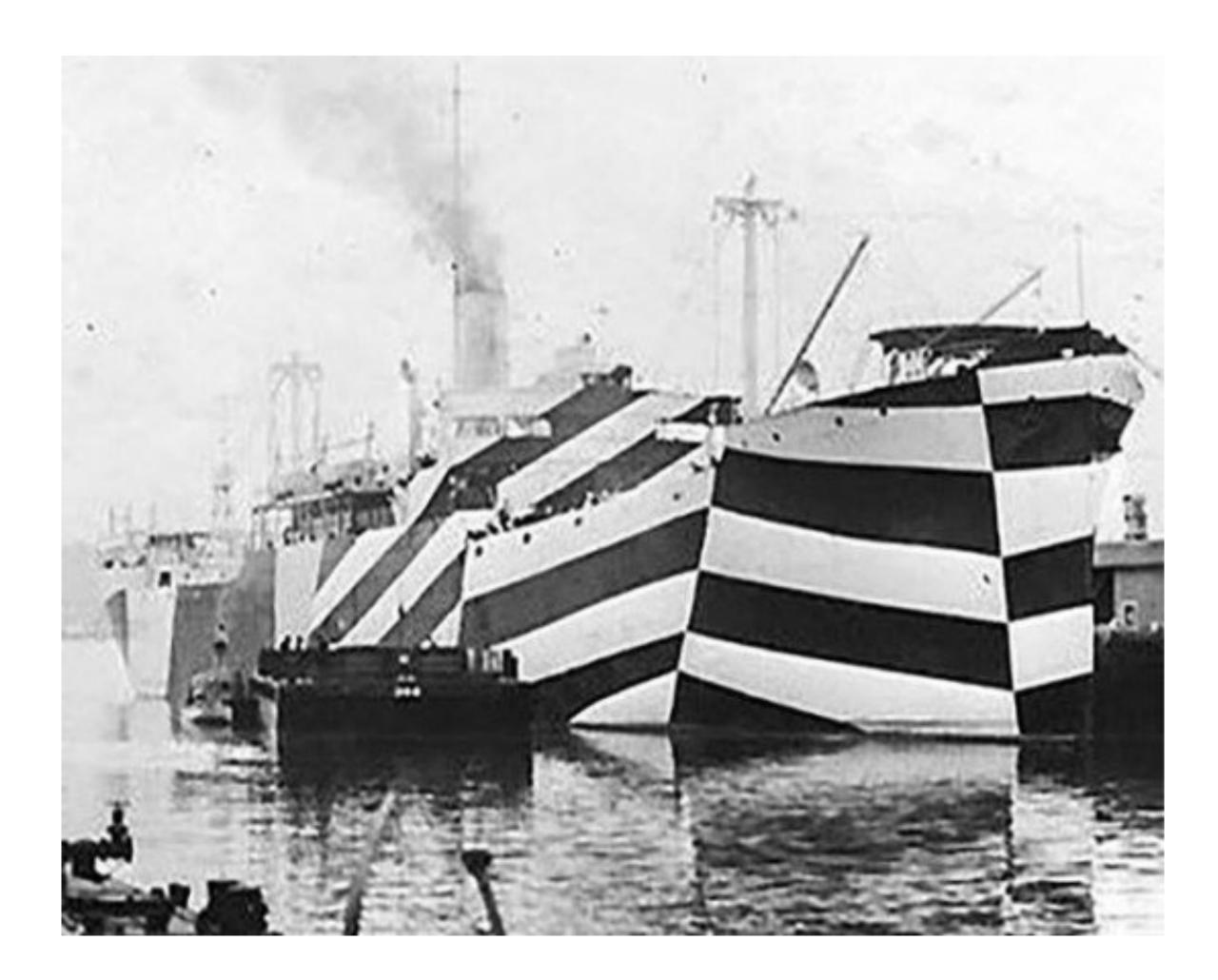
— Today's Lecture: Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3, 3.1-3.3

Reminders:

- Assignment 3: Texture Synthesis is out
- No office hours this Friday
- Extra office hours next week (Thursday & Friday)

Today's "fun" Example: Dazzle Camouflage

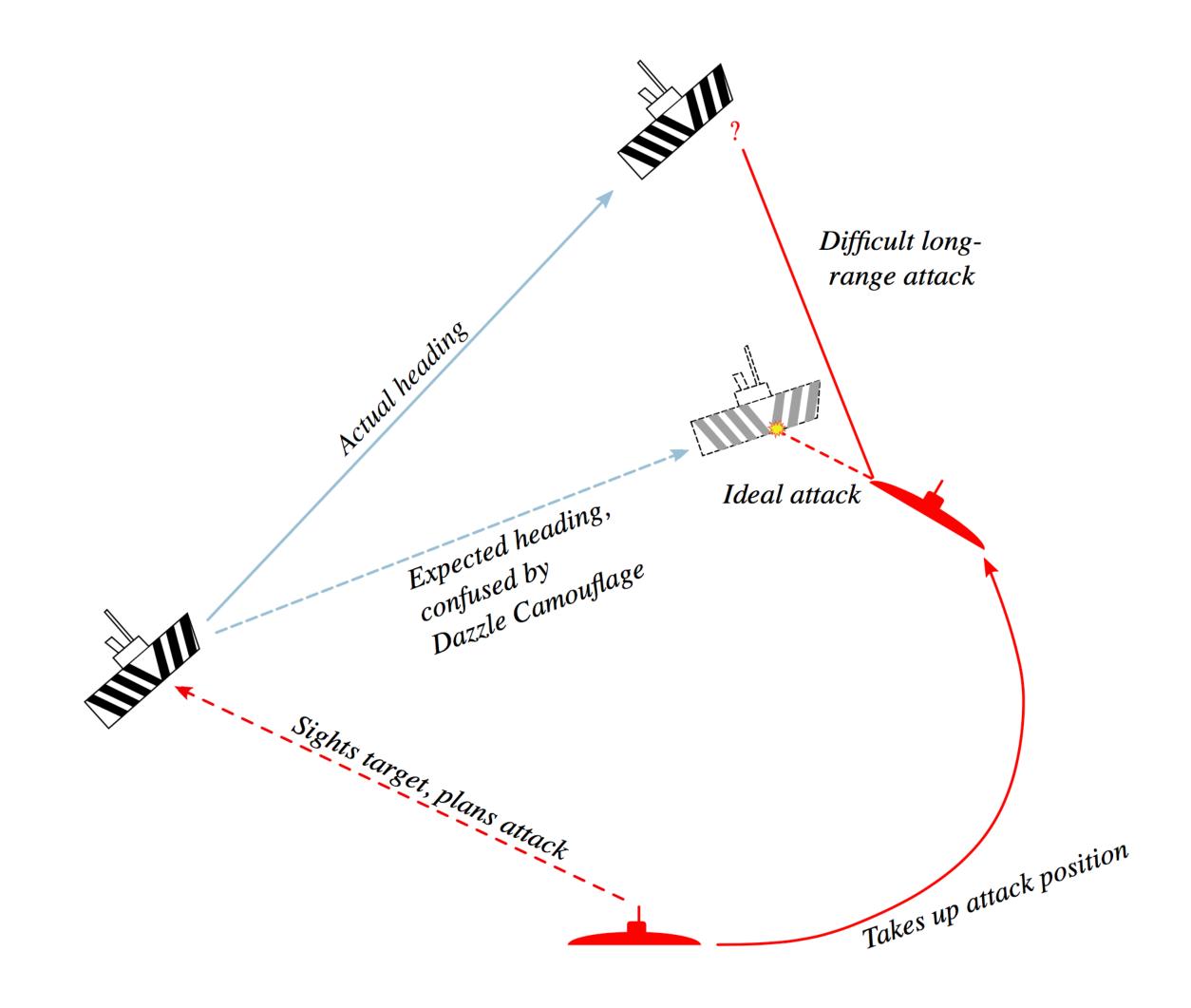
make it difficult to estimate the ship's speed and heading



A type of ship camouflage that uses strongly contrasted colours and shapes to

Today's "fun" Example: Dazzle Camouflage

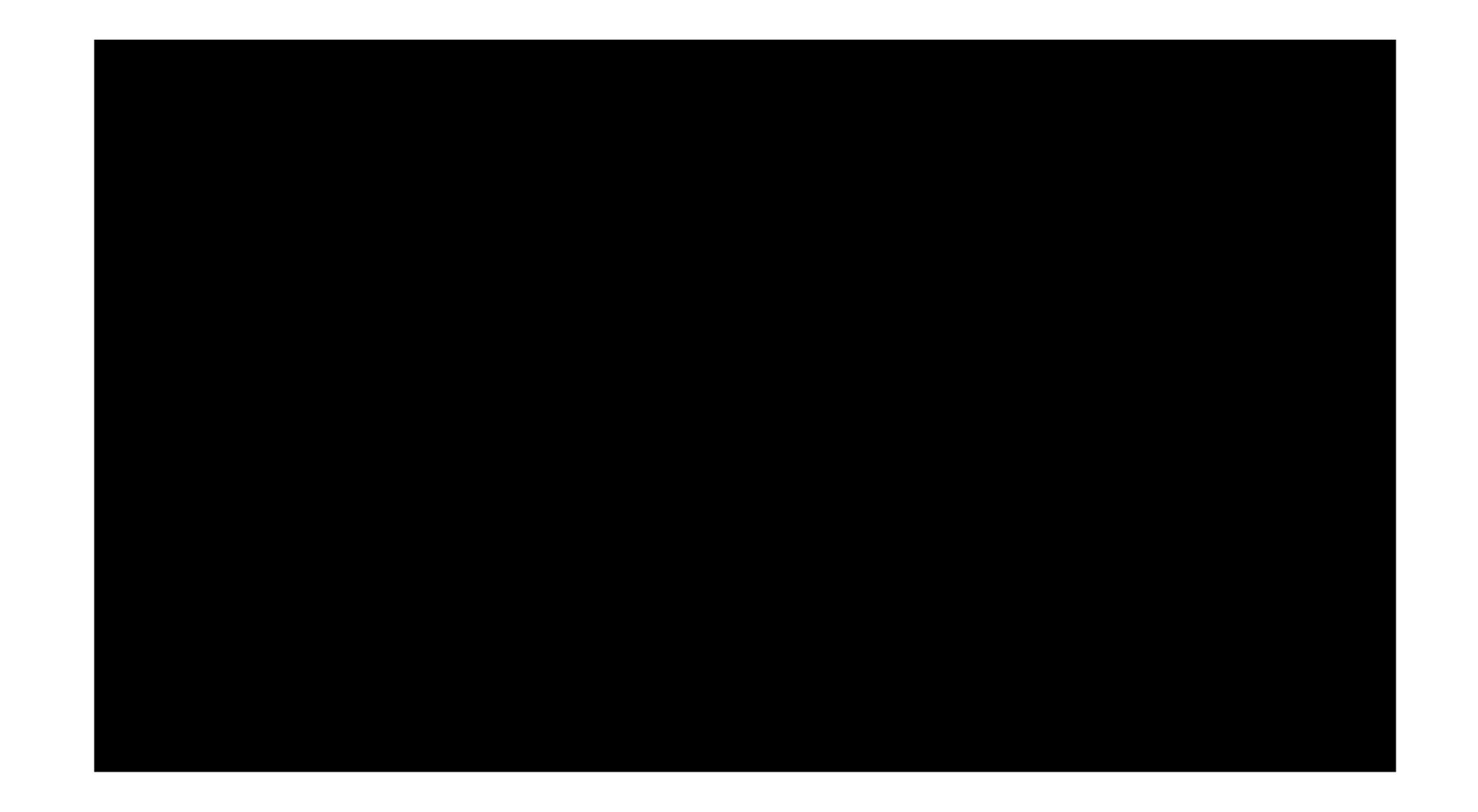
A type of ship camouflage that uses strongly contrasted colours and shapes to make it difficult to estimate the ship's speed and heading



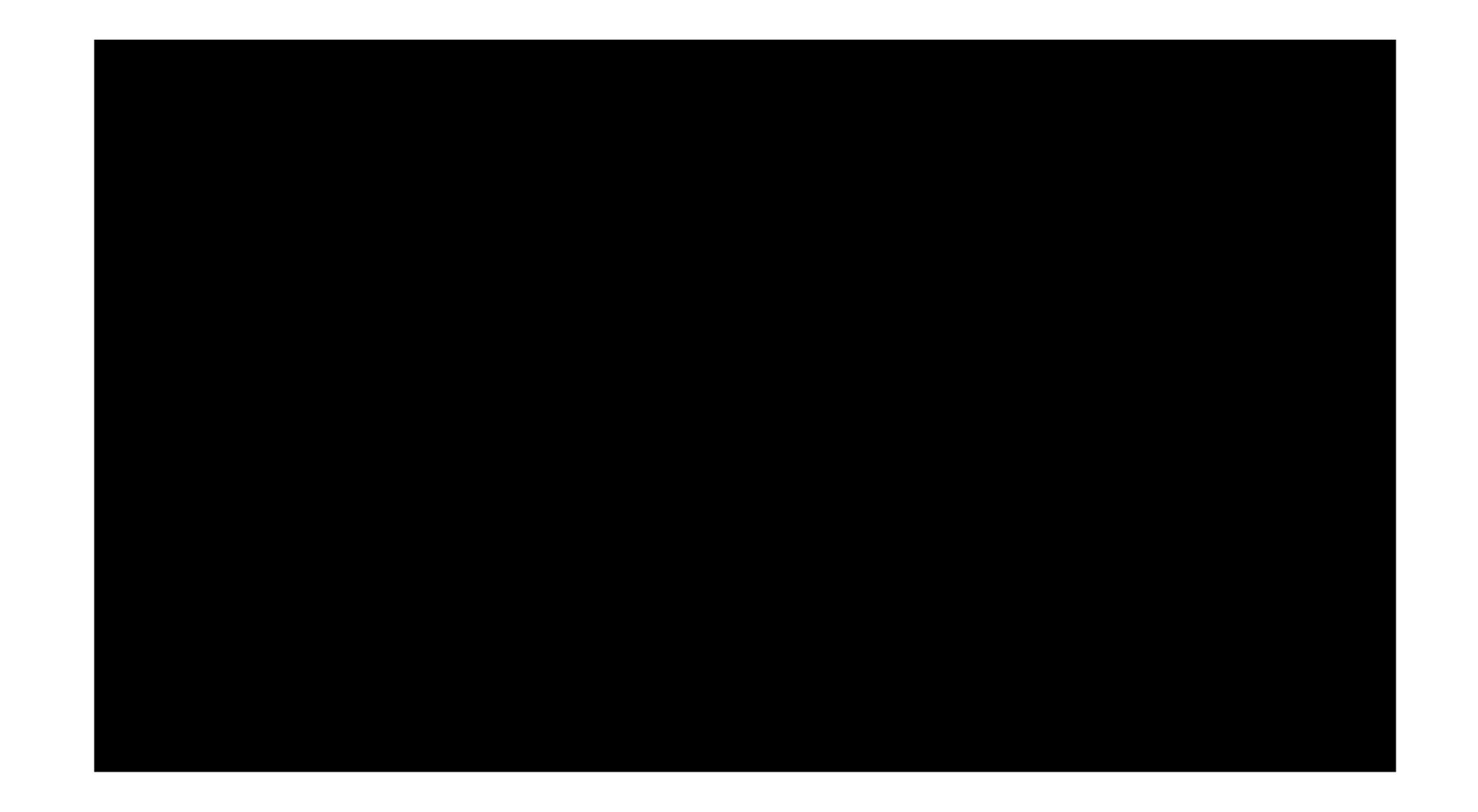
Today's "fun" Example: Al Generated Portrait

Sold in 2018 for \$432,500 at British auction house

Today's "fun" Example: Sunspring

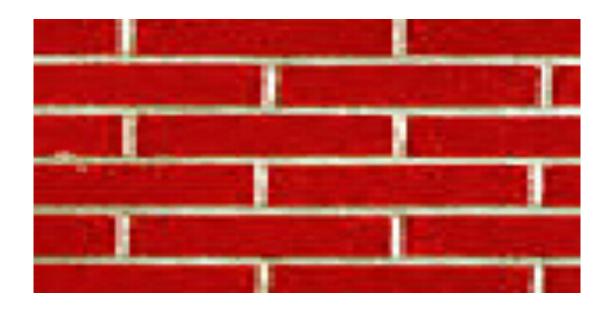


Today's "fun" Example: Sunspring



Lecture 11: Re-cap Texture

What is **texture**?



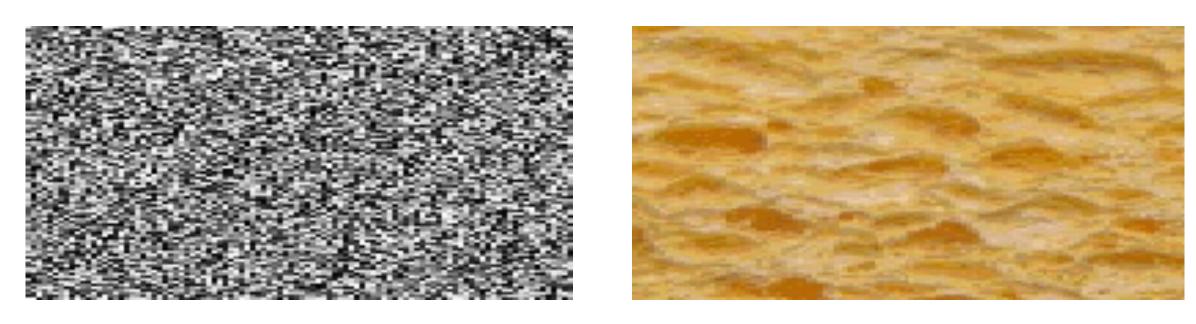


Figure Credit: Alexei Efros and Thomas Leung Texture is widespread, easy to recognize, but hard to define

- Views of large numbers of small objects are often considered textures
- e.g. grass, foliage, pebbles, hair
- Patterned surface markings are considered textures e.g. patterns on wood

Lecture 11: Re-cap Texture

(Functional) **Definition**:

distribution of image measurements

Sometimes, textures are thought of as patterns composed of repeated instances of one (or more) identifiable elements, called textons. - e.g. bricks in a wall, spots on a cheetah

Texture is detail in an image that is at a scale too small to be resolved into its constituent elements and at a scale large enough to be apparent in the spatial

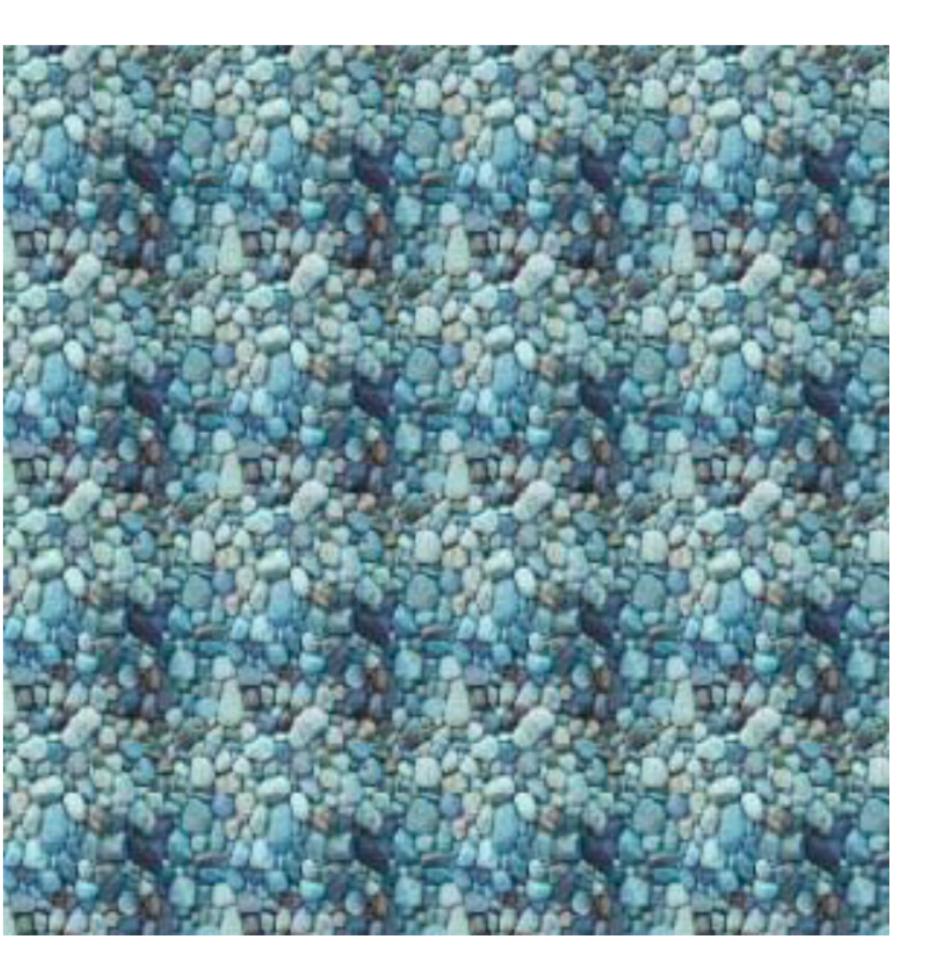
Lecture 11: Re-cap Texture

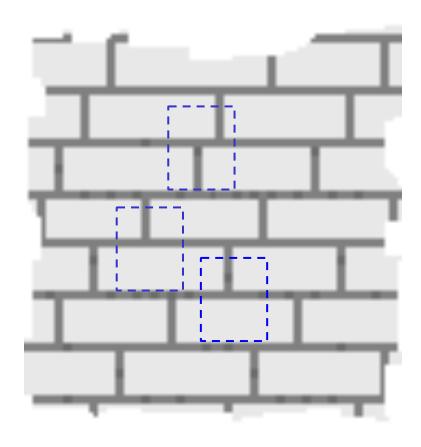
We will look at two main questions:

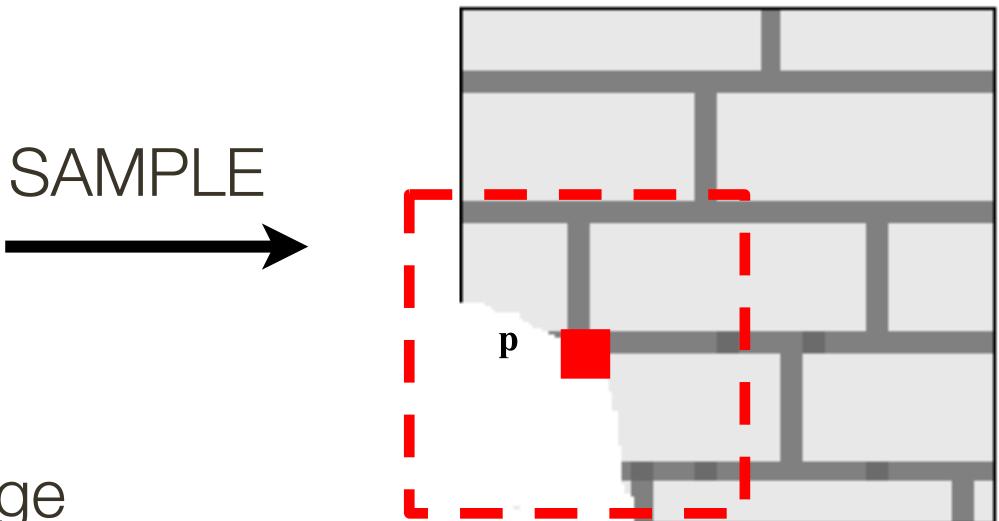
- 1. How do we represent texture? → Texture **analysis**
- 2. How do we generate new examples of a texture? → Texture **synthesis**

We begin with texture synthesis to set up **Assignment 3**

Like Copying, But not Just Repetition

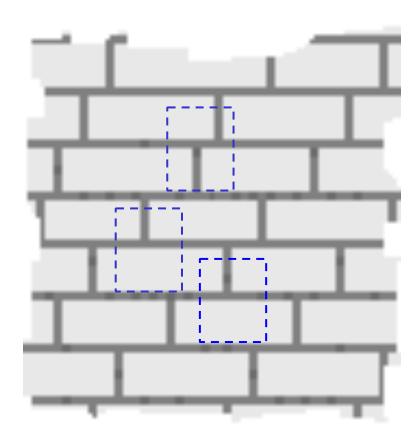


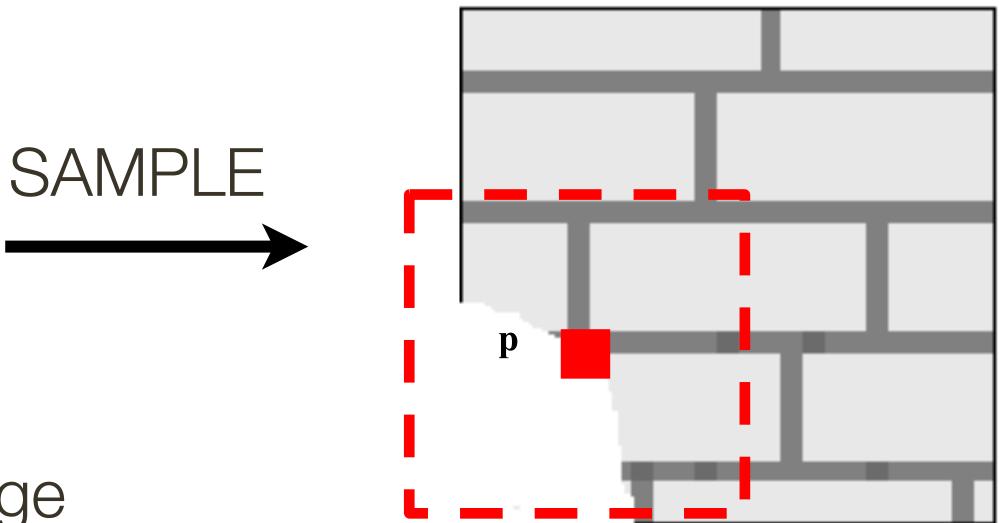




Infinite sample image

— What is **conditional** probability distribution of *p*, given the neighbourhood window?

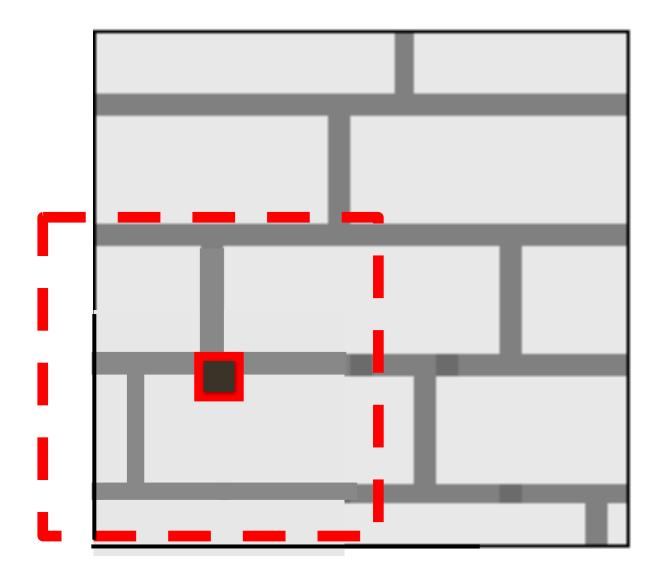


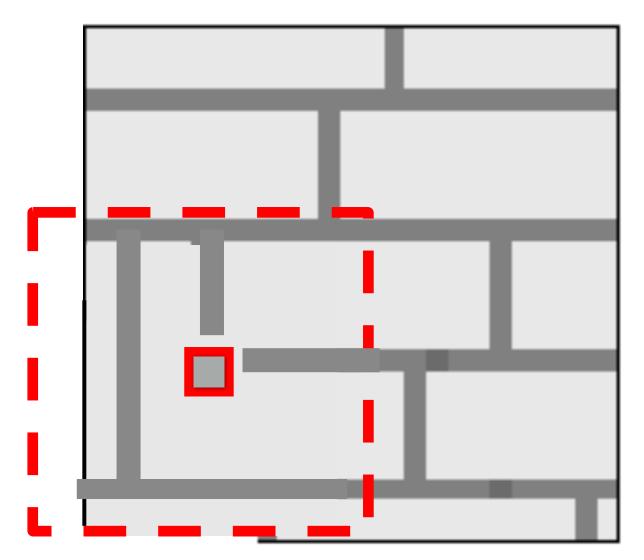


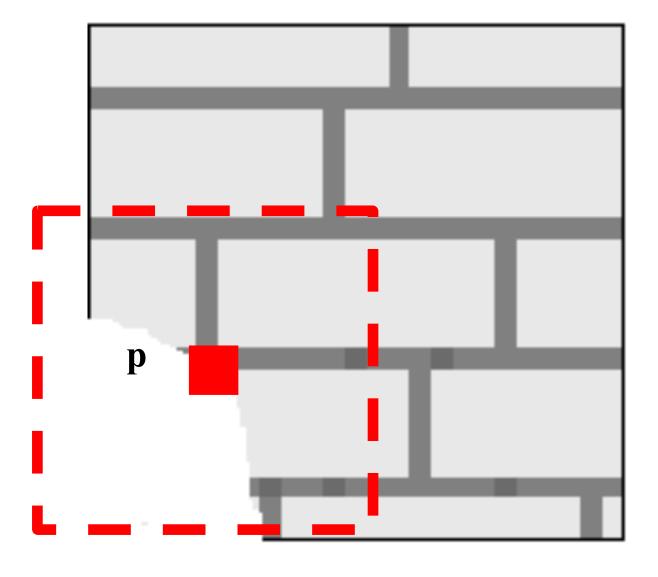
Infinite sample image

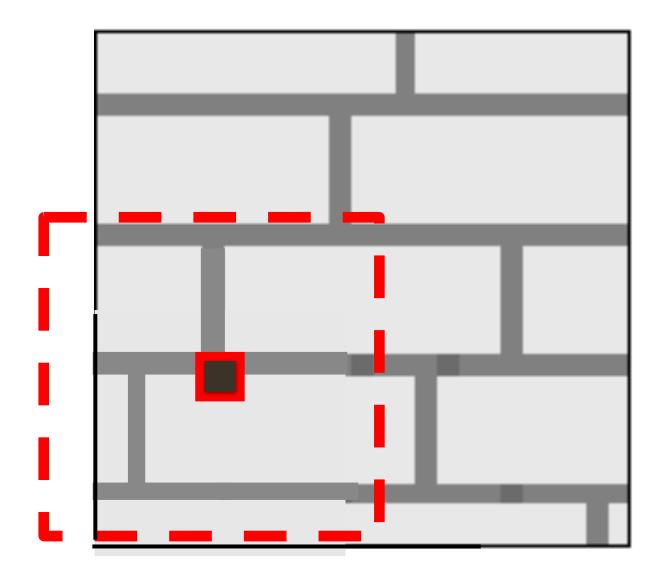
— What is **conditional** probability distribution of p, given the neighbourhood window?

— Directly search the input image for all such neighbourhoods to produce a **histogram** for p

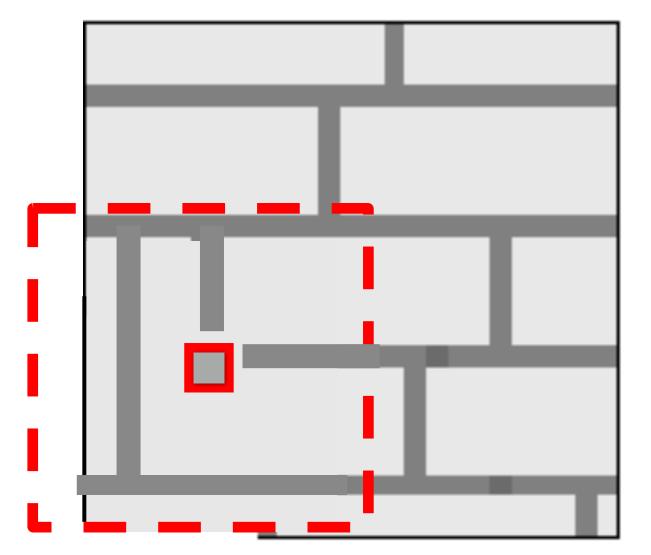




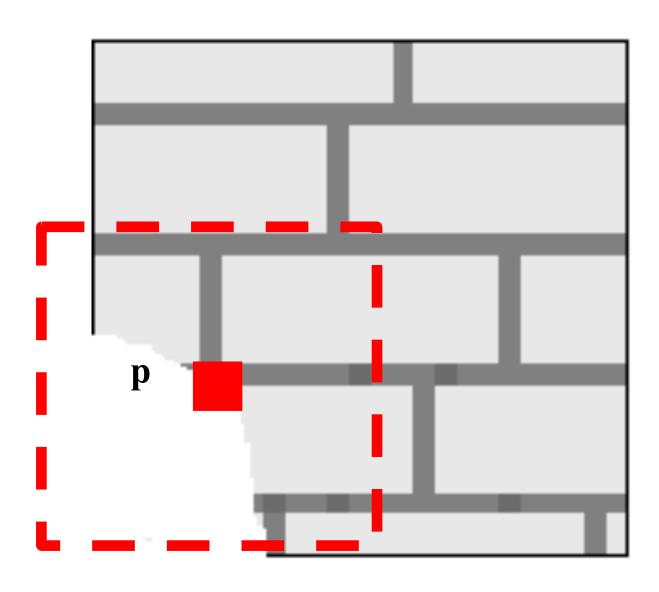


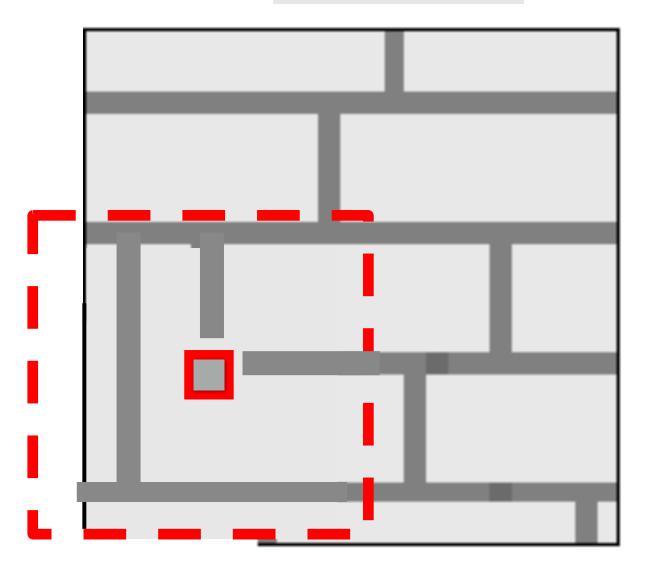


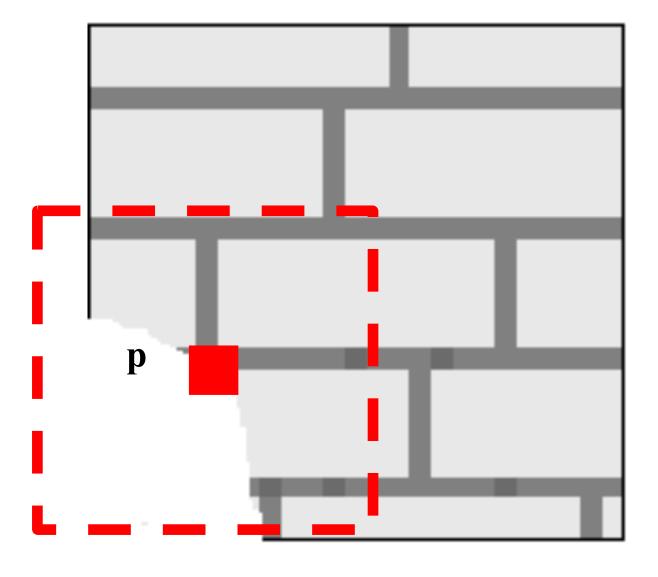
p(dark gray) = 0.5

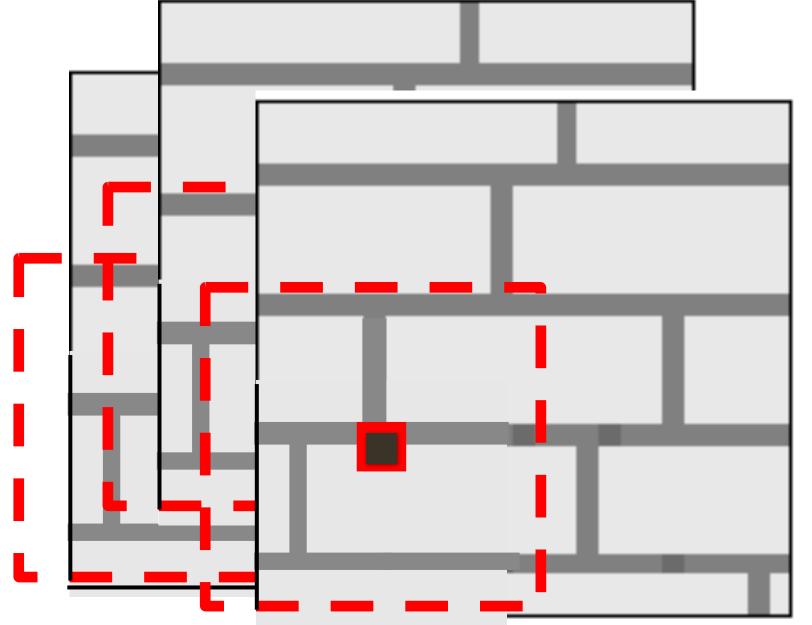


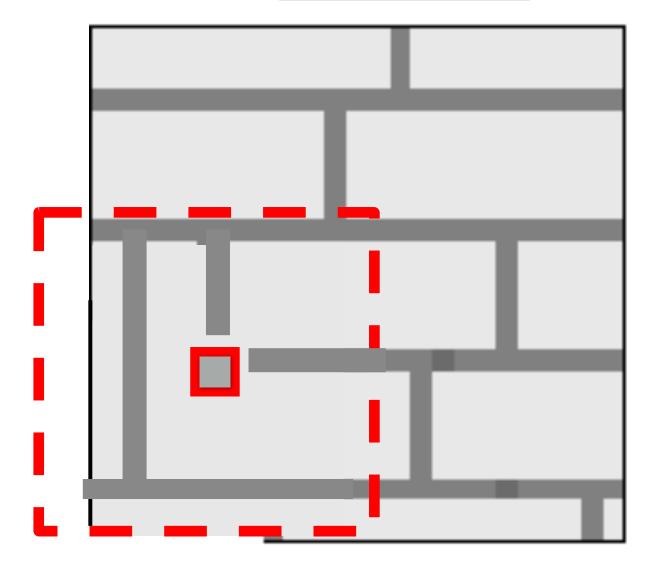
p(light gray) = 0.5



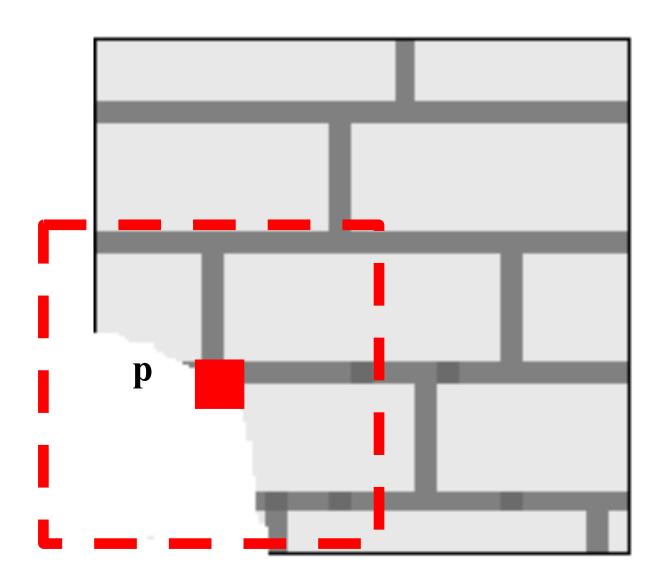




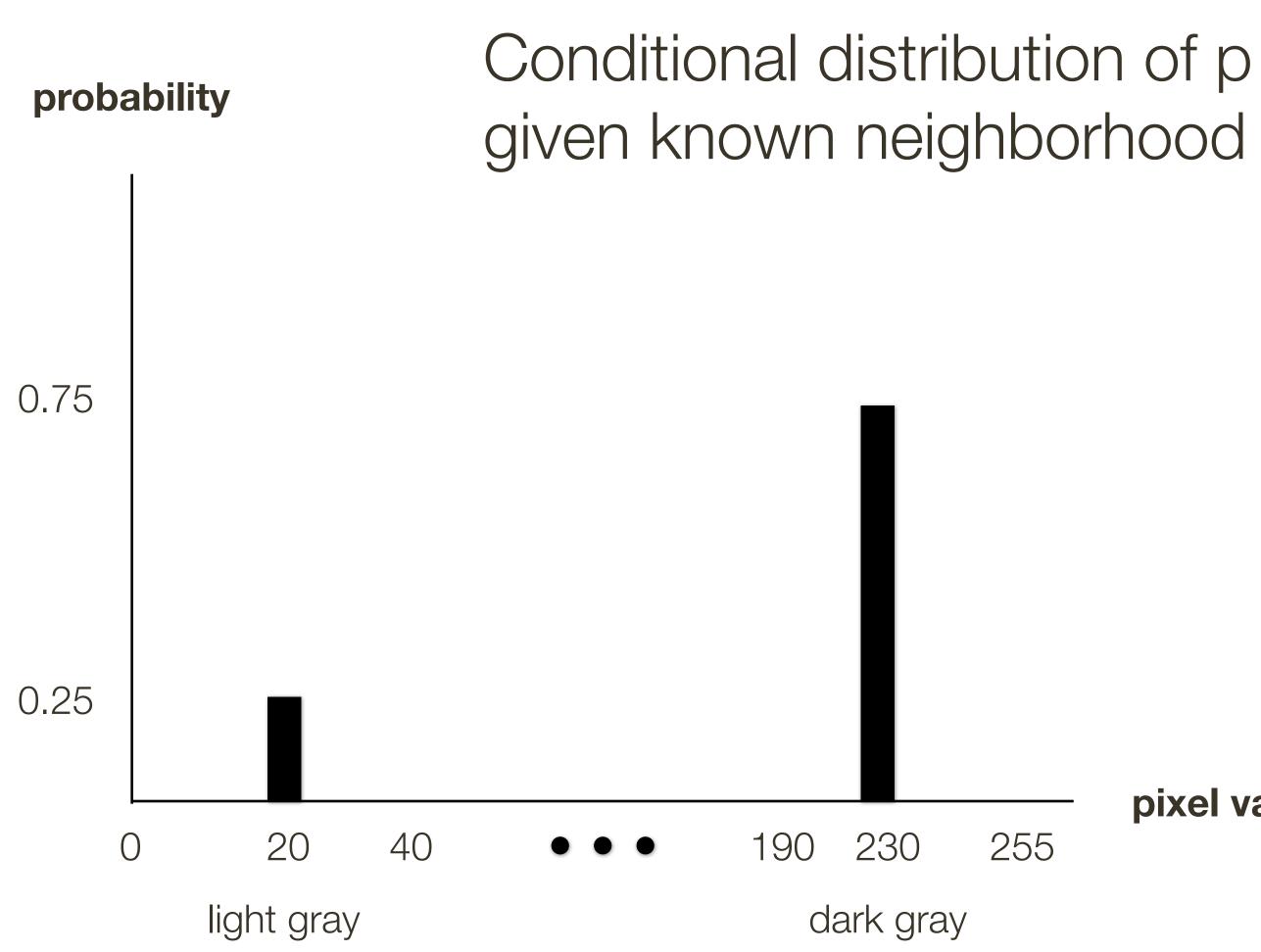


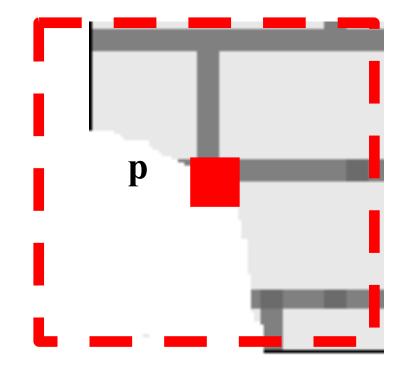


p(dark gray) = 0.75



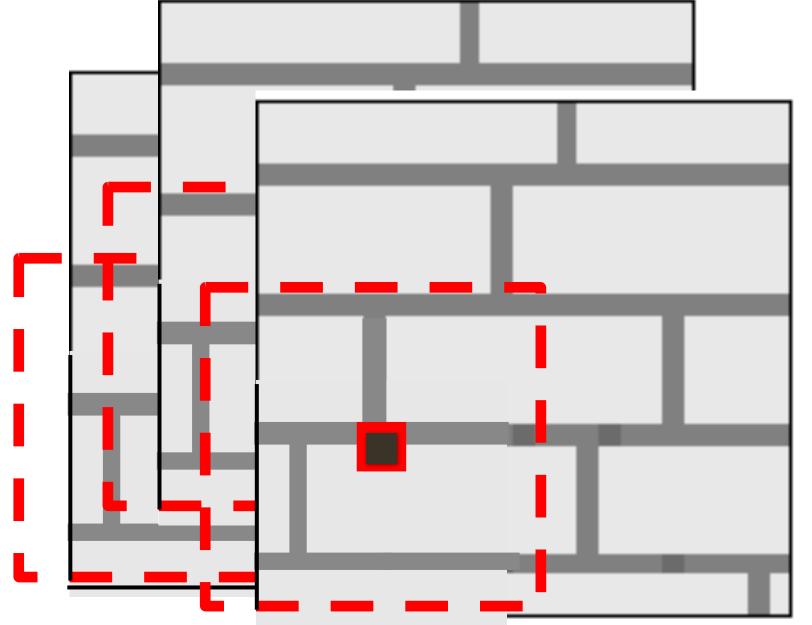
p(light gray) = 0.25

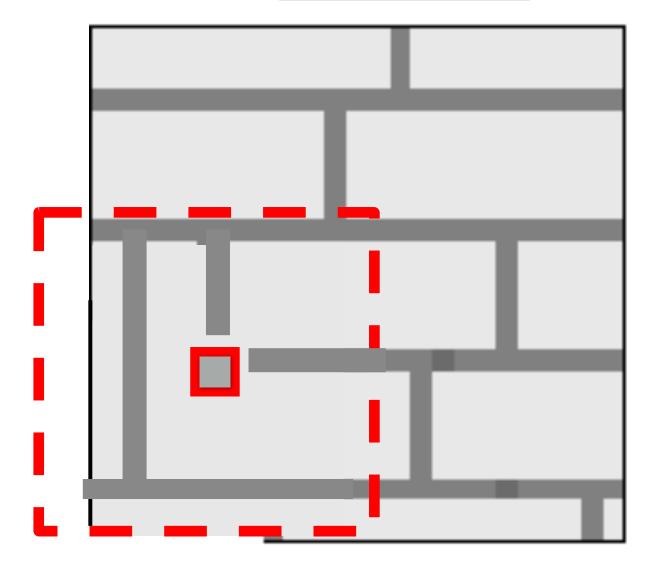




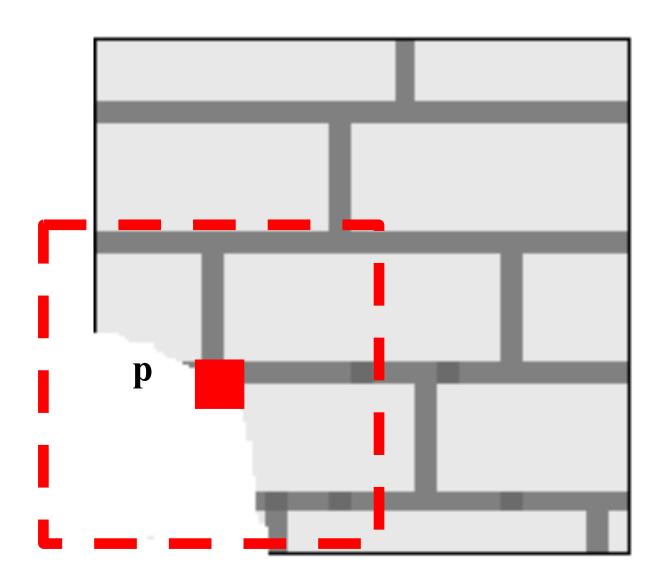
pixel value

255

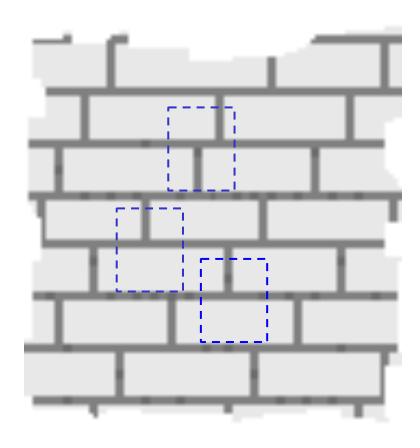


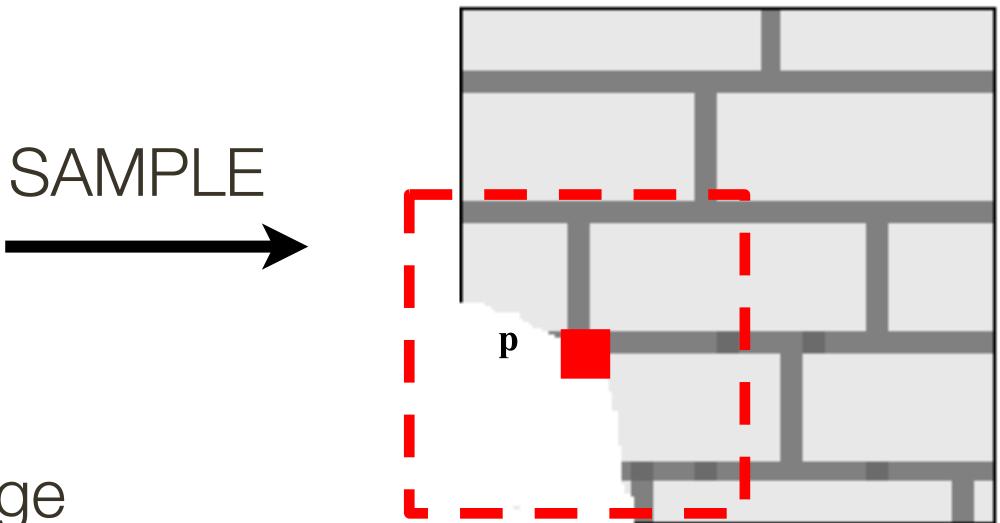


p(dark gray) = 0.75



p(light gray) = 0.25



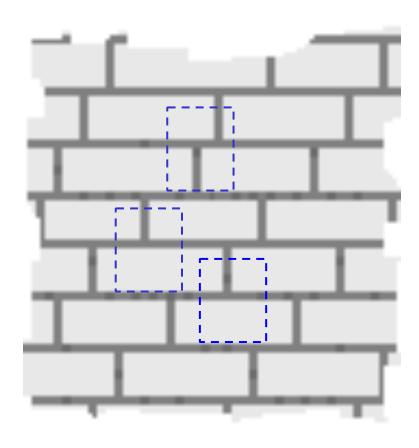


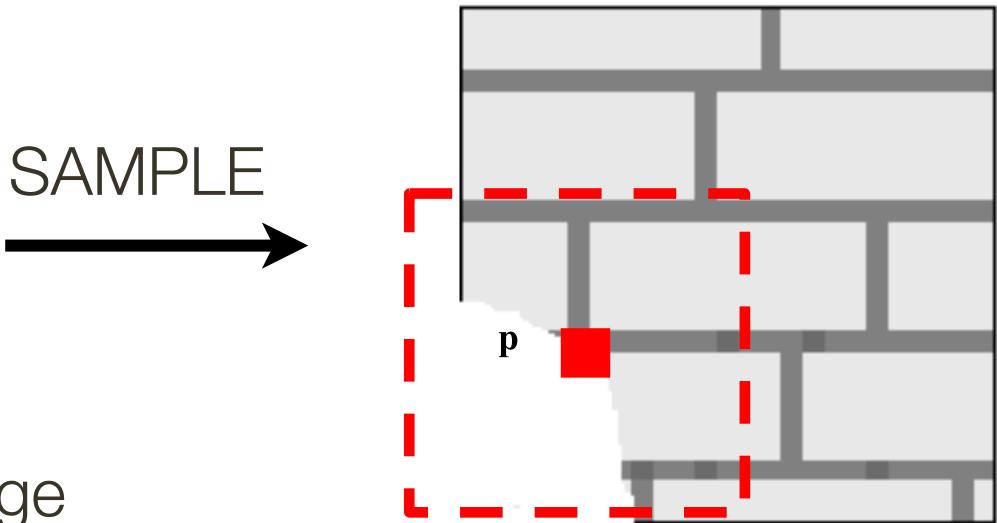
Infinite sample image

— What is **conditional** probability distribution of *p*, given the neighbourhood window?

— Directly search the input image for all such neighbourhoods to produce a ${\bf histogram}$ for p

- To synthesize *p*, pick one match at random

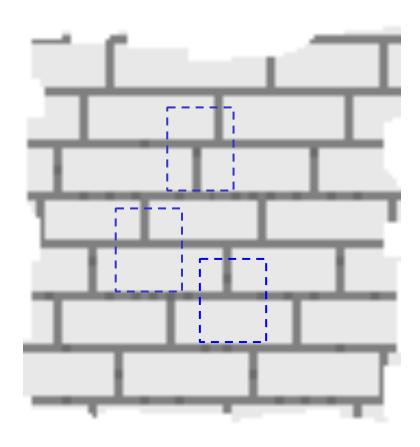


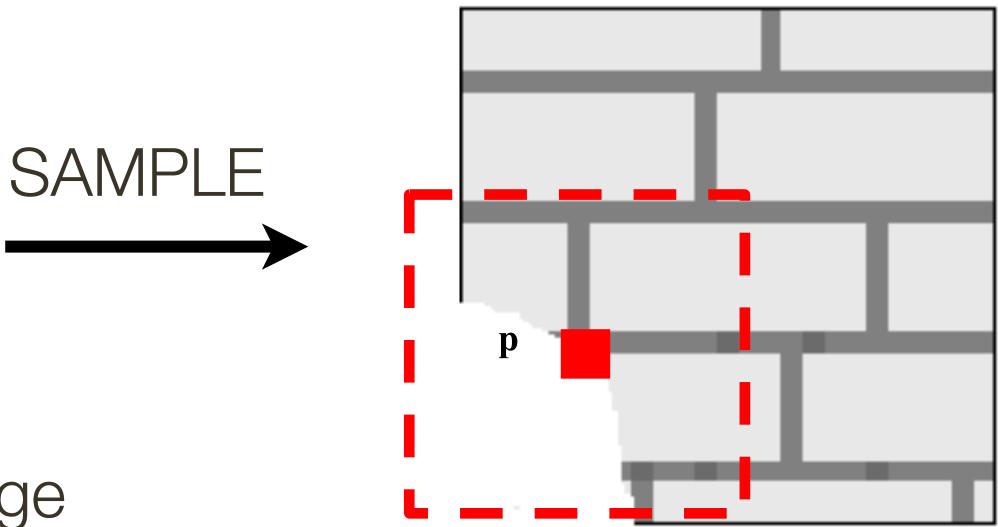


Infinite sample image

Since the sample image is finite, as be present

- Since the sample image is finite, an exact neighbourhood match might not



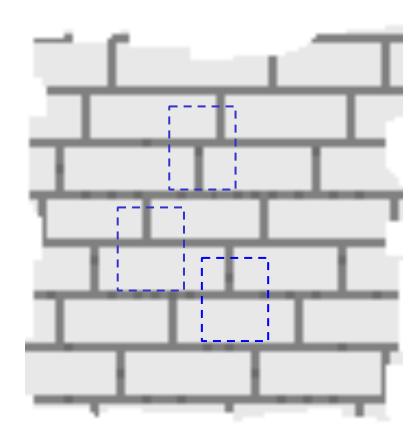


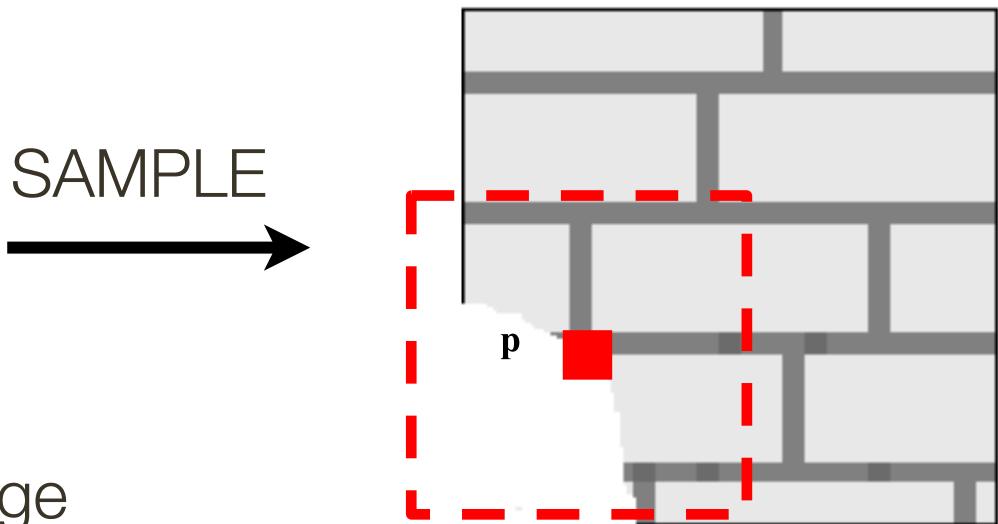
Infinite sample image

Since the sample image is finite, as be present

— Find the **best match** using SSD error, weighted by Gaussian to emphasize local structure, and take all samples within some distance from that match

- Since the sample image is finite, an exact neighbourhood match might not





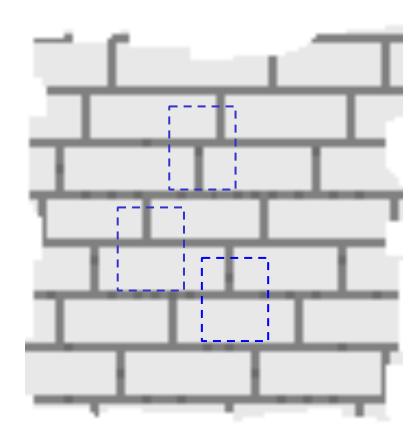
Infinite sample image

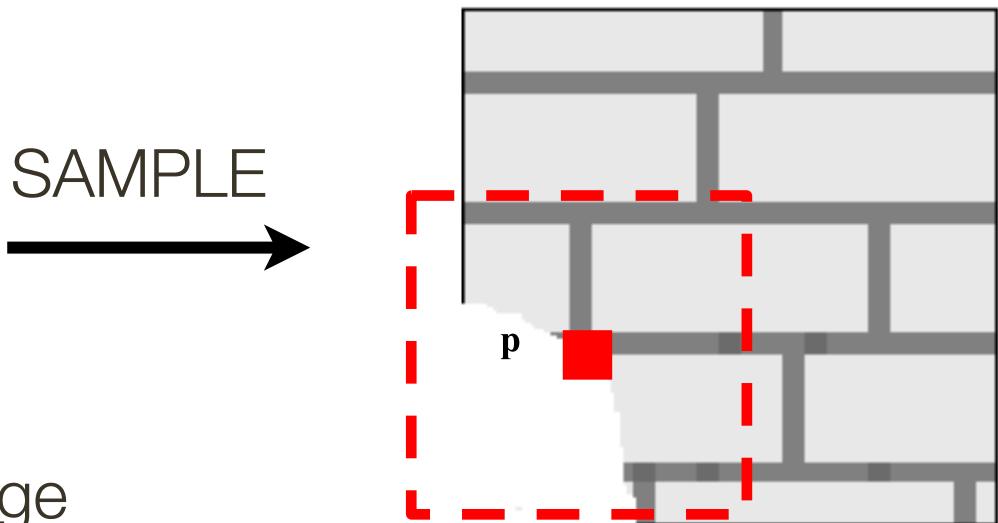
Ranked List

- x = 63, y = 4
- x = 3, y = 44
- x = 123, y = 54

x = 4, y = 57

- 0.87
- 0.75
- 0.72
- 0.64
- 0.60
 - ullet
 - \bullet





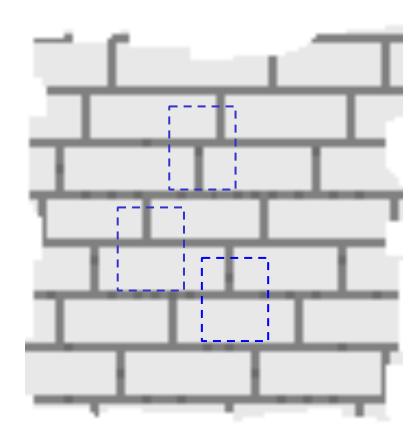
Infinite sample image

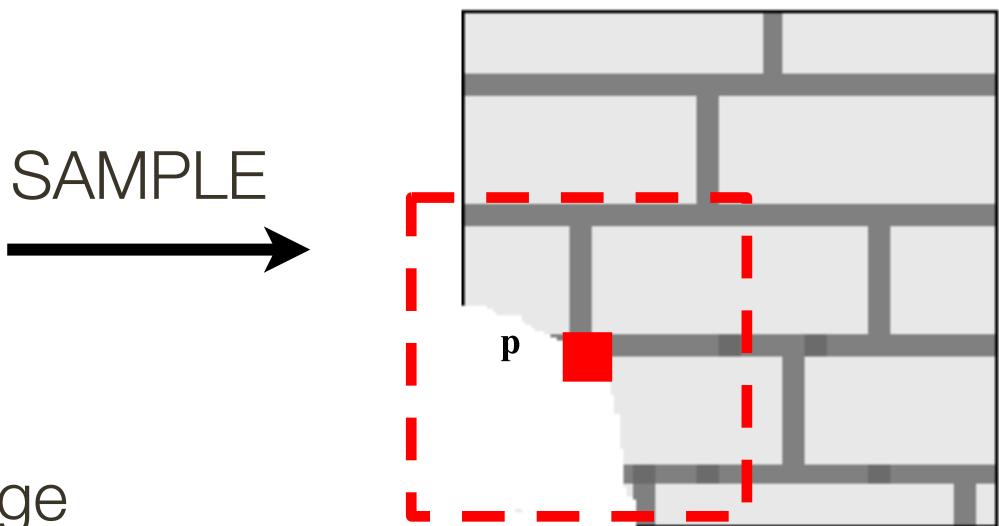
Ranked List

- x = 63, y = 4
- x = 3, y = 44
- x = 123, y = 54

x = 4, y = 57

0.87	←	best match
0.75		
0.72		
0.64		
0.60		
•		
•		





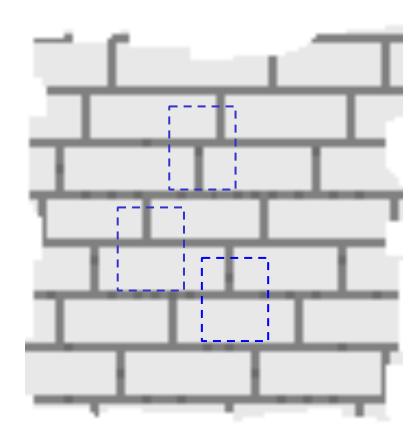
Infinite sample image

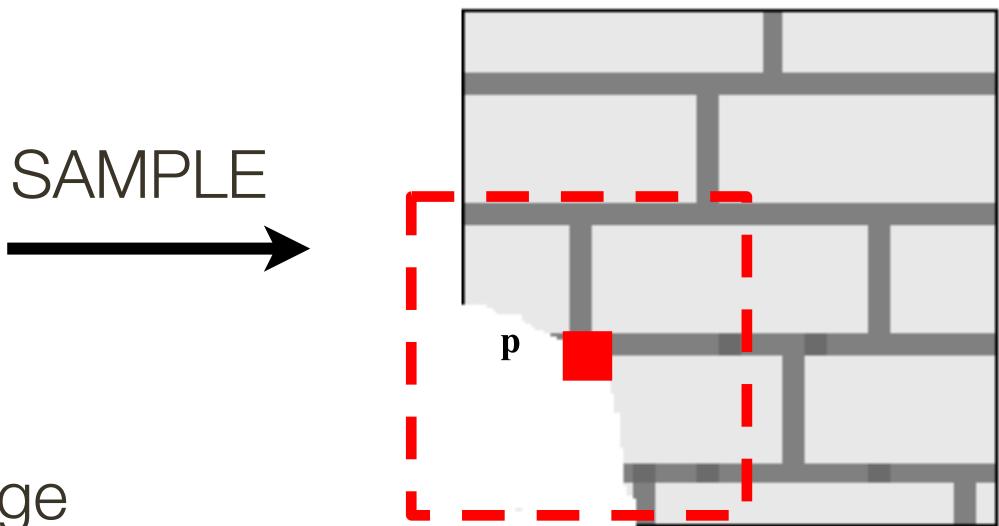
Ranked List

- x = 63, y = 4
- x = 3, y = 44
- x = 123, y = 54

x = 4, y = 57

0.87 ←	best match	
0.75		
0.72		
0.64	threshold = best match * 0.8 = 0.69	10
0.60		
•		
\bullet		





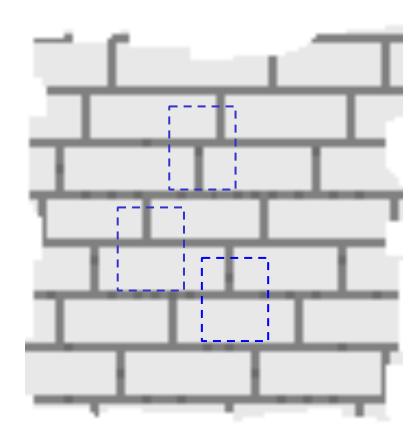
Infinite sample image

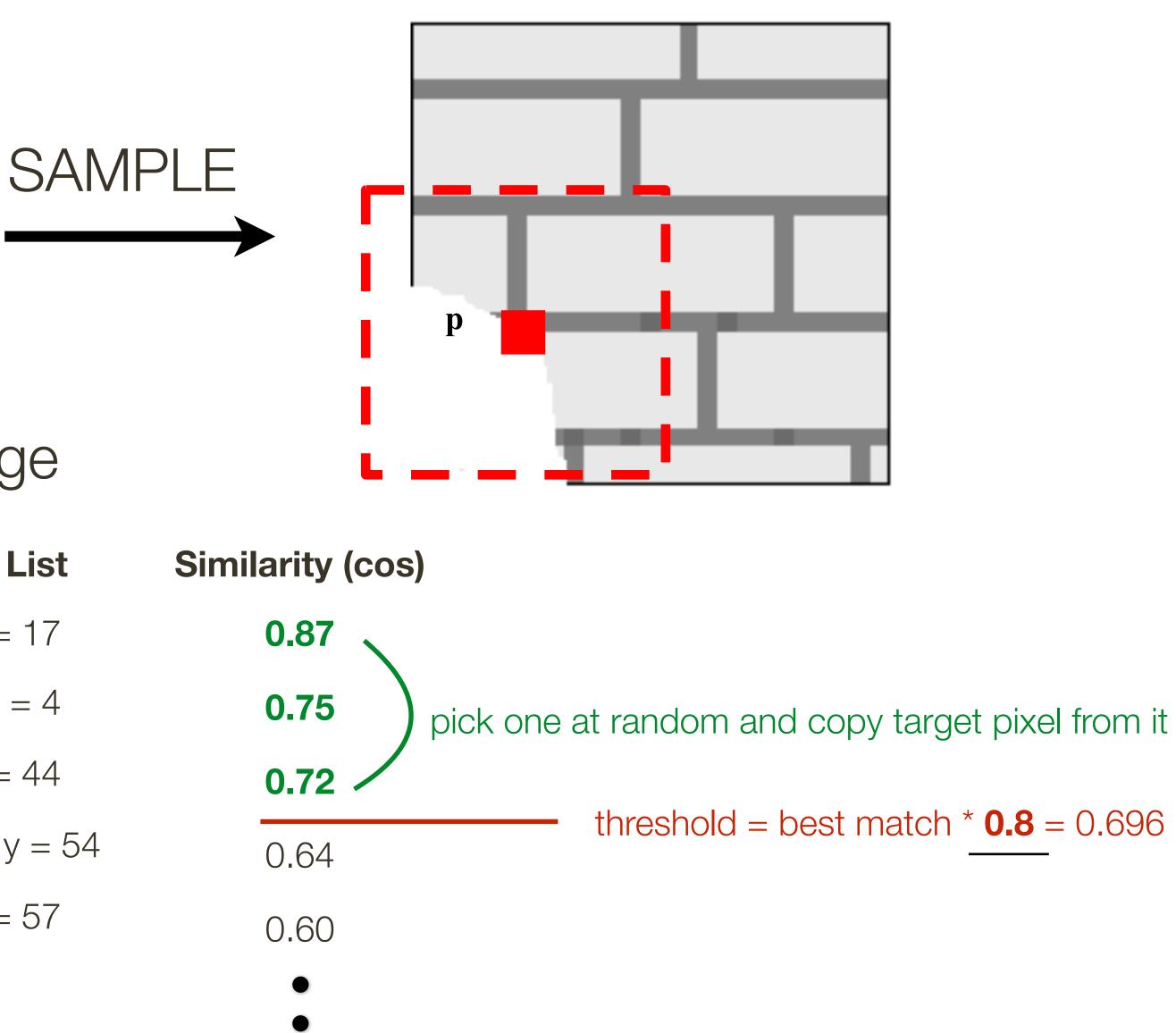
Ranked List

- x = 63, y = 4
- x = 3, y = 44
- x = 123, y = 54

x = 4, y = 57

0.87 ←	best match
0.75	
0.72	threehold best metab * 0.9 $-$ 0.606
0.64	threshold = best match * 0.8 = 0.696
0.60	
•	
•	





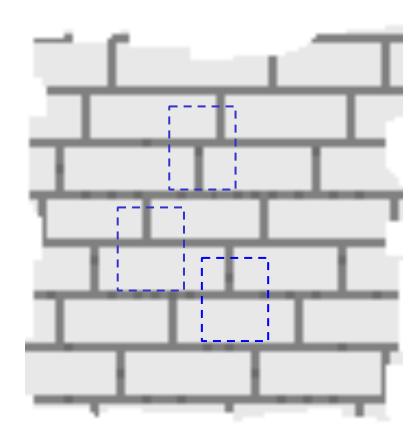
Infinite sample image

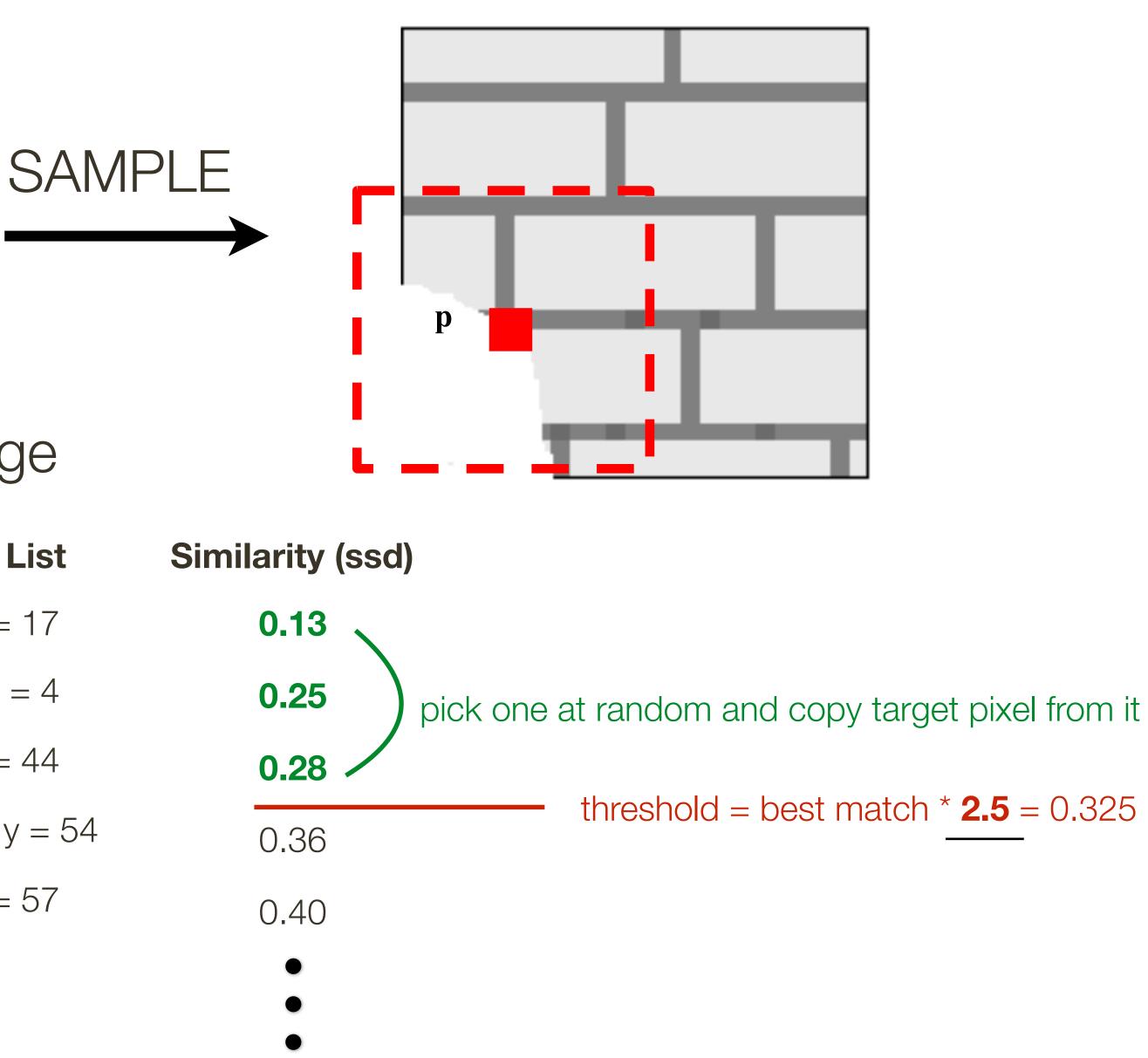
Ranked List

- x = 63, y = 4
- x = 3, y = 44
- x = 123, y = 54

x = 4, y = 57

 \bullet





Infinite sample image

Ranked List

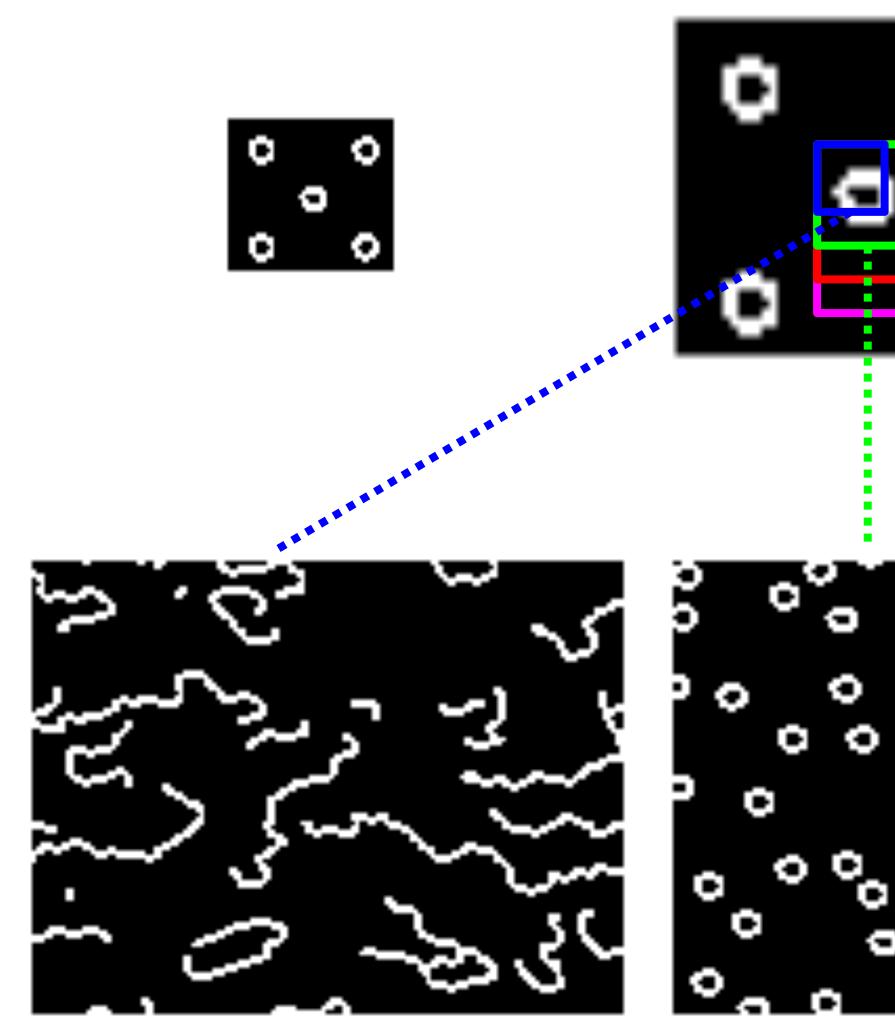
- x = 63, y = 4
- x = 3, y = 44
- x = 123, y = 54

x = 4, y = 57

For multiple pixels, "grow" the texture in layers - In the case of hole-filling, start from the edges of the hole

For an interactive demo, see https://una-dinosauria.github.io/efros-and-leung-js/ (written by Julieta Martinez, a previous CPSC 425 TA)

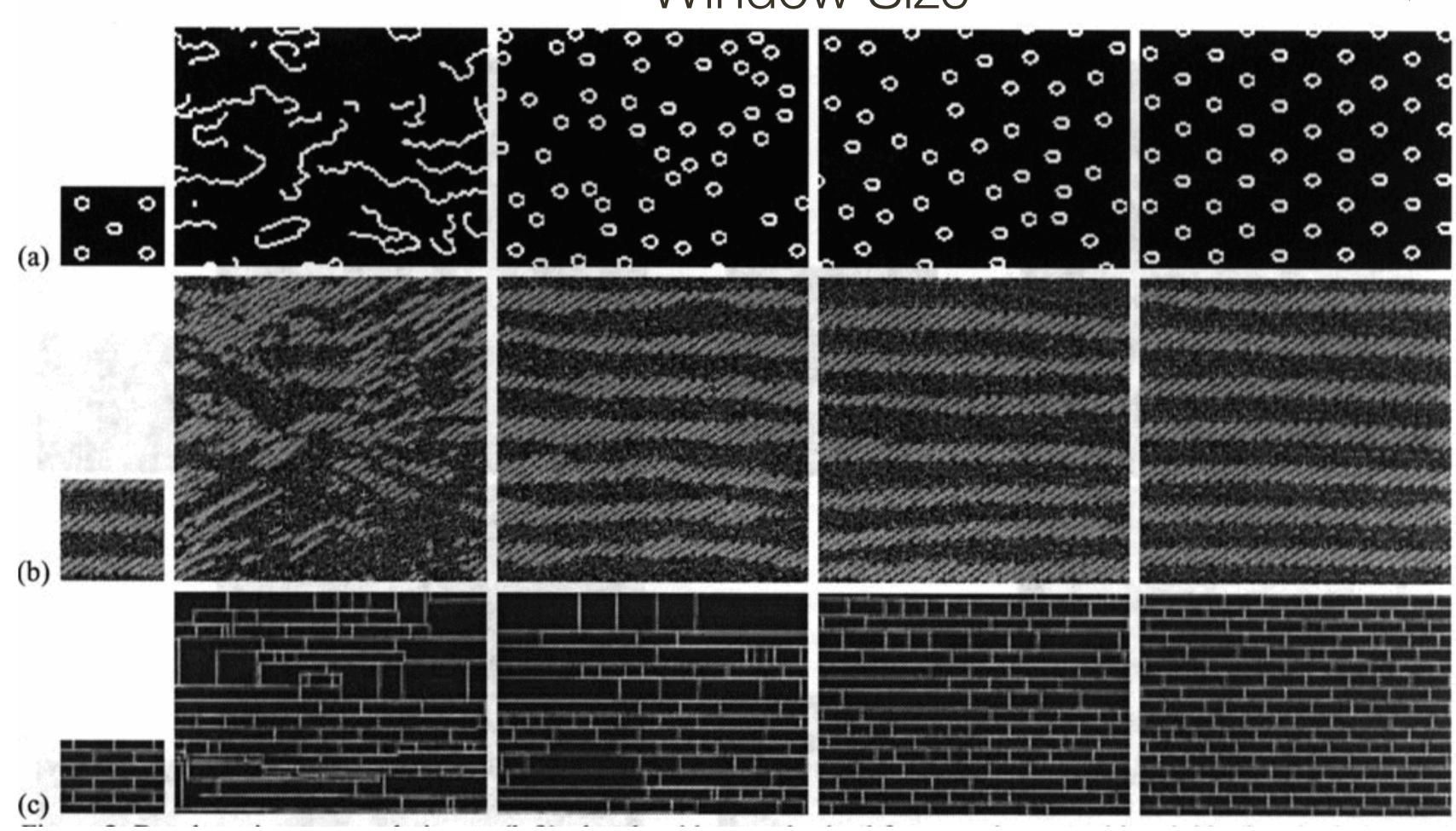
Randomness Parameter



Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

0

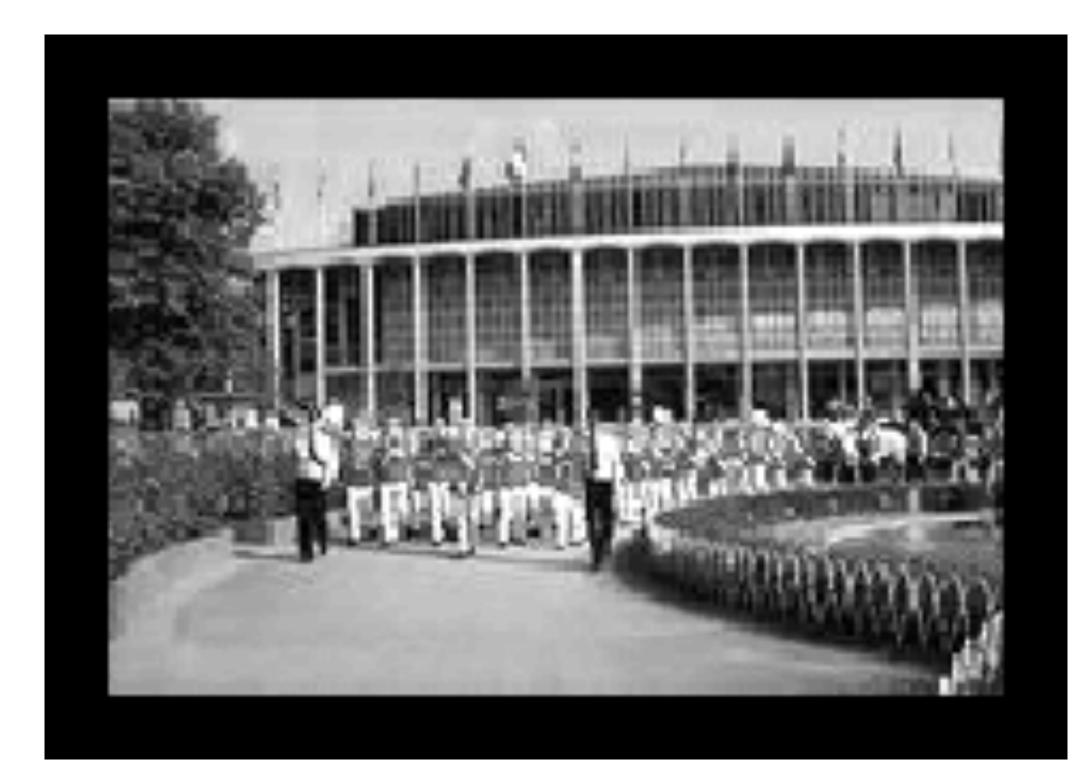
Efros and Leung: More Synthesis Results



Forsyth & Ponce (2nd ed.) Figure 6.12

Window Size

Efros and Leung: Image Extrapolation



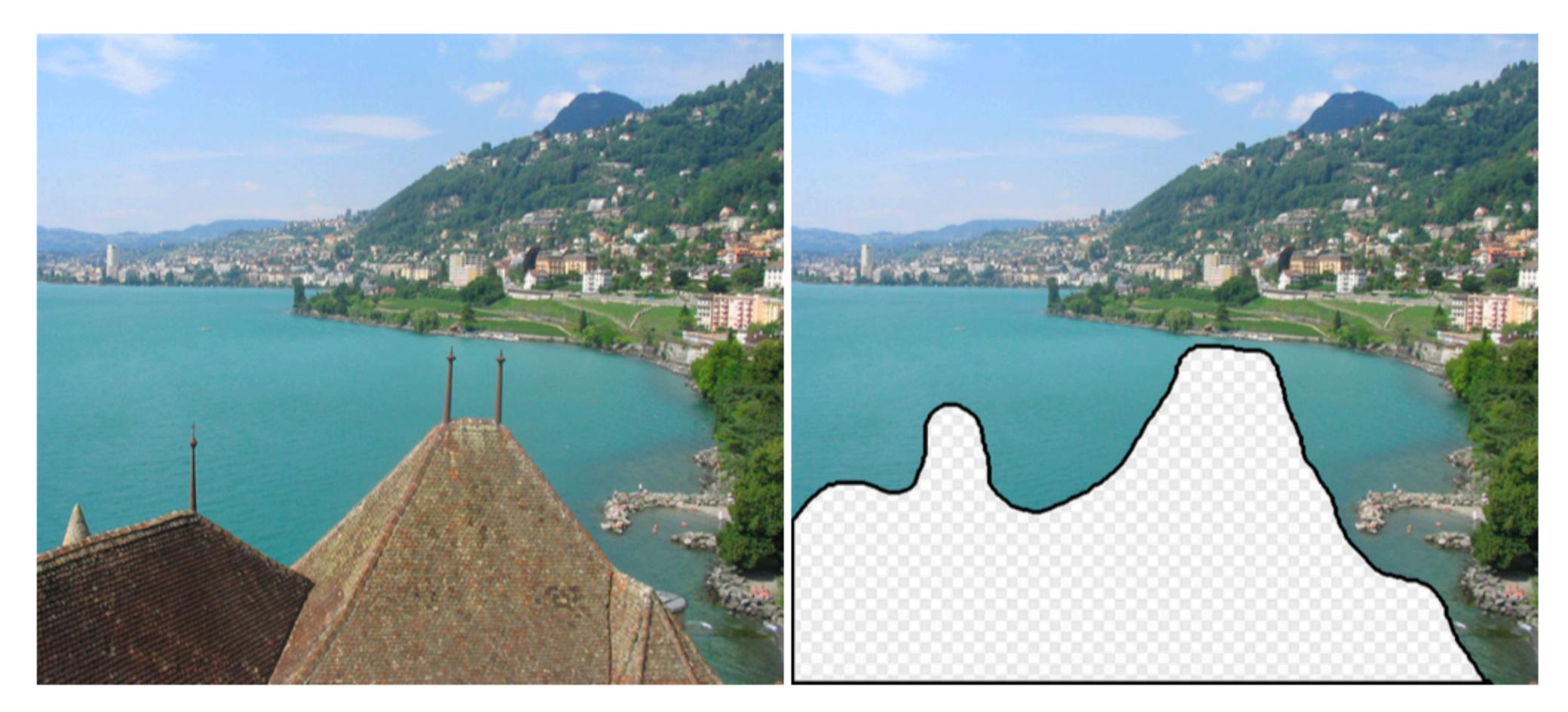
Slide Credit: <u>http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt</u>

"Big Data" Meets Inpainting

"**Big** Data" enables surprisingly simple non-parametric, matching-based techniques to solve complex problems in computer graphics and vision.

Suppose instead of a single image, you had a massive database of a million images. What could you do?

"Big Data" Meets Inpainting

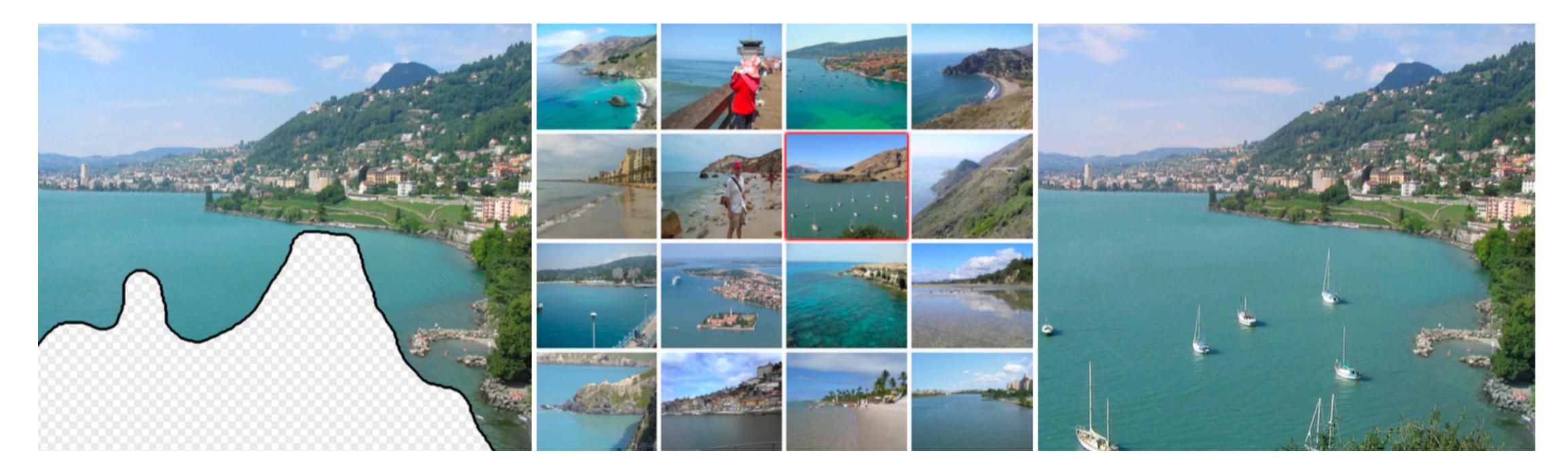


Original Image

Input

Figure Credit: Hays and Efros 2007

"Big Data" Meets Inpainting



Input

Scene Matches

Output

Figure Credit: Hays and Efros 2007

Effectiveness of "Big Data"

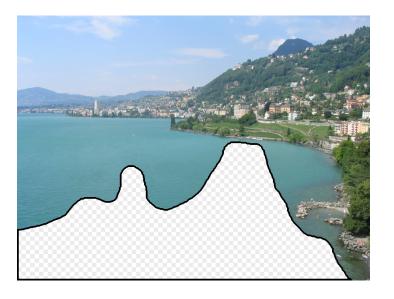
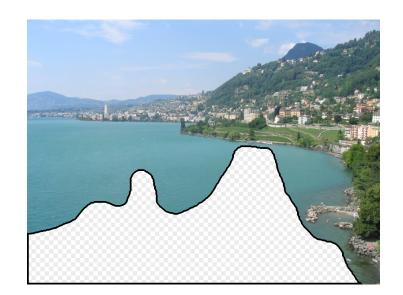


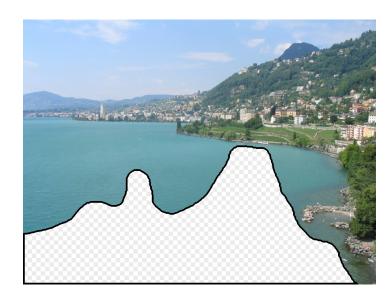
Figure Credit: Hays and Efros 2007

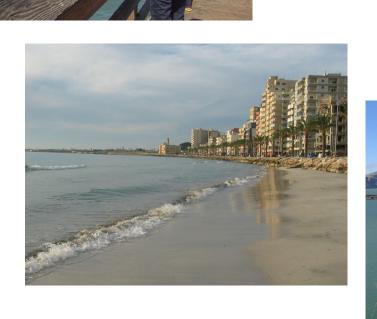
Effectiveness of "Big Data"



10 nearest neighbors from a collection of 20,000 images

Effectiveness of "Big Data"





10 nearest neighbors from a collection of 2 million images

Algorithm sketch (Hays and Efros 2007):

image statistics

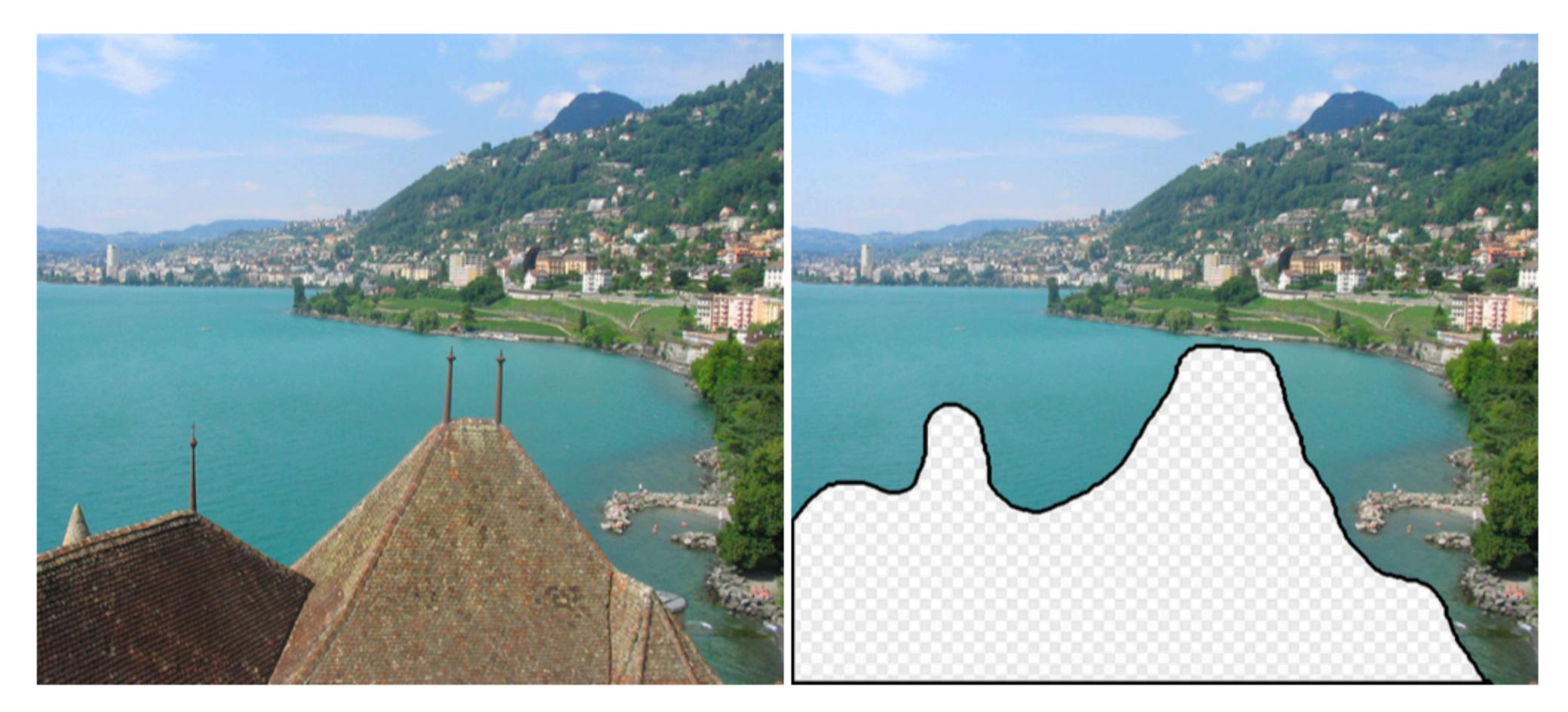
region we want to fill

3. Blend the match into the original image

Purely data-driven, requires no manual labeling of images

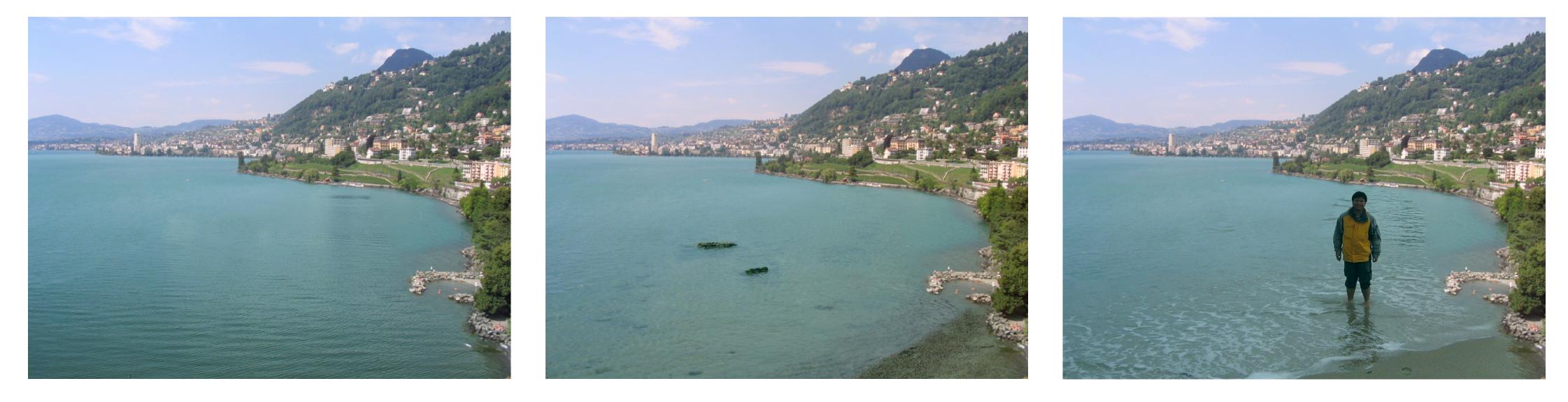
1. Create a short list of a few hundred "best matching" images based on global

2. Find patches in the short list that match the context surrounding the image



Original Image

Input





Texture

We will look at two main questions:

How do we represent texture? → Texture analysis

2. How do we generate new examples of a texture?
→ Texture synthesis

Question: Is texture a property of a point or a property of a region?

Question: Is texture a property of a point or a property of a region? **Answer**: We need a region to have a texture.

Question: Is texture a property of a point or a property of a region?Answer: We need a region to have a texture.

There is a "chicken–and–egg" problem. Texture segmentation can be done by detecting boundaries between regions of the same (or similar) texture. Texture boundaries can be detected using standard edge detection techniques applied to the texture measures determined at each point

Recall: Boundary Detection

Features:

- Raw Intensity
- Orientation Energy
- Brightness Gradient
- Color Gradient
- Texture gradient

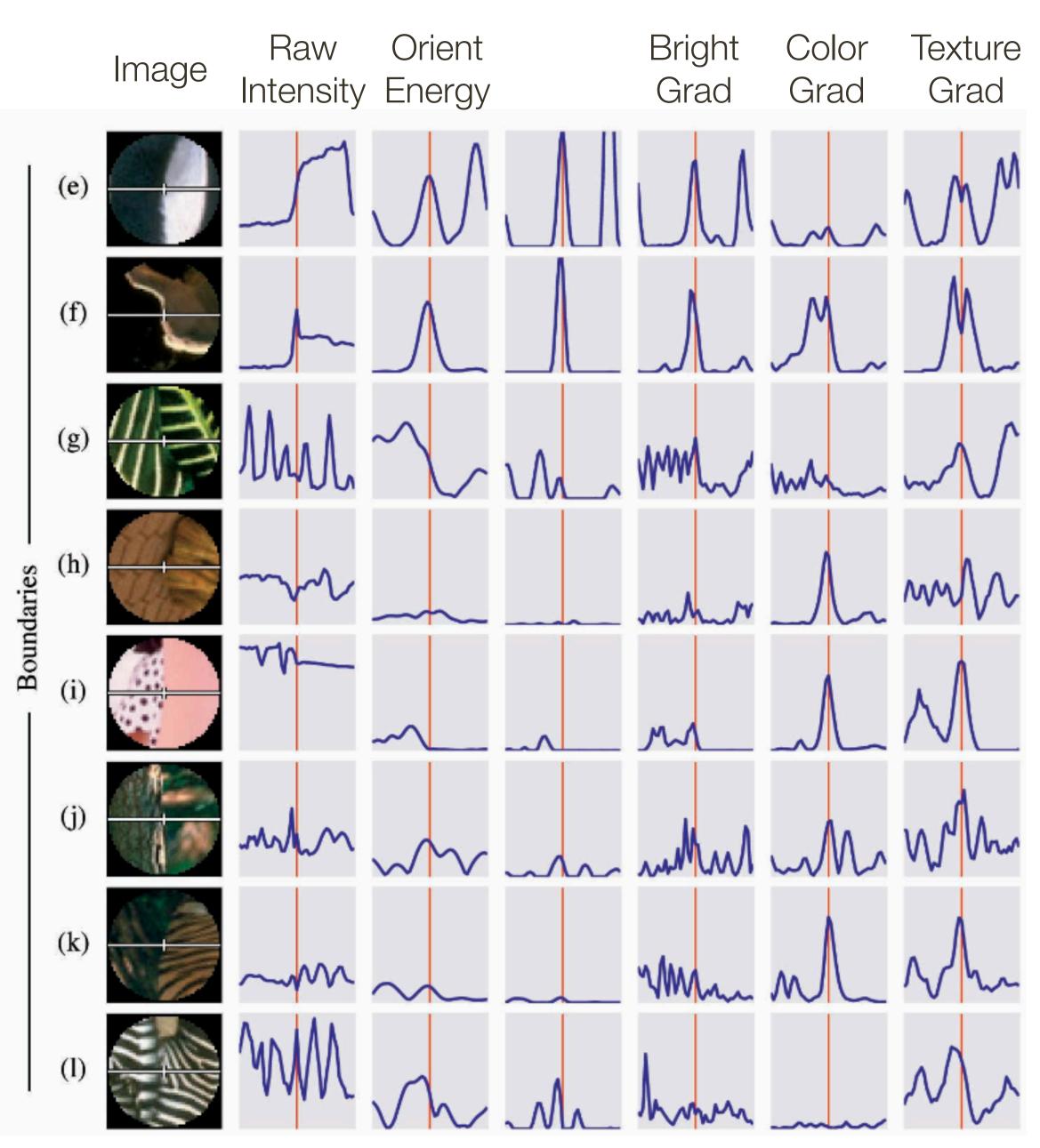


Figure Credit: Martin et al. 2004

Question: Is texture a property of a point or a property of a region?Answer: We need a region to have a texture.

There is a "chicken–and–egg" problem. Texture segmentation can be done by detecting boundaries between regions of the same (or similar) texture. Texture boundaries can be detected using standard edge detection techniques applied to the texture measures determined at each point

We compromise! Typically one uses a local window to estimate texture properties and assigns those texture properties as point properties of the window's center row and column

Question: How many degrees of freedom are there to texture?

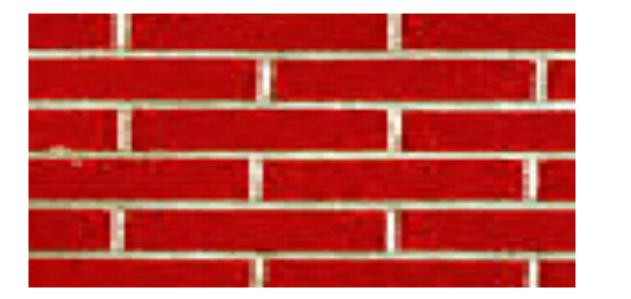
Question: How many degrees of freedom are there to texture?

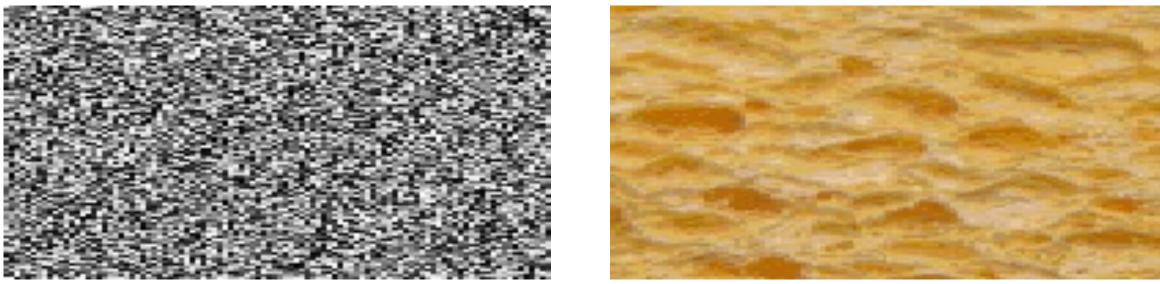
(Mathematical) Answer: Infinitely many

(**Perceptual Psychology**) Answer: There are perceptual constraints. But, there is no clear notion of a "texture channel" like, for example, there is for an RGB colour channel

Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region



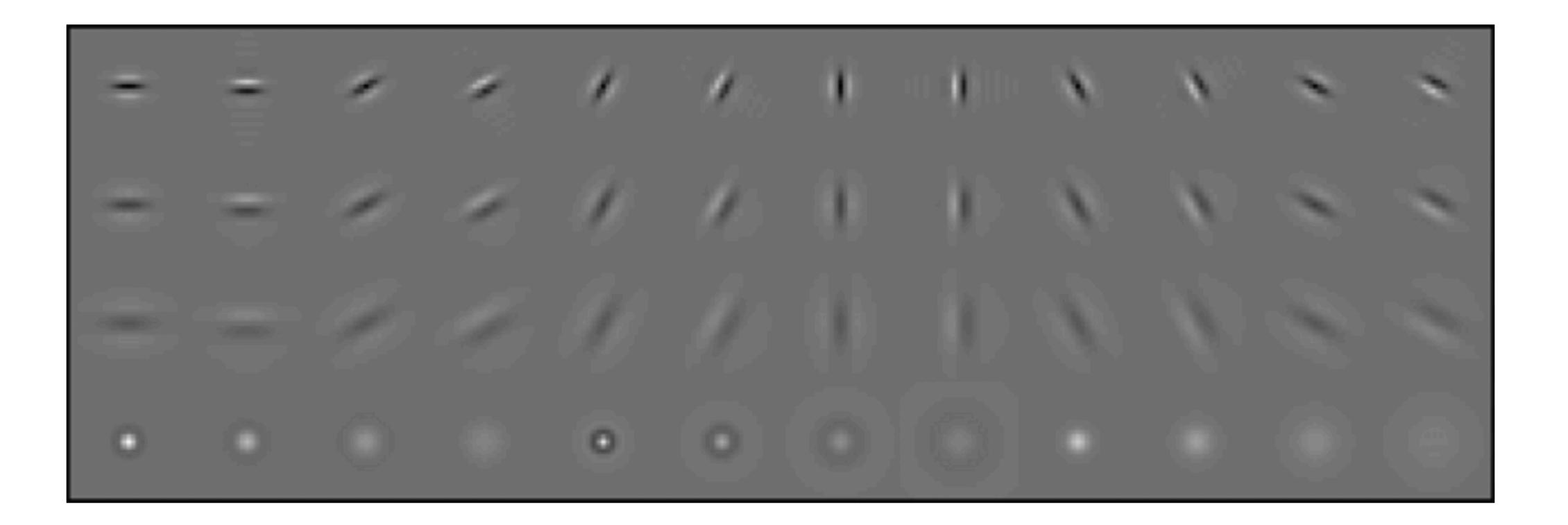


Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties

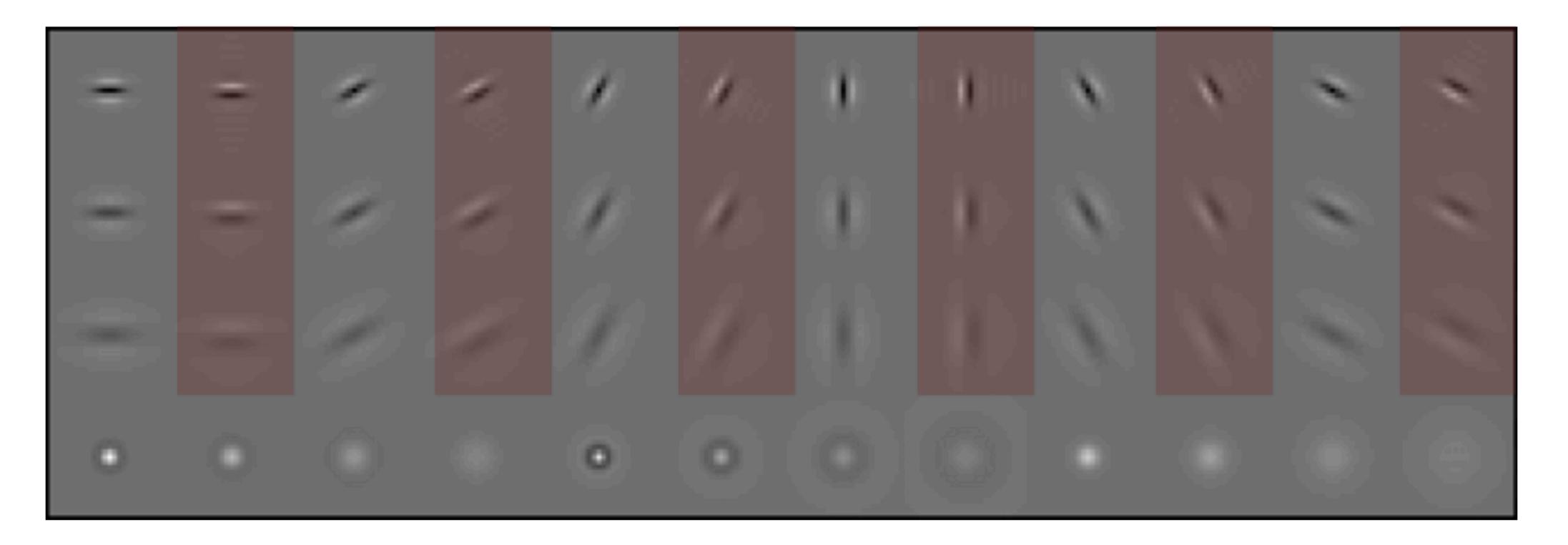
Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region

Question: What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of different orientations and scales



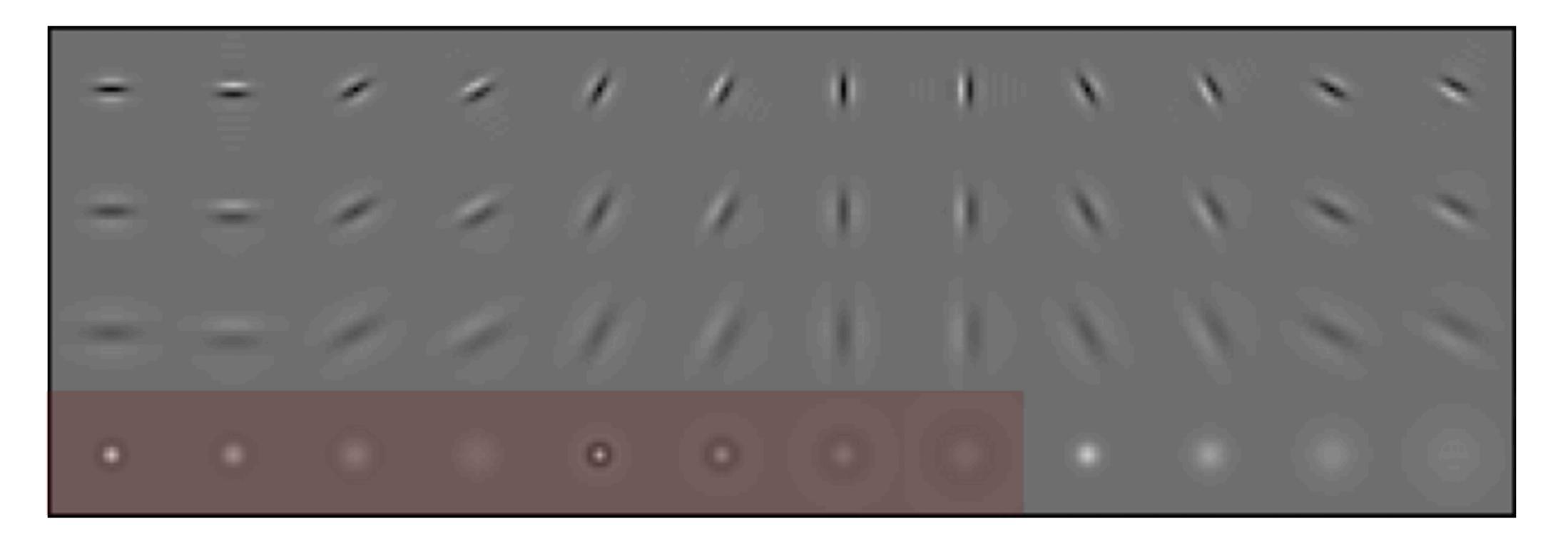
First derivative of Gaussian at 6 orientations and 3 scales



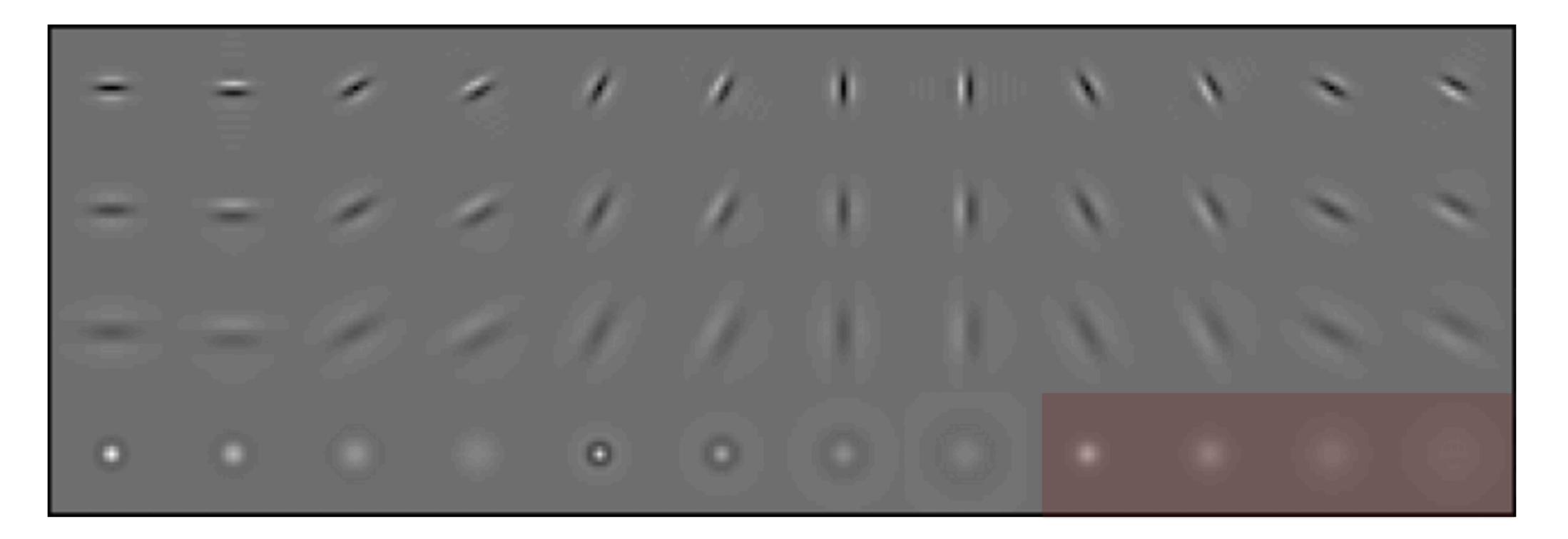
Second derivative of Gaussian at 6 orientations 3 scales

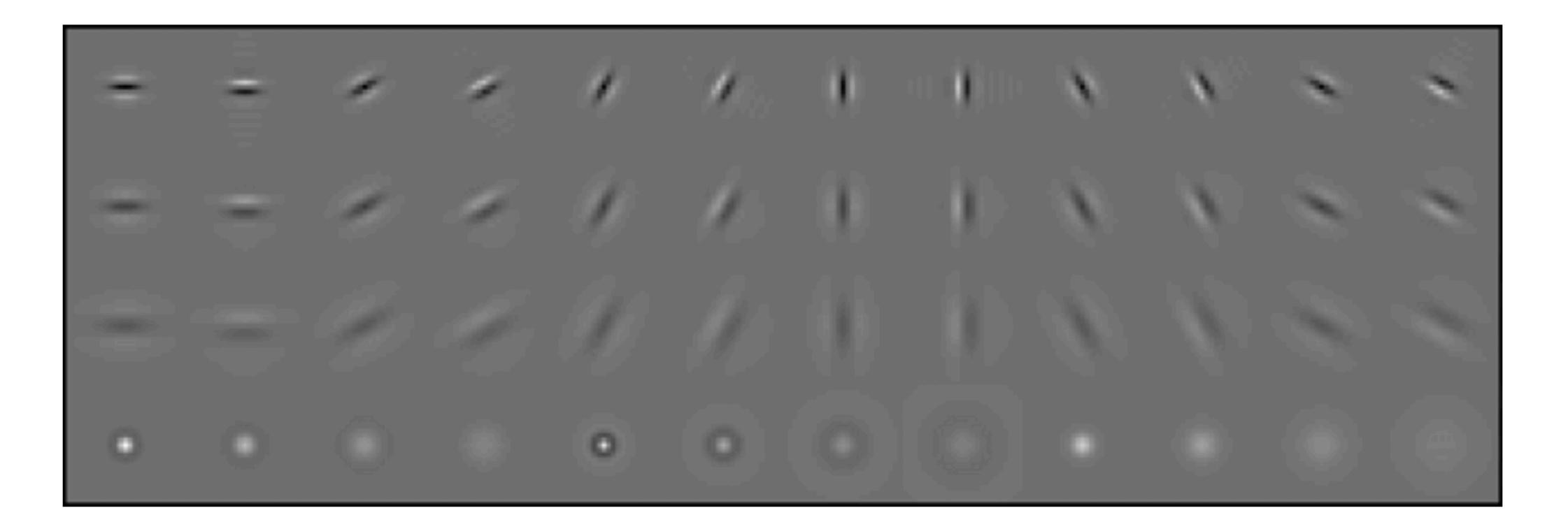


Laplacian of the Gaussian filters at different scales



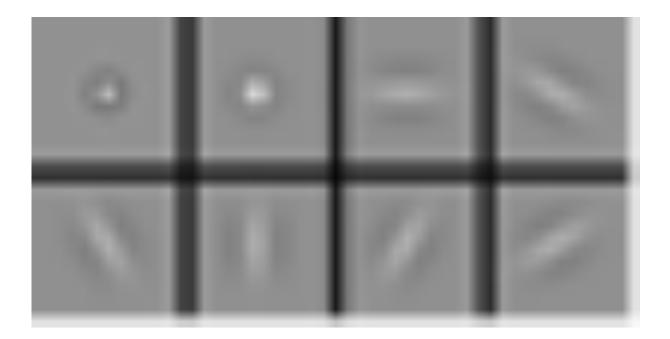
Gaussian filters at different scales

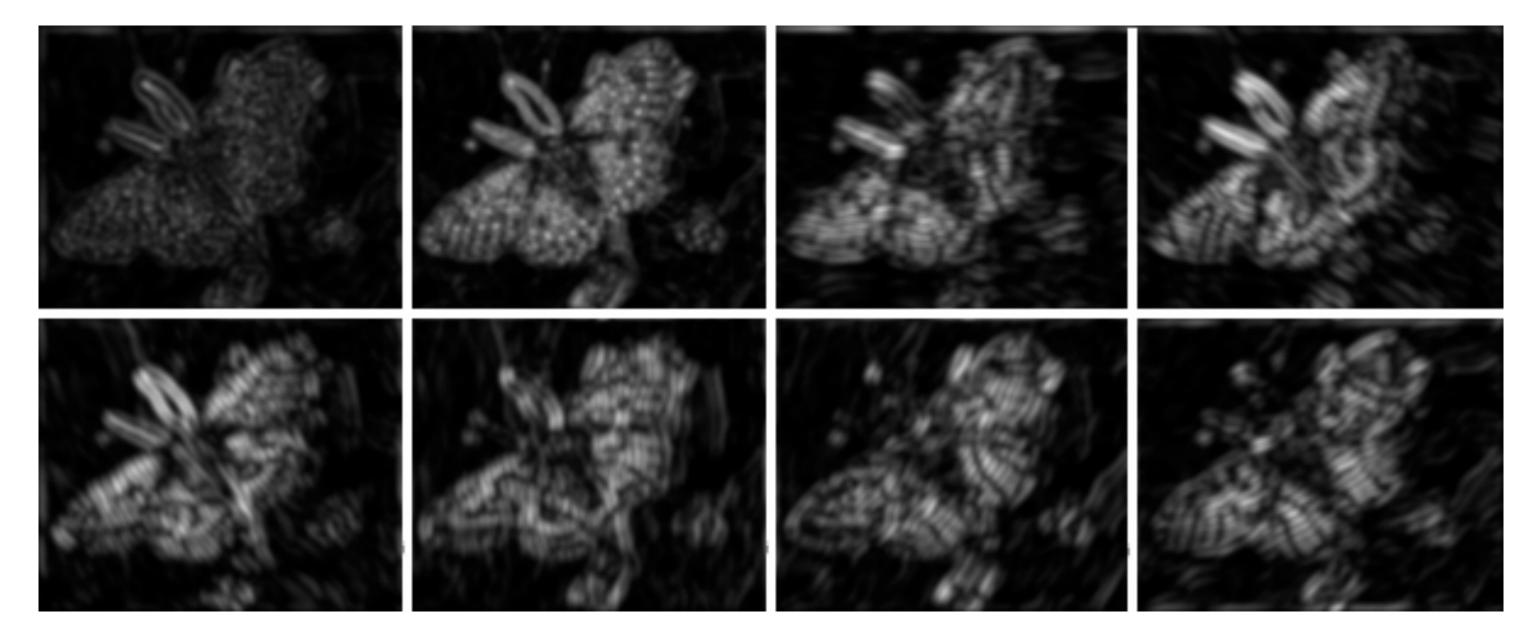




Result: 48-channel "image"

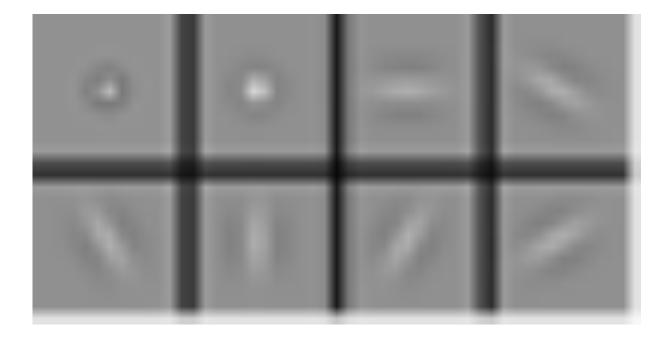
Spots and Bars (Fine Scale)





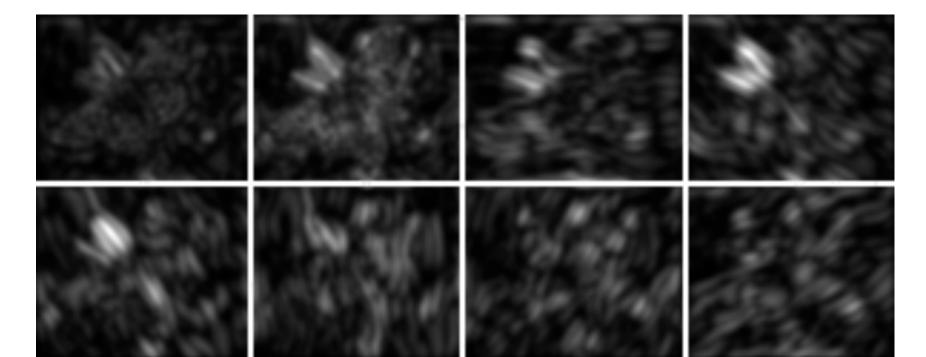
Forsyth & Ponce (1st ed.) Figures 9.3–9.4

Spots and Bars (Coarse Scale)

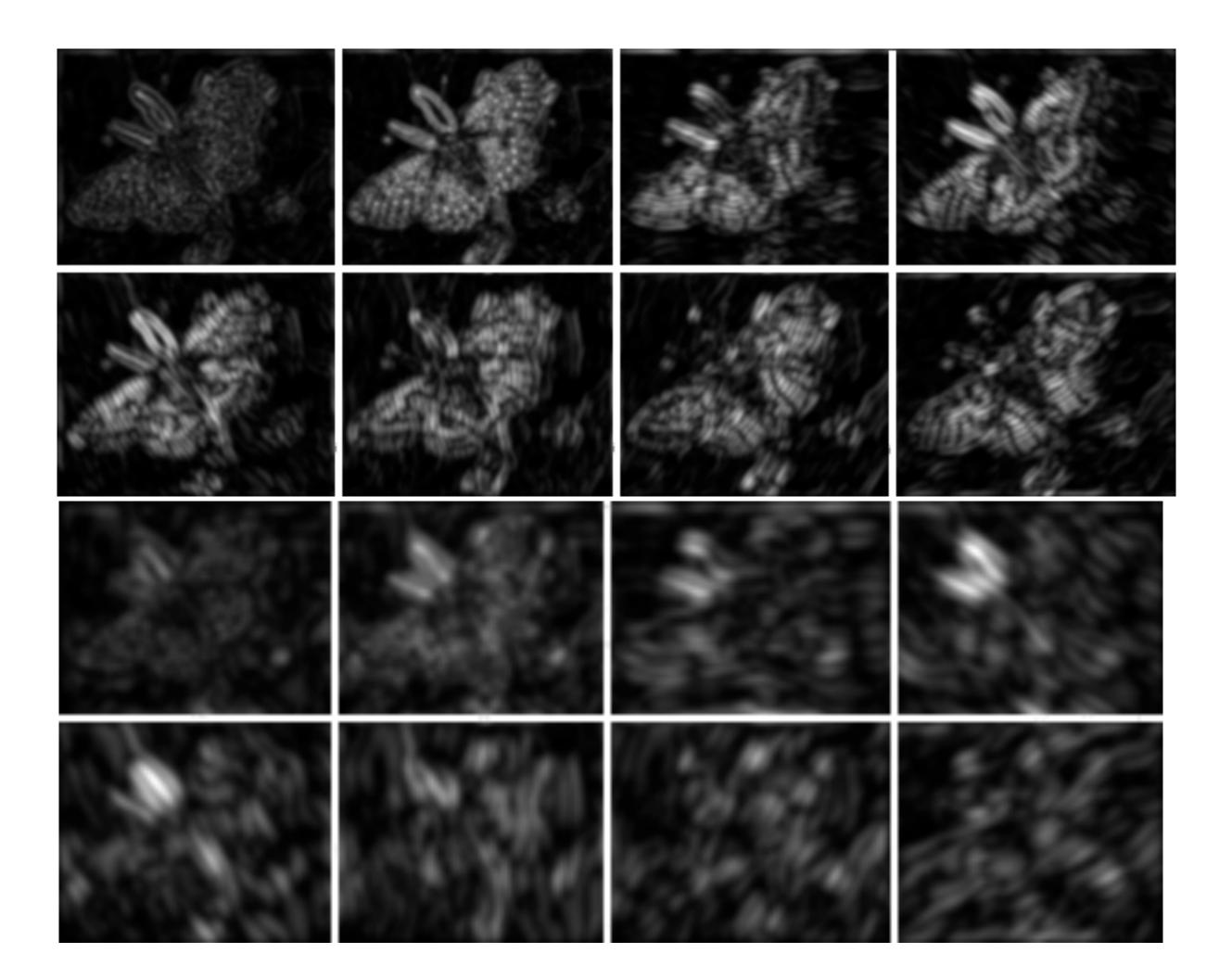


Forsyth & Ponce (1st ed.) Figures 9.3 and 9.5

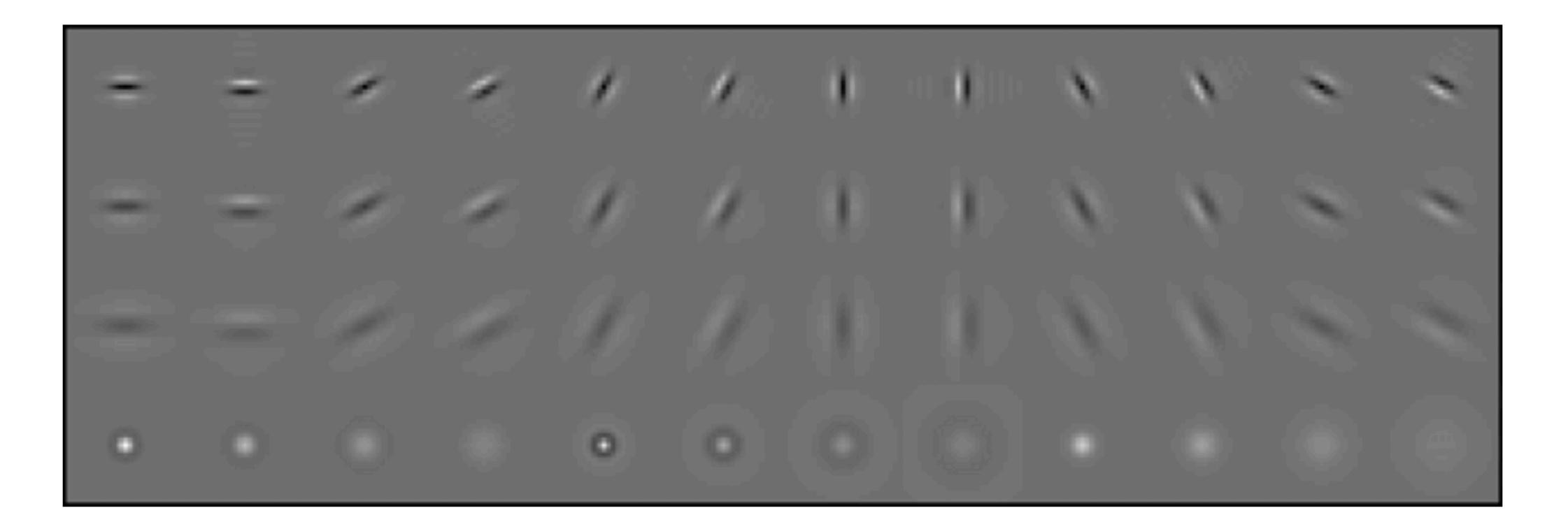




Comparison of Results

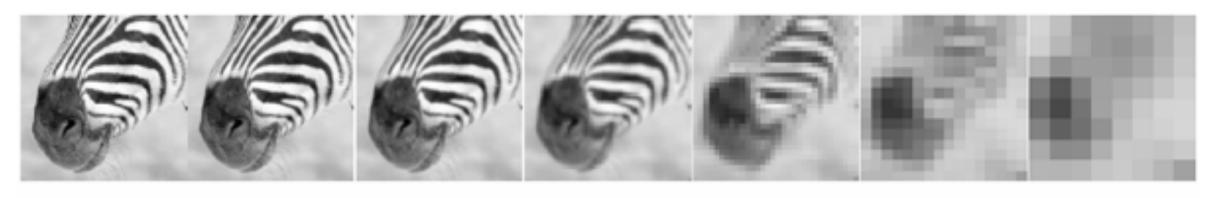


Forsyth & Ponce (1st ed.) Figures 9.4–9.5



Result: 48-channel "image"

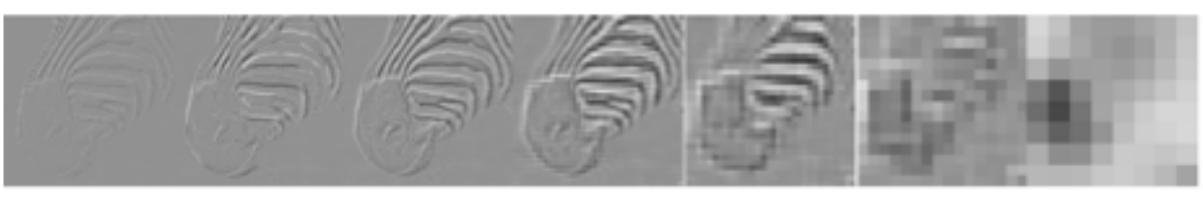
Gaussian Pyramid



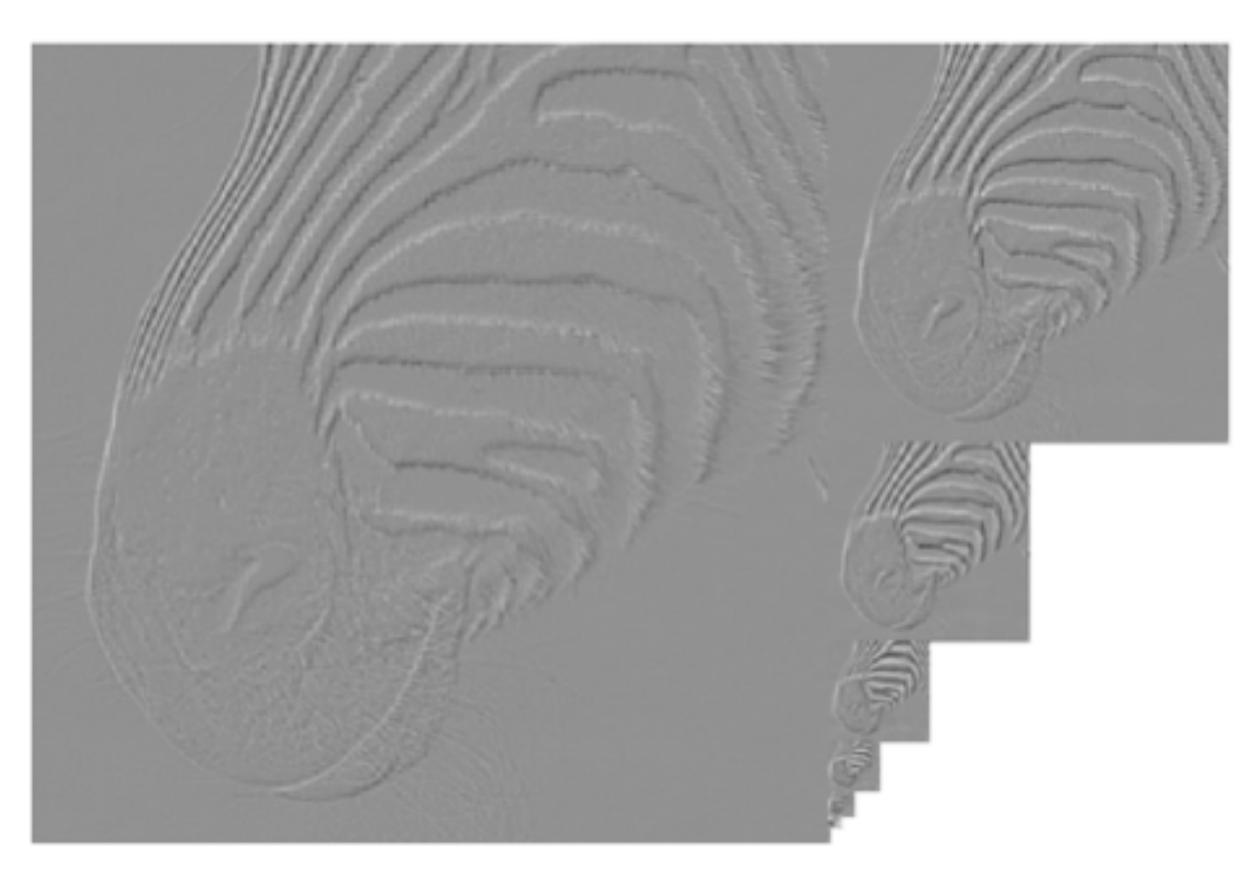
512 256 128

Forsyth & Ponce (2nd ed.) Figure 4.17

Laplacian Pyramid



512 256 128 64 32 16 8



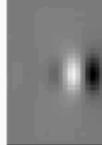
Oriented Pyramids

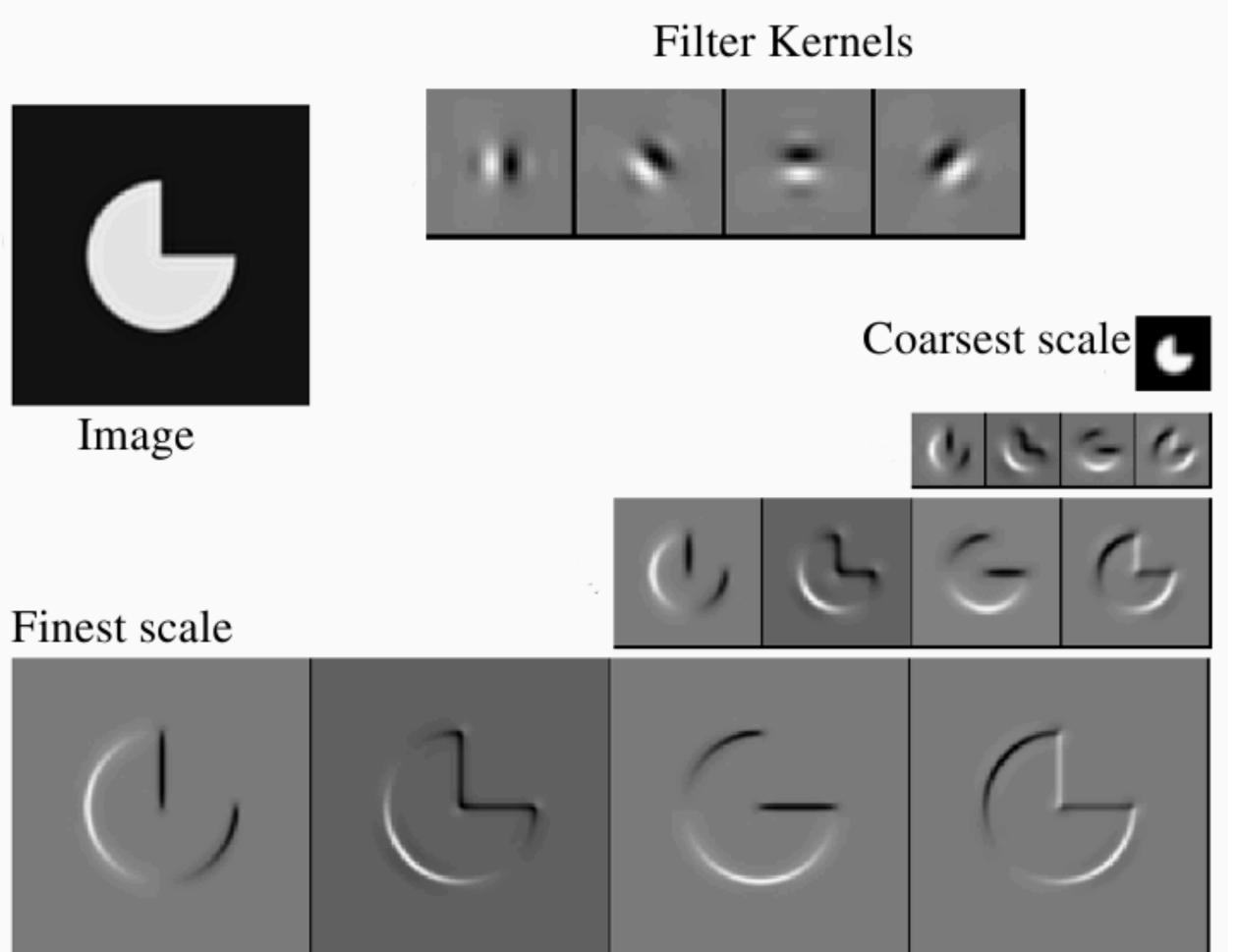
Laplacian pyramid is orientation independent

Idea: Apply an oriented filter at each layer

 represent image at a particular scale and orientation - Aside: We do not study details in this course

Oriented Pyramids



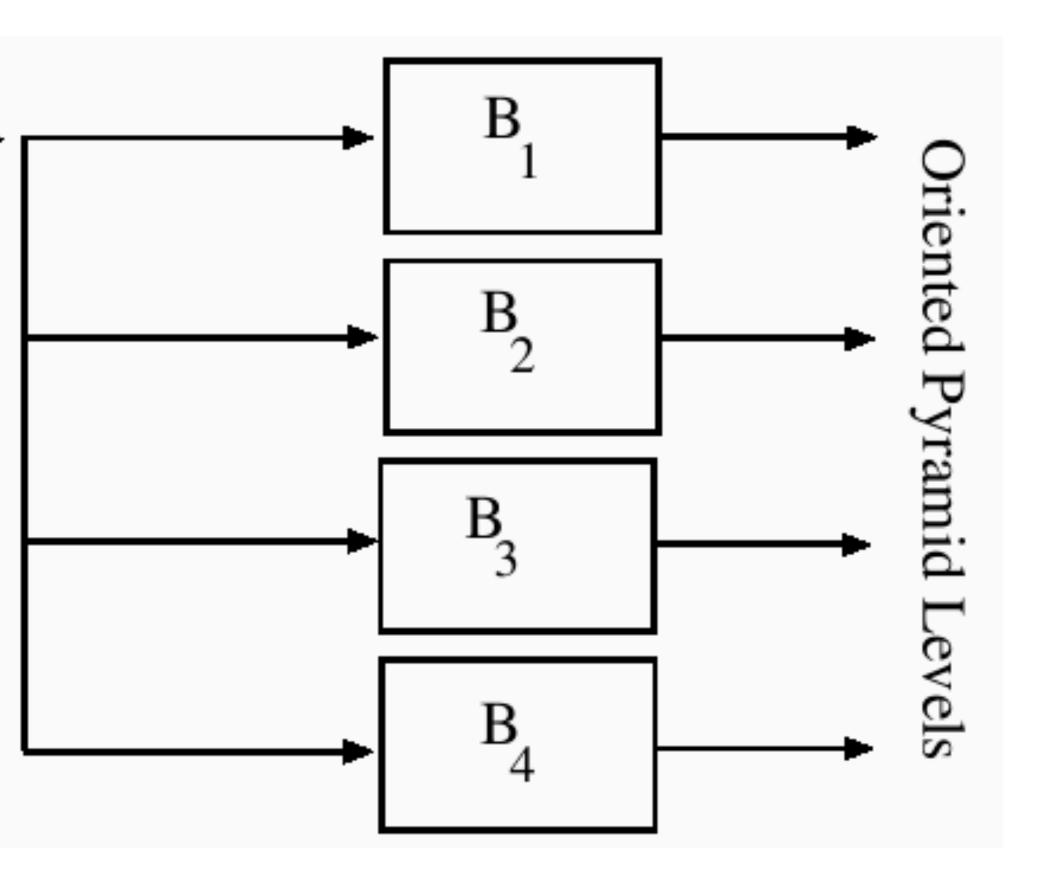


Forsyth & Ponce (1st ed.) Figure 9.13

Oriented Pyramids

Laplacian Pyramid Layer

Oriental Filters



Forsyth & Ponce (1st ed.) Figure 9.14

Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region

Question: What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of different orientations and scales

Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties

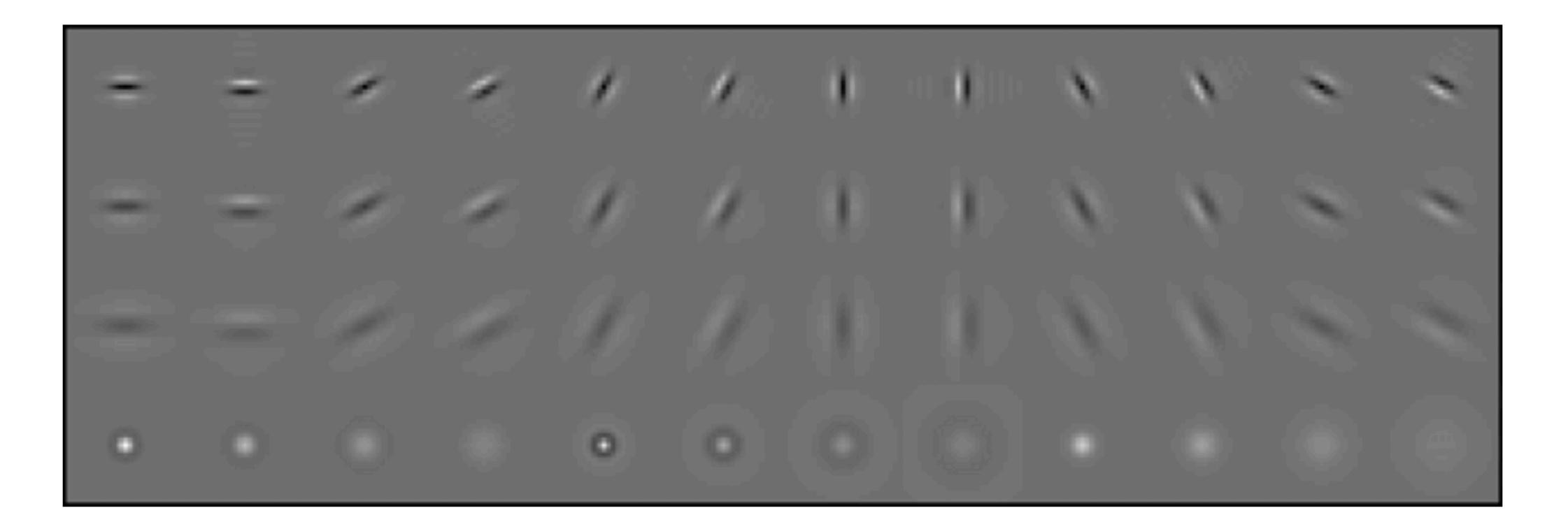
Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region

Question: What filters should we use?

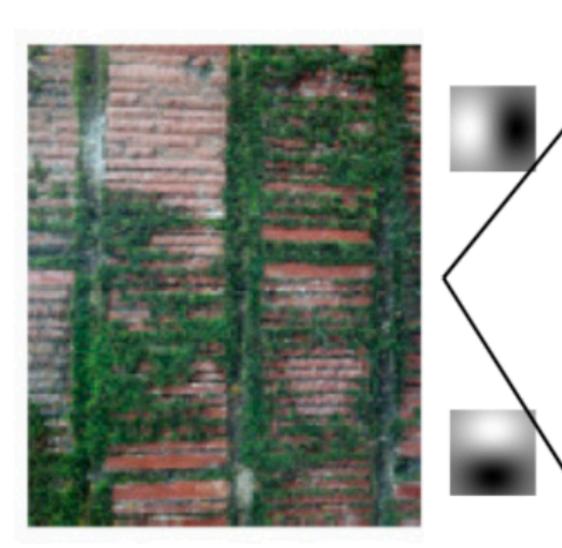
Answer: Human vision suggests spots and oriented edge filters at a variety of different orientations and scales

Question: How do we "summarize"?

Answer: Compute the mean or maximum of each filter response over the region Other statistics can also be useful



Result: 48-channel "image"



original image

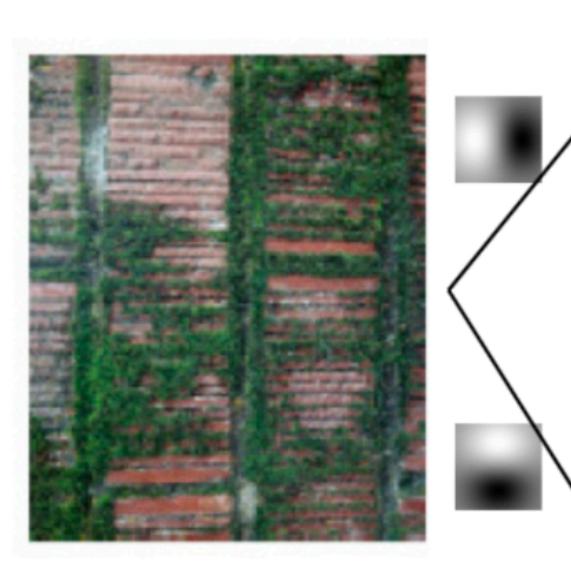
derivative filter responses, squared

<u>ean</u> /dy alue	<u>mean</u> <u>d/dx</u> <u>value</u>	
.0	4	Win. #1
	•	

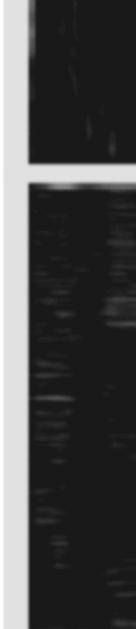
statistics to summarize patterns in small windows

Slide Credit: Trevor Darrell

.



original image



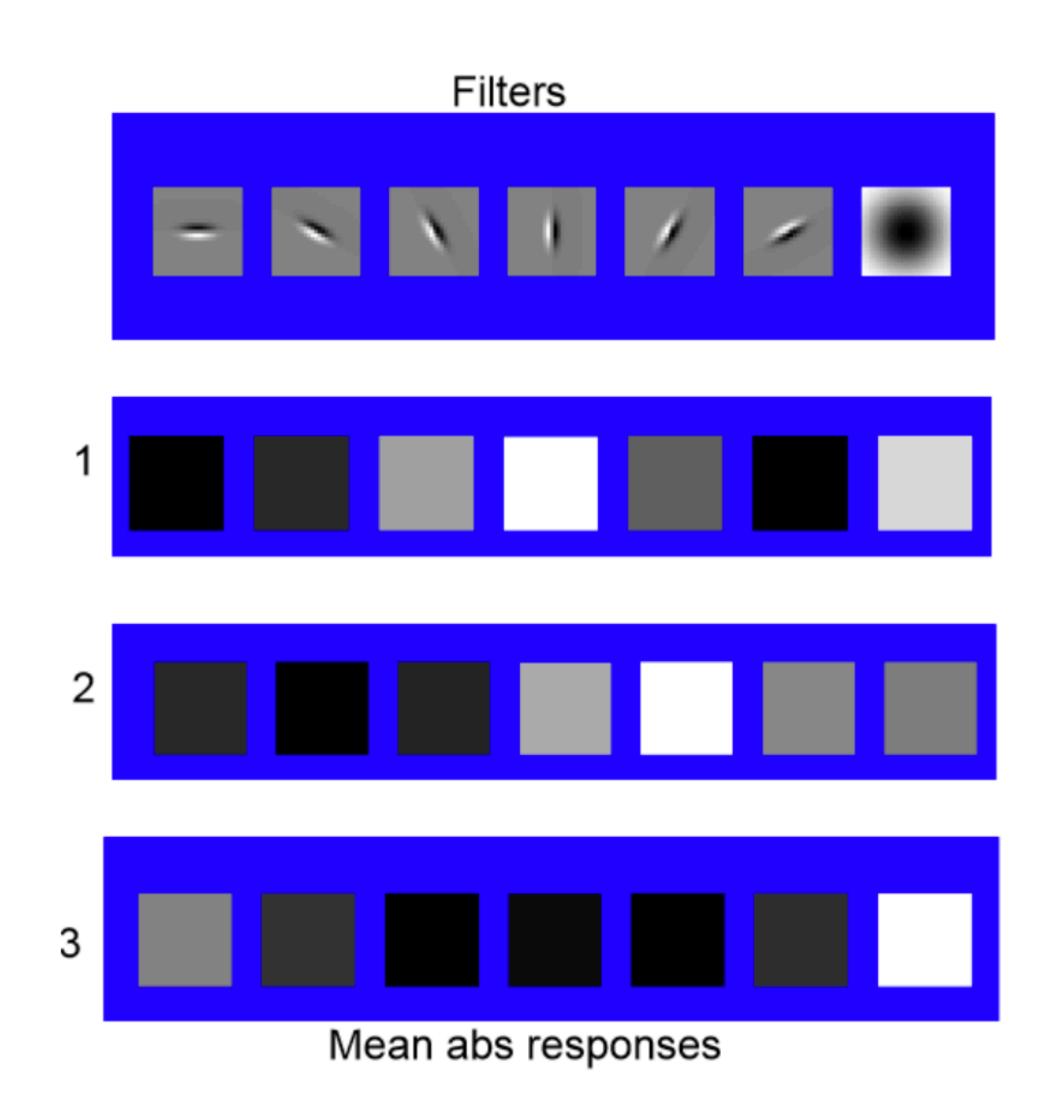
responses, squared

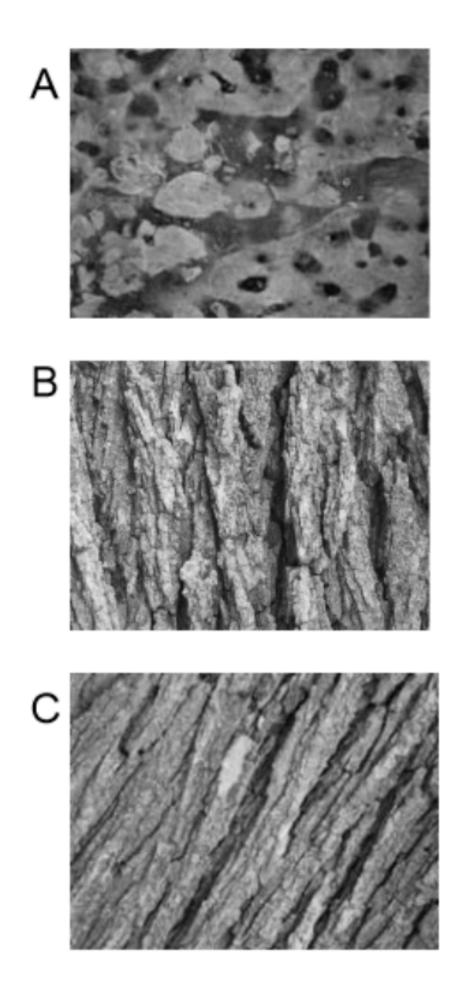
	<u>mean</u> <u>d/dx</u> <u>value</u>	<u>mean</u> <u>d/dy</u> <u>value</u>
Win. #1	4	10
Win.#2	18	7
Win.#9	20	20
	:	

statistics to summarize patterns in small windows

Slide Credit: Trevor Darrell

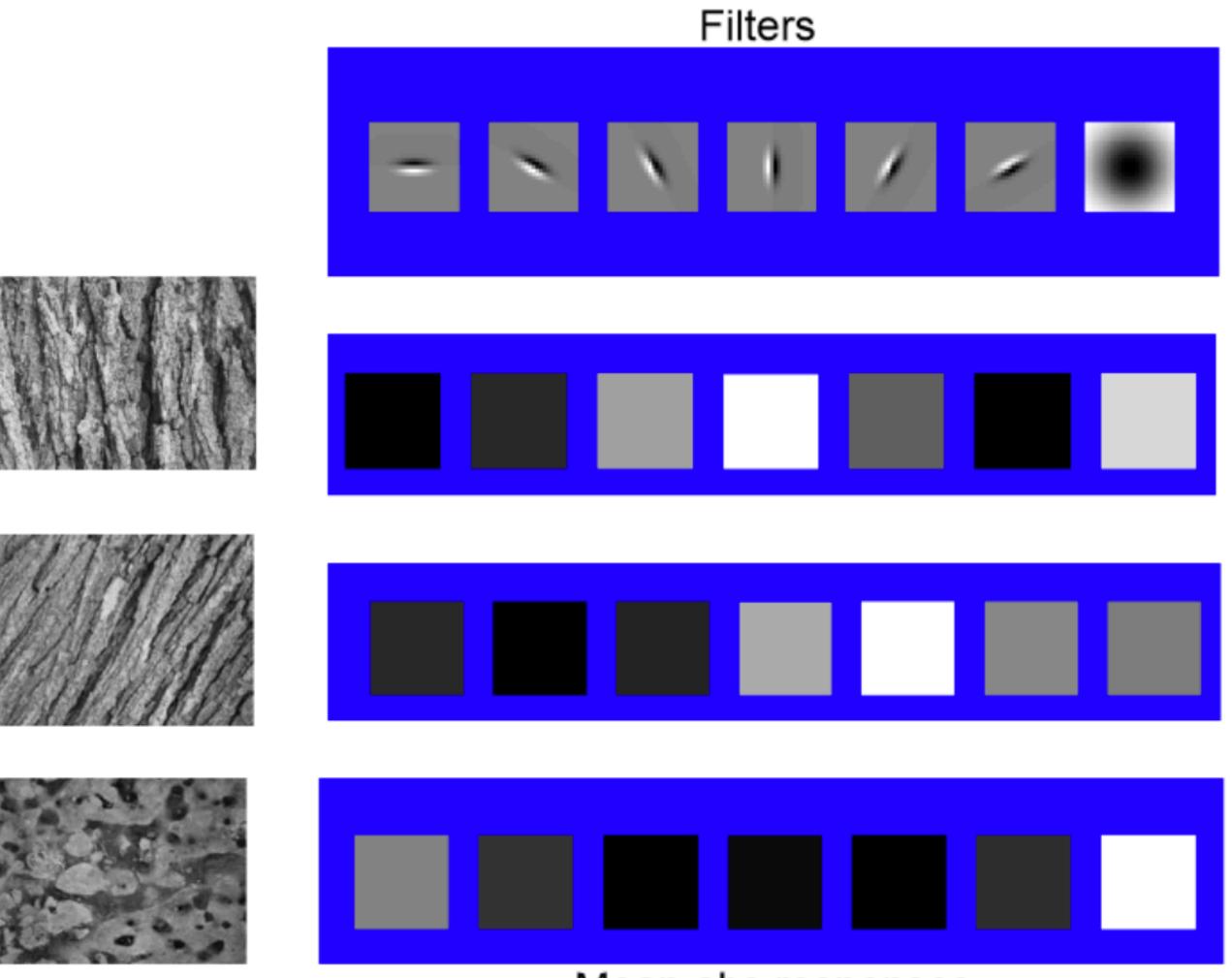
A Short Exercise: Match the texture to the response





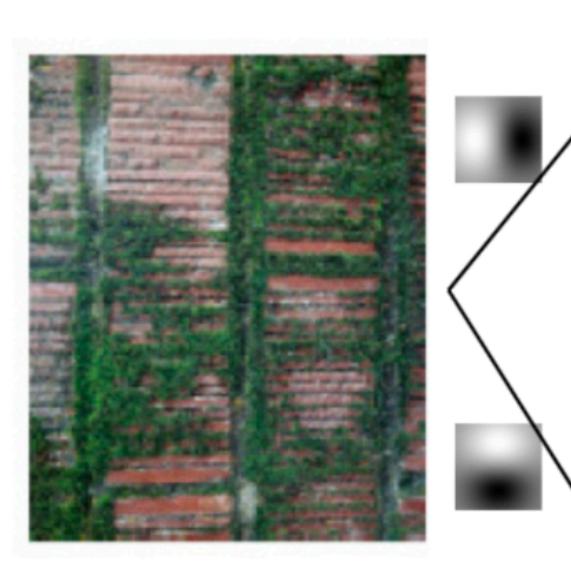
Slide Credit: James Hays

A Short Exercise: Match the texture to the response

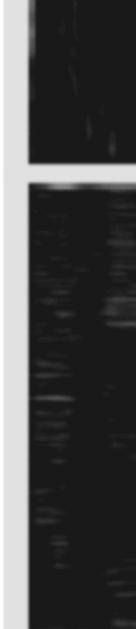


Mean abs responses

Slide Credit: James Hays



original image



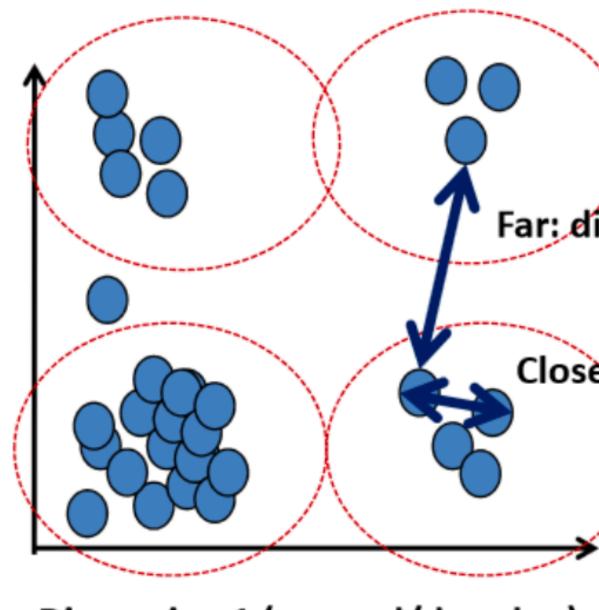
responses, squared

	<u>mean</u> <u>d/dx</u> <u>value</u>	<u>mean</u> <u>d/dy</u> <u>value</u>
Win. #1	4	10
Win.#2	18	7
Win.#9	20	20
	:	

statistics to summarize patterns in small windows

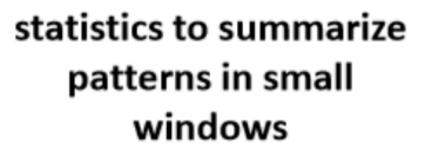
Slide Credit: Trevor Darrell

Dimension 2 (mean d/dy value)

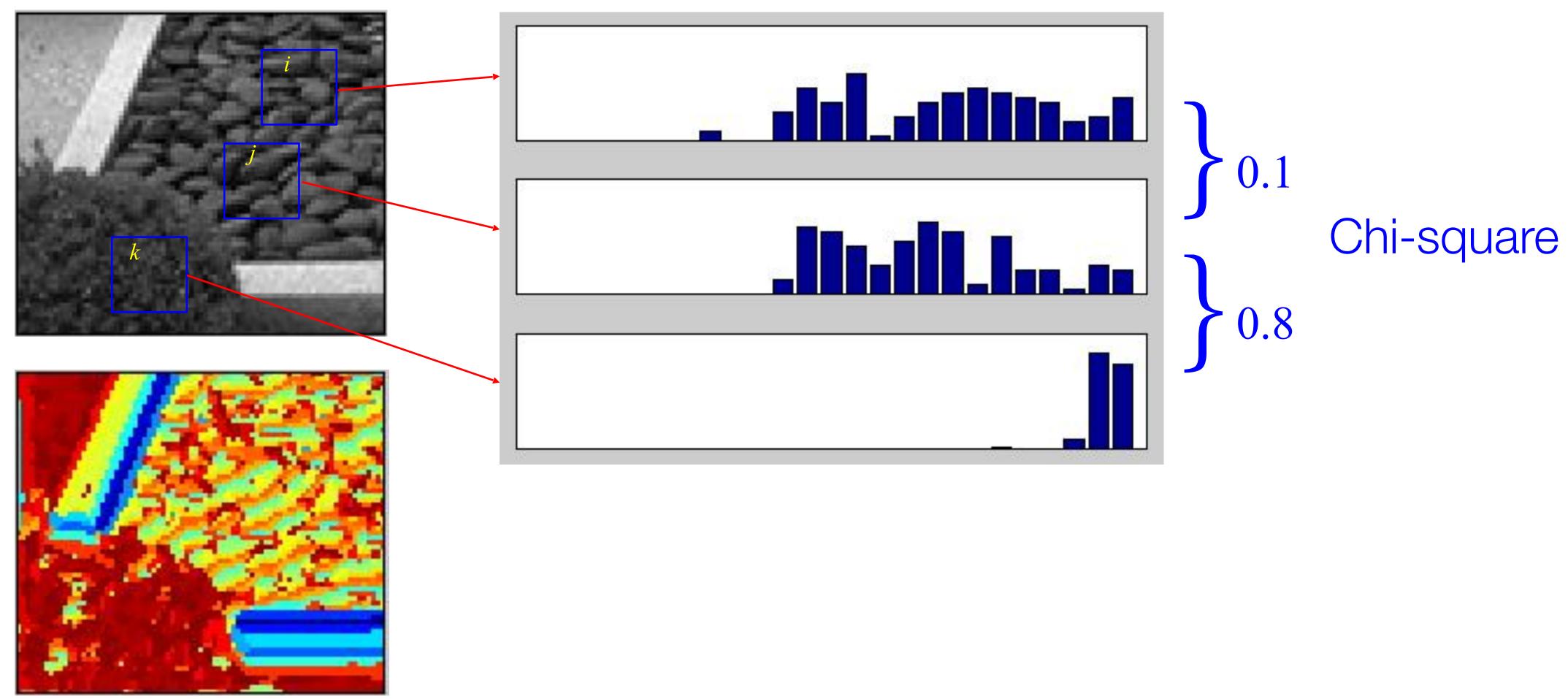


Dimension 1 (mean d/dx value)

		<u>mean</u> <u>d/dx</u> <u>value</u>	<u>mean</u> d/dy value
líssimilar textu	Win. #1	4	10
e: similar text	Win.#2 ures	18	7
	Win.#9	20	20
		:	



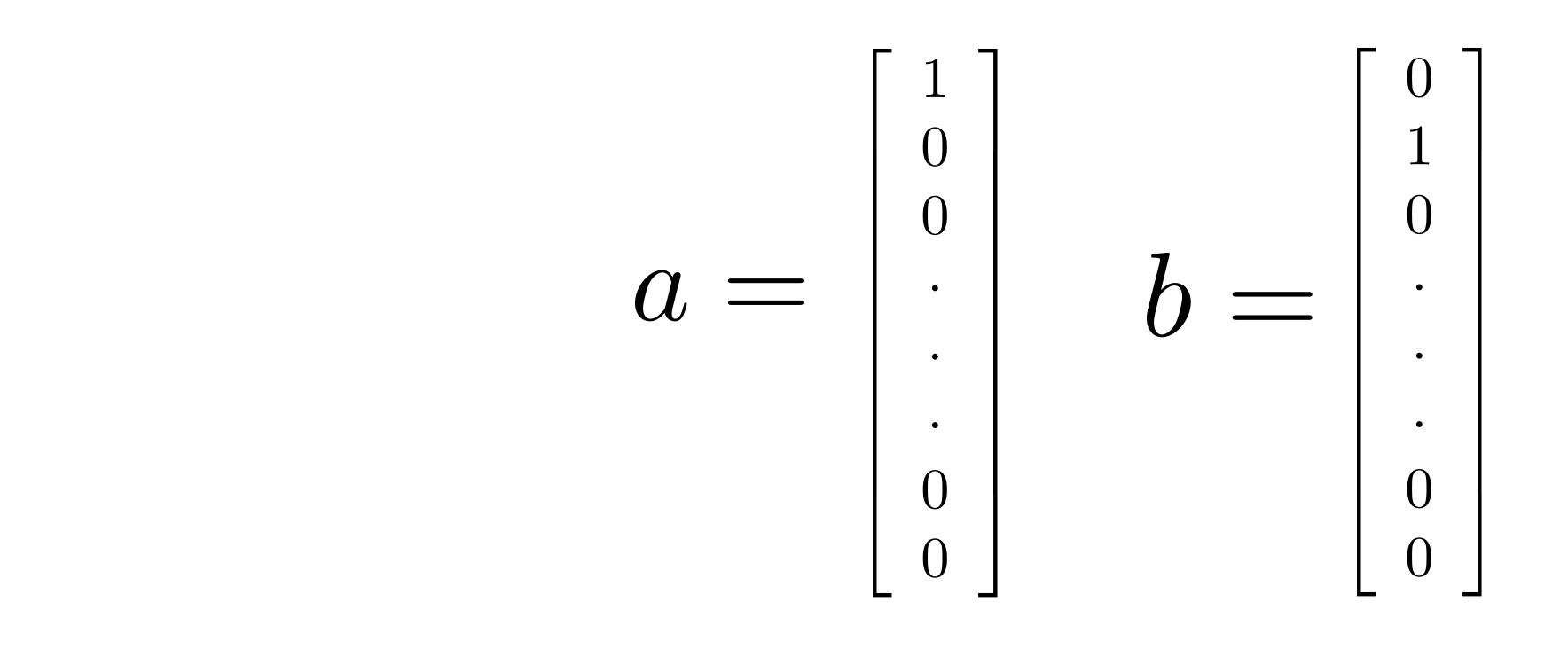
Slide Credit: Trevor Darrell



Take a large corpus of text:

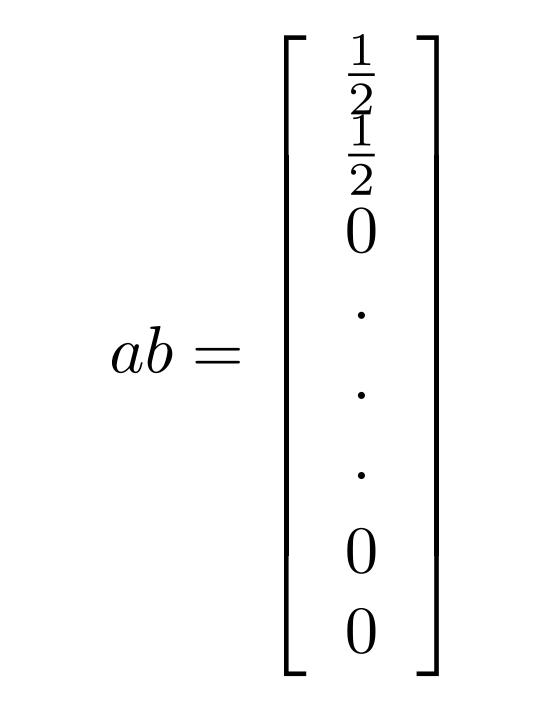
Take a large corpus of text:

- Represent every letter by a 26 dimensional (unit) vector



Take a large corpus of text:

- Represent every letter by a 26 dimensional (unit) vector
- Represent each word by an average of letter representations in it



Take a large corpus of text:

- Represent every letter by a 26 dimensional (unit) vector
- Represent each word by an average of letter representations in it
- Cluster the words, to get a "dictionary" of K words. Words that have very similar representations would get clustered together (e.g., smile and smiled)

Take a large corpus of text:

- Represent every letter by a 26 dimensional (unit) vector
- Represent each word by an average of letter representations in it
- Cluster the words, to get a "dictionary" of K words. Words that have very similar representations would get clustered together (e.g., smile and smiled)

in 26D

— Now represent every document by K-dimensional **histogram** of "dictionary" atoms by associating every word to an atom that is closest in terms of distance

Take a large corpus of text:

- Represent every **letter** by a 26 dimensional (unit) vector
- Represent each word by an average of letter representations in it
- Cluster the words, to get a "dictionary" of K words. Words that have very similar representations would get clustered together (e.g., smile and smiled)

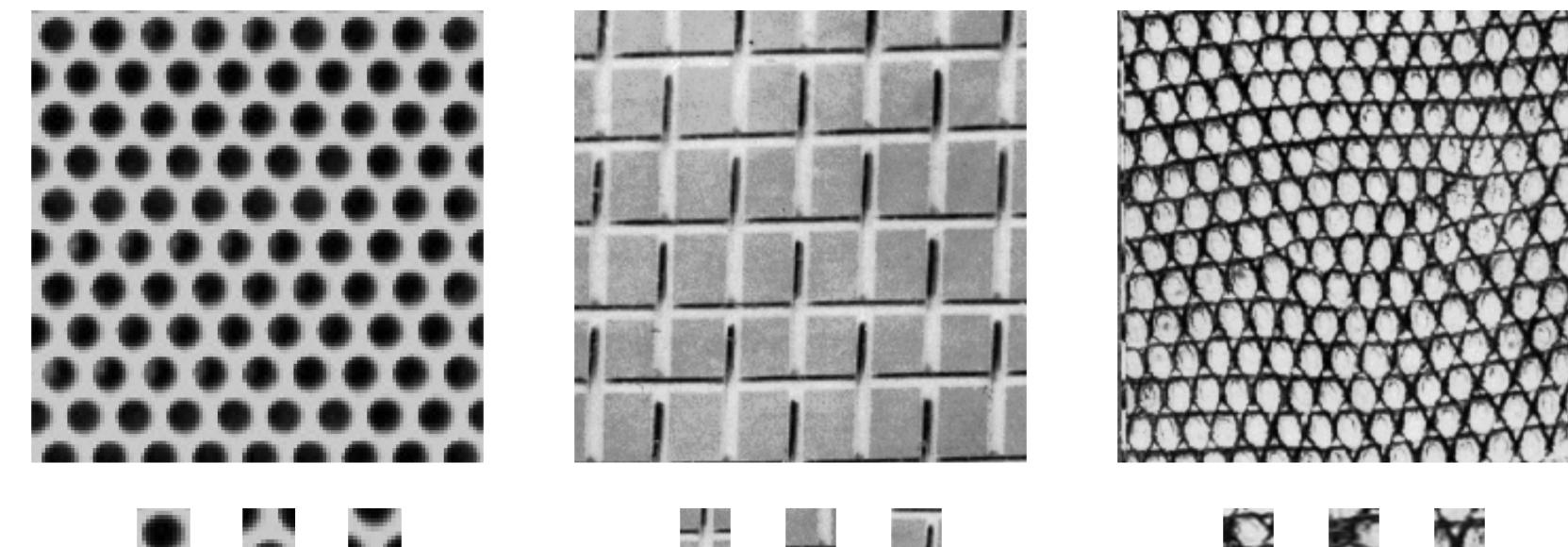
in 26D

- Now represent every document by K-dimensional **histogram** of "dictionary" atoms by associating every word to an atom that is closest in terms of distance

> corpus of text = collection of images letter = feature response at pixel locations word = patch summary with pixel in the center dictionary = textons

Texture representation and recognition

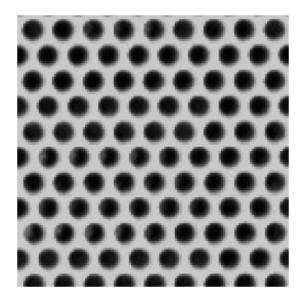
- Texture is characterized by the repetition of basic elements or textons
- arrangement, that matters

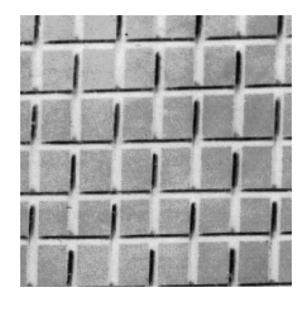


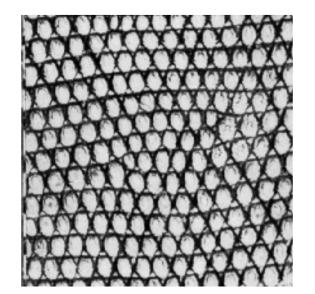
Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

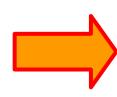
• For stochastic textures, it is the **identity of the textons**, not their spatial

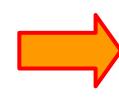
Texture representation and recognition

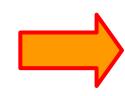


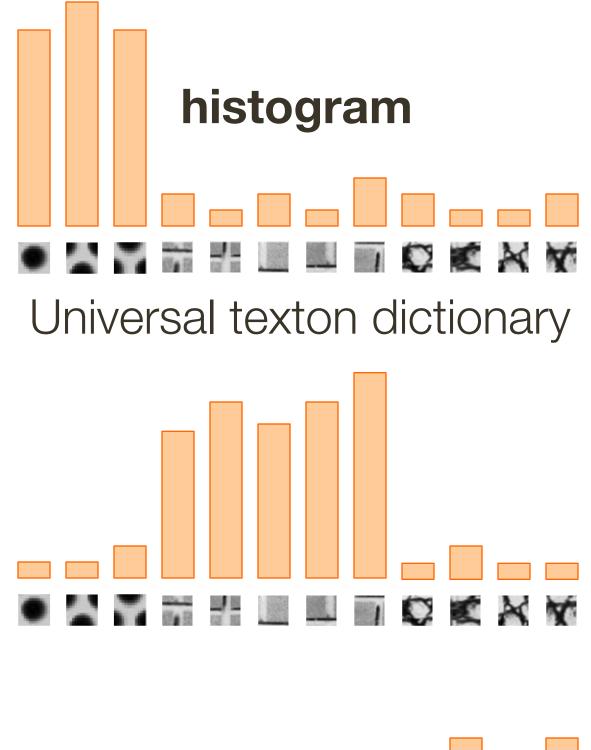


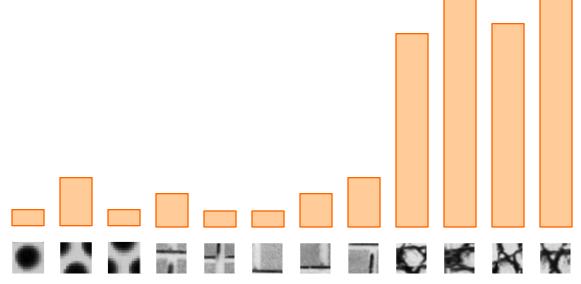




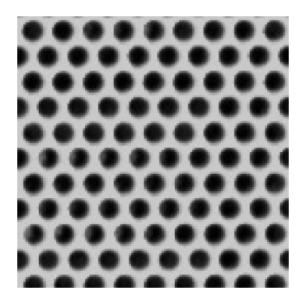


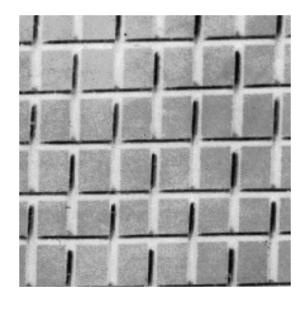


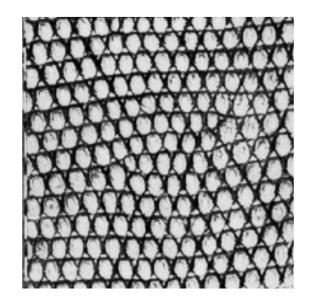




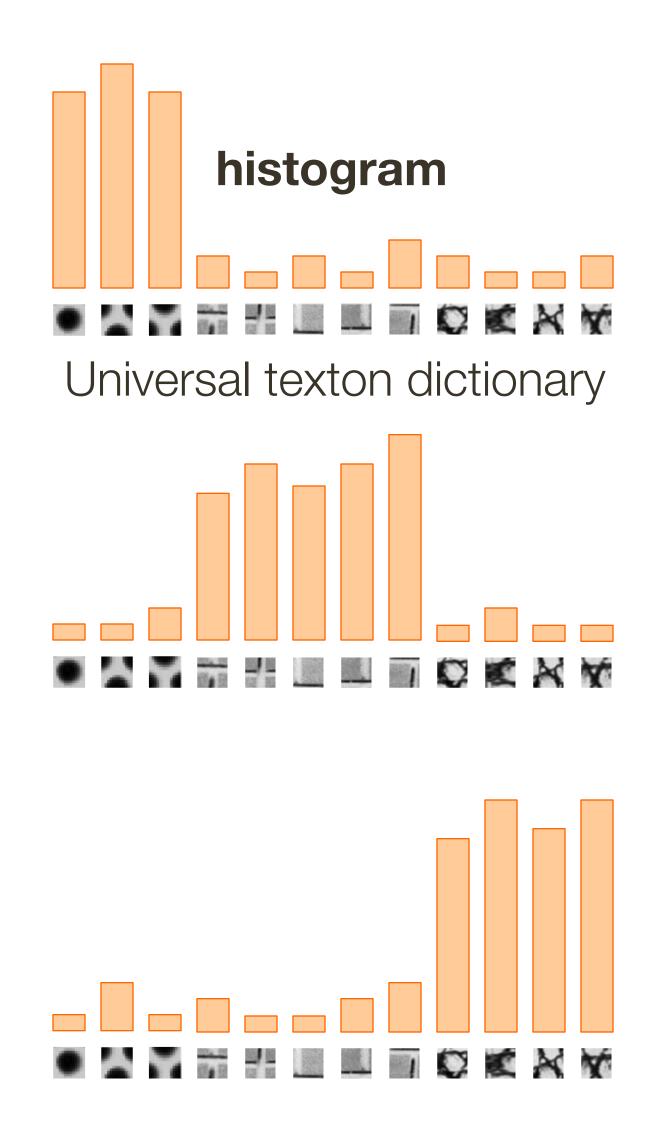
Texture representation and recognition







Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Summary

Texture representation is hard

- difficult to define, to analyze
- texture synthesis appears more tractable

Objective of texture **synthesis** is to generate new examples of a texture pixel at a time. A "data-driven" approach.

Approaches to texture embed assumptions related to human perception

- Efros and Leung: Draw samples directly from the texture to generate one