
Lecture 12: Texture (cont.)

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today
Topics: 

Readings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3, 3.1-3.3

Reminders: 

— Assignment 3: Texture Synthesis is out 

— No office hours this Friday 

— Extra office hours next week (Thursday & Friday)

— Texture Synthesis & Analysis 



Today’s “fun” Example: Dazzle Camouflage
A type of ship camouflage that uses strongly contrasted colours and shapes to 
make it difficult to estimate the ship’s speed and heading 




4

Today’s “fun” Example: Dazzle Camouflage
A type of ship camouflage that uses strongly contrasted colours and shapes to 
make it difficult to estimate the ship’s speed and heading 




Sold in 2018 for $432,500 at British 
auction house


Today’s “fun” Example: AI Generated Portrait



Today’s “fun” Example: Sunspring



Today’s “fun” Example: Sunspring



Lecture 11: Re-cap Texture

Texture is widespread, easy to recognize, but hard to define 


Views of large numbers of small objects are often considered textures

— e.g. grass, foliage, pebbles, hair 


Patterned surface markings are considered textures 

— e.g. patterns on wood 

What is texture?

Figure Credit: Alexei Efros and Thomas Leung 



(Functional) Definition: 


Texture is detail in an image that is at a scale too small to be resolved into its 
constituent elements and at a scale large enough to be apparent in the spatial 
distribution of image measurements 


Sometimes, textures are thought of as patterns composed of repeated 
instances of one (or more) identifiable elements, called textons.

— e.g. bricks in a wall, spots on a cheetah 


Lecture 11: Re-cap Texture



We will look at two main questions: 


1.  How do we represent texture?  
→ Texture analysis  

2.  How do we generate new examples of a texture?  
→ Texture synthesis  

We begin with texture synthesis to set up Assignment 3 

Lecture 11: Re-cap Texture



Like Copying, But not Just Repetition



Infinite sample image

SAMPLE

p

— What is conditional probability distribution of p, given the neighbourhood 
window? 


Efros and Leung: Synthesizing One Pixel



Infinite sample image

SAMPLE

p

— What is conditional probability distribution of p, given the neighbourhood 
window? 

— Directly search the input image for all such neighbourhoods to produce a    
histogram for p


Efros and Leung: Synthesizing One Pixel



p

p

Efros and Leung: Synthesizing One Pixel



p

p

Efros and Leung: Synthesizing One Pixel

p(dark gray) = 0.5

p(light gray) = 0.5



p

p

Efros and Leung: Synthesizing One Pixel

p

p



p

p

Efros and Leung: Synthesizing One Pixel

p

p

p(dark gray) = 0.75

p(light gray) = 0.25



Efros and Leung: Synthesizing One Pixel

p

pixel value

probability

0 255

0.25

0.75

20 23040 190

Conditional distribution of p 

given known neighborhood 

light gray dark gray



p

p

Efros and Leung: Synthesizing One Pixel

p

p

p(dark gray) = 0.75

p(light gray) = 0.25



Infinite sample image

SAMPLE

p

— What is conditional probability distribution of p, given the neighbourhood 
window? 

— Directly search the input image for all such neighbourhoods to produce a    
histogram for p


— To synthesize p, pick one match at random

Efros and Leung: Synthesizing One Pixel



Infinite sample image

SAMPLE

p

— Since the sample image is finite, an exact neighbourhood match might not 
be present


Efros and Leung: Synthesizing One Pixel



Infinite sample image

SAMPLE

p

— Since the sample image is finite, an exact neighbourhood match might not 
be present


— Find the best match using SSD error, weighted by Gaussian to emphasize 
local structure, and take all samples within some distance from that match 

Efros and Leung: Synthesizing One Pixel



Infinite sample image

SAMPLE

p

Ranked List

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.87

0.75

0.72

0.64
x = 4, y = 57 0.60

Efros and Leung: Synthesizing One Pixel

Similarity (cos)



Infinite sample image

SAMPLE

p

Ranked List

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.87

0.75

0.72

0.64
x = 4, y = 57 0.60

best match

Efros and Leung: Synthesizing One Pixel

Similarity (cos)



Infinite sample image

SAMPLE

p

Ranked List

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.87

0.75

0.72

0.64
x = 4, y = 57 0.60

threshold = best match * 0.8 = 0.696

best match

Efros and Leung: Synthesizing One Pixel

Similarity (cos)



Infinite sample image

SAMPLE

p

Ranked List Similarity (cos)

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.87

0.75

0.72

0.64
x = 4, y = 57 0.60

threshold = best match * 0.8 = 0.696

best match

Efros and Leung: Synthesizing One Pixel



Infinite sample image

SAMPLE

p

Ranked List Similarity (cos)

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.87

0.75

0.72

0.64
x = 4, y = 57 0.60

threshold = best match * 0.8 = 0.696

Efros and Leung: Synthesizing One Pixel

pick one at random and copy target pixel from it



Infinite sample image

SAMPLE

p

Ranked List Similarity (ssd)

x = 5, y = 17

x = 63, y = 4

x = 3, y = 44

x = 123, y = 54

0.13

0.25

0.28

0.36
x = 4, y = 57 0.40

threshold = best match * 2.5 = 0.325

Efros and Leung: Synthesizing One Pixel

pick one at random and copy target pixel from it



For multiple pixels, "grow" the texture in layers

— In the case of hole-filling, start from the edges of the hole 


For an interactive demo, see 

                    https://una-dinosauria.github.io/efros-and-leung-js/

(written by Julieta Martinez, a previous CPSC 425 TA) 


Efros and Leung: Synthesizing Many Pixels

https://una-dinosauria.github.io/efros-and-leung-js/


Randomness Parameter

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt


Forsyth & Ponce (2nd ed.) Figure 6.12

Efros and Leung: More Synthesis Results
Window Size



Efros and Leung: Image Extrapolation

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt


“Big Data” Meets Inpainting

“Big Data" enables surprisingly simple non-parametric, matching-based 
techniques to solve complex problems in computer graphics and vision.


Suppose instead of a single image, you had a massive database of a million 
images. What could you do? 




“Big Data” Meets Inpainting

Original Image Input

Figure Credit: Hays and Efros 2007



Figure Credit: Hays and Efros 2007

Scene MatchesInput Output

“Big Data” Meets Inpainting



Effectiveness of “Big Data”

Figure Credit: Hays and Efros 2007



10 nearest neighbors from a collection of 20,000 images

Effectiveness of “Big Data”

Figure Credit: Hays and Efros 2007



10 nearest neighbors from a collection of 2 million images

Effectiveness of “Big Data”

Figure Credit: Hays and Efros 2007



“Big Data” Meets Inpainting

Figure Credit: Hays and Efros 2007



Algorithm sketch (Hays and Efros 2007): 


1.  Create a short list of a few hundred “best matching" images based on global   
image statistics 


2.  Find patches in the short list that match the context surrounding the image 
region we want to fill 


3.  Blend the match into the original image  

Purely data-driven, requires no manual labeling of images

“Big Data” Meets Inpainting



“Big Data” Meets Inpainting

Original Image Input

Figure Credit: Hays and Efros 2007



Figure Credit: Hays and Efros 2007

“Big Data” Meets Inpainting



Figure Credit: Hays and Efros 2007

“Big Data” Meets Inpainting



Texture

We will look at two main questions: 


1.  How do we represent texture?  
→ Texture analysis  

2.  How do we generate new examples of a texture?  
→ Texture synthesis  



Texture Segmentation

Question: Is texture a property of a point or a property of a region? 




Texture Segmentation

Question: Is texture a property of a point or a property of a region? 


Answer: We need a region to have a texture. 




Texture Segmentation

Question: Is texture a property of a point or a property of a region? 


Answer: We need a region to have a texture. 


There is a “chicken–and–egg” problem. Texture segmentation can be done by 
detecting boundaries between regions of the same (or similar) texture. Texture 
boundaries can be detected using standard edge detection techniques applied 
to the texture measures determined at each point 




Features:

— Raw Intensity

— Orientation Energy

— Brightness Gradient

— Color Gradient 

— Texture gradient

Image Raw

Intensity

Orient

Energy

Bright

Grad

Color

Grad

Texture

Grad

Recall: Boundary Detection

Figure Credit: Martin et al. 2004



Texture Segmentation

Question: Is texture a property of a point or a property of a region? 


Answer: We need a region to have a texture. 


There is a “chicken–and–egg” problem. Texture segmentation can be done by 
detecting boundaries between regions of the same (or similar) texture. Texture 
boundaries can be detected using standard edge detection techniques applied 
to the texture measures determined at each point 


We compromise! Typically one uses a local window to estimate texture 
properties and assigns those texture properties as point properties of the 
window’s center row and column 



Texture Representation

Question: How many degrees of freedom are there to texture? 


(Mathematical) Answer: Infinitely many 


(Perceptual Psychology) Answer: There are perceptual constraints. But, there 
is no clear notion of a “texture channel” like, for example, there is for an RGB 
colour channel 




Texture Representation

Question: How many degrees of freedom are there to texture? 


(Mathematical) Answer: Infinitely many 


(Perceptual Psychology) Answer: There are perceptual constraints. But, there 
is no clear notion of a “texture channel” like, for example, there is for an RGB 
colour channel 




Texture Representation
Observation: Textures are made up of generic sub-elements, repeated over a 
region with similar statistical properties 


Idea: Find the sub-elements with filters, then represent each point in the image 
with a summary of the pattern of sub-elements in the local region 




Texture Representation
Observation: Textures are made up of generic sub-elements, repeated over a 
region with similar statistical properties 


Idea: Find the sub-elements with filters, then represent each point in the image 
with a summary of the pattern of sub-elements in the local region 


Question: What filters should we use?


Answer: Human vision suggests spots and oriented edge filters at a variety of 
different orientations and scales 



Texture Representation

Figure Credit: Leung and Malik, 2001



Texture Representation

Figure Credit: Leung and Malik, 2001

First derivative of Gaussian at 6 orientations and 3 scales



Texture Representation

Figure Credit: Leung and Malik, 2001

Second derivative of Gaussian at 6 orientations 3 scales



Texture Representation

Figure Credit: Leung and Malik, 2001

Laplacian of the Gaussian filters at different scales



Texture Representation

Figure Credit: Leung and Malik, 2001

Gaussian filters at different scales



Texture Representation

Figure Credit: Leung and Malik, 2001

Result: 48-channel “image”



Spots and Bars (Fine Scale)

Forsyth & Ponce (1st ed.) Figures 9.3–9.4 



Spots and Bars (Coarse Scale)

Forsyth & Ponce (1st ed.) Figures 9.3 and 9.5 



Comparison of Results

Forsyth & Ponce (1st ed.) Figures 9.4–9.5 



Texture Representation

Figure Credit: Leung and Malik, 2001

Result: 48-channel “image”



Forsyth & Ponce (2nd ed.) Figure 4.17

Gaussian Pyramid 



Laplacian Pyramid



Oriented Pyramids

Laplacian pyramid is orientation independent 


Idea: Apply an oriented filter at each layer

— represent image at a particular scale and orientation 

— Aside: We do not study details in this course 




Oriented Pyramids

Forsyth & Ponce (1st ed.) Figure 9.13



Oriented Pyramids

Forsyth & Ponce (1st ed.) Figure 9.14

Oriental Filters



Texture Representation
Observation: Textures are made up of generic sub-elements, repeated over a 
region with similar statistical properties 


Idea: Find the sub-elements with filters, then represent each point in the image 
with a summary of the pattern of sub-elements in the local region 


Question: What filters should we use?


Answer: Human vision suggests spots and oriented edge filters at a variety of 
different orientations and scales 



Texture Representation
Observation: Textures are made up of generic sub-elements, repeated over a 
region with similar statistical properties 


Idea: Find the sub-elements with filters, then represent each point in the image 
with a summary of the pattern of sub-elements in the local region 


Question: What filters should we use?


Answer: Human vision suggests spots and oriented edge filters at a variety of 
different orientations and scales 


Question: How do we “summarize”? 


Answer: Compute the mean or maximum of each filter response over the region 
— Other statistics can also be useful 



Texture Representation

Figure Credit: Leung and Malik, 2001

Result: 48-channel “image”



Texture Representation

Slide Credit: Trevor Darrell



Texture Representation

Slide Credit: Trevor Darrell



A Short Exercise: Match the texture to the response 

Slide Credit: James Hays



Slide Credit: James Hays

A Short Exercise: Match the texture to the response 



Texture Representation

Slide Credit: Trevor Darrell



Slide Credit: Trevor Darrell

Texture Representation



i

j

k Chi-square
0.1

0.8

}
}

Texture Representation



Bag-of-Words Representation
Take a large corpus of text:


— Represent every letter by a 26 dimensional (unit) vector 


— Represent each word by an average of letter representations in it


— Cluster the words, to get a “dictionary”. Words that have very similar 
representations would get clustered together (e.g., smile and smiled)


— Now represent every document by histogram of “dictionary” atoms by 
associating every word to an atom that is closest in terms of distance in 26D 



Bag-of-Words Representation
Take a large corpus of text:


— Represent every letter by a 26 dimensional (unit) vector 


— Represent each word by an average of letter representations in it


— Cluster the words, to get a “dictionary”. Words that have very similar 
representations would get clustered together (e.g., smile and smiled)


— Now represent every document by histogram of “dictionary” atoms by 
associating every word to an atom that is closest in terms of distance in 26D 

2

66666666664

1
0
0
·
·
·
0
0

3

77777777775

2

66666666664

0
1
0
·
·
·
0
0

3

77777777775

a = b =



Bag-of-Words Representation
Take a large corpus of text:


— Represent every letter by a 26 dimensional (unit) vector 


— Represent each word by an average of letter representations in it


— Cluster the words, to get a “dictionary”. Words that have very similar 
representations would get clustered together (e.g., smile and smiled)


— Now represent every document by histogram of “dictionary” atoms by 
associating every word to an atom that is closest in terms of distance in 26D 

ab =

2

66666666664

1
2
1
2
0
·
·
·
0
0

3

77777777775



Bag-of-Words Representation
Take a large corpus of text:


— Represent every letter by a 26 dimensional (unit) vector 


— Represent each word by an average of letter representations in it


— Cluster the words, to get a “dictionary” of K words. Words that have very 
similar representations would get clustered together (e.g., smile and smiled)


— Now represent every document by histogram of “dictionary” atoms by 
associating every word to an atom that is closest in terms of distance in 26D 



Bag-of-Words Representation
Take a large corpus of text:


— Represent every letter by a 26 dimensional (unit) vector 


— Represent each word by an average of letter representations in it


— Cluster the words, to get a “dictionary” of K words. Words that have very 
similar representations would get clustered together (e.g., smile and smiled)


— Now represent every document by K-dimensional histogram of “dictionary” 
atoms by associating every word to an atom that is closest in terms of distance 
in 26D 



Bag-of-Words Representation
Take a large corpus of text:


— Represent every letter by a 26 dimensional (unit) vector 


— Represent each word by an average of letter representations in it


— Cluster the words, to get a “dictionary” of K words. Words that have very 
similar representations would get clustered together (e.g., smile and smiled)


— Now represent every document by K-dimensional histogram of “dictionary” 
atoms by associating every word to an atom that is closest in terms of distance 
in 26D 

corpus of text = collection of images

letter = feature response at pixel locations

word = patch summary with pixel in the center

dictionary = textons



Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

• Texture is characterized by the repetition of basic elements or textons


• For stochastic textures, it is the identity of the textons, not their spatial 
arrangement, that matters

Texture representation and recognition



Texture representation and recognition

Universal texton dictionary

histogram



Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Texture representation and recognition

Universal texton dictionary

histogram



Summary

Texture representation is hard

— difficult to define, to analyze

— texture synthesis appears more tractable 


Objective of texture synthesis is to generate new examples of a texture

— Efros and Leung: Draw samples directly from the texture to generate one 
pixel at a time. A “data-driven" approach. 


Approaches to texture embed assumptions related to human perception 



