THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: https://en.wikipedia.org/wiki/Corner detection

Lecture 11: Corner Detection (cont.)

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )


https://en.wikipedia.org/wiki/Corner_detection

Menu for Today
Topics:
— Harris Corner Detector (review) — Searching over Scale
— Blob Detection — Texture Synthesis & Analysis

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3, 3.1-3.3

Reminders:

— Assignment 2: Face Detection in a Scaled Representation is due today

— Assignment 3: Texture Synthesis is out today
— Study questions for Midterm are on Canvas (answers on Friday)

— (practice) Quiz 1 is on Canvas, Quiz 2 & 3 coming



Today’s “fun” Example: Texture Camouflage

https://en.wikipedia.org/wiki/File:Camouflage.jpg



Today’s “fun” Example: Texture Camouflage

Cuttlefish on gravel seabed Seconds later. . .

http://www.marinet.org.uk/campaign-article/an-illustrated-guide-to-uk-marine-animals



Lecture 10: Re-cap (Harris Corner Detection)

l.Compute 1mage gradients over
small region

2.Compute the covariance matrix

3.Compute eigenvectors and
eilgenvalues

4 .Use threshold on eigenvalues to
detect corners

Slide Adopted: loannis (Yannis) Gkioulekas (CMU)



Lecture 10: Re-cap (compute image gradients at patch)
(not just a single pixel)

array of x gradients
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lecture 10: Re-cap (compute the covariance matrix)

Sum over small region
around the corner
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Lecture 10: Re-cap

't can be shown that since every C Is symmetric:




Lecture 10: Re-cap (computing eigenvalues and eigenvectors)

eigenvalue
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elgenvector

1. Compute the determinant of O — \]
(returns a polynomial)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Lecture 10: Re-cap (interpreting eigenvalues
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Image Credit: loannis (Yannis) Gkioulekas (CMU)



Lecture 10: Re-cap (Threshold on Eigenvalues to Detect Corners)

oy

Strong

SO Think of a function to
score ‘cornerness’

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lecture 10: Re-cap (Threshold on Eigenvalues to Detect Corners)

Harris & Stephens (1988)
det(C) — ktrace*(C)

Kanade & Tomasi (1994)

IIliIl()\l, Ag)

Nobel (1998)
det(C)
trace(C') + ¢

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Harris Corner Detection
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.




Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

0 0 0 0 0 O
41 0 0 -1 1
40 0 0 1 0
4.0 0 0 1 0
0 -1 0 0 1 O
0 -1 0 0 1 O
0 -1 0 0 1 O
=% 10 40 0 1 0




Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.
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Example: Harris Corner Detection
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

C = ‘;’ i —> Ay = 1.4384: Ay = 5.5616
0 0 0 0 | -1 0
41 0 0 0 0
4.0 0 0 0 0 0 0
1.0 0 O 0 0 1 0 0 0 0 O
0 -1 0 0 1 O 0 0 0 0 0 0 O
0 -1 0 0 1 O 0 0 0 0 0 0 O
0 -1 0 0 1 0 0 0 0 0 0 0 O
=% 10 40 0 1 0 =%
Ox oy



Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

N
C= |5 5 |=>X\=14384) = 55616
' ' det(C) — 0.04trace?(C) = 6.04
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

C = g 8 => A\ =3; A =0

det(C) — 0.04trace*(C) = —0.36
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

0 C = (3) (2) => A\ = 3; Ay =2
0 ' ' det(C) — 0.04trace*(C) = 5
0
0 0 0 0|0 0 O 0 -1 0|0 0 -1 0
0 11 0]0 -1 f 0 0 -1|-1 -1 1 0
0 10 0|0 1 0 0 0 0|0 0 0 O
0 1.0 0 0 1 0 01 0 0 0 0 O
0 0 -1 0 0 1 0 0 0 0 0 0 0 O
0 -1 0 0 1 0 0 0 0 0 0 0 O
0 -1 0 0 1 0 0 0 0 0 0 0 O
=220 10 0 1 0 =%
ox oy



Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.
6.04

—0.36




Harris Corner Detection Review

— Filter image with Gaussian
— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel Harris & Stephens (1988)

— Harris uses a Gaussian window ,
det(C') — wtrace”(C)
— Solve for product of the A’s | |

— If N’s both are big (product reaches local maximum above threshold) then we
have a corner

— Harris also checks that ratio of As is not too high



Compute the Covariance Matrix

Sum can be implemented as an
(unnormalized) box filter with

>, I.1, > I.I,
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Harris uses a Gaussian weighting instead



Properties: Rotational Invariance

> > 4
— =

Ellipse rotates but its shape
(eigenvalues) remains the same

Corner response is invariant to image rotation

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance

threshold //'\\//\\_/\/ﬂ\ / vxv/’\\

X (image coordinate) X (image coordinate)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Properties: NOT Invariant to Scale Changes

edge!
corner!

C

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 2: Wagon Wheel (Harris Results
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Example 3: Crash Test Dummy (Harris Result)

corner response image oc=1 (175 points)
Original Image Credit: John Shakespeare, Sydney Morning Herald



Example 2: Wagon Wheel (Harris Results
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Intuitively ...

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Intuitively ...

Find local maxima in both position and scale

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Non-maxima Suppression in Template Matching

Idea: suppress near-by similar detections to obtain one “true” result

Detected template Correlation map

Slide Credit: Kristen Grauman



Non-maxima Suppression in Edge Detection (Canny)

courtesy of G. Loy

Non-maxima

Original Image Gradient Magnitude Suppression

Slide Credit: Christopher Rasmussen



Formally ...

Laplacian filter

-l
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Formally ...

Laplacian filter
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Formally ...

Laplacian filter

Ok /\/\

=20 =11 20

Original signal

[ r x - A\ r " - [ r r T [ H
0 0 0 0

-20 -10 10 20 =20 -7 7 20 =20 -3 3 20 -20 -1 1 20

Convolved with Laplacian (o = 1)
0__% \/L_ : H : J\/\/\ : ﬂ/\
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0 -20 = 7 20 -20 -3 3 20 -20 11 20

Highest response when the signal has the same characteristic scale as
the filter

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Formally ...

Laplacian filter

Ok /\/\

=20 =11 20

Original signal

[ r x - A\ r " - [ r r T [ H
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-20 -10 10 20 =20 -7 7 20 =20 -3 3 20 -20 -1 1 20

Convolved with Laplacian (o = 1)
0 =10 10 2
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0 -20 = 7 20 -20 -3 3 20 -20 1 20

Highest response when the signal has the same characteristic scale as
the filter

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



"w
’

'.1" "}.) 0 ’;.f' %". “‘.’

L L ¥ »
e ye
™ o | 3 ' !
(o} ®. 9 f' ‘ ni I: _

2 e €
ey

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Characteristic Scale

characteristic scale - the scale that produces peak filter response

2000
1500} - - - - - s R e el e SN

1000} - - - - - - T R, LT .

characteristic scale

we need to search over characteristic scales
Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=2.1 sigma=4.2 sigma=6 sigma=9.8 sigma=15.5 sigma=17
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

jet color scale
blue: low, red: high

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=9.8

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=15.5
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=17
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

Full size 3/4 size

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=2.1

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Scales

Applying Laplacian Filter at Different

sigma=9.8
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=15.5
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=17
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

Full size 3/4 size

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

2.1 4.2 0.0
9.8 15.5 17.0




Applying Laplacian Filter at Different Scales
2.7 4.2 0.0
9.8 15.5 17.0
maximum
response

v



Optimal Scale

2.1 4.2 6.0 9.8 15.5 17.0

Full size Image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image



Optimal Scale

2.1 4.2
2.1 4.2

6.0 15.5 17.0

maximum
response

.
Full size Image

6.0 9.8

maximum
response

15.5 17.0

3/4 size image



Implementation

For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

1f local maximum and cross-scale

save scale and location of feature(mgy;s)



Multi-Scale Harris Corners




Re-cap

Summary of what we have seen so far:

Representation Results in Approach Technique
intensity dense template matching (hormalized) correlation
edge relatively sparse derivatives Sobel, LoG, Canny
corner sparse locally distinct features Harris (and variants)
blob sparse locally distinct features LoG




Re-cap

Summary of what we have seen so far:

Representation Results in Approach Technique
intensity dense template matching | (normalized) correlation
edge relatively sparse derivatives Sobel, LoG, Canny
corner sparse locally distinct features Harris (and variants)
blob sparse locally distinct features LoG
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Re-cap

Summary of what we have seen so far:

Representation Results in Approach Technique
intensity dense template matching (hormalized) correlation
edge relatively sparse derivatives Sobel, LoG, Canny
corner sparse locally distinct features Harris (and variants)
blob sparse locally distinct features LoG




Summary

Edges are useful image features for many applications, but suffer from the
aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps

Corners / Interest Points have 2D structure and are useful for
correspondence

Harris corners are minima of a local SSD function

DoG maxima can be reliably located in scale-space and are useful as interest
pDoINtS



