

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

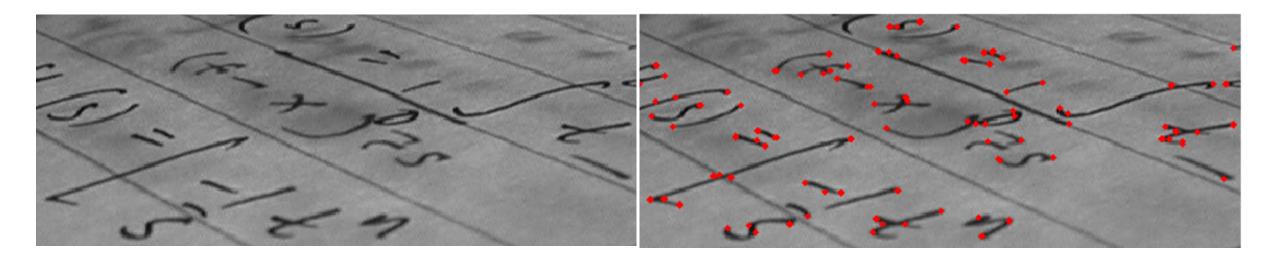


Image Credit: <u>https://en.wikipedia.org/wiki/Corner_detection</u>

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Lecture 11: Corner Detection (cont.)

Menu for Today

Topics:

- Harris **Corner** Detector (review)
- **Blob** Detection

Readings:

— Today's Lecture: Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3, 3.1-3.3

Reminders:

- Assignment 2: Face Detection in a Scaled Representation is due today
- Assignment 3: Texture Synthesis is out today
- Study questions for **Midterm** are on Canvas (answers on Friday)
- (practice) Quiz 1 is on Canvas, Quiz 2 & 3 coming

- Searching over **Scale** - **Texture** Synthesis & Analysis

Today's "fun" Example: Texture Camouflage

https://en.wikipedia.org/wiki/File:Camouflage.jpg

Today's "fun" Example: Texture Camouflage

Cuttlefish on gravel seabed

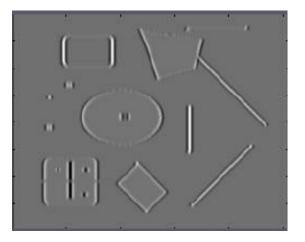
http://www.marinet.org.uk/campaign-article/an-illustrated-guide-to-uk-marine-animals

Seconds later...

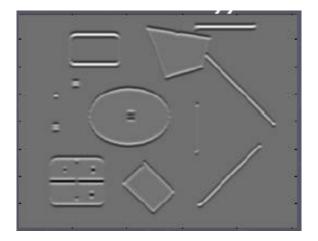
Lecture 10: Re-cap (Harris Corner Detection)

- 1.Compute image gradients over small region
- 2.Compute the covariance matrix
- 3.Compute eigenvectors and eigenvalues
- 4.Use threshold on eigenvalues to detect corners

$$I_x = \frac{\partial I}{\partial x}$$

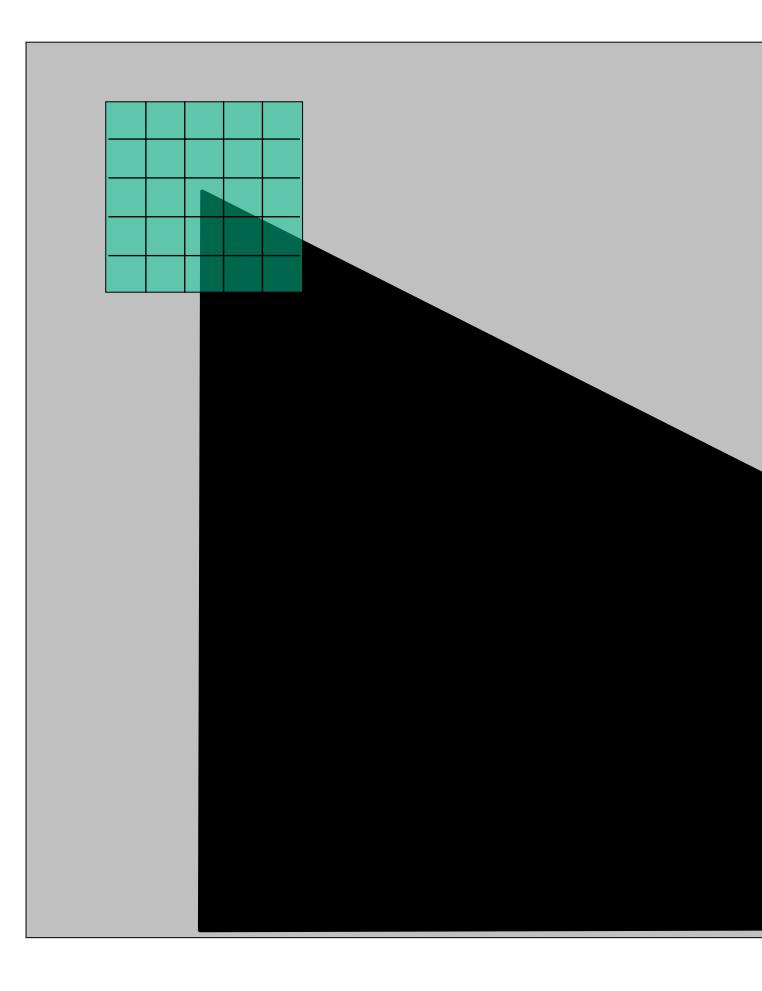


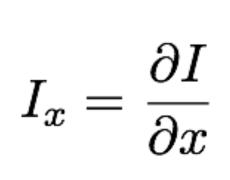
 $I_y = \frac{\partial I}{\partial y}$



 $\begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

Lecture 10: Re-cap (compute image gradients at patch) (not just a single pixel)





array of y gradients

$$I_y = \frac{\partial I}{\partial y}$$

Lecture 10: Re-cap (compute the covariance matrix)

Sum over small region around the corner

Matrix is **symmetric**

Gradient with respect to x, times gradient with respect to y

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

Lecture 10: Re-cap

It can be shown that since every C is symmetric:

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} \\ p \in P & p \in P \end{bmatrix}$

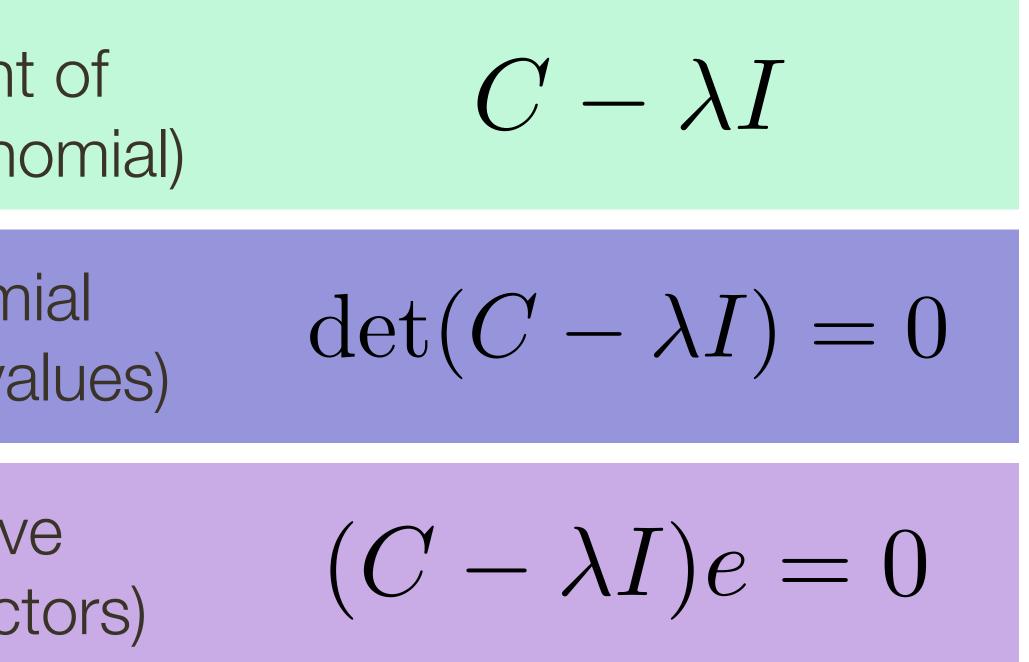
$$\begin{bmatrix} x & \sum_{p \in P} I_x I_y \\ x & \sum_{p \in P} I_y I_y \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

Lecture 10: Re-cap (computing eigenvalues and eigenvectors) eigenvalue $Ce = \lambda e$ $(C - \lambda I)e = 0$ R 7 eigenvector

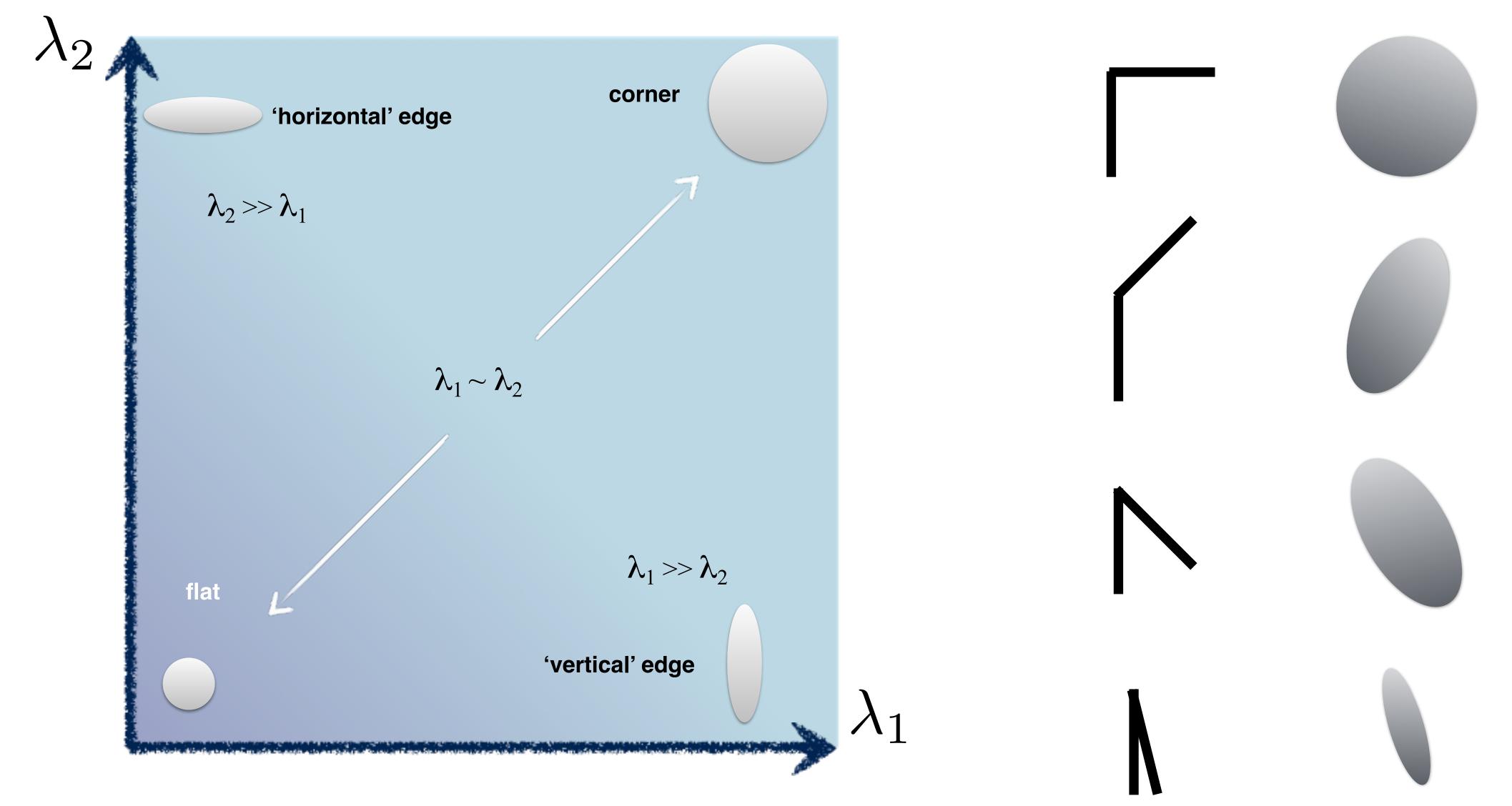
1. Compute the determinant of (returns a polynomial)

2. Find the roots of polynomial (returns eigenvalues)

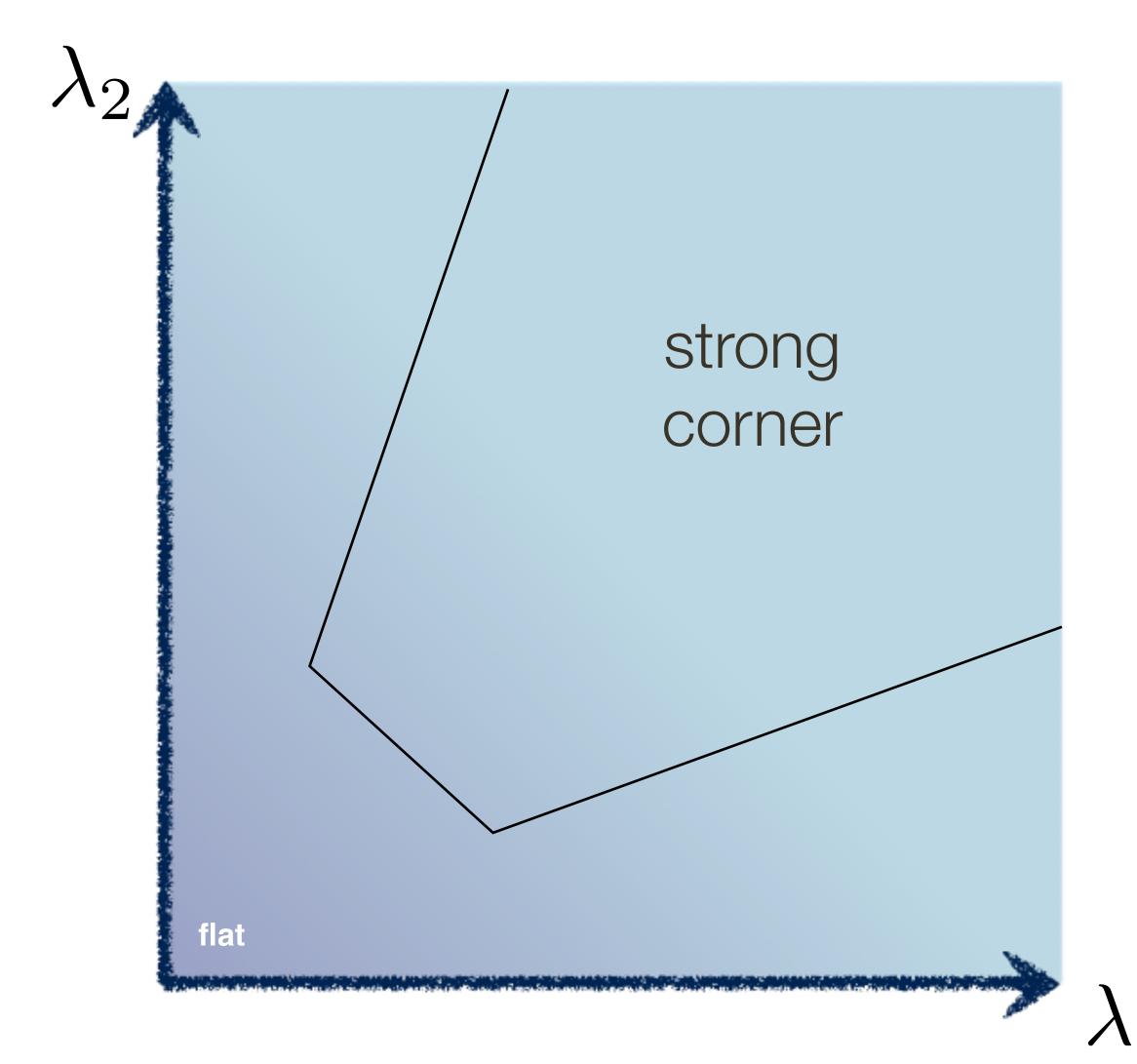
3. For each eigenvalue, solve (returns eigenvectors)



Lecture 10: Re-cap (interpreting eigenvalues)



Lecture 10: Re-cap (Threshold on Eigenvalues to Detect Corners)



Think of a function to score 'cornerness'

Lecture 10: Re-cap (Threshold on Eigenvalues to Detect Corners)

Harris & Stephens (1988)

 $\det(C) - \kappa \operatorname{trace}^2(C)$

Kanade & Tomasi (1994)

 $\min(\lambda_1, \lambda_2)$

Nobel (1998) $\det(C)$ $\operatorname{trace}(C) + \epsilon$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

$$0$$
 0 0 0 -11 1 0 0 -11 0 0 0 0 -11 0 0 0 -11 0 0 0 -11 0 0 0 -11 0 0

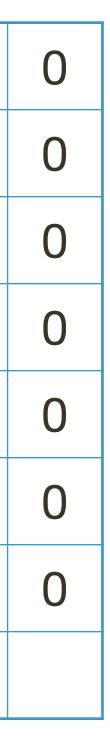
$$I_x = \frac{\partial I}{\partial x}$$

0	0	0	0	
0	0	-1	1	
0	0	1	0	
0	0	1	0	
0	0	1	0	
0	0	1	0	
0	0	1	0	
0	0	1	0	

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

$$I_x = \frac{\partial I}{\partial x}$$

0	0	0		0	-1	0	0	0	-1
0	-1	1		0	0	-1	-1	-1	1
0	1	0		0	0	0	0	0	0
0	1	0		0	1	0	0	0	0
0	1	0		0	0	0	0	0	0
0	1	0		0	0	0	0	0	0
0	1	0		0	0	0	0	0	0
0	1	0	$I_y = \frac{\partial I}{\partial y}$						
			$\circ Oy$						



Lets compute a measure of "corner-ness" for the green pixel:

-1

-1

0

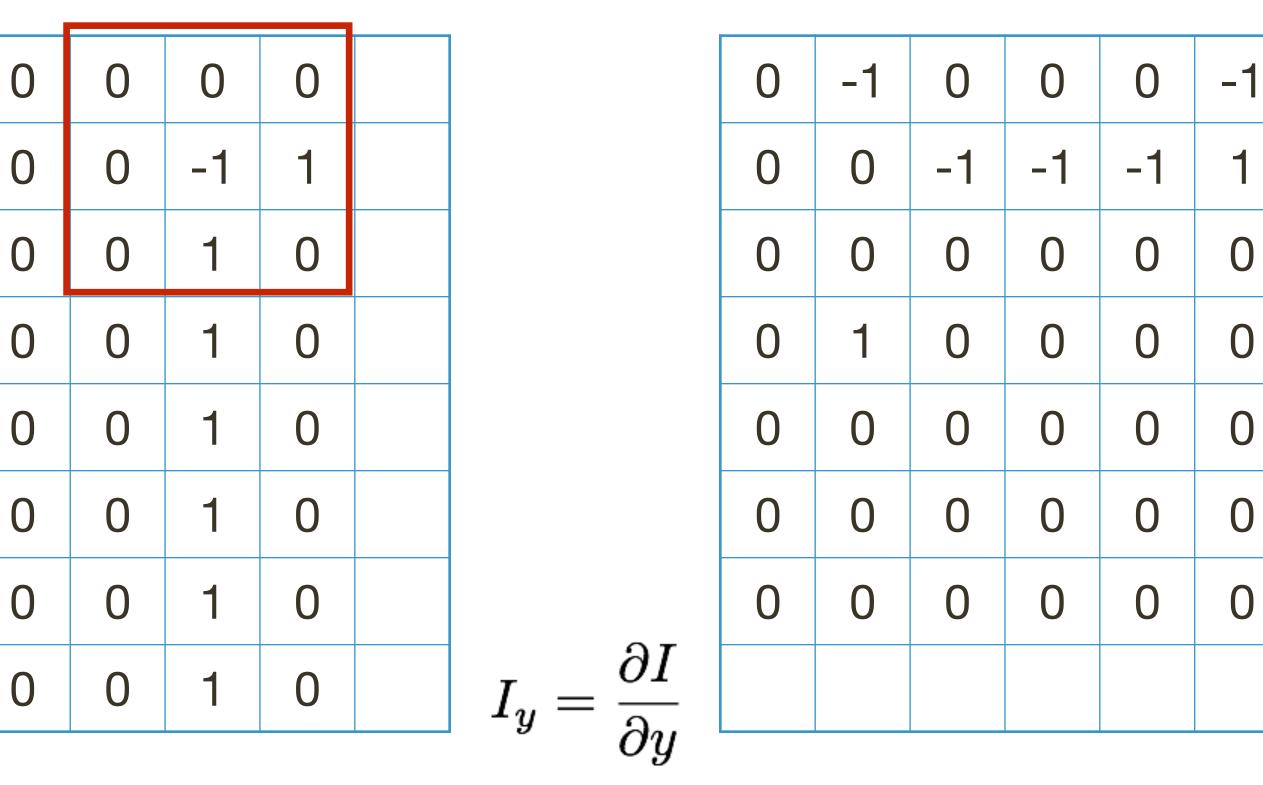
0

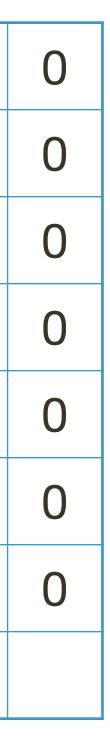
0

	_								
0	0	0	0	0	0	0			\sum
0	1	0	0	0	1	0			
0	1	1	1	1	0	0			
0	1	1	1	1	0	0	0	0	0
0	0	1	1	1	0	0	-1	1	0
0	0	1	1	1	0	0	-1	0	0
0	0	1	1	1	0	0	-1	0	0
0	0	1	1	1	0	0	0	-1	0

$$I_x = \frac{\partial I}{\partial x}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \odot \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 3$$





Lets compute a measure of "corner-ness" for the green pixel:

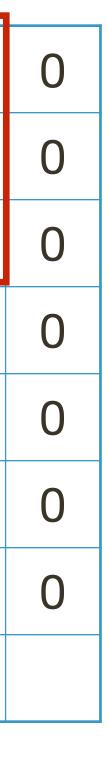
		_				
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

 $\mathbf{C} = \left[\begin{array}{cc} 3 & 2 \\ 2 & 4 \end{array} \right]$

0	0	0	
-1	1	0	
-1	0	0	
-1	0	0	
0	-1	0	
0	-1	0	
0	-1	0	
0	-1	0	

$$I_x = \frac{\partial I}{\partial x}$$

-1 -1 ()-1 -1 -1 -1 \mathbf{O} \mathbf{O} $\mathbf{\cap}$ $I_y = \frac{\partial I}{\partial y}$



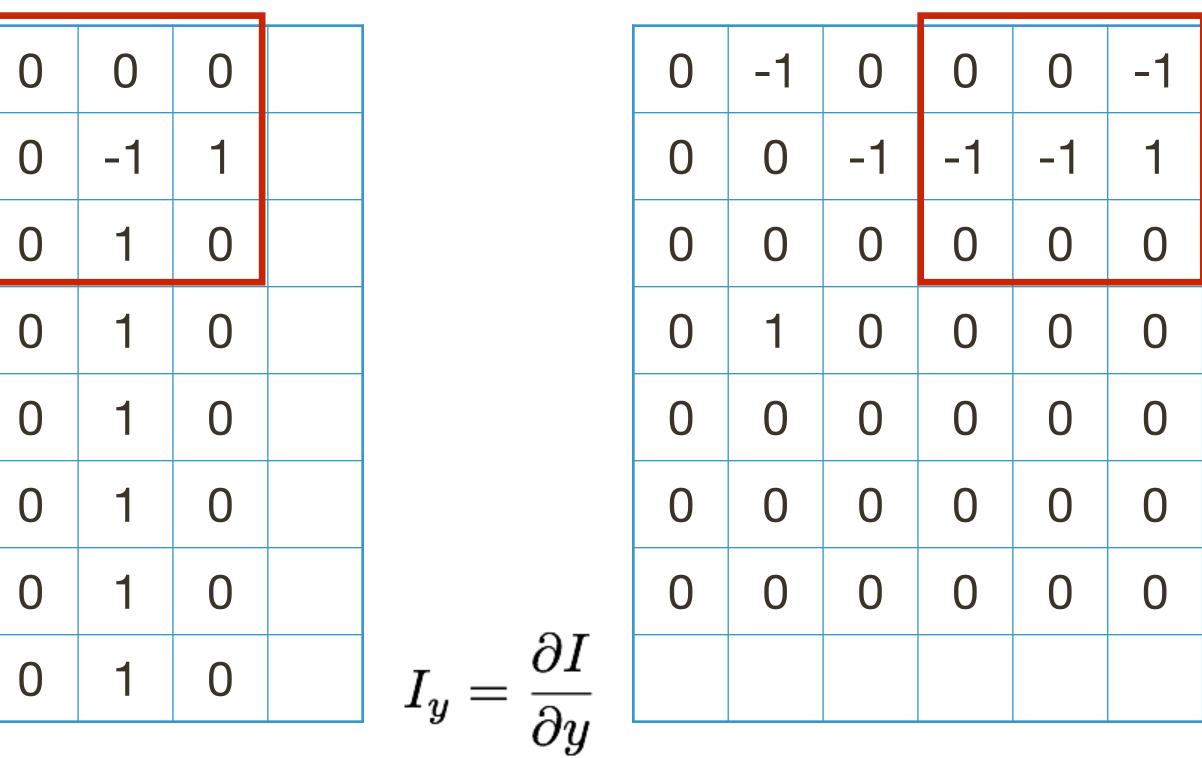
		_				
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

 $\mathbf{C} = \left[\begin{array}{cc} 3 & 2 \\ 2 & 4 \end{array} \right]$

0	0	0	
-1	1	0	
-1	0	0	
-1	0	0	
0	-1	0	
0	-1	0	
0	-1	0	
0	-1	0	

$$I_x = \frac{\partial I}{\partial x}$$

$$\begin{vmatrix} 2 \\ 4 \end{vmatrix} => \lambda_1 = 1.4384; \lambda_2 = 5.5616$$



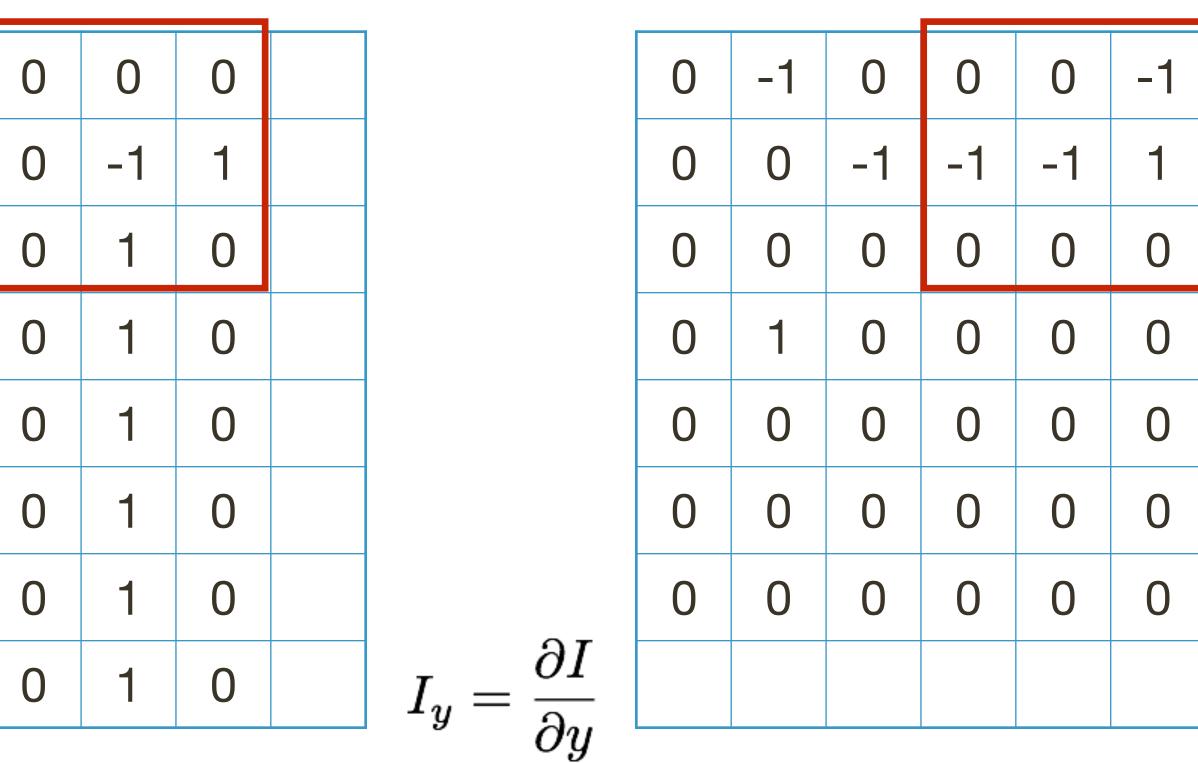
		_				
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

 $\mathbf{C} = \begin{bmatrix} 3\\ 2 \end{bmatrix}$

0	0	0	
-1	1	0	
-1	0	0	
-1	0	0	
0	-1	0	
0	-1	0	
0	-1	0	
0	-1	0	

$$I_x = \frac{\partial I}{\partial x}$$

$$\begin{vmatrix} 2 \\ 4 \end{vmatrix} => \lambda_1 = 1.4384; \lambda_2 = 5.5616$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = 6.04$$





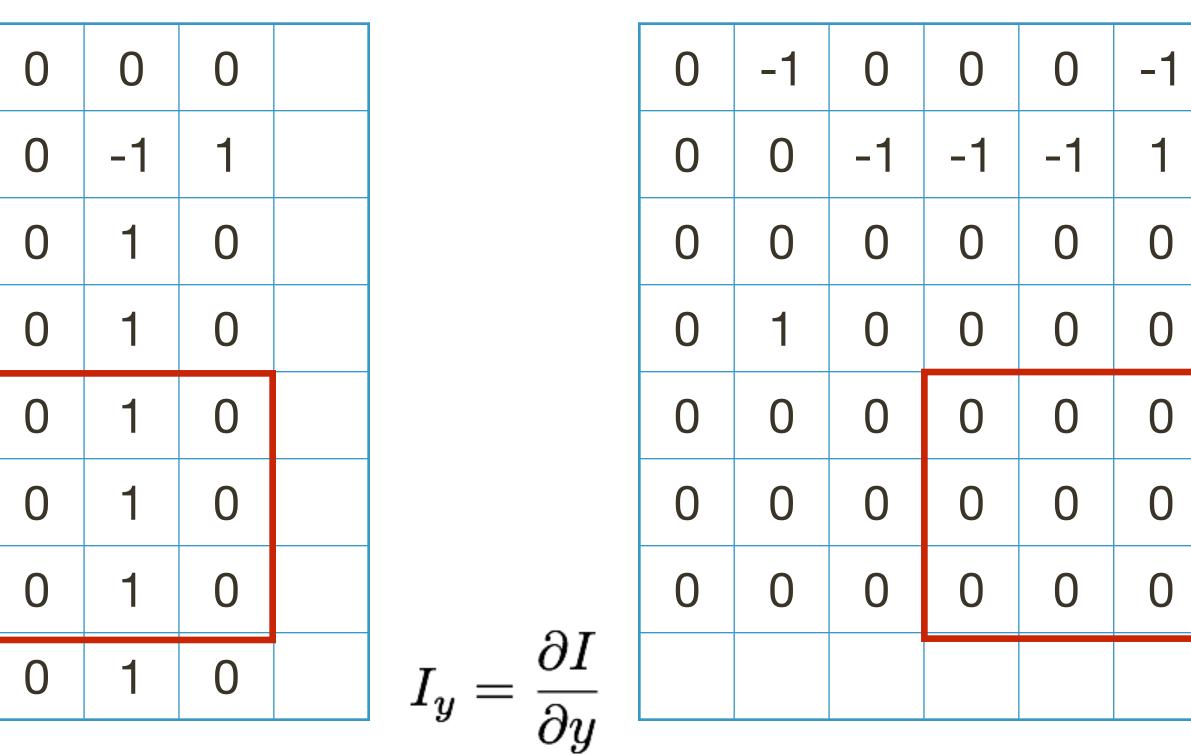
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

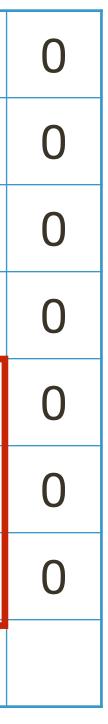
 $\mathbf{C} = \begin{bmatrix} 3\\ 0 \end{bmatrix}$

0	0	0
-1	1	0
-1	0	0
-1	0	0
0	-1	0
0	-1	0
0	-1	0
0	-1	0

$$I_x = \frac{\partial I}{\partial x}$$

$$\begin{bmatrix} 0\\0 \end{bmatrix} => \lambda_1 = 3; \lambda_2 = 0$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = -0.36$$





Lets compute a measure of "corner-ness" for the green pixel:

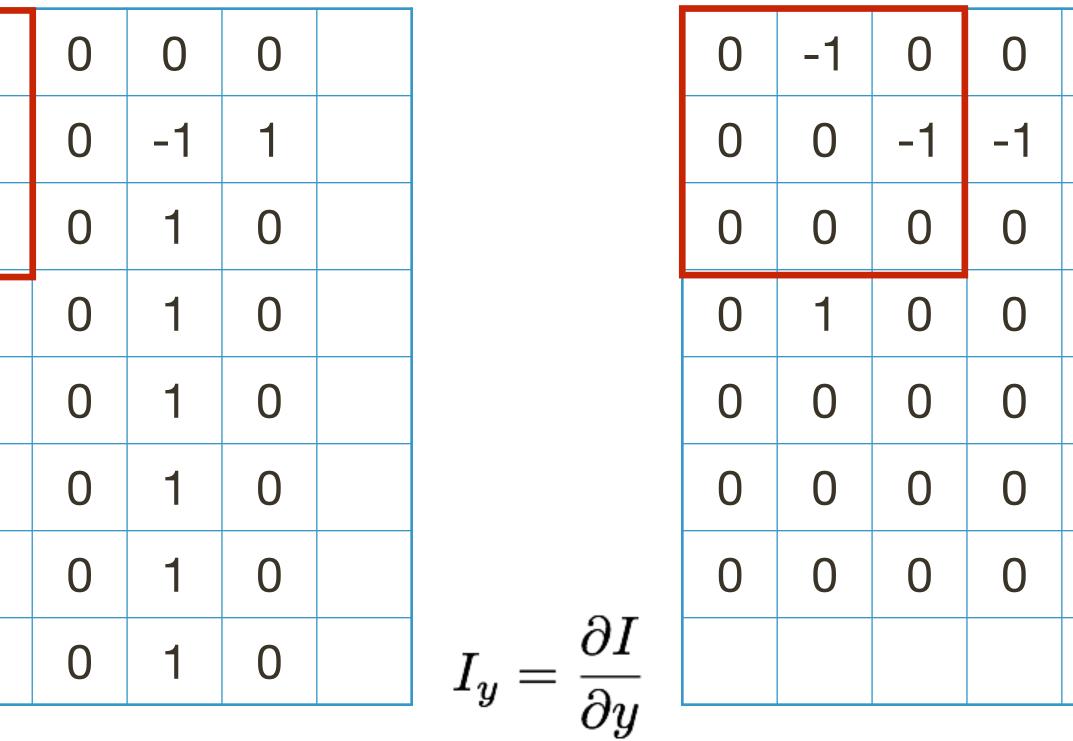
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

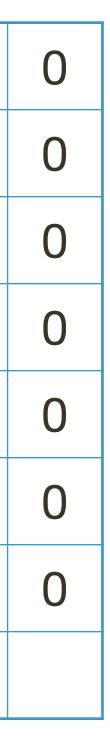
 $\mathbf{C} = \left[\begin{array}{cc} 3 & 0 \\ 0 & 2 \end{array} \right] \, .$

0	0	0
-1	1	0
-1	0	0
-1	0	0
0	-1	0
0	-1	0
0	-1	0
0	-1	0

 $I_x = \frac{\partial I}{\partial x}$

$$\begin{bmatrix} 0\\2 \end{bmatrix} => \lambda_1 = 3; \lambda_2 = 2$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = 5$$





-1

-1

0	0	0	0	0	0	0	
0	1	0	0	0	1	0	
0	1	1	1	1	0	0	
0	1	1	1	1	0	0	
0	0	1	1	1	0	0	
0	0	1	1	1	0	0	-0.36
0	0	1	1	1	0	0	
0	0	1	1	1	0	0	

Harris Corner Detection Review

- Filter image with **Gaussian**
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel - Harris uses a Gaussian window
- Solve for product of the λ 's
- have a corner
 - Harris also checks that ratio of λs is not too high

Harris & Stephens (1988) $\det(C) - \kappa \operatorname{trace}^2(C)$

- If λ 's both are big (product reaches local maximum above threshold) then we

Compute the **Covariance Matrix**

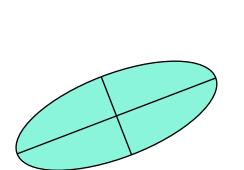
Sum can be implemented as an (unnormalized) box filter with

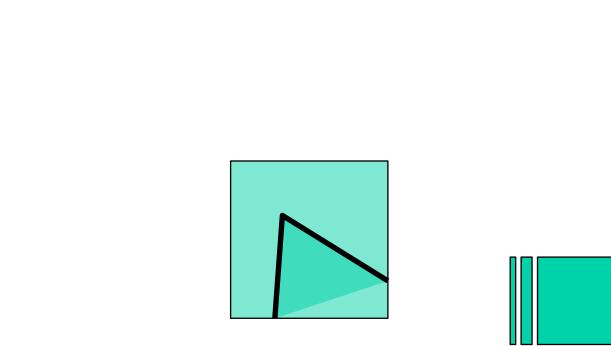
Harris uses a Gaussian weighting instead

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

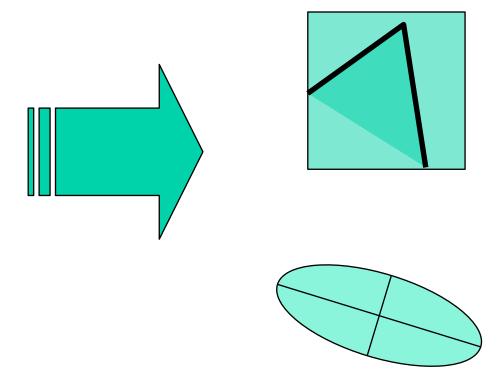
Corner response is **invariant** to image rotation

Ellipse rotates but its shape (eigenvalues) remains the same





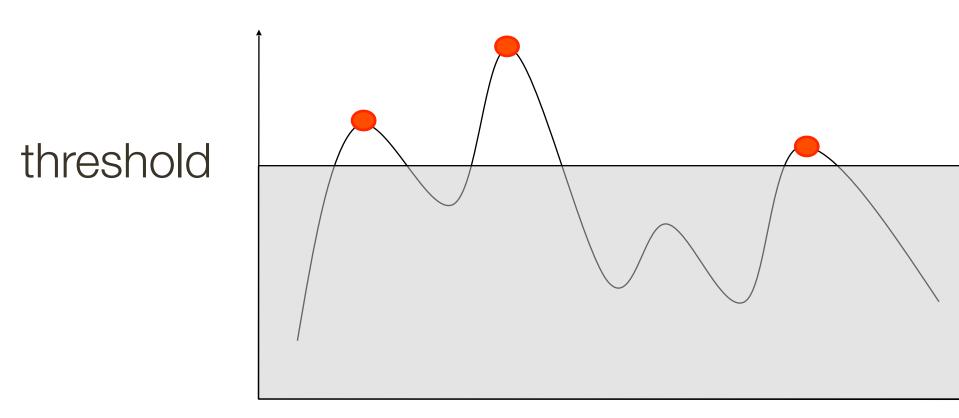
Properties: Rotational Invariance



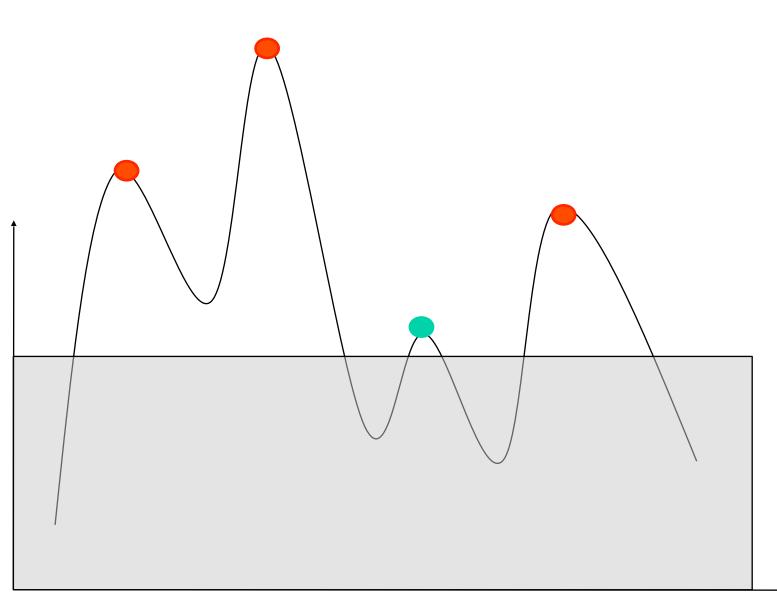
Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance

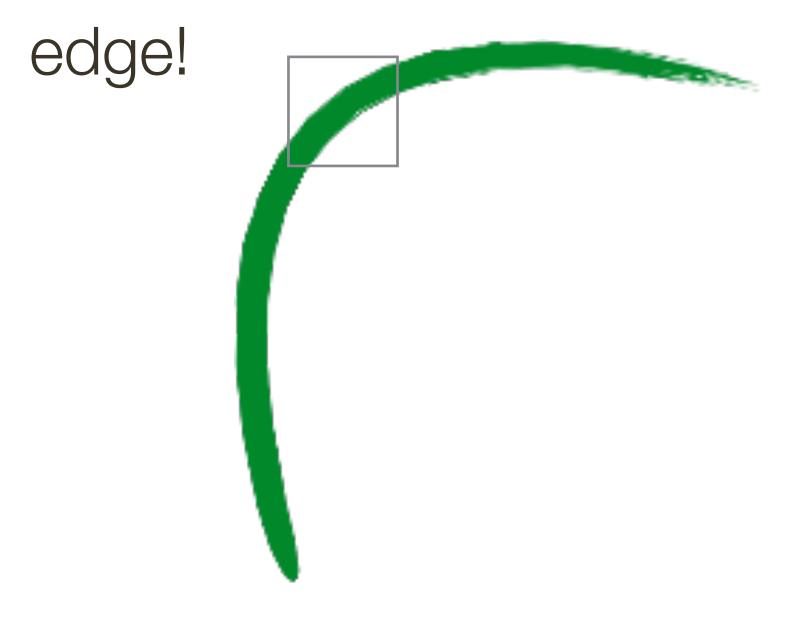


x (image coordinate)

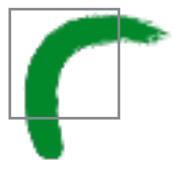


x (image coordinate)

Properties: NOT Invariant to Scale Changes

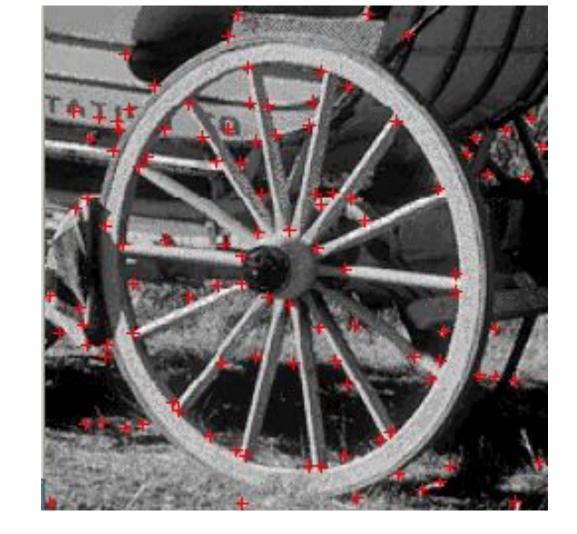


corner!

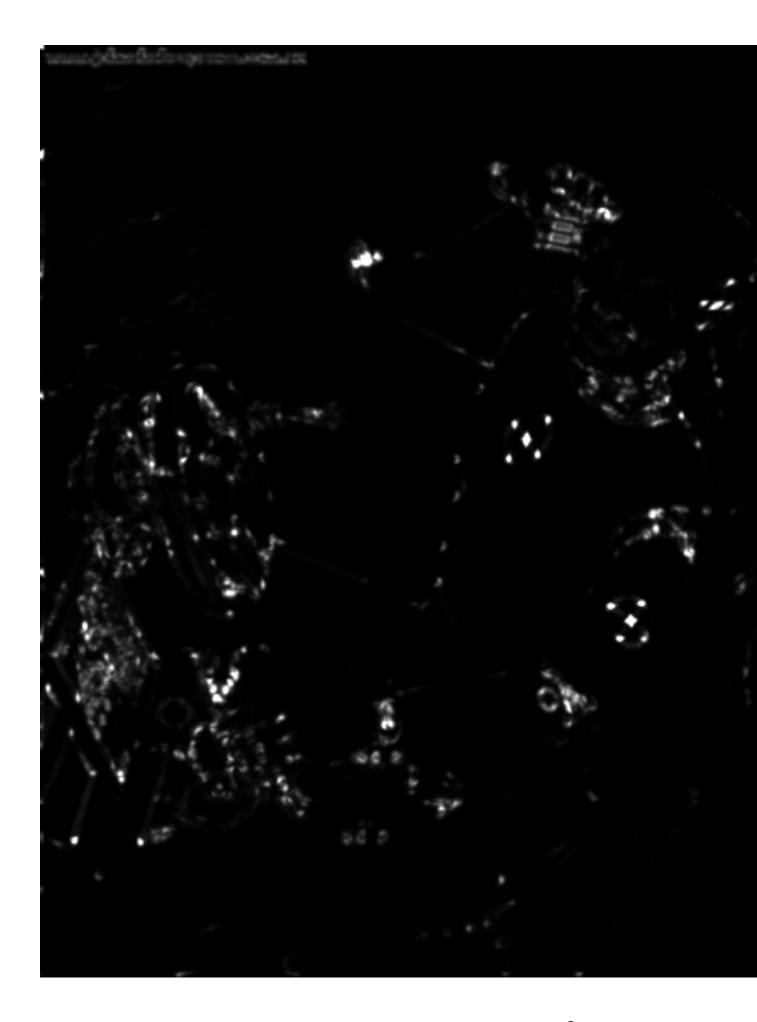


Example 2: Wagon Wheel (Harris Results)

$\sigma = 1$ (219 points) $\sigma = 2$ (155 points) $\sigma = 3$ (110 points) $\sigma = 4$ (87 points)



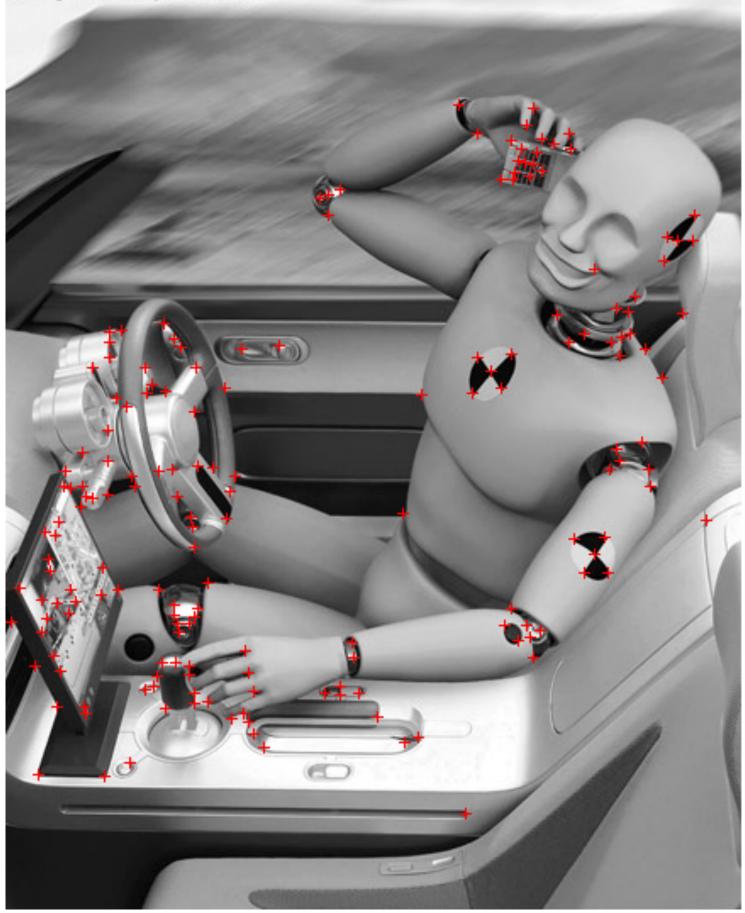
Example 3: Crash Test Dummy (Harris Result)



corner response image

Original Image Credit: John Shakespeare, Sydney Morning Herald

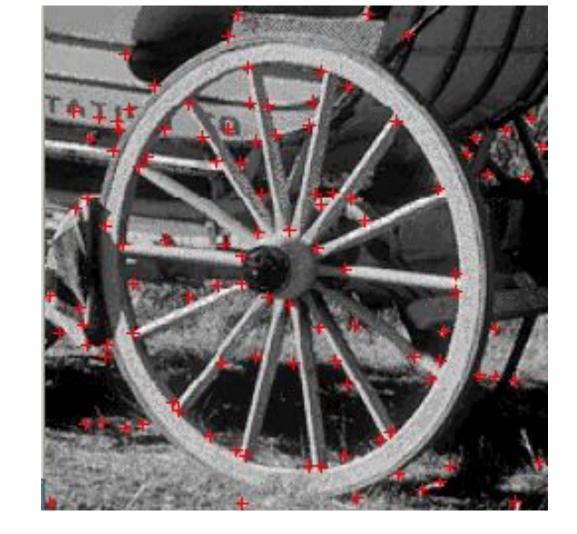
www.johnshakespeare.com.au



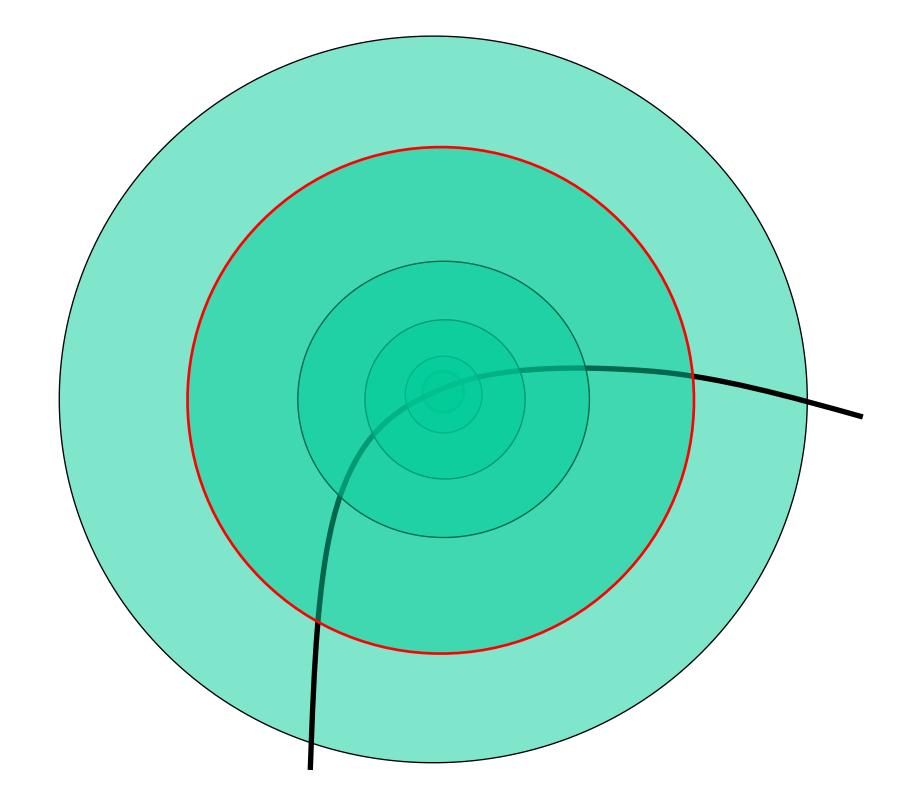
$\sigma = 1$ (175 points)

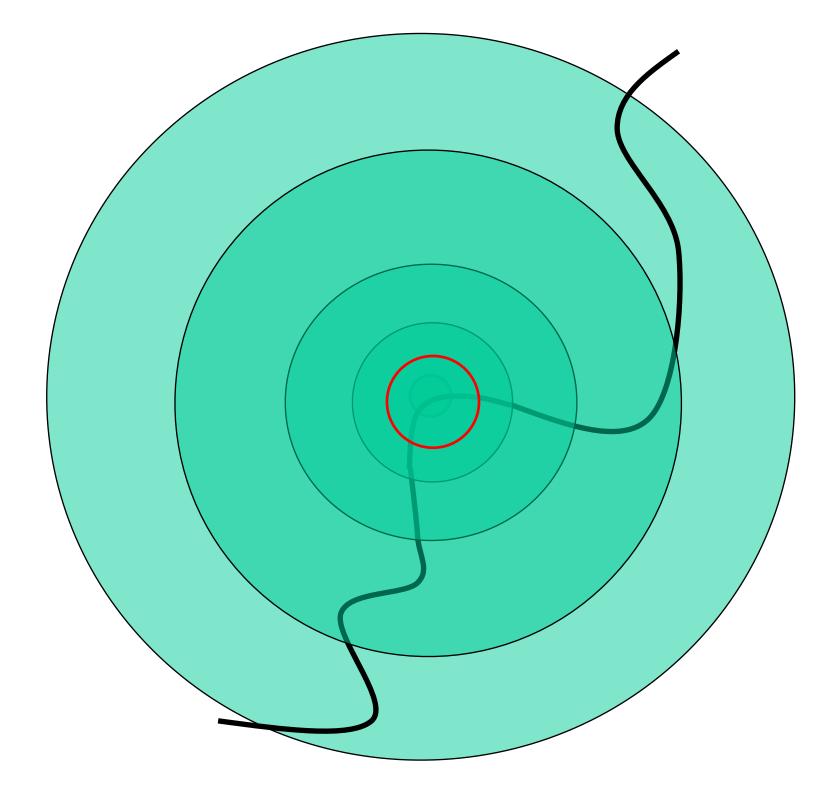
Example 2: Wagon Wheel (Harris Results)

$\sigma = 1$ (219 points) $\sigma = 2$ (155 points) $\sigma = 3$ (110 points) $\sigma = 4$ (87 points)



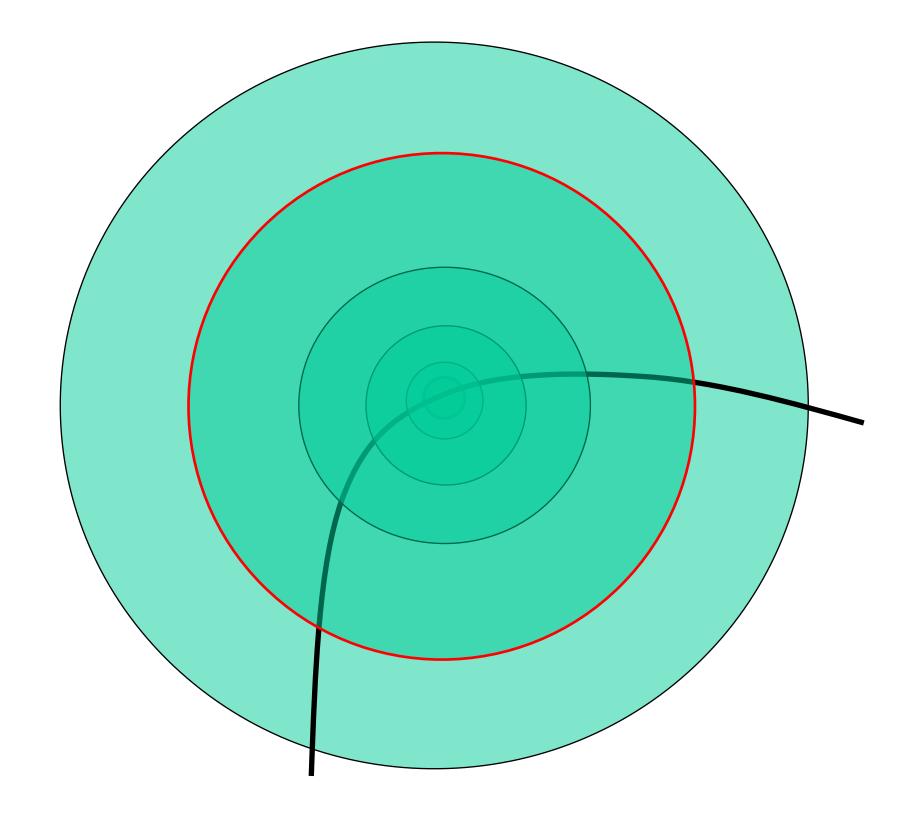
Intuitively ...

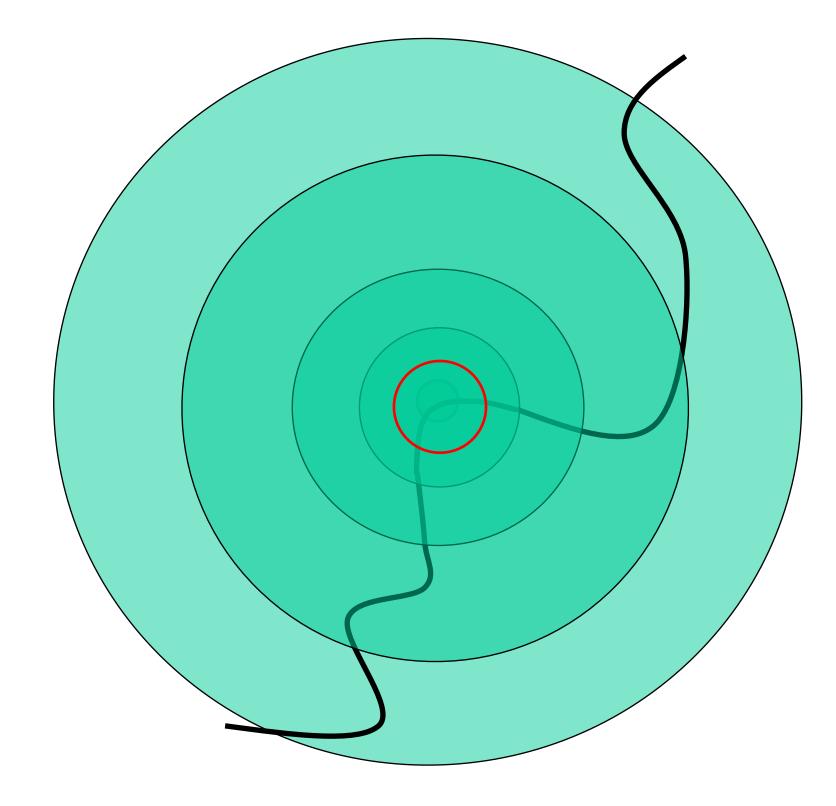




Intuitively ...

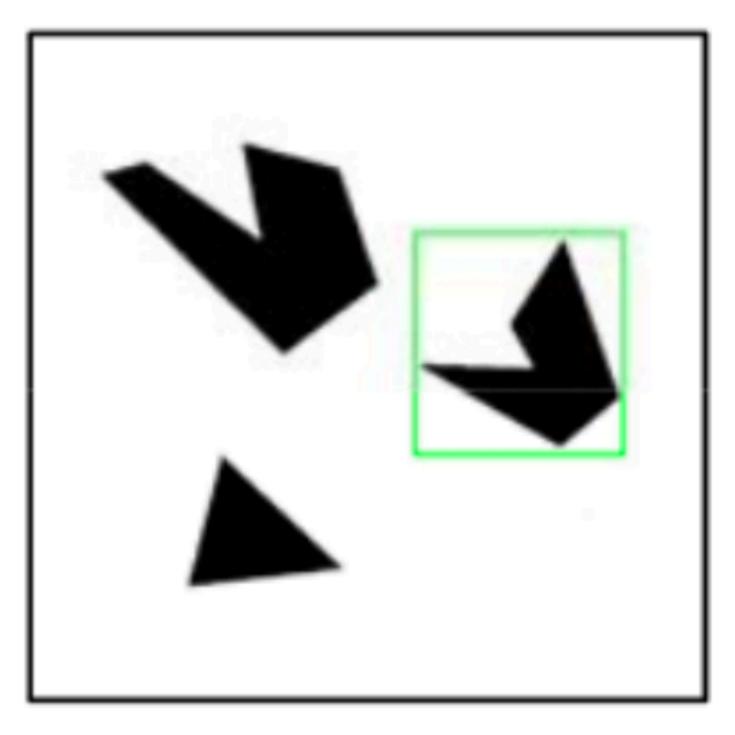
Find local maxima in both **position** and **scale**



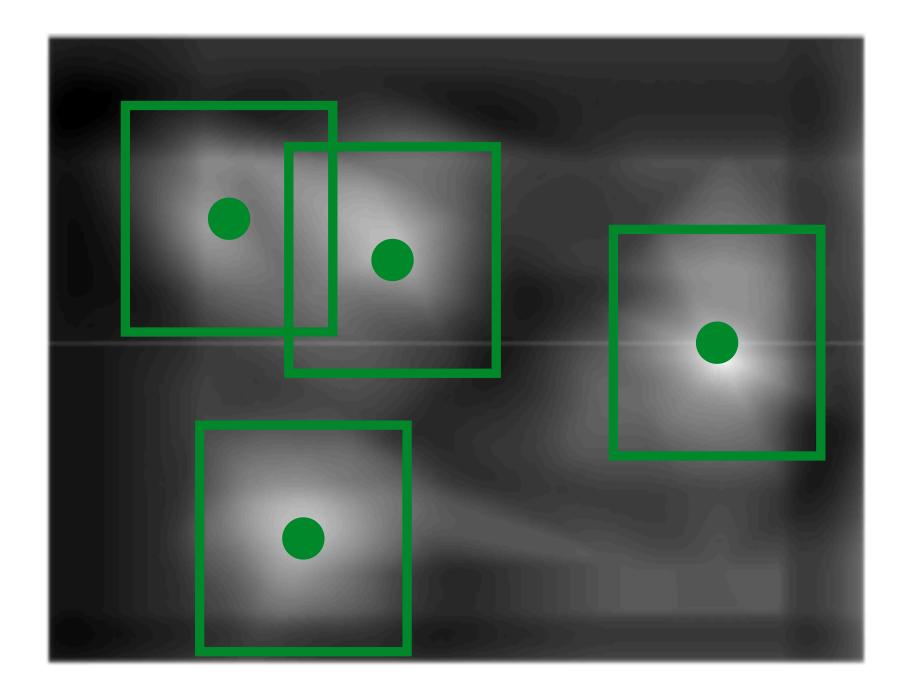


Non-maxima Suppression in Template Matching

Idea: suppress near-by similar detections to obtain one "true" result



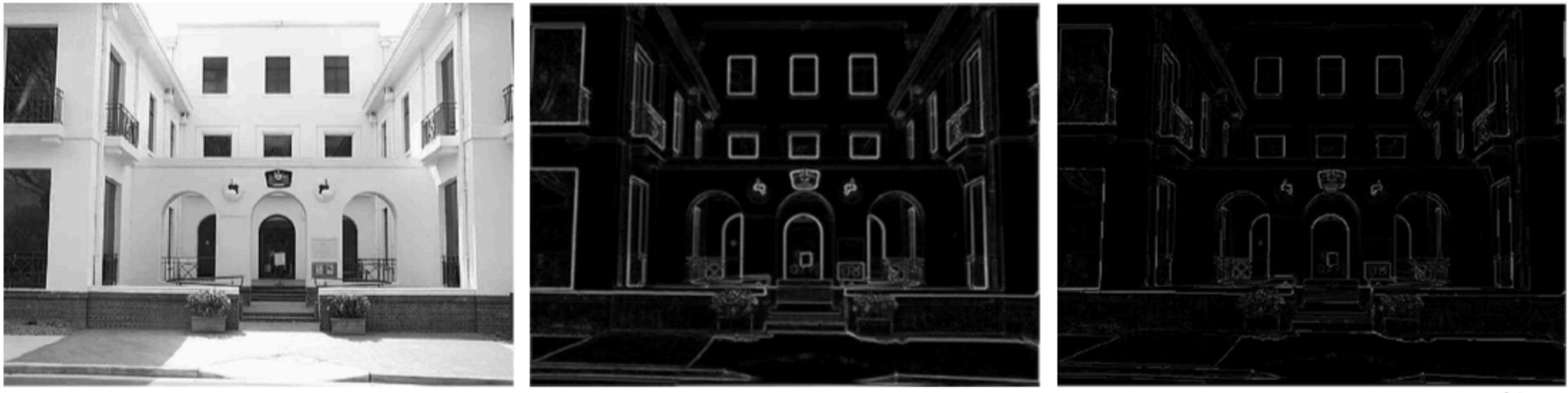
Detected template



Correlation map

Slide Credit: Kristen Grauman

Non-maxima Suppression in Edge Detection (Canny)



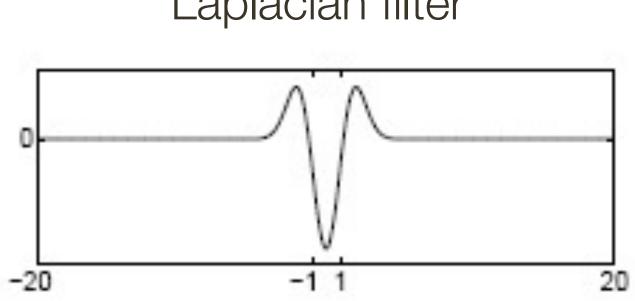
Original Image

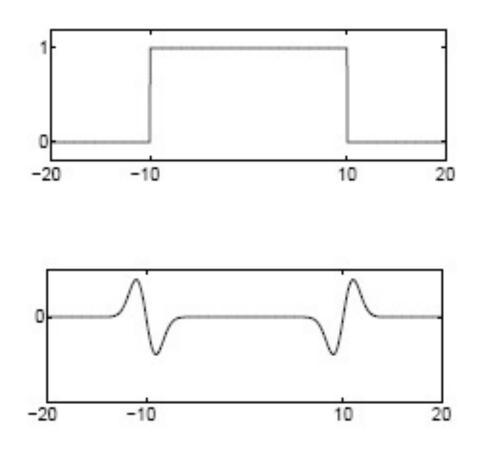
Gradient Magnitude

courtesy of G. Loy

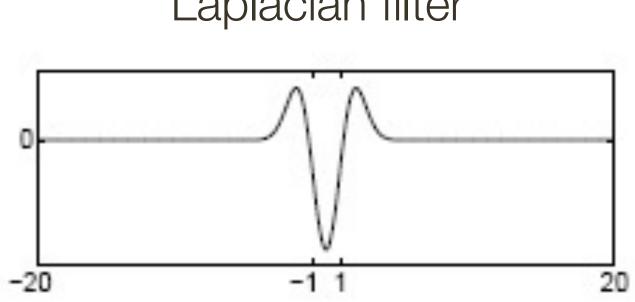
Non-maxima Suppression

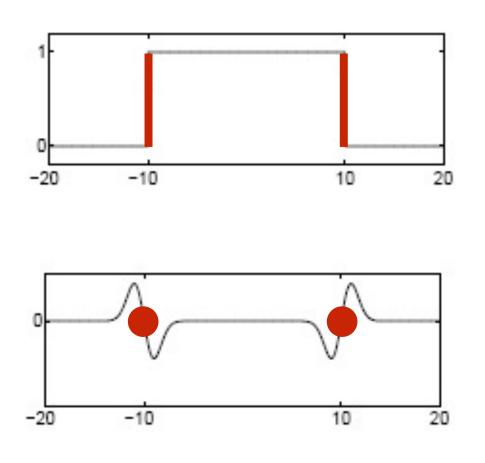
Slide Credit: Christopher Rasmussen



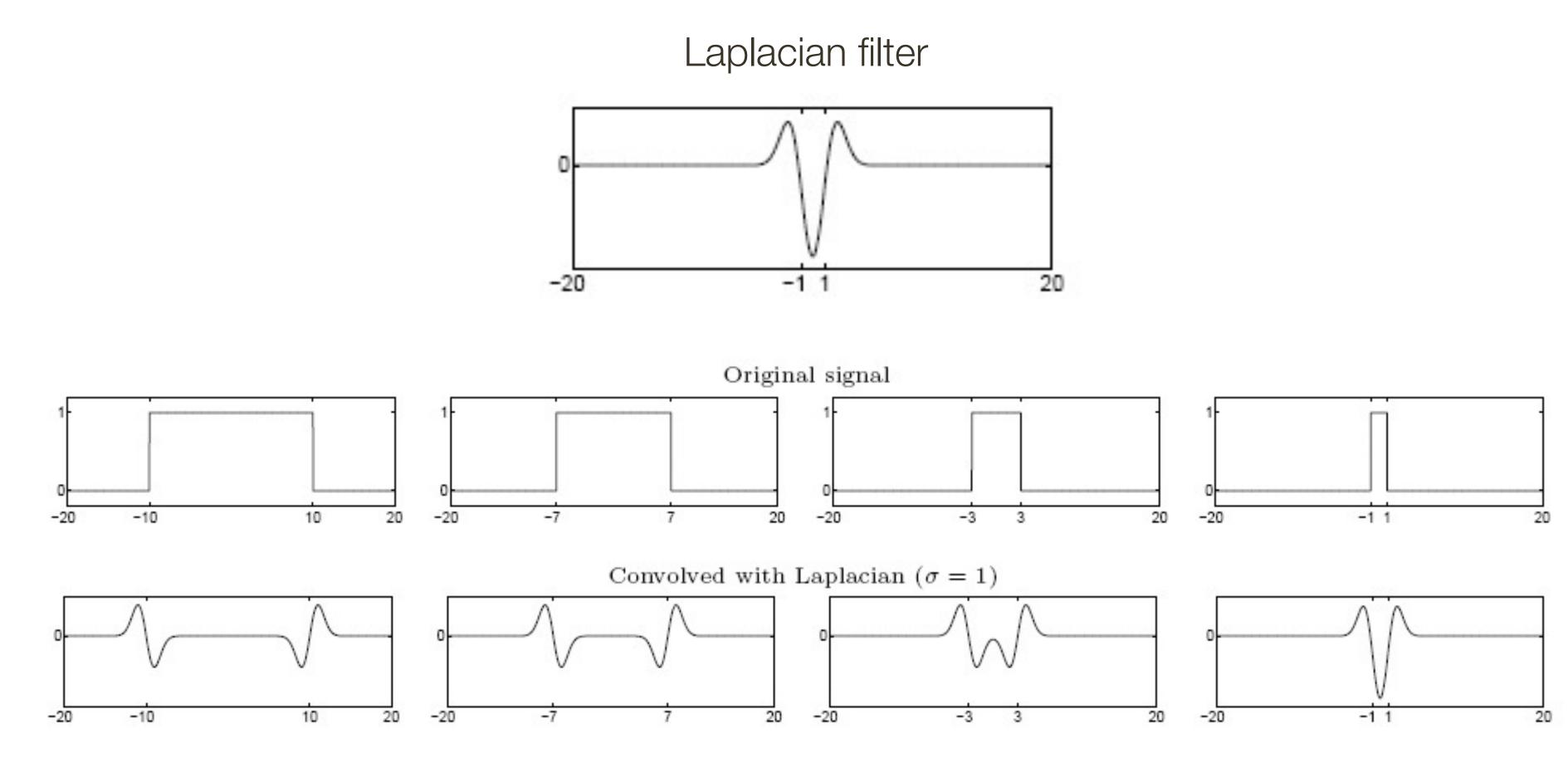


Laplacian filter

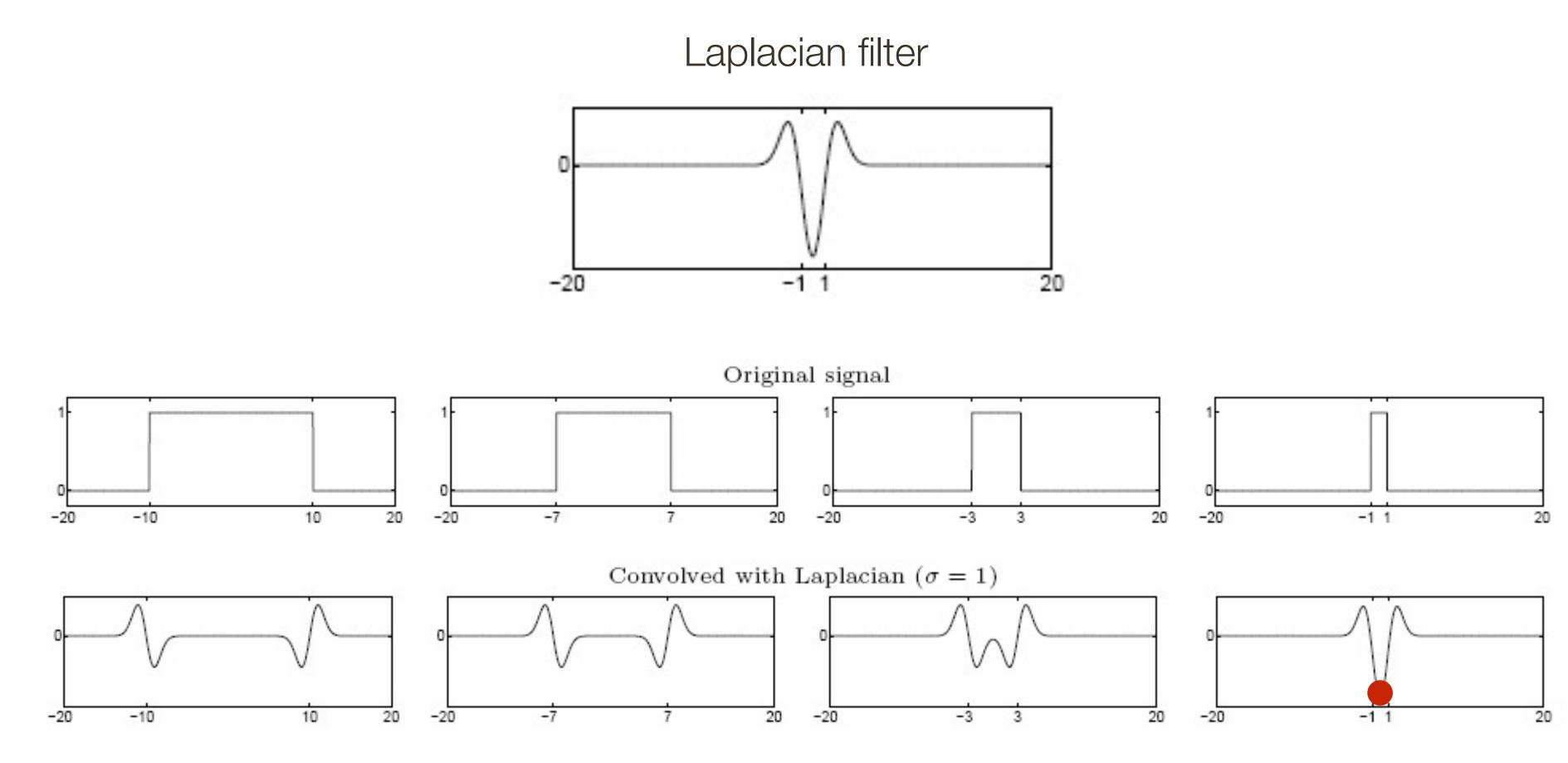




Laplacian filter



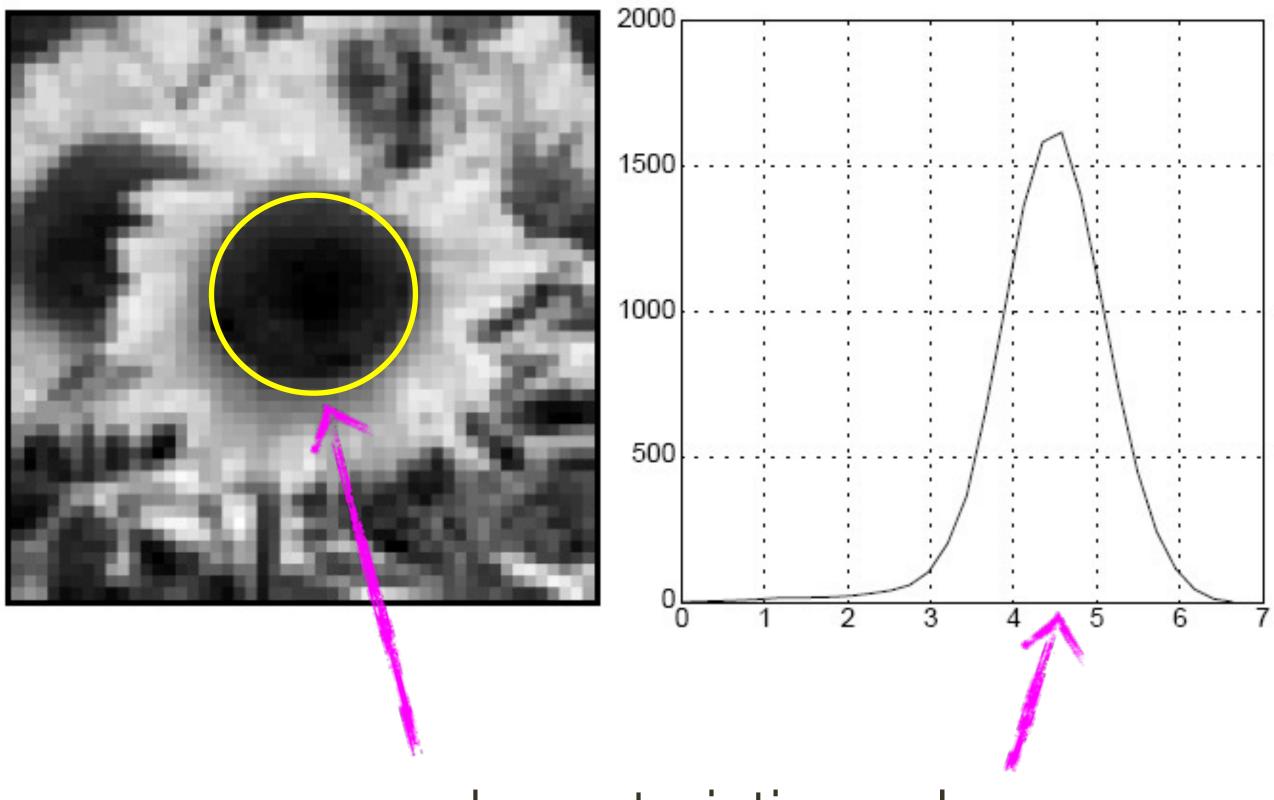
Highest response when the signal has the same characteristic scale as the filter



Highest response when the signal has the same characteristic scale as the filter

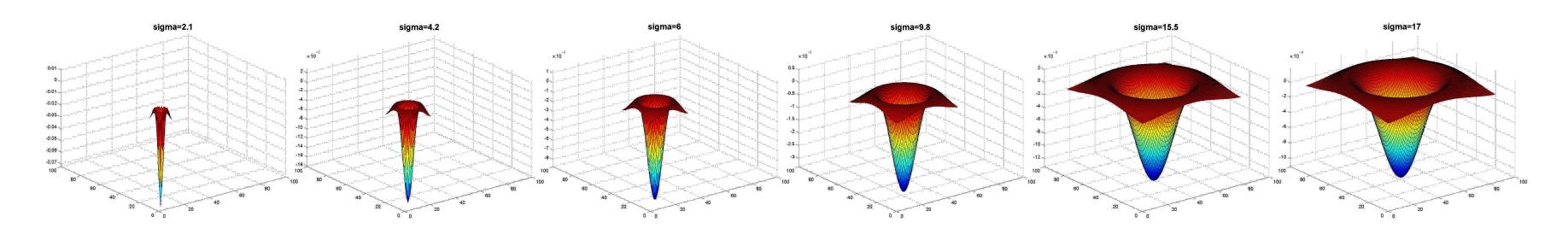
Characteristic Scale

characteristic scale - the scale that produces peak filter response



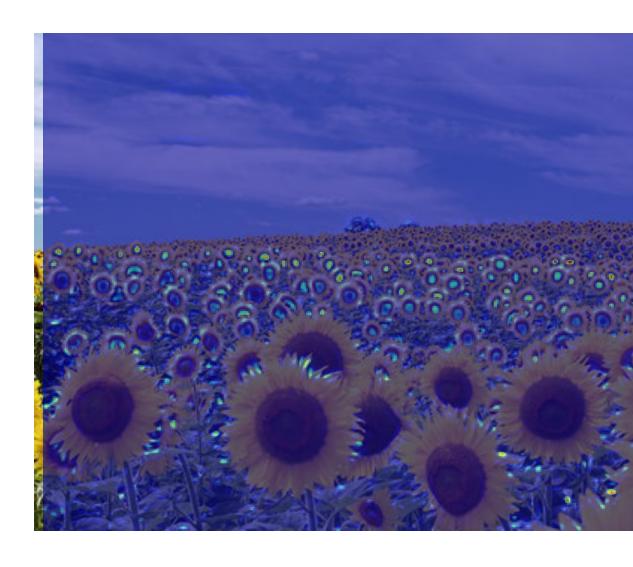
characteristic scale

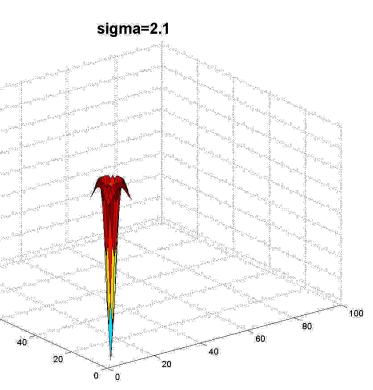
we need to search over characteristic scales



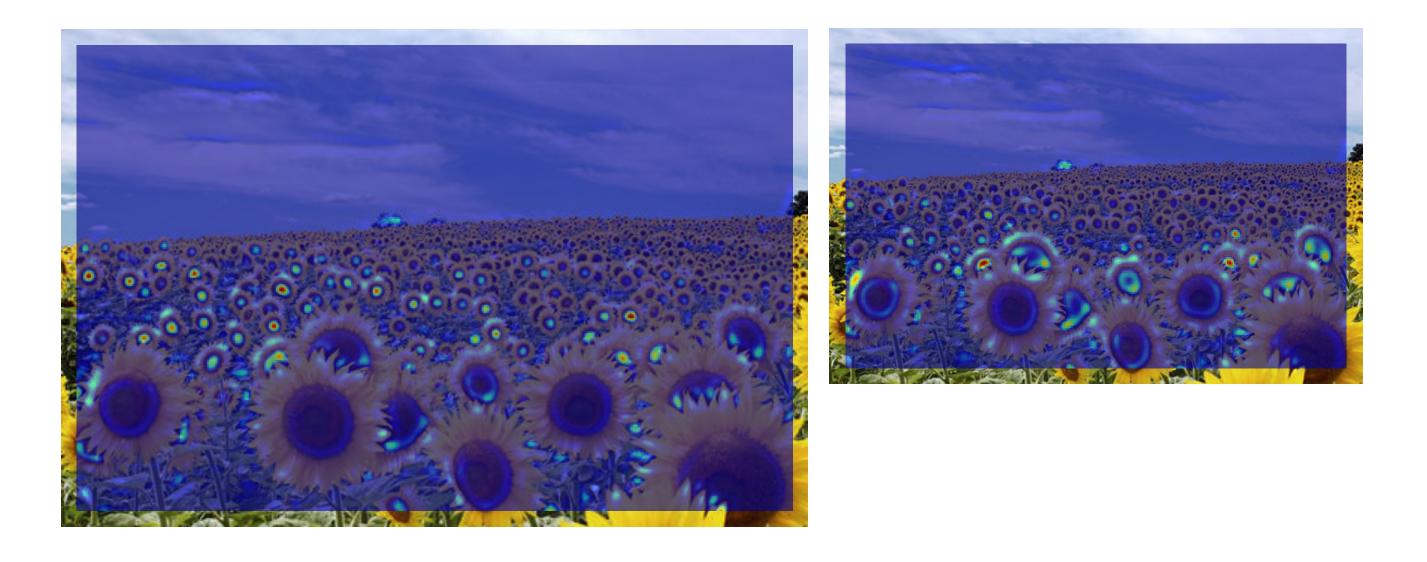
Full size

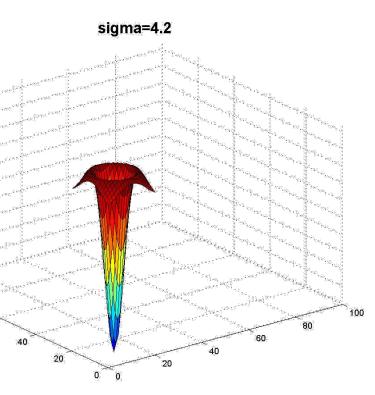
3/4 size

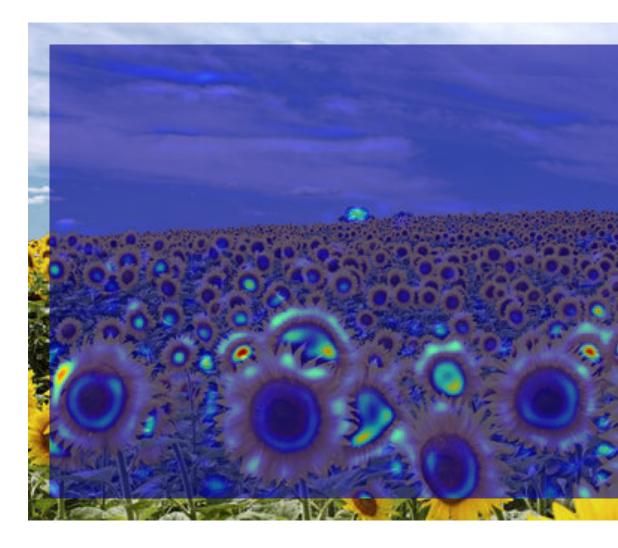


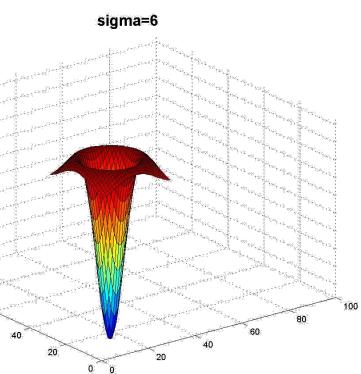


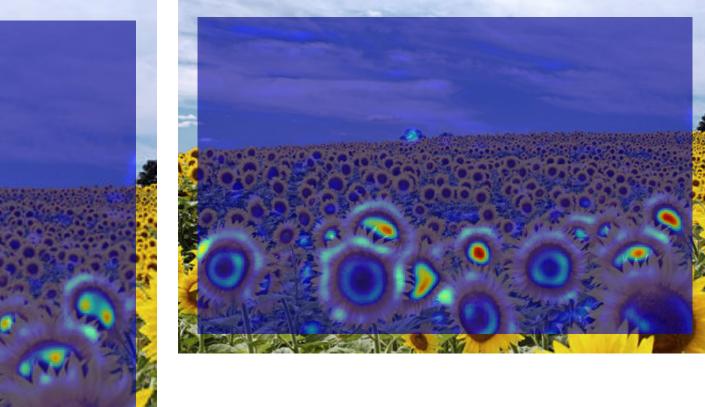
jet color scale blue: low, red: high

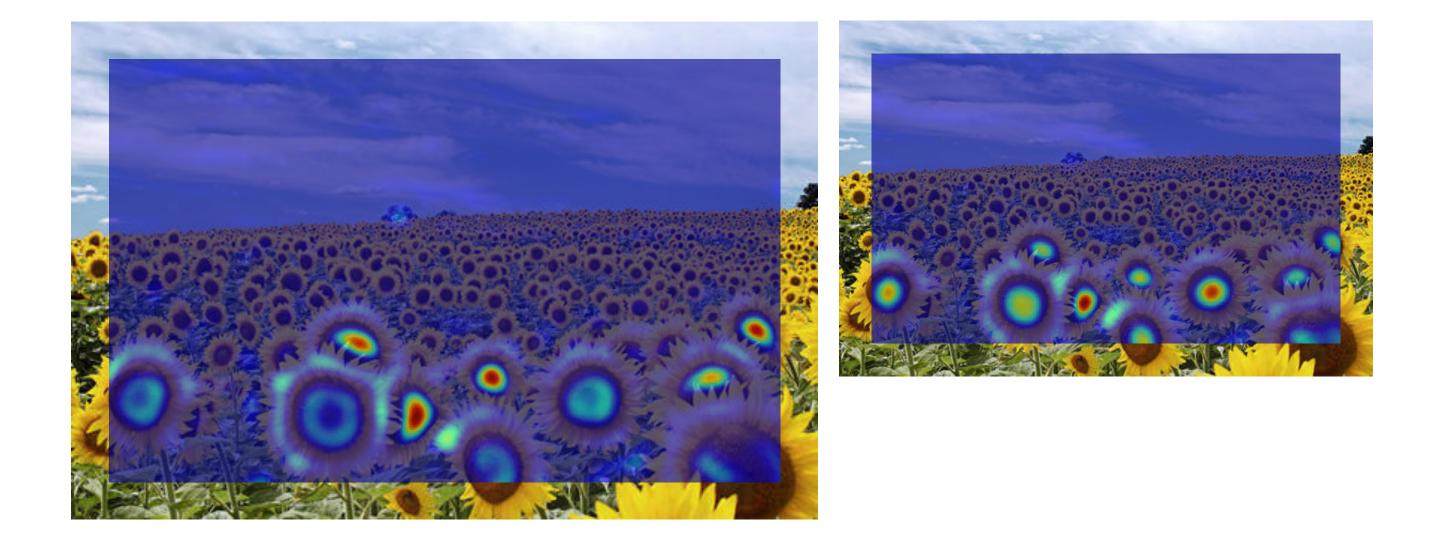


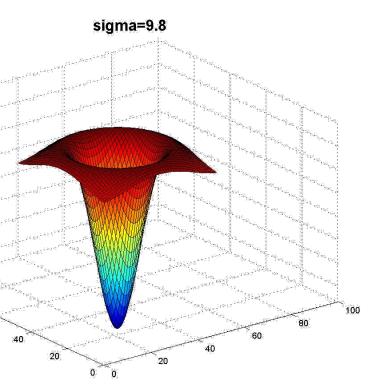


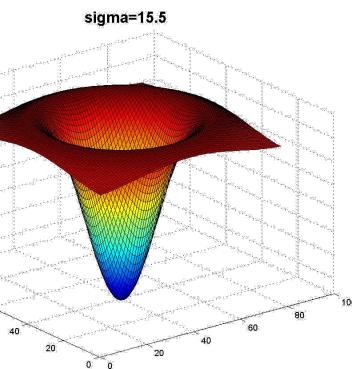


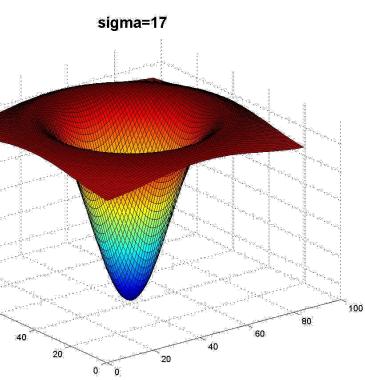






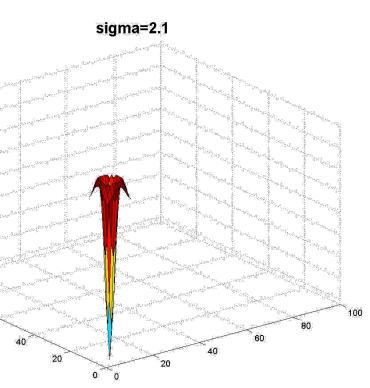


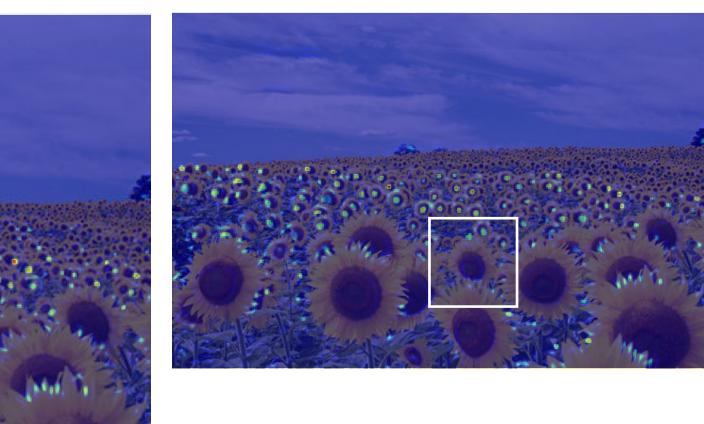


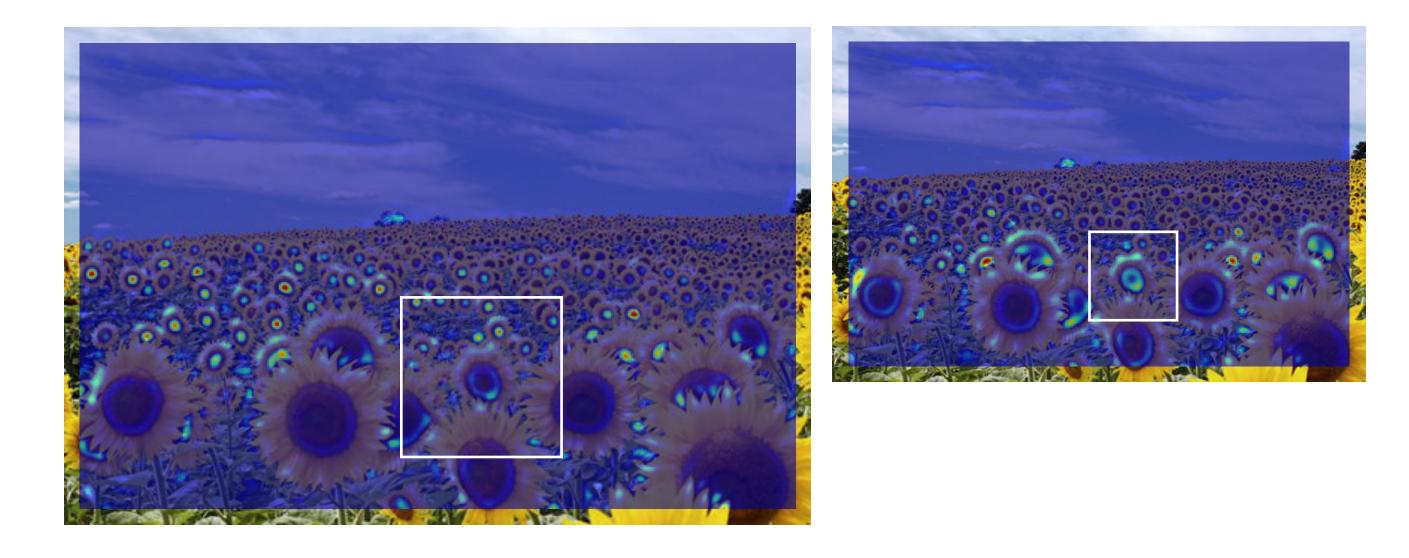


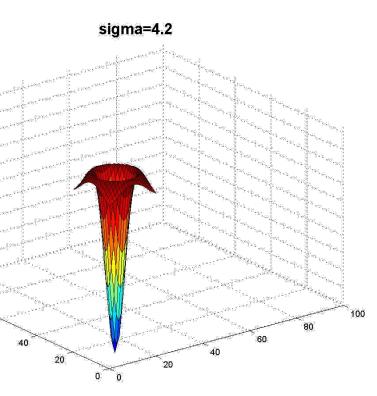
Full size

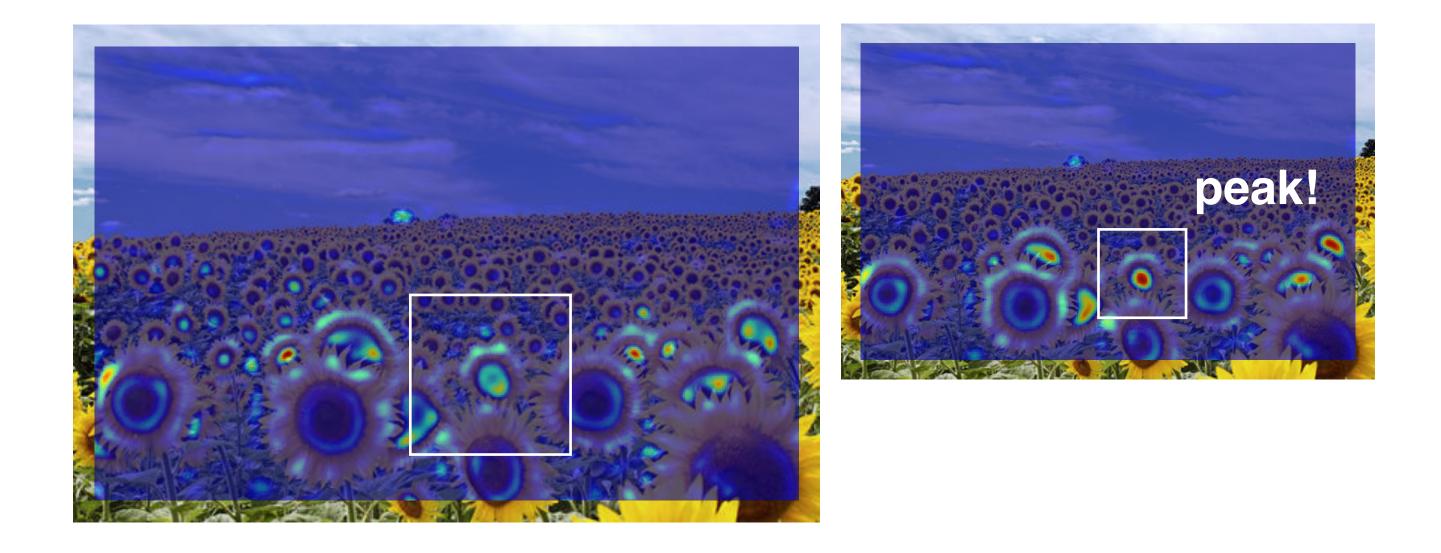
3/4 size

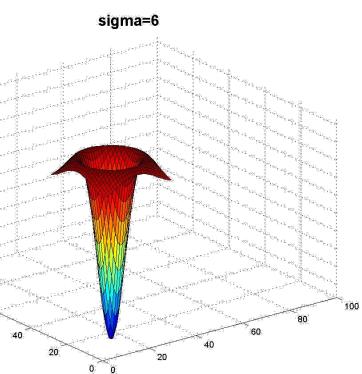




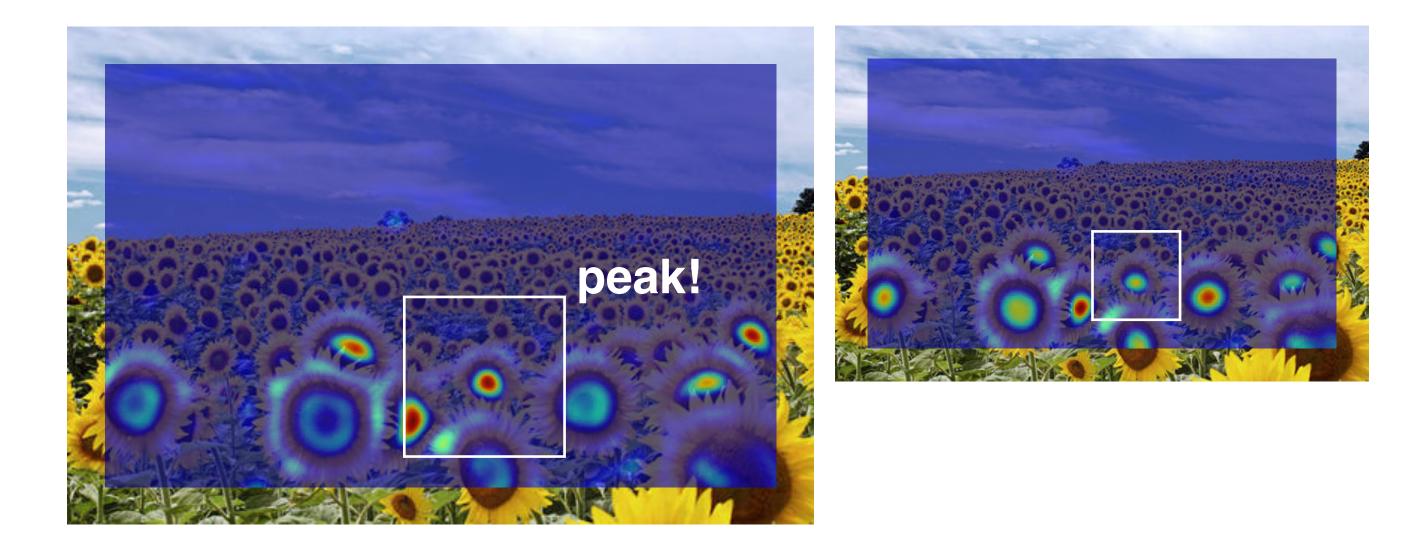


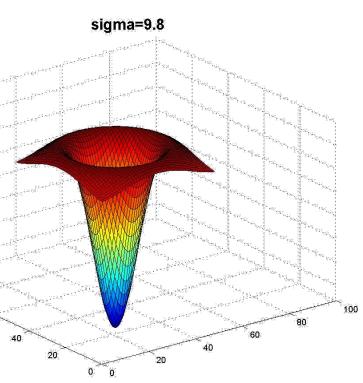


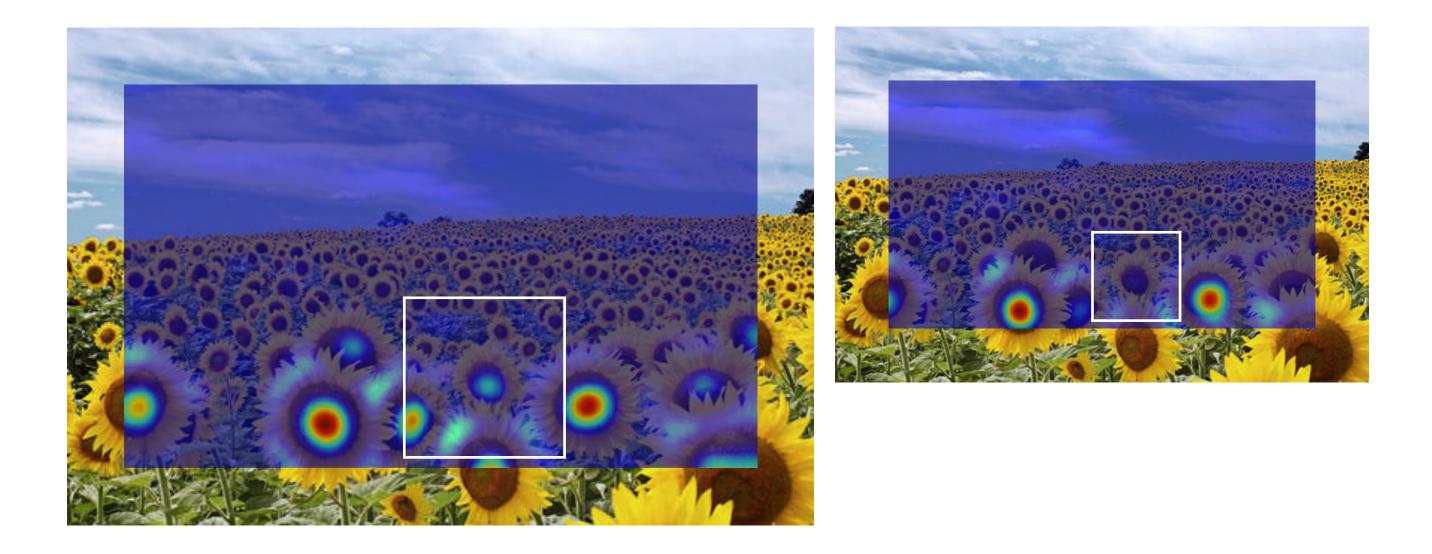


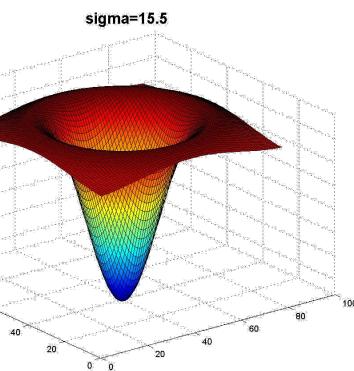


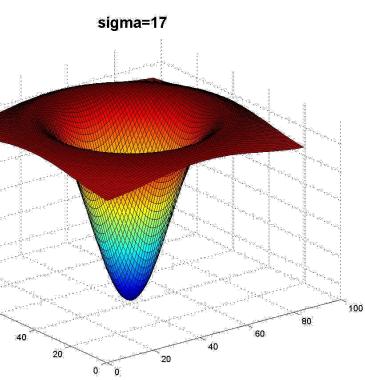








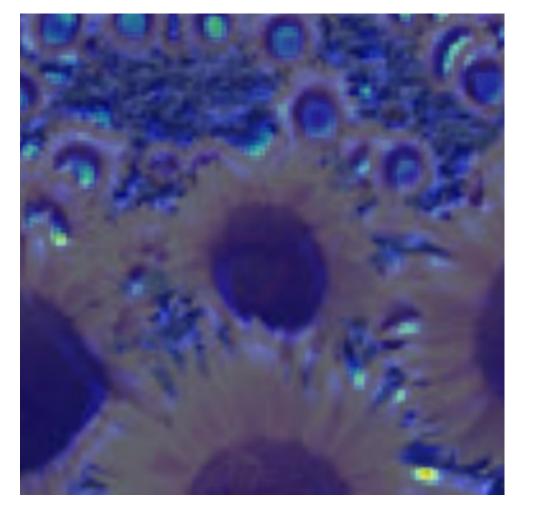


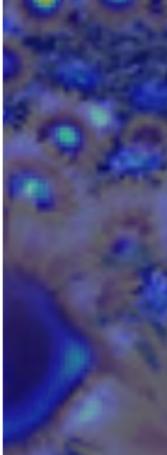


Full size

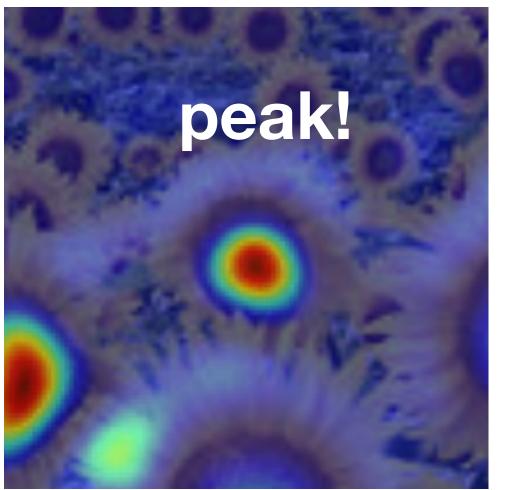
3/4 size

2.1



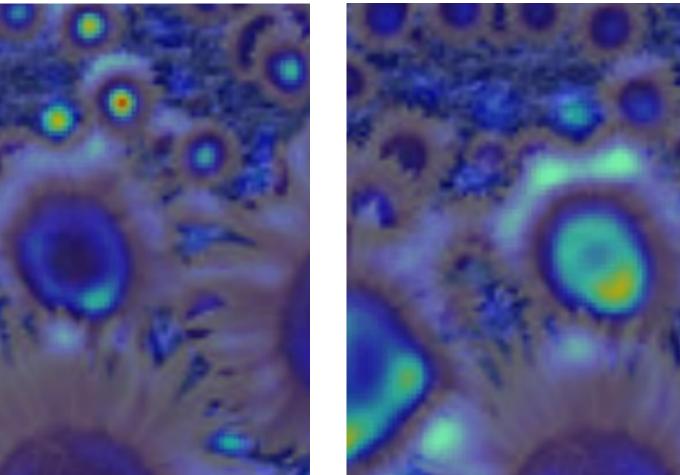


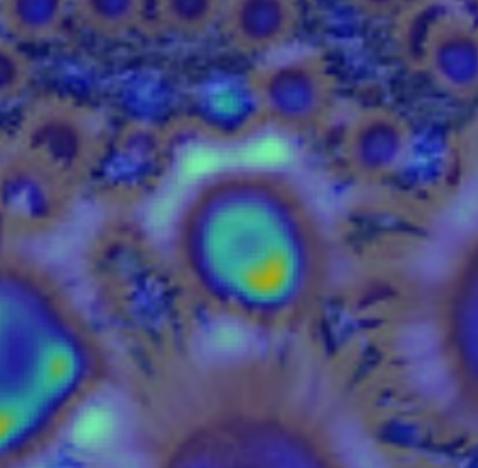
9.8



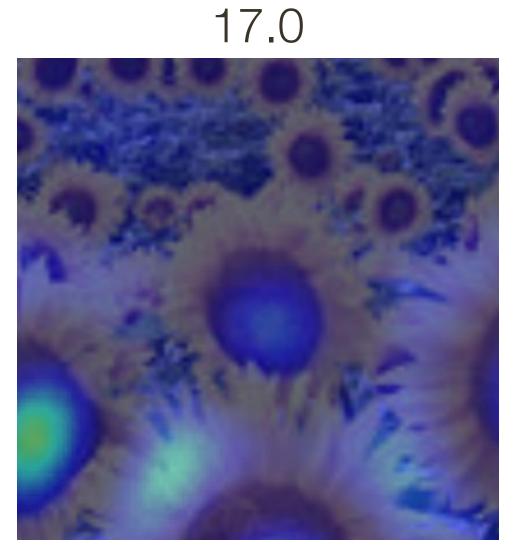
4.2

6.0

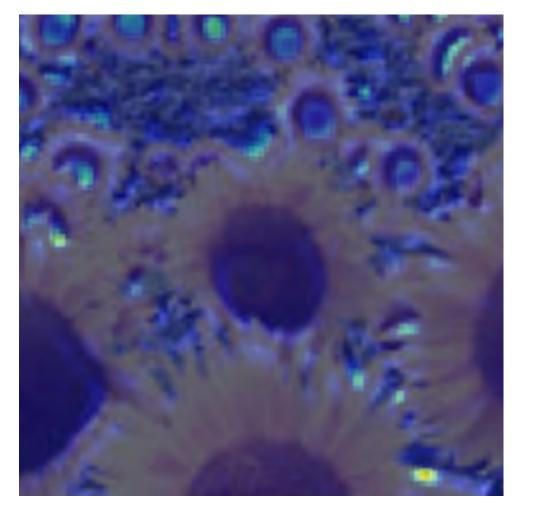


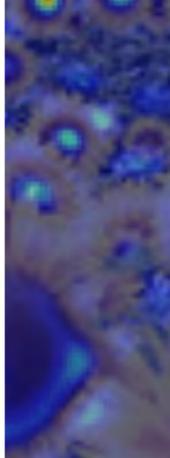


15.5

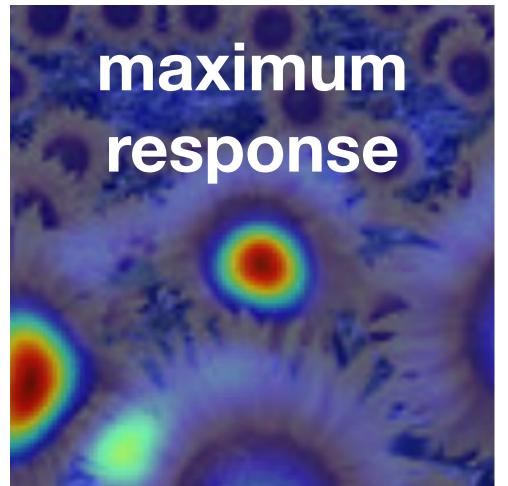


2.1



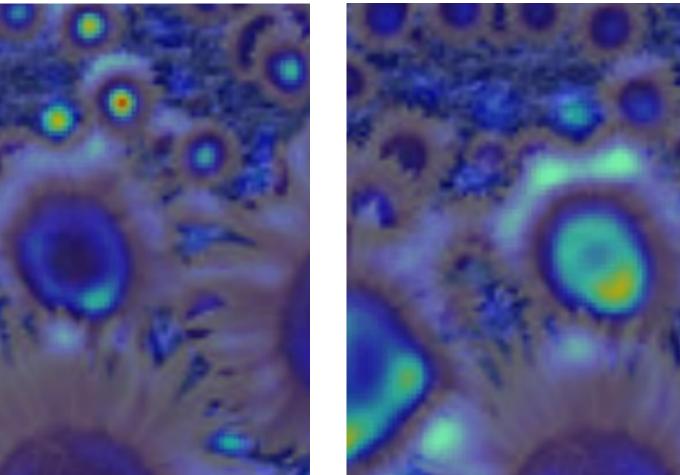


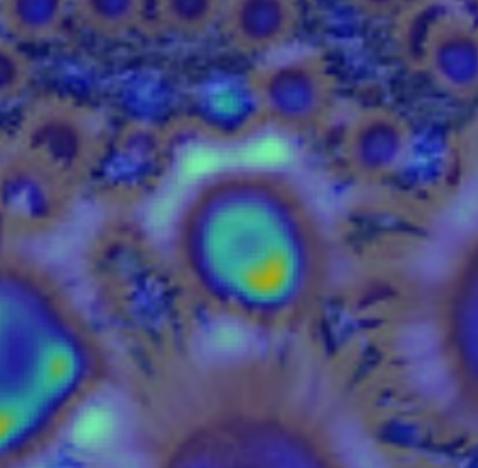
9.8



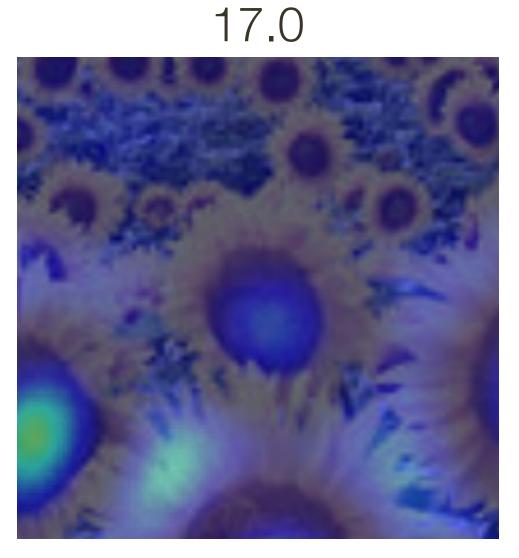
4.2

6.0



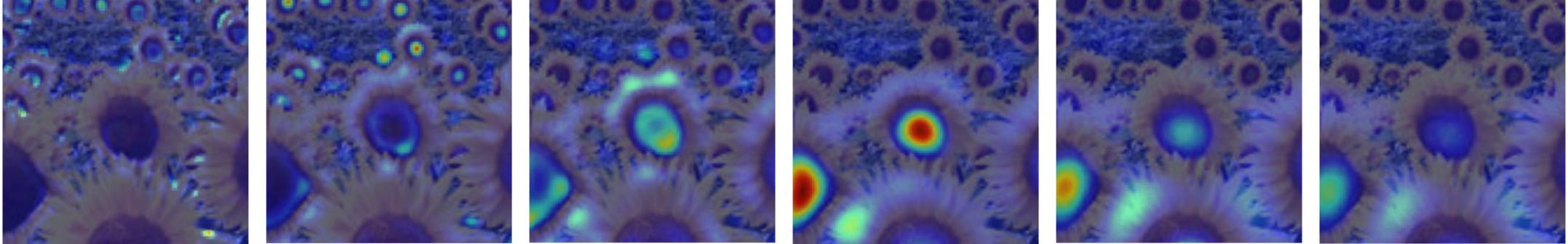


15.5

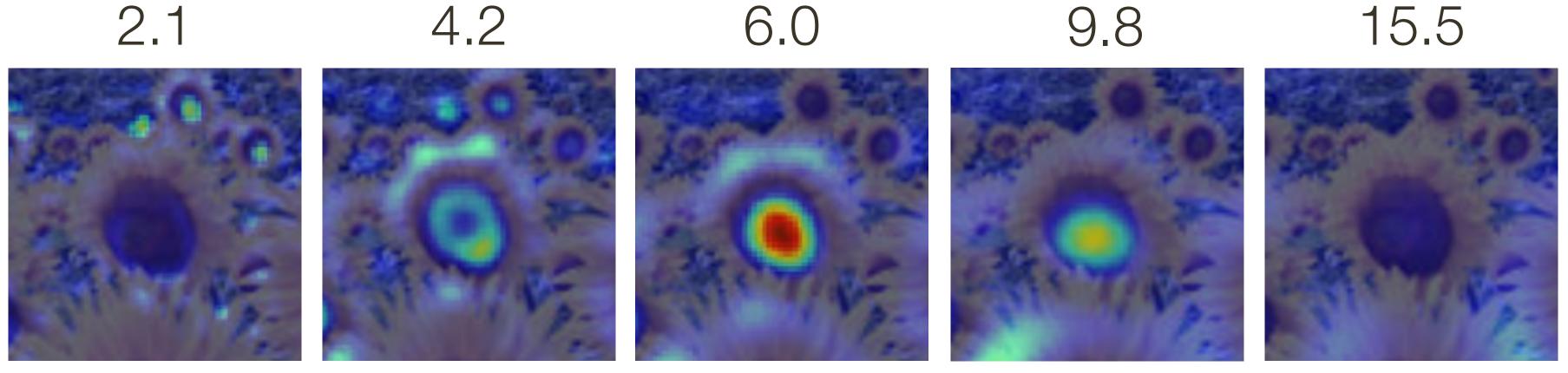


Optimal Scale

2.1 4.2 6.0



2.1 4.2



9.8

15.5

17.0

Full size image

9.8

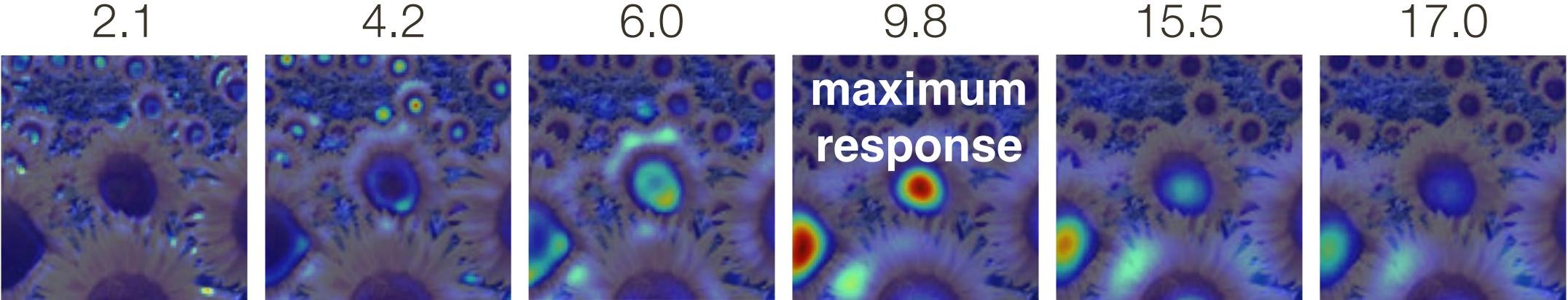
15.5

17.0

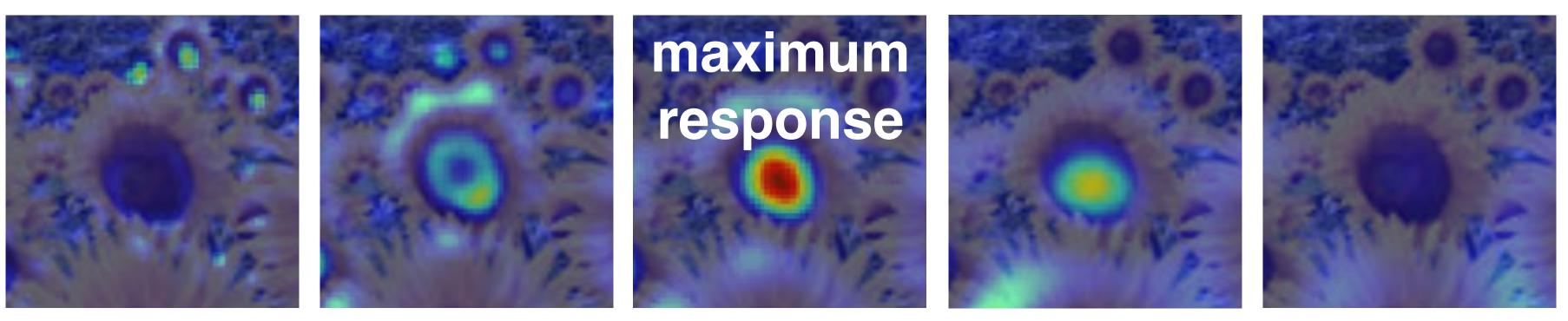
3/4 size image

Optimal Scale

2.1 4.2



2.1 4.2



6.0

Full size image

9.8

15.5

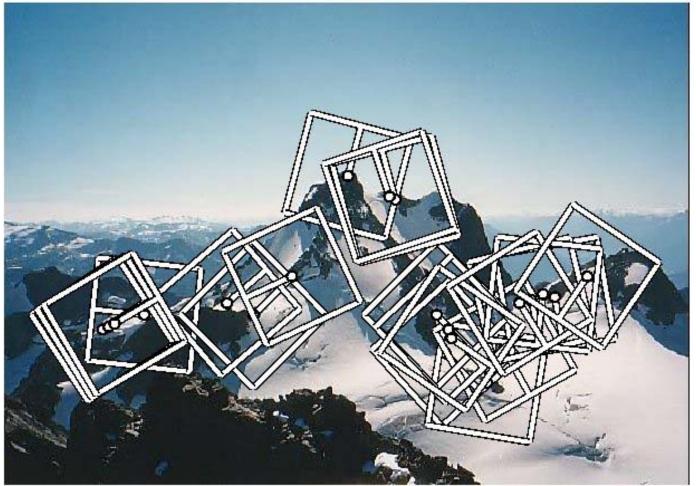
17.0

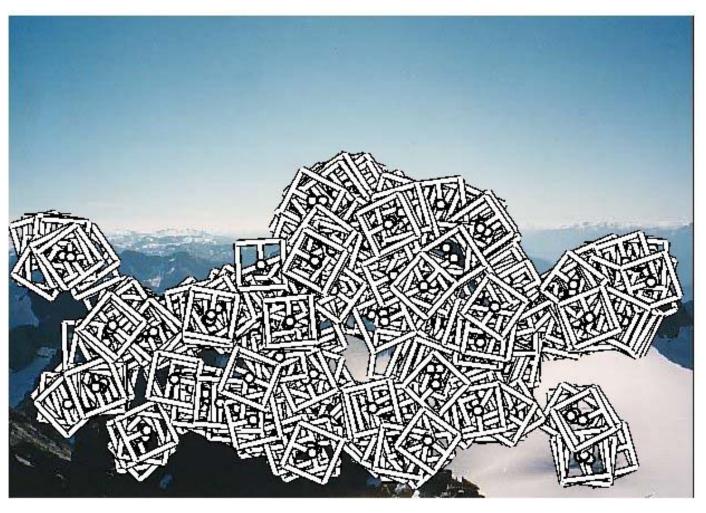
3/4 size image

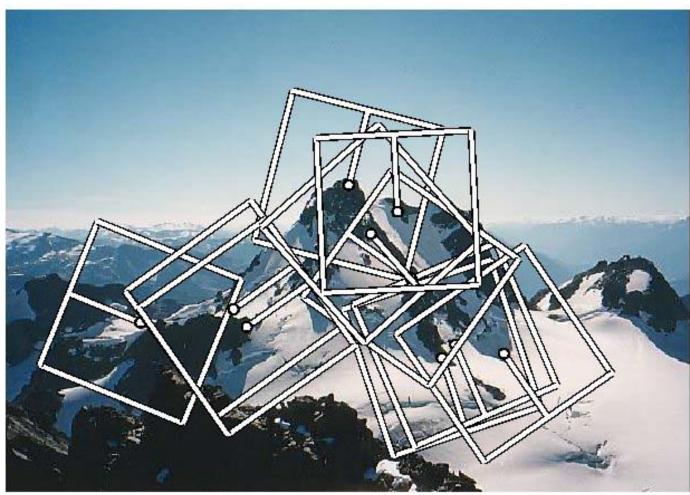
Implementation

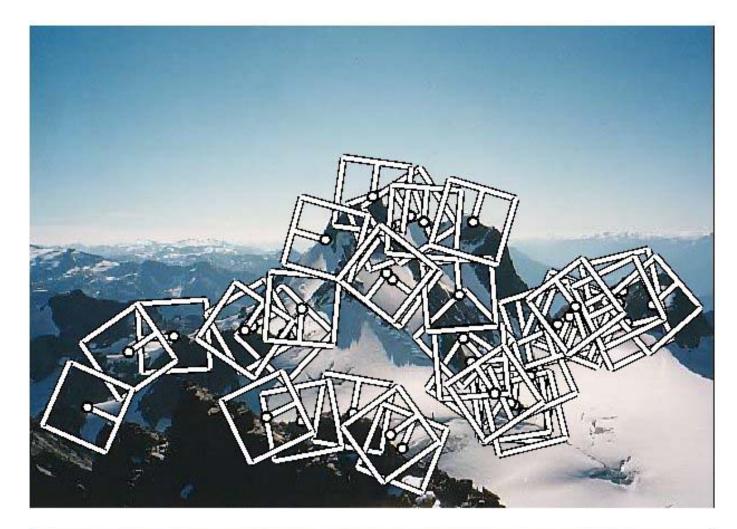
For each level of the Gaussian pyramid compute feature response (e.g. Harris, Laplacian) For each level of the Gaussian pyramid if local maximum and cross-scale save scale and location of feature (x, y, s)

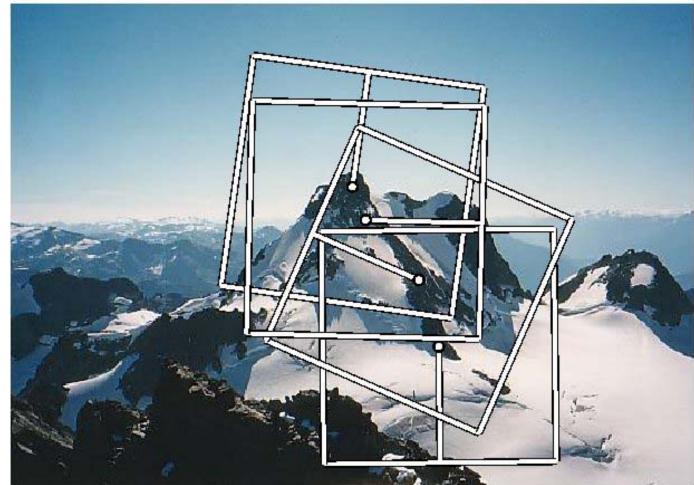
Multi-Scale Harris Corners











Representation	Results in	Approach	Technique
intensity	dense	template matching	(normalized) correlation
edge	relatively sparse	derivatives	Sobel, LoG, Canny
corner	sparse	locally distinct features	Harris (and variants)
blob	sparse	locally distinct features	LoG

Representation	Results in	Approach	Technique
intensity	dense	template matching	(normalized) correlation
edge	relatively sparse	derivatives	Sobel, LoG, Canny
corner	sparse	locally distinct features	Harris (and variants)
blob	sparse	locally distinct features	LoG

Representation	Results in	Approach	Technique
intensity	dense	template matching	(normalized) correlation
edge	relatively sparse	derivatives	Sobel, LoG, Canny
corner	sparse	locally distinct features	Harris (and variants)
blob	sparse	locally distinct features	LoG

Representation	Results in	Approach	Technique
intensity	dense	template matching	(normalized) correlation
edge	relatively sparse	derivatives	Sobel, LoG , Canny
corner	sparse	locally distinct features	Harris (and variants)
blob	sparse	locally distinct features	LoG

Summary

Edges are useful image features for many applications, but suffer from the aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps

Corners / Interest Points have 2D structure and are useful for correspondence

Harris corners are minima of a local SSD function **DoG** maxima can be reliably located in scale-space and are useful as interest points