CPSC 425: Computer Vision

Image Credit: https://en.wikipedia.org/wiki/Corner detection

Lecture 11: Corner Detection (cont.)
(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today

Topics:

- Harris Corner Detector (review)
- Blob Detection
- Searching over Scale
- Texture Synthesis \& Analysis

Readings:

- Today’s Lecture: Forsyth \& Ponce (2nd ed.) 5.3, 6.1, 6.3, 3.1-3.3

Reminders:

- Assignment 2: Face Detection in a Scaled Representation is due today
- Assignment 3: Texture Synthesis is out today
- Study questions for Midterm are on Canvas (answers on Friday)
- (practice) Quiz 1 is on Canvas, Quiz 2 \& 3 coming

Today’s "fun" Example: Texture Camouflage

https://en.wikipedia.org/wiki/File:Camouflage.jpg

Today’s "fun" Example: Texture Camouflage

Cuttlefish on gravel seabed

Seconds later...

Lecture 10: Re-cap (Harris Corner Detection)

1.Compute image gradients over small region
2.Compute the covariance matrix
3.Compute eigenvectors and eigenvalues
4.Use threshold on eigenvalues to detect corners

$$
\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

Lecture 10: Re-cap (compute image gradients at patch)

(not just a single pixel)

$$
\begin{aligned}
& \text { array of } \mathrm{x} \text { gradients } \\
& I_{x}=\frac{\partial I}{\partial x} \\
& \text { array of } \mathrm{y} \text { gradients } \\
& I_{y}=\frac{\partial I}{\partial y}
\end{aligned}
$$

Lecture 10: Re-cap (compute the covariance matrix)

Sum over small region around the corner

$$
C=\left[\begin{array}{ll}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

Gradient with respect to x, times gradient with respect to y

Matrix is symmetric

Lecture 10: Re-cap

It can be shown that since every C is symmetric:

$$
C=\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]=R^{-1}\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] R
$$

Lecture 10: Re-cap (computing eigenvalues and eigenvectors)

$$
\begin{gathered}
\text { eigenvalue } \\
\downarrow \\
C e=\lambda e \\
\text { eigenvector }
\end{gathered}
$$

$$
(C-\lambda I) e=0
$$

(returns a polynomial)

$$
C-\lambda I
$$

2. Find the roots of polynomial (returns eigenvalues)

$$
\operatorname{det}(C-\lambda I)=0
$$

3. For each eigenvalue, solve (returns eigenvectors)

$$
(C-\lambda I) e=0
$$

Lecture 10: Re-cap (interpreting eigenvalues)

Lecture 10: Re-cap (Threshold on Eigenvalues to Detect Corners)

Think of a function to score 'cornerness'

Lecture 10: Re-cap (Threshold on Eigenvalues to Detect Corners)

Harris \& Stephens (1988)

$$
\operatorname{det}(C)-\kappa \operatorname{trace}^{2}(C)
$$

Kanade \& Tomasi (1994)

```
min}(\mp@subsup{\lambda}{1}{},\mp@subsup{\lambda}{2}{}
```

Nobel (1998) $\operatorname{det}(C)$
$\operatorname{trace}(C)+\epsilon$

Example: Harris Corner Detection

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

$$
I_{x}=\frac{\partial I}{\partial x}
$$

0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

$$
I_{x}=\frac{\partial I}{\partial x} \quad \begin{array}{lllllll}
0 & -1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & 1 & 0
\end{array} \quad I_{y}=\frac{\partial I}{\partial y}
$$

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

$$
\sum\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & 0
\end{array}\right] \odot\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & 0
\end{array}\right]=3
$$

0	0	0	0	0	0
-1	1	0	0	-1	1
-1	0	0	0	1	0
-1	0	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

$$
\mathbf{C}=\left[\begin{array}{ll}
3 & 2 \\
2 & 4
\end{array}\right]
$$

$$
I_{x}=\frac{\partial I}{\partial x}
$$

0	0	0	0	0	0
-1	1	0	0	-1	1
-1	0	0	0	1	0
-1	0	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

$$
\mathbf{C}=\left[\begin{array}{ll}
3 & 2 \\
2 & 4
\end{array}\right]=>\lambda_{1}=1.4384 ; \lambda_{2}=5.5616
$$

$$
I_{x}=\frac{\partial I}{\partial x} \begin{array}{lllllll|}
\hline 0 & -1 & 0 & 0 & 1 & 0 \\
\hline 0 & -1 & 0 & 0 & 1 & 0 \\
\hline
\end{array} \quad I_{y}=\frac{\partial I}{\partial y}
$$

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

$$
\mathbf{C}=\left[\begin{array}{ll}
3 & 2 \\
2 & 4
\end{array}\right]=>\lambda_{1}=1.4384 ; \lambda_{2}=5.5616
$$

$$
\operatorname{det}(\mathbf{C})-0.04 \operatorname{trace}^{2}(\mathbf{C})=6.04
$$

0	0	0	0	0	0
-1	1	0	0	-1	1
-1	0	0	0	1	0
-1	0	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0
0	-1	0	0	1	0

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

$$
\mathbf{C}=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right]=>\lambda_{1}=3 ; \lambda_{2}=0
$$

$$
\operatorname{det}(\mathbf{C})-0.04 \operatorname{trace}^{2}(\mathbf{C})=-0.36
$$

$$
I_{x}=\frac{\partial I}{\partial x} \begin{array}{|lll|l|l|l|}
\hline 0 & -1 & 0 & 0 & 1 & 0 \\
\hline & 0 & -1 & 0 & 0 & 1 \\
\hline
\end{array} \quad \begin{aligned}
& 0 \\
& \hline
\end{aligned} \quad I_{y}=\frac{\partial I}{\partial y}
$$

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

Example: Harris Corner Detection

Lets compute a measure of "corner-ness" for the green pixel:

5	6.04					
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

Harris Corner Detection Review

- Filter image with Gaussian
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel
- Harris uses a Gaussian window
- Solve for product of the λ 's

> Harris \& Stephens (1988)

$$
\operatorname{det}(C)-\kappa \operatorname{trace}^{2}(C)
$$

- If λ 's both are big (product reaches local maximum above threshold) then we have a corner
- Harris also checks that ratio of λ s is not too high

Compute the Covariance Matrix

Sum can be implemented as an
(unnormalized) box filter with

$$
C=\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

Harris uses a Gaussian weighting instead

Properties: Rotational Invariance

Ellipse rotates but its shape (eigenvalues) remains the same

Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts
Intensity scale could effect performance

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Properties: NOT Invariant to Scale Changes

edge!

corner!

Example 2: Wagon Wheel (Harris Results)

$\sigma=1$ (219 points)

$\sigma=2(155$ points $)$

$\sigma=3(110$ points $)$

$\sigma=4$ (87 points)

Example 3: Crash Test Dummy (Harris Result)

corner response image

$\sigma=1$ (175 points)

Example 2: Wagon Wheel (Harris Results)

$\sigma=1$ (219 points)

$\sigma=2(155$ points $)$

$\sigma=3(110$ points $)$

$\sigma=4$ (87 points)

Intuitively ...

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intuitively ...

Find local maxima in both position and scale

Non-maxima Suppression in Template Matching

Idea: suppress near-by similar detections to obtain one "true" result

Detected template

Correlation map

Non-maxima Suppression in Edge Detection (Canny)

Original Image

Gradient Magnitude

courtesy of G. Loy
Non-maxima
Suppression

Formally ...
Laplacian filter

Formally ...
Laplacian filter

Formally ...

Laplacian filter

Highest response when the signal has the same characteristic scale as the filter

Formally ...

Laplacian filter

Highest response when the signal has the same characteristic scale as the filter

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Characteristic Scale

characteristic scale - the scale that produces peak filter response

we need to search over characteristic scales

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Applying Laplacian Filter at Different Scales

Applying Laplacian Filter at Different Scales

6.0

Applying Laplacian Filter at Different Scales

6.0

9.8

15.5

Optimal Scale

Full size image

$3 / 4$ size image

Optimal Scale

Full size image

3/4 size image

Implementation

For each level of the Gaussian pyramid compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid
if local maximum and cross-scale
save scale and location of feature (x, y, s)

Multi-Scale Harris Corners

Re-cap

Summary of what we have seen so far:

Representation	Results in	Approach	Technique
intensity	dense	template matching	(normalized) correlation
edge	relatively sparse	derivatives	Sobel, LoG, Canny
corner	sparse	locally distinct features	Harris (and variants)
blob	sparse	locally distinct features	LoG

Re-cap

Summary of what we have seen so far:

Representation	Results in	Approach	Technique
intensity	dense	template matching	(normalized) correlation
edge	relatively sparse	derivatives	Sobel, LoG, Canny
corner	sparse	locally distinct features	Harris (and variants)
blob	sparse	locally distinct features	LoG

Re-cap

Summary of what we have seen so far:

Representation	Results in	Approach	Technique
intensity	dense	template matching	(normalized) correlation
edge	relatively sparse	derivatives	Sobel, LoG, Canny
corner	sparse	locally distinct features	Harris (and variants)
blob	sparse	locally distinct features	LoG

Re-cap

Summary of what we have seen so far:

Representation	Results in	Approach	Technique
intensity	dense	template matching	(normalized) correlation
edge	relatively sparse	derivatives	Sobel, LoG, Canny
corner	sparse	locally distinct features	Harris (and variants)
blob	sparse	locally distinct features	LoG

Summary

Edges are useful image features for many applications, but suffer from the aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps
Corners / Interest Points have 2D structure and are useful for correspondence

Harris corners are minima of a local SSD function
DoG maxima can be reliably located in scale-space and are useful as interest points

