
Lecture 11: Corner Detection (cont.)

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )

Image Credit: https://en.wikipedia.org/wiki/Corner_detection

https://en.wikipedia.org/wiki/Corner_detection


Menu for Today
Topics: 

— Harris Corner Detector (review) 
— Blob Detection 

Readings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3, 3.1-3.3

Reminders: 
— Assignment 2: Face Detection in a Scaled Representation is due today 
— Assignment 3: Texture Synthesis is out today 
— Study questions for Midterm are on Canvas (answers on Friday) 
— (practice) Quiz 1 is on Canvas, Quiz 2 & 3 coming

— Searching over Scale 
— Texture Synthesis & Analysis  



https://en.wikipedia.org/wiki/File:Camouflage.jpg

Today’s “fun” Example: Texture Camouflage



http://www.marinet.org.uk/campaign-article/an-illustrated-guide-to-uk-marine-animals 

Today’s “fun” Example: Texture Camouflage



Lecture 10: Re-cap (Harris Corner Detection)

1.Compute image gradients over 
small region

2.Compute the covariance matrix

3.Compute eigenvectors and     
eigenvalues

4.Use threshold on eigenvalues to 
detect corners

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)



Lecture 10: Re-cap (compute image gradients at patch)

array of x gradients

array of y gradients

(not just a single pixel)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Lecture 10: Re-cap (compute the covariance matrix)

Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

Matrix is symmetric

C =



Lecture 10: Re-cap
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It can be shown that since every C is symmetric: 



Lecture 10: Re-cap (computing eigenvalues and eigenvectors)

1. Compute the determinant of 
(returns a polynomial)

eigenvector

eigenvalue

2. Find the roots of polynomial 
(returns eigenvalues)

3. For each eigenvalue, solve 
(returns eigenvectors)

Ce = �e (C � �I)e = 0

det(C � �I) = 0

(C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

(C � �I)e = 0



‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Lecture 10: Re-cap (interpreting eigenvalues)



flat

strong 
corner Think of a function to 

score ‘cornerness’

�1

�2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 10: Re-cap (Threshold on Eigenvalues to Detect Corners)



Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

det(C)� trace2(C)

det(C)

trace(C) + ✏

Lecture 10: Re-cap (Threshold on Eigenvalues to Detect Corners)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0



Example: Harris Corner Detection

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 
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�
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det(C)� 0.04trace2(C) = 6.04
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Harris Corner Detection Review

— Filter image with Gaussian 

— Compute magnitude of the x and y gradients at each pixel  

— Construct C in a window around each pixel  
      — Harris uses a Gaussian window  

— Solve for product of the λ’s  

— If λ’s both are big (product reaches local maximum above threshold) then we 
have a corner 
      — Harris also checks that ratio of λs is not too high  

Harris & Stephens (1988)

det(C)� trace2(C)



Compute the Covariance Matrix

Sum can be implemented as an  
(unnormalized) box filter with 

C =

Harris uses a Gaussian weighting instead  



Properties: Rotational Invariance

Ellipse rotates but its shape  
(eigenvalues) remains the same

Corner response is invariant to image rotation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Properties: (partial) Invariance to Intensity Shifts and Scaling

x (image coordinate)

threshold

x (image coordinate)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Only derivatives are used -> Invariance to intensity shifts 

Intensity scale could effect performance



Properties: NOT Invariant to Scale Changes

edge!
corner!

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example 2: Wagon Wheel (Harris Results)

� = 1 (219 points) � = 2 (155 points) � = 3 (110 points) � = 4 (87 points)



Example 3: Crash Test Dummy (Harris Result)

� = 1 (175 points)corner response image
Original Image Credit: John Shakespeare, Sydney Morning Herald 



Example 2: Wagon Wheel (Harris Results)

� = 1 (219 points) � = 2 (155 points) � = 3 (110 points) � = 4 (87 points)



Intuitively …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Intuitively …
Find local maxima in both position and scale

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Slide Credit: Kristen Grauman

Idea: suppress near-by similar detections to obtain one “true” result

Non-maxima Suppression in Template Matching



Slide Credit: Christopher Rasmussen

Original Image Gradient Magnitude Non-maxima  
Suppression

Non-maxima Suppression in Edge Detection (Canny)



Laplacian filter

Formally …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Laplacian filter

Formally …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Highest response when the signal has the same characteristic scale as 
the filter

Laplacian filter

Formally …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Highest response when the signal has the same characteristic scale as 
the filter

Laplacian filter

Formally …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Characteristic Scale 
characteristic scale - the scale that produces peak filter response

characteristic scale
we need to search over characteristic scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 

Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



jet color scale 
blue: low, red: high

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



peak!

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



peak!
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Applying Laplacian Filter at Different Scales 
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 

Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



2.1 4.2 6.0

9.8 15.5 17.0

peak!

Applying Laplacian Filter at Different Scales 



2.1 4.2 6.0

9.8 15.5 17.0

Applying Laplacian Filter at Different Scales 

maximum  
response



Optimal Scale
2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image



Optimal Scale
2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image

maximum 
response

maximum 
response



Implementation

For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

if local maximum and cross-scale

save scale and location of feature



Multi-Scale Harris Corners

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The
boxes show the feature orientation and the region from which the descriptor vector is sampled.

The Harris matrix at level l and position (x, y) is the
smoothed outer product of the gradients

Hl(x, y) = ∇σdPl(x, y)∇σdPl(x, y)T ∗ gσi(x, y)

We set the integration scale σi = 1.5 and the derivative
scale σd = 1.0. To find interest points, we first compute the
“corner strength” function

fHM (x, y) =
det Hl(x, y)
tr Hl(x, y)

=
λ1λ2

λ1 + λ2

which is the harmonic mean of the eigenvalues (λ1, λ2) of
H. Interest points are located where the corner strength
fHM (x, y) is a local maximum in a 3 × 3 neighbourhood,
and above a threshold t = 10.0. Once local-maxima have
been detected, their position is refined to sub-pixel accuracy
by fitting a 2D quadratic to the corner strength function in
the local 3 × 3 neighbourhood and finding its maximum.

For each interest point, we also compute an orientation
θ, where the orientation vector [cos θ, sin θ] = u/|u| comes
from the smoothed local gradient

ul(x, y) = ∇σoPl(x, y)

The integration scale for orientation is σo = 4.5. A
large derivative scale is desirable so that the gradient field
ul(x, y) varies smoothly across the image, making orienta-
tion estimation robust to errors in interest point location.

3 Adaptive Non-Maximal Suppression

Since the computational cost of matching is superlinear
in the number of interest points, it is desirable to restrict

the maximum number of interest points extracted from each
image. At the same time, it is important that interest points
are spatially well distributed over the image, since for image
stitching applications, the area of overlap between a pair of
images may be small. To satisfy these requirements, we
have developed a novel adaptive non-maximal suppression
(ANMS) strategy to select a fixed number of interest points
from each image.

Interest points are suppressed based on the corner
strength fHM , and only those that are a maximum in a
neighbourhood of radius r pixels are retained. Conceptu-
ally, we initialise the suppression radius r = 0 and then
increase it until the desired number of interest points nip is
obtained. In practice, we can perform this operation with-
out search as the set of interest points which are generated
in this way form an ordered list.

The first entry in the list is the global maximum, which
is not suppressed at any radius. As the suppression radius
decreases from infinity, interest points are added to the list.
However, once an interest point appears, it will always re-
main in the list. This is true because if an interest point is
a maximum in radius r then it is also a maximum in radius
r′ < r. In practice we robustify the non-maximal suppres-
sion by requiring that a neighbour has a sufficiently larger
strength. Thus the minimum suppression radius ri is given
by

ri = min
j

|xi − xj |, s.t. f(xi) < crobustf(xj), xj ε I

where xi is a 2D interest point image location, and I is the
set of all interest point locations. We use a value crobust =
0.9, which ensures that a neighbour must have significantly



Re-cap
Summary of what we have seen so far:

Representation Results in Approach Technique

intensity dense template matching (normalized) correlation

edge relatively sparse derivatives Sobel, LoG, Canny

corner sparse locally distinct features Harris (and variants)

blob sparse locally distinct features LoG
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Summary

Edges are useful image features for many applications, but suffer from the 
aperture problem 

Canny Edge detector combines edge filtering with linking and hysteresis steps 

Corners / Interest Points have 2D structure and are useful for 
correspondence 

Harris corners are minima of a local SSD function 
DoG maxima can be reliably located in scale-space and are useful as interest 
points


