Lecture 1: Introduction and Course Logistics

Image Credit: Devi Parikh
Course logistics

Times: Mon, Wed 3:30-5:00pm

Locations: Friedman (FRDM), Room 153

Instructor: Leonid Sigal

E-mail: lsigal@cs.ubc.ca

Office: ICICS 119
Course **logistics**

Times: Mon, Wed 3:30-5:00pm

Locations: Friedman (FRDM), Room 153

Instructor: Leonid Sigal

E-mail: lsigal@cs.ubc.ca

Office: ICICS 119
About me ...
About me …

Software Engineer
1999 - 2001
About me ...

Software Engineer
1999 - 2001
About me ...

Software Engineer
1999 - 2001
About me …

PhD, MSc
2001 - 2008

Software Engineer
1999 - 2001
About me …

Postdoctoral Researcher
2007 - 2009

PhD, MSc
2001 - 2008

Software Engineer
1999 - 2001
About me ...

Senior Research Scientist
2009 - 2017

Postdoctoral Researcher
2007 - 2009

PhD, MSc
2001 - 2008

Software Engineer
1999 - 2001
About me …

Associate Professor
2017 -

Senior Research Scientist
2009 - 2017

Postdoctoral Researcher
2007 - 2009

PhD, MSc
2001 - 2008

Software Engineer
1999 - 2001
About me …

I have been working in **Computer Vision** for the last ~20 years
Course logistics

Times: Mon, Wed 3:30-5:00pm

Locations: Friedman (FRDM), Room 153

Instructor: Leonid Sigal

E-mail: lsigal@cs.ubc.ca
Office: ICICS 119
Course **logistics**

Times: Mon, Wed 3:30-5:00pm

Locations: Friedman (FRDM), Room 153

Instructor: Leonid Sigal

E-mail: lsigal@cs.ubc.ca

Office: ICICS 119

TAs:
- Bereket Guta
 - bguta@cs.ubc.ca
- Aditya Chinchure
 - aditya10@cs.ubc.ca
- Gaurav Bhatt
 - gbhatt@cs.ubc.ca
- Rayat Hossain
 - rayat137@cs.ubc.ca
- Bicheng Xu
 - bichengx@cs.ubc.ca
Registration

• Capacity of room (160)
• Registered students (150)
• Wait List (21)

There is high likelihood everything will work out
Course Webpage

- Schedule, Assignments
- Lecture Slides and Notes
- Readings
- Course Information (public)

https://www.cs.ubc.ca/~lsigal/teaching22_Term2.html
Canvas

Course webpage: http://www.cs.ubc.ca/~lsigal/teaching.html
Discussion: piazza.com/ubc.ca/winterterm12018/cpsc425

- Assignment hand-in
- Course Information (private)
- Piazza link

https://canvas.ubc.ca/courses/106387
48 students were enrolled as of AM

- Discussions and Q+A
- Confused? Likely someone else has the same question as you!
- Lectures, Technical Issues, Assignments …

Sign up code in e-mail
Office Hours

Instructor: Leonid Sigal

TAs: Bereket Guta, Gaurav Bhatt, Aditya Chinchure, Rayat Hossain, Bicheng Xu

- **Monday 2-3pm** (in-person)
- **Tuesday noon-1pm**
- **Friday 12-1pm**, Hybrid
- **Friday 4-5pm** (in-person)
- **TBD**

See Piazza for Links and Locations (mix of in-person and Zoom)
How important is Vision?
How important is **Vision**?

To answer this question, we need to go back to about

.... 543 million years, B.C.
How important is **Vision**?

To answer this question, we need to go back to about

…. 543 million years, B.C.

Vision is really fundamental to life and evolution
What is **Computer Vision**?

Image Credit: https://www.deviantart.com/infinitecreations/art/BioMech-Eye-168367549
What is **Computer Vision**?

Compute vision, broadly speaking, is a research field aimed to enable computers to **process and interpret visual data**, as sighted humans can.

Image Credit: https://www.deviantart.com/infinitecreations/art/BioMech-Eye-168367549
What do **you** see?
What we would like **computer to infer**?
What we would like **computer to infer**?

Will person B put some money into person C’s cup?

Slide Credit: Jitendra Malik (UC Berkeley)
What is **Computer Vision**?

Computer vision, broadly speaking, is a research field aimed to enable computers to **process and interpret visual data**, as sighted humans can.

Image (or video) -> **Sensing Device** -> **Interpreting Device** -> **Interpretation**

- blue sky,
- trees,
- fountains,
- UBC, …
What is **Computer Vision**?

Compute vision, broadly speaking, is a research field aimed to enable computers to **process and interpret visual data**, as sighted humans can.

What is **Computer Vision**?

Compute vision, broadly speaking, is a research field aimed to enable computers to **process and interpret visual data**, as sighted humans can.
What is **Computer Vision**?

Compute vision, broadly speaking, is a research field aimed to enable computers to **process and interpret visual data**, as sighted humans can.

This implies a very strong connection between **Computer Vision** and **(Machine) Learning**.
Computer vision ... the beginning ...

The Summer Vision Project

“spend the summer linking a camera to a computer and getting the computer to describe what it saw”

- Marvin Minsky (1966), MIT Turing Award (1969)

... >50 years later
Computer vision ... the beginning ...

“You’ll notice that Sussman never worked in vision again!” – Berthold Horn

Gerald Sussman, MIT

Slide Credit: Devi Parikh (GA Tech)
Can computers match (or beat) human vision?

• We’ve been at it for 50 years
Can computers **match (or beat)** human vision?

- How good is human vision?
Can computers **match (or beat)** human vision?
Can computers **match (or beat)** human vision?
Can computers **match (or beat)** human vision?

- How good is human vision?

 As a measuring device not very good, as a functioning device really good
Can computers match (or beat) human vision?

- Yes and No (mostly NO)
Alternative definition of computer vision

“Inverse Computer Graphics”
Alternative definition of computer vision

“Inverse Computer Graphics”
Computer **Vision Problems**

1. Computing properties of the 3D world from visual data (*measurement*)

Slide Credit: Kristen Grauman (UT Austin)
1. Vision for **Measurement**

- **Real-time stereo**
 - Wang et al.

- **Structure from motion**
 - Snavely et al.

- **Tracking**
 - Demirdjian et al.

Slide Credit: Kristen Grauman (UT Austin)
1. Computing properties of the 3D world from visual data (measurement)

Ill-posed problem: real world is much more complex than what we can measure in images: 3D -> 2D

It is (literally) impossible to invert the image formation process
Computer Vision Problems

1. Computing properties of the 3D world from visual data (measurement)

2. Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities (perception and interpretation)

Slide Credit: Kristen Grauman (UT Austin)
2. Vision for **Perception and Interpretation**
2. Vision for **Perception and Interpretation**

Diagram with labels:
- **Objects**: sky, amusement park, Lake Erie, Cedar Point, Ferris wheel, tree, bench, deck, umbrella, pedestrains
- **Activities**: ride, people waiting in line, people sitting on ride
- **Scenes**: The Wicked Twister, 12 E
- **Locations**: Text / writing, Faces, Gestures, Motions, Emotions...

Slide Credit: Kristen Grauman (UT Austin)
Computer Vision Problems

1. Computing properties of the 3D world from visual data (*measurement*)

2. Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities (*perception and interpretation*)

It is computationally intensive / expensive

Slide Credit: Kristen Grauman (UT Austin)
2. Vision for Perception and Interpretation

~ 55% of cerebral cortex in humans (13 billion neurons) are devoted to vision

more human brain devoted to vision than anything else
Computer Vision Problems

1. Computing properties of the 3D world from visual data (*measurement*)

2. Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities (*perception and interpretation*)

- It is computationally intensive / expensive
- We do not (fully) understand the processing mechanisms involved

Slide Credit: Kristen Grauman (UT Austin)
Computer **Vision Problems**

1. Computing properties of the 3D world from visual data (*measurement*)

2. Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities (*perception and interpretation*)

3. Algorithms to mine, search, and interact with visual data (*search and organization*)

Slide Credit: Kristen Grauman (UT Austin)
3. Search and Organization

Image or video archives

Query

Relevant content

Slide Credit: Kristen Grauman (UT Austin)
Computer **Vision Problems**

1. Computing properties of the 3D world from visual data (*measurement*)

2. Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities (*perception and interpretation*)

3. Algorithms to mine, search, and interact with visual data (*search and organization*)

Slide Credit: Kristen Grauman (UT Austin)
3. Search and Organization

*from iStock by GettyImages
3. **Search and Organization**

- **Snapchat**
 - 31.7 Million / hour

- **WhatsApp**
 - 29.2 Million / hour

- **Instagram**
 - 2.9 Million / hour

- **Flickr**
 - 0.2 Million / hour

- **Facebook**
 - 14.6 Million / hour

- **YouTube**
 - 18K hours / hour

*from iStock by GettyImages

*based on article by Kimberlee Morrison in Social Times (2015)
3. Search and Organization

- Snapchat: 31.7 Million / hour
- WhatsApp: 29.2 Million / hour
- Instagram: 2.9 Million / hour
- Flickr: 0.2 Million / hour
- Facebook: 14.6 Million / hour

*based on article by Kimberlee Morrison in Social Times (2015)

> 85% of all web content is multimedia content of visual form

*from iStock by GettyImages

*from iStock by GettyImages
Computer **Vision Problems**

1. Computing properties of the 3D world from visual data (*measurement*)

2. Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities (*perception and interpretation*)

3. Algorithms to mine, search, and interact with visual data (*search and organization*)

4. Algorithms for manipulation or creation of image or video content (*visual imagination*)

Slide Credit: Kristen Grauman (UT Austin)
4. Visual **Imagination**

- imagen.research.google
- Text to image generation
- Uses diffusion process, training using large dataset of text (web scale) and image-text (400M) pairs
Computer Vision Problems

1. Computing properties of the 3D world from visual data (measurement)

2. Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities (perception and interpretation)

3. Algorithms to mine, search, and interact with visual data (search and organization)

4. Algorithms for manipulation or creation of image or video content (visual imagination)

Slide Credit: Kristen Grauman (UT Austin)
Challenges: Viewpoint invariance

Michelangelo 1475-1564

*slide credit Fei-Fei, Fergus & Torralba
Challenges: Lighting

image credit J. Koenderink
Challenges: Scale

*slide credit Fei-Fei, Fergus & Torralba
Challenges: Deformation

image credit Peter Meer
Challenges: Occlusions

Rene Magritte 1965
Challenges: Background clutter

Kilmeny Niland 1995
Challenges: Local ambiguity and context

image credit Fergus & Torralba
Challenges: Local ambiguity and context

image credit Fergus & Torralba
Challenges: Motion

image credit Peter Meer
Challenges: Object inter-class variation

slide credit Fei-Fei, Fergus & Torralba
Computer Vision **Applications**

- Let’s see some examples of state-of-the-art and where it is used
Optical Character Recognition (OCR)

Technology to convert *scanned documents to text* (comes with any scanner nowadays)

Digit recognition, AT&T labs
http://www.research.att.com/~yann/

License plate readers
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition
Optical Character Recognition (OCR)

Technology to convert **scanned documents to text**
(comes with any scanner nowadays)

- Digit recognition, AT&T labs

- License plate readers

[Image of OCR technology and license plate recognition example]
Face Detection

Technology available in any digital camera now
(one of the first big commercial successes of vision algorithms)
Face Recognition

Facebook

Apple’s iPhoto

http://www.apple.com/ilife/iphoto/

Slide Credit: Devi Parikh (GA Tech) and Fei-Fei Li (Stanford)
Vision for Biometrics
Vision for **Biometrics**

“How the Afghan Girl was Identified by Her Iris Patterns” Read the [story wikipedia](https://en.wikipedia.org/wiki/The_Afghan_Girl)

Slide Credit: James Hays (GA Tech)
Vision for Biometrics

Fingerprint scanners on many new laptops, other devices

iPhone X Face ID

Face recognition systems are not part of widely used technologies

How it works and how to fool it:

https://www.youtube.com/watch?v=FhbMLmsCax0

Image Credit: James Hays (GA Tech)
Camera Tracking

[Boujou — Vicon / OMG]
Camera Tracking

[Boujou — Vicon / OMG]
3D Reconstruction

[Autodesk 123D Catch]
3D Reconstruction

[Autodesk 123D Catch]
Body Pose Tracking

[Microsoft Xbox Kinect]
Body Pose Tracking

[PrimeSense]
Body Pose Tracking

[PrimeSense]
Image Recognition and Search

Search by image
Self-Driving Cars

[Google]
AR / VR

[Microsoft HoloLens]
Industrial

Machine Vision controlled welding robotics
Medicine

3D imaging
MRI, CT

Image guided surgery
Grimson et al., MIT

Slide Credit: James Hays (GA Tech)
Figure 2: Images that combine the content of a photograph with the style of several well-known artworks. The images were created by finding an image that simultaneously matches the content representation of the photograph and the style representation of the artwork (see Methods). The original photograph depicting the Neckarfront in Tübingen, Germany, is shown in A (Photo: Andreas Praefcke). The painting that provided the style for the respective generated image is shown in the bottom left corner of each panel.

C The Starry Night by Vincent van Gogh, 1889.

D Der Schrei by Edvard Munch, 1893.

E Femme nue assise by Pablo Picasso, 1910.

F Composition VII by Wassily Kandinsky, 1913.

[Gatys, Ecker, Bethge 2015]
An astronaut riding a horse lounging in a tropical resort in space playing basketball with cats in space in a photorealistic style in the style of Andy Warhol as a pencil drawing
Why Study Computer Vision?

It is one of the most exciting areas of research in computer science.

Among the fastest growing technologies in the industry today.
WHO'S SHAPING THE DIGITAL WORLD?
63. Yann LeCun

Director of AI research, Facebook, Menlo Park

LeCun is a leading expert in deep learning and heads up what, for Facebook, could be a hugely significant source of revenue: understanding its user’s intentions.

62. Richard Branson

Founder, Virgin Group, London

Branson saw his personal fortune grow £580 million when Alaska Air bought Virgin America for $2.6 billion in April. He is pressing on with civilian space travel with Virgin Galactic.

61. Taylor Swift

Entertainer, Los Angeles
CVPR JUNE 19-24 2022 NEW ORLEANS LOUISIANA
CVPR Attendance

Remote/Virtual attendees
Course Schedule

Topics in Artificial Intelligence (CPSC 532S):
Multimodal Learning with Vision, Language and Sound
Winter Term 1, 2022

Course Information

Multimodal machine learning is a multi-disciplinary research field which addresses some of the core goals of artificial intelligence by integrating and modeling two or more data modalities (e.g., visual, linguistic, acoustic, etc.). This course will teach fundamental concepts related to multimodal machine learning, including (1) representation learning, (2) translation and mapping, and (3) modality alignment. While the fundamental techniques covered in this course are applicable broadly, the focus will be on studying them in the context of joint reasoning and understanding of images/voices and language/text.

In addition to fundamentals, we will study recent rich body of research at the intersection of vision and language, including problems of (1) generating image descriptions using natural language, (2) visual question answering, (3) retrieval of images based on textual queries (and vice versa), (4) generating images/voices from textual descriptions, (5) language grounding and many other related topics. On a technical side, we will be studying neural network architectures of various forms, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), memory networks, attention models, neural language models, structured prediction models.

Content Delivery and Covid Precautions: The lectures will be offered in-person only and no recordings will be made. Unfortunately, for this reason, a hybrid delivery of material will not be possible. We will experiment with hybrid office hours, as we believe this will benefit the students. Students are strongly encouraged and expected (but not required) to wear masks in class. This is largely for the benefit of your fellow students with whom you will sit in close proximity. Instructor will not wear a mask when lecturing (this improves delivery of the material) but will put on the mask in close interaction setting or when requested by students. If at any point a student is

https://www.cs.ubc.ca/~lsigal/teaching22_Term2.html
Topics Covered

– Image Processing (Linear Filtering, Convolution)
– Filters as Templates
– Image Feature Detection (Edges & Corners)
– Texture & Colour
– Image Feature Description (SIFT)
– Model Fitting (RANSAC, The Hough Transform)
– Camera Models, Stereo Geometry
– Motion and Optical Flow
– Clustering and Image Segmentation
– Learning and Image Classification
– Deep Learning Introduction
CPSC 425 was originally developed by Bob Woodham and has evolved over the years. Much of the material this year is adapted from material prepared by Bob, as well extensions developed by others who taught this course.

Previously taught by:
- 2022-2023 Term 1 by Matthew Brown
- 2021-2022 Term 1 & 2 by Jim Little
- 2020-2021 Term 1 by Leonid Sigal
- 2019-2020 Term 2 by Leonid Sigal
- 2019-2020 Term 1 by Jim Little
- 2018-2019 Term 1 & 2 by Leonid Sigal
- 2016-2017 Term 2 by Jim Little
- 2015-2016 Term 2 by Fred Tung
- 2015-2015 Term 2 by Jim Little
How to **Learn from the Course?**

— The course is very **broad**, but relatively **shallow** introduction to a very diverse and complex field that draws material from geometry, statistics, AI, machine learning, computer graphics, psychology and many others.

— It is easy to think that material is easy and course requires no studying

— Part of your job should be going over the slides and carefully analyzing not just what is on them, but the underlying assumptions, algorithmic steps and so on

— Don’t strive for “**template matching**” strive for true “**understanding**”
Grading Criteria

In-class **clicker questions**: 10%

Programming Assignments: 45%

6 graded and 1 ungraded (optional) assignment

Midterm Exam (October 19th): 15%

Final Exam (TBD): 30%
Clicker Questions

Bring your i>Clickers to class

Register your remote: https://canvas.ubc.ca/ before the next class (we will test them next week)

There will be clicker questions (not in every lecture):
- 1/2 point for participation
- 1/2 point for correct answer
*not all clicker quizzes are worth the same # of points, depends on # of questions.

The clicker questions contribute 10% to your total grade

Missing Quiz Policy: If you miss a quiz for a legitimate and documented reason, that quiz will be dropped (legitimate reasons: illness, conference travel, etc.) You are required to contact instructor and provide proof within 1 week of missed quiz.
Assignments (done individually)

There will be **7 assignments** in total (6 marked)

- Approximately 1 every 2 weeks
- You will hand these in by 11:59pm on the due date (read hand in instructions and late policy on course webpage)

You will use the **Python**, with the following libraries: Python Imaging Library (PIL), NumPy, Matplotlib, SciPy, Scikit-Learn

- Assignment 0 (which is ungraded) will introduce you to this.

Assignments contribute **45%** to your final score
Scheduled for **February 27th** (right after the midterm break)

— Here in class during the lecture period
— Closed book, no notes allowed

Multiple choice, true / false and short answer questions

— Aimed to test your “understanding” of the content of the course

The Midterm exam will contribute **15%** to your final score
The Final exam is held during the regular examination period, April 17-28, 2023, and is scheduled by the Registrar’s Office.

Similar to the midterm but longer and with more extensive short/medium answer questions.

The Final exam will contribute 30% to your final score.
Grading issues & Academic Misconduct

Strict policy: Grading mistakes happen, it’s just a nature of life. If you see an issue with your grade, you have 1 week from the release of any assignment grade to bring a specific issue to our attention.

Academic Misconduct: Please don’t do it. Trust me it is not worth it.
Textbooks

The course uses the following textbooks, which are recommended (but not required):

Computer Vision: A Modern Approach (2nd ed)
By: D. Forsyth & J. Ponce
Publisher: Pearson 2012

Computer Vision: Algorithms and Applications (2nd ed)
By: R. Szeliski
Publisher: Springer 2022

https://szeliski.org/Book/
Readings

You will be assigned readings.

― Sometimes you will be assigned readings from other sources

Do the reading after coming to the lecture

― Reading assignments will be posted on course webpage
― They will also be mentioned in class
Prepare for the **Next Lecture**

Readings:

— **Next** Lecture: Szeliski Chapter 2, Forsyth & Ponce (2nd ed.) 1.1.1 — 1.1.3

Reminders:

— Start working on **Assignment 0** (ungraded) suggest complete by Jan 16

— [optional] Watch TED talk by Prof. Fei-Fei Li

 https://www.youtube.com/watch?v=40riCqvRoMs