
Lecture 9: Template Matching (cont.) and Scaled Representations

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )

Image Credit: https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html

https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html


Menu for Today (September 28, 2020)
Topics: 

— Template Matching 
— Normalized Correlation  

Redings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 4.5 - 4.7 
— Next Lecture:       Forsyth & Ponce (2nd ed.) 5.1 - 5.2 

Reminders: 

— Assignment 1: Image Filtering and Hybrid Images is due Wednsday 
— Assignment 2: Scaled Representations, Face Detection and Image Blending

— Scaled Representations 
— Image Derivatives
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Today’s “fun” Example: Rainbow Illusion
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Today’s “fun” Example: Lilac Chaser (a.k.a. Pac-Man) Illusion
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Today’s “fun” Example: Lilac Chaser (a.k.a. Pac-Man) Illusion



Lecture 8: Re-cap 

“Color” is not an objective physical property of light (electromagnetic radiation). 

Instead, light is characterized by its wavelength. 

Color Filter Arrays (CFAs) allow capturing of mosaiced color information; the 
layout of the mosaic is called Bayer pattern. 

Demosaicing is the process of taking the RAW image and interpolating 
missing color pixels per channel  
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How can we find a part of one image that matches another?  

or, 

How can we find instances of a pattern in an image?  
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Lecture 8: Re-cap 



 
How can we find a part of one image that matches another?  

or, 

How can we find instances of a pattern in an image?  

Key Idea: Use the pattern as a template  
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Lecture 8: Re-cap 
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Template Matching

Slide Credit: Kristen Grauman



We can think of correlation as comparing a template (the filter) with each local 
image patch.  
— Consider the filter and image patch as vectors.  
— Applying a filter at an image location can be interpreted as computing the 
dot product between the filter and the local image patch.  
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Template Matching
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Template Matching
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image patch.  
— Consider the filter and image patch as vectors.  
— Applying a filter at an image location can be interpreted as computing the 
dot product between the filter and the local image patch.  
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Template Matching
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image patch.  
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— Applying a filter at an image location can be interpreted as computing the 
dot product between the filter and the local image patch.  
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Template Matching
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We can think of correlation as comparing a template (the filter) with each local 
image patch.  
— Consider the filter and image patch as vectors.  
— Applying a filter at an image location can be interpreted as computing the 
dot product between the filter and the local image patch.  
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Template Matching
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image patch.  
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Template Matching
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The dot product may be large simply because the image region is bright.  
We need to normalize the result in some way. 

We can think of correlation as comparing a template (the filter) with each local 
image patch.  
— Consider the filter and image patch as vectors.  
— Applying a filter at an image location can be interpreted as computing the 
dot product between the filter and the local image patch.  



Let    and    be vectors. Let    be the angle between them. We know  

where · is dot product and | | is vector magnitude  

Correlation is a dot product  

Correlation measures similarity between the filter and each local image region  

Normalized correlation varies between −1 and 1  

Normalized correlation attains the value 1 when the filter and image region are 
identical (up to a scale factor) 
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Template Matching

cos ✓ =

a · b
|a||b| =

a · bp
(a · a)(b · b)
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Template Matching

Slide Credit: Kristen Grauman

Assuming template is all positive, what does this tell us about correlation map? 
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Template Matching
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Template Matching
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Template Matching

Slide Credit: Kristen Grauman
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Template Matching

Slide Credit: Kristen Grauman
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Template Matching

Slide Credit: Kristen Grauman

Detection can be done by comparing correlation map score to a threshold

What happens if the threshold is relatively low? 
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Template Matching

Slide Credit: Kristen Grauman

Detection can be done by comparing correlation map score to a threshold

What happens if the threshold is relatively low? 
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Template Matching

Slide Credit: Kristen Grauman

Detection can be done by comparing correlation map score to a threshold

What happens if the threshold is very high (e.g., 0.99)? 
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Template Matching

Slide Credit: Kristen Grauman

Detection can be done by comparing correlation map score to a threshold

What happens if the threshold is very high (e.g., 0.99)? 



Linear filtering the entire image computes the entire set of dot products, one for 
each possible alignment of filter and image  

Important Insight: 
— filters look like the pattern they are intended to find  
— filters find patterns they look like  

Linear filtering is sometimes referred to as template matching  
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Template Matching



Template Matching
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Let    and    be vectors. Let    be the angle between them. We know  

where · is dot product and | | is vector magnitude  
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Template Matching
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Let    and    be vectors. Let    be the angle between them. We know  

where · is dot product and | | is vector magnitude  

cos ✓ =

a · b
|a||b| =

a · bp
(a · a)(b · b)

=

a

|a|
b

|b|

a b ✓

1. Normalize the template / filter (  ) in the beginning  
2. Compute norm of |  | by convolving squared image with a filter of all 1’s of 

equal size to the the template and squarooting the response 
3. We can compute the dot product by convolution of image (  ) with 

normalized filter (  ) 
4. We can finally compute the normalized correlation by dividing element-wise 

result in Step 3 by result ins Step 2

a

b

a
b



Example 1:
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Credit: W. Freeman et al., “Computer Vision for Interactive Computer Graphics,” 
IEEE Computer Graphics and Applications, 1998 



Example 1:

!31

Credit: W. Freeman et al., “Computer Vision for Interactive Computer Graphics,” 
IEEE Computer Graphics and Applications, 1998 



Example 1:
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Credit: W. Freeman et al., “Computer Vision for Interactive Computer Graphics,” 
IEEE Computer Graphics and Applications, 1998 



Example 1:
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Credit: W. Freeman et al., “Computer Vision for Interactive Computer Graphics,” 
IEEE Computer Graphics and Applications, 1998 



Example 1:
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Credit: W. Freeman et al., “Computer Vision for Interactive Computer Graphics,” 
IEEE Computer Graphics and Applications, 1998 



Example 1:
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Credit: W. Freeman et al., “Computer Vision for Interactive Computer Graphics,” 
IEEE Computer Graphics and Applications, 1998 

Template (left), image (middle), 
normalized correlation (right)  

Note peak value at the true 
position of the hand



When might template matching fail? 
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Template Matching



When might template matching fail? 
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— Different scales

Template Matching



When might template matching fail? 
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— Different scales

— Different orientation

Template Matching



When might template matching fail? 
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— Different scales

— Different orientation

— Lighting conditions

Template Matching



When might template matching fail? 
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— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

Template Matching



When might template matching fail? 
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— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

Template Matching



When might template matching fail? 
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— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Template Matching



Good News:  
— works well in presence of noise  
— relatively easy to compute  

Bad News:  
— sensitive to (spatial) scale change 
— sensitive to 2D rotation  

More Bad News:  
     When imaging 3D worlds: 
     — sensitive to viewing direction and pose  
     — sensitive to conditions of illumination 
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Template Matching Summary



Scaled Representations

Problem: Make template matching robust to changes in 2D (spatial) scale.  

Key Idea(s): Build a scaled representation: the Gaussian image pyramid  

Alternatives:  
— use multiple sizes for each given template  
— ignore the issue of 2D (spatial) scale  

Theory: Sampling theory allows us to build image pyramids in a principled way  

“Gotchas:”  
— template matching remains sensitive to 2D orientation, 3D pose and 
illumination 
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Scaled Representations

Why build a scaled representation of 
the image instead of scaled 

representation of the template? 
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Scaled Representations: Goals

to find template matches at all scales  
— template size constant, image scale varies 
— finding hands or faces when we don’t know what size they are in the image  
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Scaled Representations: Goals

to find template matches at all scales  
— template size constant, image scale varies 
— finding hands or faces when we don’t know what size they are in the image  

efficient search for image–to–image correspondences  
— look first at coarse scales, refine at finer scales  
— much less cost (but may miss best match)  
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Scaled Representations: Goals

to find template matches at all scales  
— template size constant, image scale varies 
— finding hands or faces when we don’t know what size they are in the image  

efficient search for image–to–image correspondences  
— look first at coarse scales, refine at finer scales  
— much less cost (but may miss best match)  

to examine all levels of detail  
—  find edges with different amounts of blur  
—  find textures with different spatial frequencies (i.e., different levels of detail)  
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Shrinking the Image

We can’t shrink an image simply by taking every second pixel  
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Shrinking the Image

We can’t shrink an image simply by taking every second pixel  
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Why? 



Shrinking the Image

We can’t shrink an image simply by taking every second pixel  

If we do, characteristic artifacts appear:  
— small phenomena can look bigger 
— fast phenomena can look slower  

Common examples include: 
— checkerboard patterns misrepresented in video games  
— striped shirts look funny on colour television 
— wagon wheels roll the wrong way in movies  
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Shrinking the Image

Forsyth & Ponce (2nd ed.) Figure 4.12-4.14 (top rows) 



Template Matching: Sub-sample with Gaussian Pre-filtering
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Gaussian filter 
delete even rows 

delete even 
columns

1/2

1/4

1/8

Apply a smoothing filter first, then throw away half the 
rows and columns

Gaussian filter 
delete even rows 

delete even 
columns

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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1/2 1/4 (2x zoom) 1/8 (4x zoom)

Template Matching: Sub-sample with Gaussian Pre-filtering

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Template Matching: Sub-sample with NO Pre-filtering

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Gaussian Pre-filtering 
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Question: How much smoothing is needed to avoid aliasing?



Gaussian Pre-filtering 
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Question: How much smoothing is needed to avoid aliasing?

Answer: Smoothing should be sufficient to ensure that the resulting image 

is band limited “enough” to ensure we can sample every other pixel.

Practically: For every image reduction of 0.5, smooth by � = 1



Image Pyramid 

An image pyramid is a collection of representations of an image. Typically, 
each layer of the pyramid is half the width and half the height  
of the previous layer. 

In a Gaussian pyramid, each layer is smoothed by a Gaussian filter and 
resampled to get the next layer  
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Again, let     denote convolution 
 
Create each level from previous one  
— smooth and (re)sample 

Smooth with Gaussian, taking advantage of the fact that  
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Gaussian Pyramid 

⌦

G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)



Example 2: Gaussian Pyramid 
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Forsyth & Ponce (2nd ed.) Figure 4.17

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramid 
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What happens to the details? 

— They get smoothed out as we move  
     to higher levels

Forsyth & Ponce (2nd ed.) Figure 4.17
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramid 
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Forsyth & Ponce (2nd ed.) Figure 4.17

What happens to the details? 

— They get smoothed out as we move  
     to higher levels

What is preserved at the higher levels? 

— Mostly large uniform regions in the 
     original image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramid 
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What happens to the details? 

— They get smoothed out as we move  
     to higher levels

What is preserved at the higher levels? 

— Mostly large uniform regions in the 
     original image

How would you reconstruct the original 
image from the image at the upper 
level? 

— That’s not possible
Forsyth & Ponce (2nd ed.) Figure 4.17

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramid 
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What happens to the details? 

— They get smoothed out as we move  
     to higher levels

What is preserved at the higher levels? 

— Mostly large uniform regions in the 
     original image

How would you reconstruct the original 
image from the image at the upper 
level? 

— That’s not possible
Forsyth & Ponce (2nd ed.) Figure 4.17

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



From Template Matching to Local Feature Detection

We’ll now shift from global template matching to local feature detection 

Consider the problem of finding images of an elephant using a template 
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From Template Matching to Local Feature Detection

We’ll now shift from global template matching to local feature detection 

Consider the problem of finding images of an elephant using a template 

An elephant looks different from different viewpoints 
— from above (as in an aerial photograph or satellite image)  
— head on 
— sideways (i.e., in profile) 
— rear on  

What happens if parts of an elephant are obscured from view by trees, rocks, 
other elephants? 
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Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba

From Template Matching to Local Feature Detection
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From Template Matching to Local Feature Detection

Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba



— Move from global template matching to local template matching  

— Local template matching also called local feature detection  

— Obvious local features to detect are edges and corners  
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From Template Matching to Local Feature Detection



Human vision …

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



David Marr, 1970s

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



David Marr, 1970s

[ Stages of Visual Representation, David Marr ] * slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



— Move from global template matching to local template matching  

— Local template matching also called local feature detection  

— Obvious local features to detect are edges and corners  
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From Template Matching to Local Feature Detection



Recall, for a 2D (continuous) function, f(x,y)  

Differentiation is linear and shift invariant, and therefore can be implemented as 
a convolution  
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Estimating Derivatives

@f

@x

= lim
✏!0

f(x+ ✏, y)� f(x, y)

✏
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⇡ F (X + 1, y)� F (x, y)

�x



Recall, for a 2D (continuous) function, f(x,y)  

Differentiation is linear and shift invariant, and therefore can be implemented as 
a convolution  

A (discrete) approximation is  
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Recall, for a 2D (continuous) function, f(x,y)  

Differentiation is linear and shift invariant, and therefore can be implemented as 
a convolution  

A (discrete) approximation is  
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A similar definition (and approximation) holds for  

Image noise tends to result in pixels not looking exactly like their neighbours, 
so simple “finite differences” are sensitive to noise.  

The usual way to deal with this problem is to smooth the image prior to 
derivative estimation.  
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@f

@y

Estimating Derivatives



Example 1D
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Example 1D
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Example 1D
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Example 1D
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Example 1D
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Example 1D
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Example 1D
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Estimating Derivatives
Derivative in Y (i.e., vertical) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle) 
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Estimating Derivatives
Derivative in Y (i.e., vertical) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle) 

Note: visualized by adding 0.5/128
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Estimating Derivatives
Derivative in X (i.e., horizontal) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right) 
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Derivative in Y (i.e., vertical) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle) 

Estimating Derivatives
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Derivative in X (i.e., horizontal) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right) 

Estimating Derivatives


