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Lecture 9: Template Matching (cont.) and Scaled Representations

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )


https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html

Menu for Today (september 28, 2020)

Topics:
— Jemplate Matching — Scaled Representations
— Normalized Correlation — Image Derivatives

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 4.5 - 4.7
— Next Lecture: Forsyth & Ponce (2nd ed.) 5.1 - 5.2

Reminders:

— Assignment 1: Image Filtering and Hybrid Images is due Wednsday

— Assignment 2. Scaled Representations, Face Detection and Image Blending
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Today’s “fun” Example: Rainbow lllusion




Today’s “fun” Example: Lilac Chaser (a.k.a. Pac-Man) lllusion




Today’s “fun” Example: Lilac Chaser (a.k.a. Pac-Man) lllusion




Lecture 8: Re-cap

“Color” is not an objective physical property of light (electromagnetic radiation).
Instead, light is characterized by its wavelength.

Color Filter Arrays (CFASs) allow capturing of mosaiced color information; the
layout of the mosaic Is called Bayer pattern.

Demosaicing is the process of taking the RAW image and interpolating
Missing color pixels per channel




Lecture 8: Re-cap

How can we find a part of one image that matches another”?

Of,

How can we find instances of a pattern in an image”



Lecture 8: Re-cap

How can we find a part of one image that matches another”

Of,

How can we find instances of a pattern in an image”

Key ldea: Use the pattern as a template



Template Matching
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Template (mask)

Scene

A toy example

Slide Credit: Kristen Grauman



Template Matching
We can think of correlation as comparing a template (the filter) with each local
image patch.
— (Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.



Template Matching
We can think of correlation as comparing a template (the filter) with each local
image patch.
— Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.
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Template Matching
We can think of correlation as comparing a template (the filter) with each local
image patch.
— Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.
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Template Matching

We can think of correlation as comparing a template (the filter) with each local
image patch.

— Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.
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Template Matching

We can think of correlation as comparing a template (the filter) with each local

image patch.

— Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.
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Template Matching

We can think of correlation as comparing a template (the filter) with each local

image patch.

— Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.
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Template Matching

We can think of correlation as comparing a template (the filter) with each local

image patch.

— Consider the filter and image patch as vectors.
— Applying a filter at an image location can be interpreted as computing the

dot product between the filter and the local image patch.
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Template Matching

We can think of correlation as comparing a template (the filter) with each local
image patch.

— (Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the

dot product between the filter and the local image patch.
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The dot product may be large simply because the image region is bright.
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Template Matching

Let a and b be vectors. Let 0 be the angle between them. We know
a-b a-b - a b
allb|  \/(a-a)(b-b) la| |b]

where - is dot product and | | is vector magnitude

cos ) =

Correlation is a dot product

Correlation measures similarity between the filter and each local image region

Normalized correlation varies between —1 and 1

Normalized correlation attains the value 1 when the filter and image region are
identical (up to a scale factor)
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Template Matching

Assuming template is all positive, what does this tell us about correlation map”

Detected template Correlation map

Slide Credit: Kristen Grauman
18



Template Matching

Assuming template is all positive, what does this tell us about correlation map”

Detected template Correlation map
a b o
al |b|

Slide Credit: Kristen Grauman
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Template Matching

Assuming template is all positive, what does this tell us about correlation map”

Detected template Correlation map
a b o
al |b|

Slide Credit: Kristen Grauman
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Template Matching

Assuming template is all positive, what does this tell us about correlation map”

Detected template Correlation map
a b o
al |b|

Slide Credit: Kristen Grauman
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Template Matching

Assuming template is all positive, what does this tell us about correlation map”

T
4 ‘j

Detected template Correlation map
a b o
al |b|

Slide Credit: Kristen Grauman
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Template Matching

Detection can be done by comparing correlation map score to a threshold

T
4 73

Detected template Correlation map

What happens if the threshold is relatively low?

Slide Credit: Kristen Grauman
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Template Matching

Detection can be done by comparing correlation map score to a threshold

Detected template Correlation map

What happens if the threshold is relatively low?

Slide Credit: Kristen Grauman
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Template Matching

Detection can be done by comparing correlation map score to a threshold

T
4 73

Detected template Correlation map

What happens if the threshold is very high (e.g., 0.99)7

Slide Credit: Kristen Grauman
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Template Matching

Detection can be done by comparing correlation map score to a threshold

Detected template Correlation map
What happens if the threshold is very high (e.g., 0.99)7

Slide Credit: Kristen Grauman
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Template Matching

Linear filtering the entire image computes the entire set of dot products, one for
each possible alignment of filter and image

Important Insight:
— filters look like the pattern they are intended to find

— filters find patterns they look like

Linear filtering Is sometimes referred to as template matching
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Template Matching

Let a and b be vectors. Let 0 be the angle between them. We know
a-b a-b - a b
allb|  \/(a-a)(b-b) la| |b]

where - is dot product and | | is vector magnitude

cos ) =
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Template Matching

Let a and b be vectors. Let 0 be the angle between them. We know
a-b a-b - a b
allb|  \/(a-a)(b-b) la| |b]

cos ) =

where - is dot product and | | is vector magnitude

1. Normalize the template / filter (b) in the beginning

2. Compute norm of |a| by convolving squared image with a filter of all 1’s of
equal size to the the template and squarooting the response

3. We can compute the dot product by convolution of image (a) with
normalized filter (b)

4. We can finally compute the normalized correlation by dividing element-wise
result in Step 3 by result ins Step 2
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Example 1:

Credit: \V. Freeman et al., “Computer Vision for Interactive Computer Graphics,”
|[EEE Computer Graphics and Applications, 1998
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Example 1:

lﬁ

Credit: W. Freeman et al., “Computer Vision for Interactive Computer Graphics,”
IEEE Computer Graphics and Applications, 1998
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Example 1:

|

Credit: W. Freeman et al., “Computer Vision for Interactive Computer Graphics,”
IEEE Computer Graphics and Applications, 1998
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Example 1:

Credit: W. Freeman et al., “Computer Vision for Interactive Computer Graphics,”
IEEE Computer Graphics and Applications, 1998
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Example 1:

Credit: W. Freeman et al., “Computer Vision for Interactive Computer Graphics,”
IEEE Computer Graphics and Applications, 1998
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Example 1:

Template (left), image (middle),
normalized correlation (right)

Note peak value at the true
position of the hand

Credit: . Freeman et al., “Computer Vision for Interactive Computer Graphics,”
|IEEE Computer Graphics and Applications, 1998
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Template Matching

When might template matching fail”
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Template Matching

When might template matching fail”

— Different scales 0
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Template Matching

When might template matching fail”

— Different scales 0

— Different orientation &
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Template Matching

When might template matching fail”

— Different scales w

— Different orientation &

— Lighting conditions .

39



Template Matching

When might template matching fail”

— Different scales w

— Different orientation &

— Lighting conditions

_ Left vs. Right hana ‘ w
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Template Matching

When might template matching fail”

— Different scales w

— Different orientation &

— Partial Occlusions %j

— Lighting conditions

_ Left vs. Right hana \‘ w
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Template Matching

When might template matching fail”

— Different scales w

— Different orientation &

— Partial Occlusions w (
J

— Different Perspective
— Lighting conditions .

_ Left vs. Right hana w w

— Motion / blur
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Template Matching Summary

Good News:
— works well In presence of noise
— relatively easy to compute

Bad News:
— sensitive to (spatial) scale change
— sensitive to 2D rotation

More Bad News:
When imaging 3D worlds:
— sensitive to viewing direction and pose
— sensitive to conditions of illumination
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Scaled Representations

Problem: Make template matching robust to changes in 2D (spatial) scale.
Key Idea(s): Build a scaled representation: the Gaussian image pyramid

Alternatives:
— use multiple sizes for each given template
— ignore the issue of 2D (spatial) scale

Theory: Sampling theory allows us to build image pyramids in a principled way

“Gotchas:”

— template matching remains sensitive to 2D orientation, 3D pose and
llumination
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Scaled Representations

Why puild a scaled representation of
the Image instead of scaled
representation of the template”/



Scaled Representations: Goals

to find template matches at all scales
— template size constant, image scale varies
— finding hands or faces when we don’'t know what size they are in the image
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Scaled Representations: Goals

to find template matches at all scales
— template size constant, image scale varies
— finding hands or faces when we don’'t know what size they are in the image

efficient search for image—to—-image correspondences
— look first at coarse scales, refine at finer scales
— much less cost (but may miss best match)
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Scaled Representations: Goals

to find template matches at all scales
— template size constant, image scale varies
— finding hands or faces when we don’'t know what size they are in the image

efficient search for image—to—-image correspondences
— look first at coarse scales, refine at finer scales
— much less cost (but may miss best match)

to examine all levels of detail
— find edges with different amounts of blur
— find textures with different spatial frequencies (i.e., different levels of detall)
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Shrinking the Image

We can’t shrink an image simply by taking every second pixel
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Shrinking the Image

We can’t shrink an image simply by taking every second pixel

Why*
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Shrinking the Image

We can’t shrink an image simply by taking every second pixel

f we do, characteristic artifacts appear:
— small phenomena can look bigger
— fast phenomena can look slower

Common examples include:
— checkerboard patterns misrepresented in video games
— striped shirts look funny on colour television
— wagon wheels roll the wrong way in movies
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Shrinking the Image

256 x 256 128 x 128 64 x 64 I2: % 32 16 X 16

no
, . =SSs smoothing
AL ULULTS L

Gaussian
o= 1

Gaussian
o=2

Forsyth & Ponce (2nd ed.) Figure 4.12-4.14 (top rows)
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Template Matching: Sub-sample with Gaussian Pre-filtering

Apply a smoothing filter first, then throw away half the
rows and columns

Gaussian filter
delete even rows
delete even
columns

Gaussian filter
delete even rows
delete even
columns

52 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Template Matching: Sub-sample with Gaussian Pre-filtering

1/4 (2Xx zoom) 1/8 (4x zoom)

53 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Template Matching: Sub-sample with NO Pre-filtering

1/4 (2Xx zoom) 1/8 (4x zoom)

54 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Gaussian Pre-filtering

Question: How much smoothing is needed to avoid aliasing?

0O



Gaussian Pre-filtering

Question: How much smoothing is needed to avoid aliasing?

Answer: Smoothing should be sufficient to ensure that the resulting image
IS band limited “enough” to ensure we can sample every other pixel.

Practically: For every image reduction of 0.5, smooth by o =1
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Image Pyramid

An image pyramid is a collection of representations of an image. lypically,
each layer of the pyramid is half the width and half the height

of the previous layer.

In a Gaussian pyramid, each layer is smoothed by a Gaussian filter and
resampled to get the next layer

of



Gaussian Pyramid

Again, let ® denote convolution

Create each level from previous one
— smooth and (re)sample

Smooth with Gaussian, taking advantage of the fact that

Go, (%) © Gy (2) = G ymao3()
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Example 2: Gaussian Pyramid
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Forsyth & Ponce (2nd ed. ) Figure 4.17 »

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramid

25 s
| 256 -4

512

7=\ \
S

= | ﬁ ? f What happens to the details?
64 32 16 8

128

e

el - )\
4

L 3
3

Forsyth & Ponce (2nd ed.) Figure 4.17 N

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramid

@ @\\ /A /%\ @ ? f What happens to the details?
— They get smoothed out as we move

512 128 to higher levels

What is preserved at the higher levels”
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Forsyth & Ponce (2nd ed.) Figure 4.17 N

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramid

@@wmﬁﬁr
— They get smoothed out as we move

512 128 8 to higher levels

What happens to the details?

What is preserved at the higher levels”

— Mostly large unitform regions in the
original image

How would you reconstruct the original
image from the image at the upper
level?
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Forsyth & Ponce (2nd ed.) Figure 4.17 N

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramid

@@wmﬁﬁr
— They get smoothed out as we move

512 128 8 to higher levels

What happens to the details?

What is preserved at the higher levels”

— Mostly large unitform regions in the
original image

How would you reconstruct the original
image from the image at the upper
level?

\//§\\

m.
e

.
f

— That’s not possible
Forsyth & Ponce (2nd ed.) Figure 4.17 N

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



-rom lemplate Matching to Local Feature Detection

We’'ll now shift from global template matching to local feature detection

Consider the problem of finding images of an elephant using a template
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-rom lemplate Matching to Local Feature Detection

We’'ll now shift from global template matching to local feature detection
Consider the problem of finding images of an elephant using a template

An elephant looks different from different viewpoints

— from above (as in an aerial photograph or satellite image)
— head on

— sideways (i.e., in profile)

— rear on

What happens if parts of an elephant are obscured from view by trees, rocks,
other elephants?
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-rom lemplate Matching to Local Feature Detection

Find the cha|r in this |mage Output of normalized correlation
J |

This i1s a chair

A Slide Credit: Li Fei-Fel, Rob Fergus, and Antonio Torralba



~rom lemplate Matching to Local Feature Detection

Find the chair in this image

Pretty much garbage
Simple template matchingis not going to make it

- Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba



-rom lemplate Matching to Local Feature Detection

— Move from global template matching to local template matching
— Local template matching also called local feature detection

— Obvious local features to detect are edges and corners

03



Human Vvision
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<_| + X @ ~0- Hubel & Wiesel, 1959
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* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



David Marr, 19/70s

Copyrighted Material

VISION

David Marr

OOOOOOOOOO

rrrrrrrrrrr
Tomaso Poggio

Copyrighted Material

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



David Marr, 1970s

2 2-D _sl<_ejch 3-D model

—

Input image Edge image

—

-\._

Q

Primal

Sketch

2 V2-D 3-D Model
Sketch Representation

Zero crossings, Local surface 3-D models

blobs, edges,
bars, ends,

orientation and hierarchically

Perceived . — .
discontinuities organized in

in depth and in terms of surface

surface and volumetric
orientation primitives

Intensities . .
virtual lines,

groups, curves
boundaries

| Stages of Visual Representation, David Marr | * slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



-rom lemplate Matching to Local Feature Detection

— Move from global template matching to local template matching
— Local template matching also called local feature detection

— Obvious local features to detect are edges and corners
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=stimating Derivatives

Recall, for a 2D (continuous) function, f(x,y)

of _ . flztey) — flzy)
Ox _e—>0 €

Differentiation is linear and shift invariant, and therefore can be implemented as
a convolution
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=stimating Derivatives

Recall, for a 2D (continuous) function, f(x,y)

of _ . flztey) — flzy)
0x _e—>() €

Differentiation is linear and shift invariant, and therefore can be implemented as
a convolution

A (discrete) approximation is

or Ax
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=stimating Derivatives

Recall, for a 2D (continuous) function, f(x,y)

of _ . flztey) — flzy)
0x _e—>() €

Differentiation is linear and shift invariant, and therefore can be implemented as
a convolution

A (discrete) approximation is

Of _ F(X +1,y)— Flz,y)
Ox Ax

l4s




=stimating Derivatives

A similar definition (and approximation) holds for ?
Y

Image noise tends to result In pixels not looking exactly like their neighlbours,
so simple “finite differences” are sensitive to noise.

The usual way to deal with this problem is to smooth the image prior to
derivative estimation.
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Example 1D
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Example 1D
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Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 05 04 03 02 02 02 035 05 0.5

Derivative
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Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 05 04 03 02 02 02 035 05 0.5

Derivative 0.0
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Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 0.5 04 03 02 02 02 035 05 0.5

Derivative 0.0
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Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 0.5 04 03 02 02 02 035 05 0.5

Derivative 0.0 0.0
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Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 05 0.5 03 02 0.2 02 035 05 05

Derivative 0.0 0.0
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Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 05 0.5 03 02 0.2 02 035 05 05

Derivative 0.0 0.0 -0.1
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Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 05 05 05 04 03 02 02 0.2 0.35 0.5

Derivative 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.15 0.15 0.0 X
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Estimating Derivatives

Derivative in Y (i.e., vertical) direction
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Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)
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Estimating Derivatives

Derivative in Y (i.e., vertical) direction

\

Note: visualized by adding 0.5/128

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)
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Estimating Derivatives

Derivative in X (i.e., horizontal) direction

\

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right)
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Estimating Derivatives

Derivative in Y (i.e., vertical) direction
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Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)
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Estimating Derivatives

Derivative in X (i.e., horizontal) direction

\

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right)
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