
Lecture 7: Sampling

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )

Image Credit: https://en.wikibooks.org/wiki/Analog_and_Digital_Conversion/Nyquist_Sampling_Rate

https://en.wikibooks.org/wiki/Analog_and_Digital_Conversion/Nyquist_Sampling_Rate


Menu for Today (September 23, 2020)
Topics: 

— Sampling theory  
— Nyquist rate

Redings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 4.4  
— Next Lecture:       Forsyth & Ponce (2nd ed.) 4.5, 4.6 

Reminders: 
— Assignment 1: Image Filtering and Hybrid Images due September 30th 
— Quiz 1, Quiz 2, Quiz 3 dates are posted — Quiz 1 is Friday 
— We have a new TA - Ruolan taking over Ariel (TA times will remain the same)

— Color Filter Arrays 
— Bayer patterns
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Image Credit: http://esamultimedia.esa.int/images/marsexpress/300-230906-3253-6-vk1-Cydonia_H.jpg

Today’s “fun” Example: Face on the Moon

http://esamultimedia.esa.int/images/marsexpress/300-230906-3253-6-vk1-Cydonia_H.jpg


!4

Image Credit: http://esamultimedia.esa.int/images/marsexpress/311-230906-3253-6-3d5-Cydonia_H.jpg

Today’s “fun” Example: Face on the Moon

http://esamultimedia.esa.int/images/marsexpress/311-230906-3253-6-3d5-Cydonia_H.jpg


Today’s “fun” Example: Tool for Surrealists Artists
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Oleg Shuplyak

Artush Voskanyan

https://www.artfinder.com/artist/artush-voskanyan/
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Artush Voskanyan

Today’s “fun” Example: Tool for Surrealists Artists

https://www.artfinder.com/artist/artush-voskanyan/
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Lecture 5: Re-cap Non-linear Filters
We covered two three non-linear filters: Median, Bilateral, ReLU   

Separability (of a 2D filter) allows for more efficient implementation (as two 
1D filters)  

Convolution is associative and symmetric 

Convolution of a Gaussian with a Gaussian is another Gaussian  

The median filter is a non-linear filter that selects the median in the 
neighbourhood  

The bilateral filter is a non-linear filter that considers both spatial distance 
and range (intensity) distance, and has edge-preserving properties 



Aside: Linear Filter with ReLU 
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Result of:       Linear Image Filtering After Non-linear ReLU



Framework for Today’s Topic

Problem: How do we go from the optics of image formation to digital images 
as arrays of numbers? 

Key Idea(s): Sampling and the notion of band limited functions  

Theory: Sampling Theory 
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Reminder
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Images are a discrete, or sampled, representation of a continuous world



What is an Image?

Up to now provided a physical characterization 
— image formation as a problem in physics/optics  
— we also talked about simple image processing algorithms on image arrays  

Now provide a mathematical characterization 
— to understand how to represent images digitally  
— to understand how to compute with images  
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Continuous Case

“Image” suggests a 2D surface whose appearance varies from point–to–point 
— the surface typically is a plane (but might be curved, e.g., as is with an eye)  

Appearance can be Grayscale (Black and White) or Colour  

In Grayscale, variation in appearance can be described by a single parameter 
corresponding to the amount of light reaching the image at a given point in a 
given time 
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Denote the image as a function,          , where    and    are spatial variables  

Aside: The convention for this section is to use lower case letters for the 
continuous case and upper case letters for the discrete case 
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Continuous Case

x

y
i(x,y)

i(x, y) i(x, y)
i(x, y)



Continuous Case: Observations

—            is a real-valued function of real spatial variables,    and
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i(x, y)
x

y



Recall: Pinhole Camera

Forsyth & Ponce (2nd ed.) Figure 1.2 
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—            is a real-valued function of real spatial variables,    and 

—            is bounded above and below. That is 

     for some maximum brightness  
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0  i(x, y)  M

i(x, y)

M

i(x, y)

x

y

Continuous Case: Observations



—            is a real-valued function of real spatial variables,    and 

—            is bounded above and below. That is 

     for some maximum brightness  

—           is bounded in extent. That is,           is non-zero (i.e., strictly positive)  
     over, at most, a bounded region

!17

0  i(x, y)  M

i(x, y)

i(x, y)

M

i(x, y)

i(x, y)

x

y

Continuous Case: Observations



— Images also can be considered a function of time. Then, we write                 
where    and    are spatial variable and    is a temporal variable 

— To make the dependence of brightness on wavelength explicit, we can 
instead write                  where   ,    and   are as above and where    is a 
spectral variable 

— More commonly, we think of “color” already as discrete and write 

for specific colour channels, R, G and B
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Continuous Case

i(x, y, t)
x

y t

i(x, y, t,�) x

y t �

iR(x, y)
iG(x, y)
iB(x, y)



Discrete Case
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i(x,y)

x

y

Idea: Superimpose (regular) grid on continuous image

Sample the underlying continuous image according to the tessellation 
imposed by the grid 



i(x,y)

x

y

pixel

Discrete Case
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i(x,y)

x

y

pixel

Discrete Case
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Each grid cell is called a picture element (pixel)

Denote the discrete image as  

We can store the pixels in a matrix or array

I(X,Y )



Question: How to sample?  
— Sample brightness at the point? 
— “Average” brightness over entire pixel? 

Answer: 
— Point sampling is useful for theoretical development 
— Area-based sampling occurs in practice 
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Discrete Case



Question: What about the brightness samples themselves?
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Discrete Case



Question: What about the brightness samples themselves? 

Answer: We make values of              discrete as well 

Recall:  

We divide the range           into a finite number of equivalence classes. This is 
called quantization.  

The values are called grey-levels.
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Discrete Case

I(X,Y )

0  i(x, y)  M

[0,M ]



Quantization is a topic in its own right 

For now, a simple linear scheme is sufficient  

Suppose    bits-per-pixel are available. One can divide the range           into 
evenly spaced intervals as follows: 

where        is floor (i.e., greatest integer less than or equal to)  

Typically            resulting in grey-levels in the range 
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Discrete Case

i(x, y) !
�
i(x, y)

M

(2n � 1) + 0.5

⌫

b c

n = 8 [0, 255]

[0,M ]n



It is clear that some information may be lost when we work on a discrete pixel grid. 
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Sampling

Forsyth & Ponce (2nd ed.) Figure 4.7 



It is clear that some information may be lost when we work on a discrete pixel grid. 
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Sampling

Forsyth & Ponce (2nd ed.) Figure 4.7 



It is clear that some information may be lost when we work on a discrete pixel grid. 
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Sampling

Forsyth & Ponce (2nd ed.) Figure 4.7 



It is clear that some information may be lost when we work on a discrete pixel grid. 
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Sampling

Forsyth & Ponce (2nd ed.) Figure 4.7 



It is clear that some information may be lost when we work on a discrete pixel grid. 
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Sampling

Forsyth & Ponce (2nd ed.) Figure 4.7 



Question: When is              an exact characterization of           ? 

Question (modified): When can we reconstruct           exactly from             ? 

Intuition: Reconstruction involves some kind of interpolation 

Heuristic: When in doubt, consider simple cases  
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Sampling Theory (informal)

i(x, y)I(X,Y )

i(x, y) I(X,Y )
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Sampling Theory (informal)

i(x, y)I(X,Y )

i(x, y) I(X,Y )
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Sampling Theory (informal)

i(x, y)I(X,Y )

i(x, y) I(X,Y )



Question: When is              an exact characterization of           ? 

Question (modified): When can we reconstruct           exactly from             ? 

Intuition: Reconstruction involves some kind of interpolation 

Heuristic: When in doubt, consider simple cases  
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Sampling Theory (informal)

i(x, y)I(X,Y )

i(x, y) I(X,Y )
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Sampling Theory (informal)

x

k

i(x)

Case 0: Suppose                  (with    being one of our gray levels)i(x, y) = k k

Note: we use equidistant sampling at integer values for convenience, in 
general, sampling doesn’t need to be equidistant 



!36

Sampling Theory (informal)

x

k

i(x)

This is easy! 

Case 0: Suppose                  (with    being one of our gray levels)i(x, y) = k k
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Sampling Theory (informal)

x

k

i(x)

This is easy! 

                   . Any standard interpolation function would give                  for non-
integer    and    (irrespective oh how coarse the sampling is)
I(X,Y ) = k i(x, y) = k

x

y

Case 0: Suppose                  (with    being one of our gray levels)i(x, y) = k k



Case 1: Suppose           has a discontinuity not falling precisely at integer 
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Sampling Theory (informal)

x

i(x)

k0
k1

i(x, y) = k

x, y



Case 1: Suppose           has a discontinuity not falling precisely at integer 
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Sampling Theory (informal)

We cannot reconstruct           exactly because we can never know exactly where 
the discontinuity lies

x

i(x)

k0
k1

i(x, y) = k

x, y

i(x, y) = k



Case 1: Suppose           has a discontinuity not falling precisely at integer 
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Sampling Theory (informal)

We cannot reconstruct           exactly because we can never know exactly where 
the discontinuity lies

x

i(x)

k0
k1

i(x, y) = k

x, y

i(x, y) = k

This is impossible! 



Question: How do we close the gap between “easy” and “impossible?”  

Next, we build intuition based on informal argument  
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Sampling Theory (informal)



Exact reconstruction requires constraint on the rate at which i(x,y) can change 
between samples 
— “rate of change” means derivative 

— the formal concept is bandlimited signal  

— “bandlimit” and “constraint on derivative” are linked  

Think of music 
— bandlimited if it has some maximum temporal frequency  
— the upper limit of human hearing is about 20 kHz  

Think of imaging systems. Resolving power is measured in  
— “line pairs per mm” (for a bar test pattern) 

— “cycles per mm” (for a sine wave test pattern)  

An image is bandlimited if it has some maximum spatial frequency 
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Sampling Theory (informal)



Example: A Simple Sine Wave
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How do we discretize the signal? 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave
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How do we discretize the signal? 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Example: A Simple Sine Wave

How do we discretize the signal? 

Can I take as many samples as I want?

How many samples should I take?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Example: A Simple Sine Wave

How do we discretize the signal? 

Can I take as few samples as I want?
How many samples should I take?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Example: A Simple Sine Wave

How do we discretize the signal? 

Signal can be confused with one at lower frequency  

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Example: A Simple Sine Wave

How do we discretize the signal? 

Signal can be confused with one at lower frequency  

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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How do we discretize the signal? 

Signal can always be confused with one at higher frequency  

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Example: A Simple Sine Wave
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Undersampling = Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



The challenge to intuition is the fact that music (in the 1D case) and images (in 
the 2D case) can be represented as linear combinations of individual sine waves 
of differing frequencies and phases (remember discussion on FFTs) 

A fundamental result (Sampling Theorem) is:  
For bandlimited signals, if you sample regularly at or above twice the 
maximum frequency (called the Nyquist rate), then you can reconstruct 
the original signal exactly  
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Sampling Theory (informal)



Question: For a bandlimited signal, what if you oversample (i.e., sample at 
greater than the Nyquist rate)  
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Sampling Theory (informal)



Question: For a bandlimited signal, what if you oversample (i.e., sample at 
greater than the Nyquist rate)  

Answer: Nothing bad happens! Samples are redundant and there are wasted 
bits  

!53

Sampling Theory (informal)



Question: For a bandlimited signal, what if you oversample (i.e., sample at 
greater than the Nyquist rate)  

Answer: Nothing bad happens! Samples are redundant and there are wasted 
bits  

Question: For a bandlimited signal, what if you undersample (i.e., sample at 
less than the Nyquist rate)  
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Sampling Theory (informal)



Question: For a bandlimited signal, what if you oversample (i.e., sample at 
greater than the Nyquist rate)  

Answer: Nothing bad happens! Samples are redundant and there are wasted 
bits  

Question: For a bandlimited signal, what if you undersample (i.e., sample at 
less than the Nyquist rate)  

Answer: Two bad things happen! Things are missing (i.e., things that should be 
there aren’t). There are artifacts (i.e., things that shouldn’t be there are)  
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Sampling Theory (informal)
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Sampling Theory (informal)

Forsyth & Ponce (2nd ed.) Figure 4.7 
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Forsyth & Ponce (2nd ed.) Figure 4.12 

Sampling Theory (informal)



Reducing Aliasing Artifacts 

1. Oversampling — sample more than you think you need and average (i.e., 
area sampling) 

2. Smoothing before sampling. Why? 
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Aliasing 
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aliasing artifacts anti-aliasing by oversampling

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Reducing Aliasing Artifacts 

1. Oversampling — sample more than you think you need and average (i.e., 
area sampling) 

2. Smoothing before sampling. Why? 
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Aliasing in Photographs
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This is also known as “moire”

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing 

!62 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Temporal Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Temporal Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Temporal Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Temporal Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Temporal Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Temporal Aliasing 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Sometimes undersampling is unavoidable, and there is a trade-off between 
“things missing” and “artifacts.”  

— Medical imaging: usually try to maximize information content, tolerate 
some artifacts  

— Computer graphics: usually try to minimize artifacts, tolerate some 
information missing  
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Sampling Theory (informal)


