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Lecture 7: Sampling

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )


https://en.wikibooks.org/wiki/Analog_and_Digital_Conversion/Nyquist_Sampling_Rate

Menu for Today (september 23, 2020)

Topics:
— Sampling theory — Color Filter Arrays
— Nyquist rate — Bayer patterns

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 4.4
— Next Lecture: Forsyth & Ponce (2nd ed.) 4.5, 4.6

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due September 30th

— Quiz 1, Quiz 2, Quiz 3 dates are posted — Quiz 1 is Friday

— We have a new TA - Ruolan taking over Ariel (TA times will remain the same)



Today’s “fun” Example: Face on the Moon

Image Credit: http://esamultimedia.esa.int/images/marsexpress/300-230906-3253-6-vk1-Cydonia H.jpg
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Today’s “fun” Example: Face on the Moon

© ESA/DLR/FU Berlin (G. Neukum), MOC (Malin Space Science Systems)
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Today’s “fun” Example: Tool for Surrealists Artists
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Today’s “fun” Example: Tool for Surrealists Artists

Artush Voskanyan
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Lecture 5: Re-cap Non-linear Filters

We covered two three non-linear filters: Median, Bilateral, RelLU

Separability (of a 2D filter) allows for more efficient implementation (as two
1D filters)

Convolution is associative and symmetric
Convolution of a Gaussian with a Gaussian is another (Gaussian

The median filter is a non-linear filter that selects the median in the
neighbournood

The bilateral filter is a non-linear filter that considers both spatial distance
and range (intensity) distance, and has edge-preserving properties
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Aside: Linear Filter with RelLU

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelLU Connected Connected
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Feature Extraction from Image Classification
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Result of; Linear Image Filtering After Non-linear RelLU



Framework for loday’s Topic
Problem: How do we go from the optics of image formation to digital images
as arrays of numbers?
Key Idea(s): Sampling and the notion of band limited functions

Theory: Sampling Theory



Reminder
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Imaging system

(Internal) image plane

Scene element

Images are a discrete, or sampled, representation of a continuous world
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What is an Image”’

Up to now provided a physical characterization
— Image formation as a problem in physics/optics
— we also talked about simple image processing algorithms on image arrays

Now provide a mathematical characterization

— to understand how to represent images digitally
— to understand how to compute with iImages
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Continuous Case

‘Image” suggests a 2D surface whose appearance varies from point—to—point
— the surface typically is a plane (but might be curved, e.q., as is with an eye)

Appearance can be Grayscale (Black and White) or Colour

In Grayscale, variation in appearance can be described by a single parameter
corresponding to the amount of light reaching the image at a given point in a
given time
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Continuous Case

Denote the image as a function, i(x, y), where x and y are spatial variables

Aside: The convention for this section Is to use lower case letters for the
continuous case and upper case letters for the discrete case
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Continuous Case: Observations

— i(z,y) is a real-valued function of real spatial variables, x and ¥
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Recall: Pinhole Camera

Image
plane

I . J
pinhole .-~ virtual
- image

Forsyth & Ponce (2nd ed.) Figure 1.2
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Continuous Case: Observations

— i(z,y) is a real-valued function of real spatial variables, x and ¥

— i(x,y) s bounded above and below. [hat is

0 <i(z,y) <M

for some maximum brightness M
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Continuous Case: Observations

— i(z,y) is a real-valued function of real spatial variables, x and ¥

— i(x,y) s bounded above and below. [hat is

0 <i(z,y) <M

for some maximum brightness M

— i(x,y)is bounded in extent. That is, ¢(x, y) is non-zero (i.e., strictly positive)
over, at most, a bounded region
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Continuous Case

— Images also can be considered a function of time. Then, we write i(x, y, t)
where x and y are spatial variable and t is a temporal variable

— o make the dependence of brightness on wavelength explicit, we can
instead write ¢(x, y,t, A\) where x, ¥ and t are as above and where A is a
spectral variable

— More commonly, we think of “color” already as discrete and write

iR(ajv y)
ig(il?, y)
Z.B (567 y)

for specific colour channels, R, G and B
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Discrete Case

Idea: Superimpose (regular) grid on continuous image

Sample the underlying continuous image according to the tessellation
imposed by the grid
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Discrete Case

— pixel
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Discrete Case

Each grid cell is called a picture element (pixel)

— pixel

Denote the discrete image as I(X,Y)

We can store the pixels in a matrix or array
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Discrete Case

Question: How to sample?
— Sample brightness at the point”

— “Average” brightness over entire pixel?

Answer:
— Point sampling Is useful for theoretical development

— Area-based sampling occurs Iin practice
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Discrete Case

Question: What about the brightness samples themselves”?
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Discrete Case

Question: What about the brightness samples themselves”?

Answer: We make values of I(X,Y) discrete as well

Recal: 0<i(x,y) <M

We divide the range [0, M| into a finite number of equivalence classes. This is
called quantization.

The values are called grey-levels.
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Discrete Case

Quantization is a topic in its own right
For now, a simple linear scheme Is sufficient

Suppose n bits-per-pixel are available. One can divide the range |0, M| into
evenly spaced intervals as follows:

i(x,y) — z(f\f) (2" —1)+ 0.5

where | ] is floor (.e., greatest integer less than or equal to)

Typically n = 8 resulting in grey-levels in the range |0, 255]
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Sampling

't Is clear that some information may be lost when we work on a discrete pixel grid.

Forsyth & Ponce (2nd ed.) Figure 4.7
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20



Sampling

't Is clear that some information may be lost when we work on a discrete pixel grid.
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Sampling

't Is clear that some information may be lost when we work on a discrete pixel grid.

Forsyth & Ponce (2nd ed.) Figure 4.7
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Sampling

't Is clear that some information may be lost when we work on a discrete pixel grid.

Forsyth & Ponce (2nd ed.) Figure 4.7
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Sampling Theory (informal)

Question: When is I(X,Y) an exact characterization of i(x,y)?
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Sampling Theory (informal)

Question: When is I(X,Y) an exact characterization of i(x,y)?

Question (modified): When can we reconstruct i(x, y) exactly fromI(X,Y)?
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Sampling Theory (informal)

Question: When is I(X,Y) an exact characterization of i(x,y)?
Question (modified): When can we reconstruct i(x, y) exactly fromI(X,Y)?

Intuition: Reconstruction involves some kind of interpolation
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Sampling Theory (informal)

Question: When is I(X,Y) an exact characterization of i(x,y)?
Question (modified): When can we reconstruct i(x, y) exactly fromI(X,Y)?
Intuition: Reconstruction involves some kind of interpolation

Heuristic: \When in doubt, consider simple cases
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Sampling Theory (informal)

Case 0: Supposei(x,y) = k (with k£ being one of our gray levels)

Note: we use equidistant sampling at integer values for convenience, Iin
general, sampling doesn’t need to be equidistant
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Sampling Theory (informal)

Case 0: Supposei(x,y) = k (with k£ being one of our gray levels)
1(X)
K
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Sampling Theory (informal)

Case 0: Supposei(x,y) = k (with k£ being one of our gray levels)

I(X,Y) = k. Any standard interpolation function would give i(x,y) = k for non-
integer x and vy (irrespective oh how coarse the sampling is)
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Sampling Theory (informal)

Case 1: Supposei(x, y) has a discontinuity not falling precisely at integer x, y
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Sampling Theory (informal)

Case 1: Supposei(x, y) has a discontinuity not falling precisely at integer x, y

We cannot reconstruct ¢(x, y) exactly because we can never know exactly where
the discontinuity lies
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Sampling Theory (informal)

Case 1: Supposei(x, y) has a discontinuity not falling precisely at integer x, y

- This is impossible!

We cannot reconstruct ¢(x, y) exactly because we can never know exactly where
the discontinuity lies
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Sampling Theory (informal)

Question: How do we close the gap between “easy” and “impossible””

Next, we bulld intuition based on informal argument
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Sampling Theory (informal)

Exact reconstruction requires constraint on the rate at which i(x,y) can change
between samples

— “rate of change” means derivative
— the formal concept is bandlimited signal

— “pandlimit” and “constraint on derivative” are linked

Think of music

— bandlimited if it has some maximum temporal frequency
— the upper limit of human hearing is about 20 kHz

Think of Imaging systems. Resolving power is measured in

— “line pairs per mm” (for a bar test pattern)
— “cycles per mm?” (for a sine wave test pattern)

An Image Is bandlimited If it has some maximum spatial frequency
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Example: A Simple Sine Wave

How do we discretize the signal”

43 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

N ML

44 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

How many samples should | take?
Can | take as many samples as | want”

45 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

How many samples should | take?
Can | take as few samples as | want?

46 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

Signal can be confused with one at lower frequency

47 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

Signal can be confused with one at lower frequency

48 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”
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Signal can always be confused with one at higher frequency

49 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Undersampling = Aliasing

AWAN

50 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Sampling Theory (informal)

The challenge to intuition is the fact that music (in the 1D case) and images (in

the 2D case) can be represented as linear combinations of individual sine waves
of differing frequencies and phases (rememlber discussion on FFTs)

A fundamental result (Sampling Theorem) is:

For bandlimited signals, If you sample regularly at or albove twice the

maximum frequency (called the Nyquist rate), then you can reconstruct
the original signal exactly

51



Sampling Theory (informal)

Question: For a bandlimited signal, what if you oversample (i.e., sample at
greater than the Nyquist rate)
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Sampling Theory (informal)

Question: For a bandlimited signal, what if you oversample (i.e., sample at
greater than the Nyquist rate)

Answer: Nothing bad happens! Samples are redundant and there are wasted
pItS
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Sampling Theory (informal)

Question: For a bandlimited signal, what if you oversample (i.e., sample at
greater than the Nyquist rate)

Answer: Nothing bad happens! Samples are redundant and there are wasted
pItS

Question: For a bandlimited signal, what if you undersample (i.e., sample at
less than the Nyquist rate)
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Sampling Theory (informal)

Question: For a bandlimited signal, what if you oversample (i.e., sample at
greater than the Nyquist rate)

Answer: Nothing bad happens! Samples are redundant and there are wasted
pItS
Question: For a bandlimited signal, what if you undersample (i.e., sample at

less than the Nyquist rate)

Answer: Two bad things happen! Things are missing (i.e., things that should be
there aren’t). There are artifacts (i.e., things that shouldn’t be there are)
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Sampling Theory (informal)

Forsyth & Ponce (2nd ed.) Figure 4.7
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Sampling Theory (informal)
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Forsyth & Ponce (2nd ed.) Figure 4.12
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Reducing Aliasing Artifacts

1. Oversampling — sample more than you think you need and average (i.e.,
area sampling)
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Aliasing

aliasing artifacts anti-aliasing by oversampling

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Reducing Aliasing Artifacts

1. Oversampling — sample more than you think you need and average (i.e.,
area sampling)

2. Smoothing before sampling. Why?
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Aliasing in Photographs

This is also known as “moire” b
- e
L ' B .l

o1 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

[f camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DDRD

frame 0O frame 1 frame 2 frame 3 frame 4

- g

shutter open time

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

62 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing

effect
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Temporal Aliasing

effect
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Temporal Aliasing

effect
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Temporal Aliasing
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Temporal Aliasing
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Temporal Aliasing
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Sampling Theory (informal)

Sometimes undersampling is unavoidable, and there is a trade-off between
“things missing” and “artifacts.”

— Medical imaging: usually try to maximize information content, tolerate
some artifacts

— Computer graphics: usually try to minimize artifacts, tolerate some
iINnformation missing
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