
Lecture 6: Image Filtering (final)

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today (September 21, 2020)
Topics: 

— Non-linear Filters: Median, ReLU 

Reminders: 

— Assignment 1: Image Filtering and Hybrid Images due September 30th 
— Discussions on Piazza are going reasonably well (avg response time 33min) 
— I will add Office Hour on Tuesdays @ 5pm (Zoom link will be posted) 

— Bilateral Filter 

Readings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 4.4  
— Next Lecture:       Forsyth & Ponce (2nd ed.) 4.5  
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http://vqa.cloudcv.org
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Today’s “fun” Example: Visual Question Answering
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Clever Hans 
(Orlov Trotter horse)

Wilhelm  
von Osten 

Hans could get 89% of the math questions right

The course was smart, just not in the way van Osten thought! 

Today’s “fun” Example: Clever Hans



Clever DNN

Wilhelm  
von Osten 



Visual Question Answering

Is there zebra climbing the tree? 

AI agent Yes



Lecture 5: Re-cap

Linear filtering (one interpretation): 
— new pixels are a weighted sum of original pixel values  
— “filter” defines weights  

Linear filtering (another interpretation): 
— each pixel influences the new value for itself and its neighbors  
— “filter” specifies the influences  
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Lecture 5: Re-cap

We covered two additional linear filters: Gaussian, pillbox  

Separability (of a 2D filter) allows for more efficient implementation (as two 
1D filters)  
— separable filter can be expressed as an outer product of two 1D filters  

The Convolution Theorem: In Fourier space, convolution can be reduced to 
(complex) multiplication
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Convolution Theorem:
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At the expense of two Fourier transforms and one inverse Fourier transform, 
convolution can be reduced to (complex) multiplication

Lecture 5: Re-cap The Convolution Theorem 
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Lecture 5: Assignment 1 Intuition
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image FFT (Mag) 

Low pass

High pass

filtered image

complex  
element-wise 
multiplication 

filtered image

Lecture 5: Re-cap
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image FFT (Mag) 

Low pass

High pass

filtered image

complex  
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multiplication 
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Perfect Low-pass / High-pass Filtering
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image FFT (Mag) 

Low pass

High pass

filtered image

complex  
element-wise 
multiplication 

filtered image

Perfect Low-pass / High-pass Filtering



Low-pass Filtering = “Smoothing”?
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Low-pass Filtering = “Smoothing”
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Are all of these low-pass filters? 

Low-pass filter: Low pass filter filters out all of the high 
frequency content of the image, only low frequencies remain



Low-pass Filtering = “Smoothing”
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Are all of these low-pass filters? 

Low-pass filter: Low pass filter filters out all of the high 
frequency content of the image, only low frequencies remain



After long detour … 
lets go back to efficiency
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Speeding Up Convolution (The Convolution Theorem) 

Convolution Theorem:

Let 

then
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At the expense of two Fourier transforms and one inverse Fourier transform, 
convolution can be reduced to (complex) multiplication



Cost of FFT/IFFT for image: 
Cost of FFT/IFFT for filter:   
Cost of convolution: 
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Speeding Up Convolution (The Convolution Theorem) 

At each pixel,           , there are              multiplications

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

There are                                               pixels in 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Total:                                                     multiplicationsm2 ⇥ n2

General implementation of convolution:

O(m2
logm)

O(n2
log n)

Convolution if FFT space:

O(n2) Note: not a function of filter size !!!



Linear Filters: Properties (recall Lecture 4)

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))⌦ k F1 F2 F I(X,Y )

(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Let     denote convolution. Let              be a digital image 

Superposition: Let      and      be digital filters 

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Scaling: Let     be digital filter and let     be a scalar  

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is linear if it satisfies both superposition and scaling 
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— Convolution is symmetric. That is,

Linear Filters: Additional Properties
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Let     denote convolution. Let              be a digital image. Let F and G be  
digital filters
⌦ k F1 F2 F I(X,Y )

(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

G⌦ (F ⌦ I(X,Y )) = (G⌦ F )⌦ I(X,Y )

(G⌦ F )⌦ I(X,Y ) = (F ⌦G)⌦ I(X,Y )

— Convolution is associative. That is,

Convolving              with filter F and then convolving the result with filter G can 
be achieved in single step, namely convolving              with filter G⌦ F = F ⌦G

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )

Note: Correlation, in general, is not associative. 

(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )



Example: Two Box Filters
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3x3 Box 3x3 Box

filter = boxfilter(3)  
signal.correlate2d(filter, filter,′ full′) 
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Example: Two Box Filters
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maximally until two filters no longer overlap
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Example: Two Box Filters
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Example: Two Box Filters
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Example: Two Box Filters
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Example: Two Box Filters
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Example: Two Box Filters
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3x3 Box 3x3 Box 3x3 Box

Example: Two Box Filters
filter = boxfilter(3)  
temp = signal.correlate2d(filter, filter,′ full′)  
signal.correlate2d(filter, temp,′ full′) 



Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Pre-Convolving Filters 
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Convolving two filters of size              and             results in filter of size:m⇥m n⇥ n

⇣
n+ 2

jm
2

k⌘
⇥
⇣
n+ 2

jm
2

k⌘

 
m1 + 2

KX

k=2

jmk

2

k!
⇥
 
m1 + 2

KX

k=2

jmk

2

k!

More broadly for a set of      filters of sizes                 the resulting filter will 
have size:

mk ⇥mkK



Gaussian: An Additional Property
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G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)

G�(x) G

p
2�(x)

Let     denote convolution. Let              and              be be two 1D Gaussians⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)

Convolution of two Gaussians is another Gaussian 

Special case: Convolving with             twice is equivalent to 



Non-linear Filters 

We’ve seen that linear filters can perform a variety of image transformations 
— shifting 
— smoothing  
— sharpening  

In some applications, better performance can be obtained by using non-linear 
filters.  

For example, the median filter (which is a very effective de-noising / smoothing 
filter) selects the median value from each pixel’s neighborhood.  

!40



Median Filter

Take the median value of the pixels under the filter:

!41
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Median Filter

Take the median value of the pixels under the filter:
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Median Filter

Take the median value of the pixels under the filter:
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5 13 5 221

4 16 7 34

24 54 34 23

23 75 89 123

54 25 67 12

Image

4 5 5 7 13 16 24 34 54

13

Output



Median Filter

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a ‘salt and 
pepper’ noise or ’shot’ noise) 

The median filter forces points with distinct values to be more like their neighbors 
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Image credit: https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png

https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png


Bilateral Filter

An edge-preserving non-linear filter  

Like a Gaussian filter:  
— The filter weights depend on spatial distance from the center pixel 
— Pixels nearby (in space) should have greater influence than pixels far away  

Unlike a Gaussian filter:  
— The filter weights also depend on range distance from the center pixel  
— Pixels with similar brightness value should have greater influence than pixels 
with dissimilar brightness value 

!45
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Gaussian filter: weights of neighbor at a spatial offset         away from the 
center pixel             given by:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

I(X,Y )

(x, y)

(with appropriate normalization)

Bilateral Filter
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Gaussian filter: weights of neighbor at a spatial offset         away from the 
center pixel             given by:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

I(X,Y )

(x, y)

Bilateral filter: weights of neighbor at a spatial offset         away from the center 
pixel             given by a product:

exp

� x

2+y

2

2�2
d

exp

� (I(X+x,Y +y)�I(X,Y ))2

2�2
r

(x, y)

I(X,Y )

(with appropriate normalization)

(with appropriate normalization)

Bilateral Filter
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Gaussian filter: weights of neighbor at a spatial offset         away from the 
center pixel             given by:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

I(X,Y )

(x, y)

Bilateral filter: weights of neighbor at a spatial offset         away from the center 
pixel             given by a product:

exp

� x

2+y

2

2�2
d

exp

� (I(X+x,Y +y)�I(X,Y ))2

2�2
r

(x, y)

I(X,Y )

(with appropriate normalization)

(with appropriate normalization)

domain  
kernel

range  
kernel

Bilateral Filter



!49

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

image

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

Bilateral Filter
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n⇥ n
m⇥m
m = 5

image
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Bilateral Filter

Input

Domain Kernel

Range Kernel Influence

Bilateral Filter 
(domain * range)

Output

Images from: Durand and Dorsey, 2002  



Bilateral Filter Application: Denoising
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Noisy Image Gaussian Filter Bilateral Filter

Slide Credit: Alexander Wong 



!59 Slide Credit: Alexander Wong 

Original Image After 5 iterations of Bilateral Filter 

Bilateral Filter Application: Cartooning
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Bilateral Filter Application: Flash Photography

Non-flash images taken under low light conditions often suffer from excessive 
noise and blur  

But there are problems with flash images: 
— colour is often unnatural 
— there may be strong shadows or specularities  

Idea: Combine flash and non-flash images to achieve better exposure and 
colour balance, and to reduce noise  
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Bilateral Filter Application: Flash Photography
System using ‘joint’ or ‘cross’ bilateral filtering: 

’Joint’ or ’Cross’ bilateral: Range kernel is computed using a separate 
guidance image instead of the input image 

Figure Credit: Petschnigg et al., 2004 



Aside: Linear Filter with ReLU 

!62

Result of:       Linear Image Filtering After Non-linear ReLU



Summary
We covered two three non-linear filters: Median, Bilateral, ReLU   

Separability (of a 2D filter) allows for more efficient implementation (as two 
1D filters)  

Convolution is associative and symmetric 

Convolution of a Gaussian with a Gaussian is another Gaussian  

The median filter is a non-linear filter that selects the median in the 
neighbourhood  

The bilateral filter is a non-linear filter that considers both spatial distance 
and range (intensity) distance, and has edge-preserving properties 
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