
Lecture 6: Image Filtering (final)

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today (September 21, 2020)
Topics:

— Non-linear Filters: Median, ReLU

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due September 30th
— Discussions on Piazza are going reasonably well (avg response time 33min)
— I will add Office Hour on Tuesdays @ 5pm (Zoom link will be posted)

— Bilateral Filter

Readings:

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 4.4
— Next Lecture: Forsyth & Ponce (2nd ed.) 4.5

!2

http://vqa.cloudcv.org

!3

Today’s “fun” Example: Visual Question Answering

Today’s “fun” Example: Clever Hans

Clever Hans
(Orlov Trotter horse)

Wilhelm
von Osten

Today’s “fun” Example: Clever Hans

Clever Hans
(Orlov Trotter horse)

Wilhelm
von Osten

Hans could get 89% of the math questions right

Clever Hans
(Orlov Trotter horse)

Wilhelm
von Osten

Hans could get 89% of the math questions right

The course was smart, just not in the way van Osten thought!

Today’s “fun” Example: Clever Hans

Clever DNN

Wilhelm
von Osten

Visual Question Answering

Is there zebra climbing the tree?

AI agent Yes

Lecture 5: Re-cap

Linear filtering (one interpretation):
— new pixels are a weighted sum of original pixel values
— “filter” defines weights

Linear filtering (another interpretation):
— each pixel influences the new value for itself and its neighbors
— “filter” specifies the influences

!8

!9

Lecture 5: Re-cap

We covered two additional linear filters: Gaussian, pillbox

Separability (of a 2D filter) allows for more efficient implementation (as two
1D filters)
— separable filter can be expressed as an outer product of two 1D filters

The Convolution Theorem: In Fourier space, convolution can be reduced to
(complex) multiplication

!10

Convolution Theorem:

Let

then

where , , and are Fourier transforms of ,

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

and

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication

Lecture 5: Re-cap The Convolution Theorem

!11 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Preview of Part 3 of your homework

Lecture 5: Assignment 1 Intuition

!12 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Preview of Part 3 of your homework

Lecture 5: Assignment 1 Intuition

!13 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Preview of Part 3 of your homework

Lecture 5: Assignment 1 Intuition

!14

image FFT (Mag)

Low pass

High pass

filtered image

complex
element-wise
multiplication

filtered image

Lecture 5: Re-cap

!15

image FFT (Mag)

Low pass

High pass

filtered image

complex
element-wise
multiplication

filtered image

Perfect Low-pass / High-pass Filtering

!16

image FFT (Mag)

Low pass

High pass

filtered image

complex
element-wise
multiplication

filtered image

Perfect Low-pass / High-pass Filtering

Low-pass Filtering = “Smoothing”?

!17

1 1 1
1 1 1
1 1 1

1
9 = −

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Box Filter Pillbox Filter Gaussian Filter

Are all of these low-pass filters?

Low-pass Filtering = “Smoothing”

!18

1 1 1
1 1 1
1 1 1

1
9 = −

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Box Filter Pillbox Filter Gaussian Filter

Are all of these low-pass filters?

Low-pass filter: Low pass filter filters out all of the high
frequency content of the image, only low frequencies remain

Low-pass Filtering = “Smoothing”

!19

1 1 1
1 1 1
1 1 1

1
9 = −

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

Image

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Box Filter Pillbox Filter Gaussian Filter

Are all of these low-pass filters?

Low-pass filter: Low pass filter filters out all of the high
frequency content of the image, only low frequencies remain

After long detour …
lets go back to efficiency

!20

!21

Speeding Up Convolution (The Convolution Theorem)

Convolution Theorem:

Let

then

where , , and are Fourier transforms of ,

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

and

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication

Cost of FFT/IFFT for image:
Cost of FFT/IFFT for filter:
Cost of convolution:

!22

Speeding Up Convolution (The Convolution Theorem)

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

General implementation of convolution:

O(m2
logm)

O(n2
log n)

Convolution if FFT space:

O(n2) Note: not a function of filter size !!!

Linear Filters: Properties (recall Lecture 4)

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Let denote convolution. Let be a digital image

Superposition: Let and be digital filters

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Scaling: Let be digital filter and let be a scalar

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is linear if it satisfies both superposition and scaling
!23

— Convolution is symmetric. That is,

Linear Filters: Additional Properties

!24

Let denote convolution. Let be a digital image. Let F and G be
digital filters
⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

G⌦ (F ⌦ I(X,Y)) = (G⌦ F)⌦ I(X,Y)

(G⌦ F)⌦ I(X,Y) = (F ⌦G)⌦ I(X,Y)

— Convolution is associative. That is,

Convolving with filter F and then convolving the result with filter G can
be achieved in single step, namely convolving with filter G⌦ F = F ⌦G

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)

Note: Correlation, in general, is not associative.

(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)

Example: Two Box Filters

!25

3x3 Box 3x3 Box

filter = boxfilter(3)  
signal.correlate2d(filter, filter,′ full′)

!26

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

Treat one filter as padded “image”

3x3 Box

3x3 Box

Output

=
1

81
⌦

1

1

9
1

9

Note, in this case you have to pad
maximally until two filters no longer overlap

!27

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

Treat one filter as padded “image”

!28

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3

Treat one filter as padded “image”

!29

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3 2 1

2 4 6

Treat one filter as padded “image”

!30

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3 2 1

2 4 6 4 2

Treat one filter as padded “image”

3 6 9 6 3

2 4 6 4 2

1 2 3 2 1

!31

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3 2 1

2 4 6 4 2

Treat one filter as padded “image”

3 6 9 6 3

2 4 6 4 2

1 2 3 2 1

!32

3x3 Box 3x3 Box 3x3 Box

Example: Two Box Filters
filter = boxfilter(3)  
temp = signal.correlate2d(filter, filter,′ full′)
signal.correlate2d(filter, temp,′ full′)

Example: Separable Gaussian Filter

!33

⌦1 464 1
1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Example: Separable Gaussian Filter

!34

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4

6

4

1

1

16

1

=
1

256

Example: Separable Gaussian Filter

!35

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

4 16

Example: Separable Gaussian Filter

!36

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Example: Separable Gaussian Filter

!37

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Pre-Convolving Filters

!38

Convolving two filters of size and results in filter of size:m⇥m n⇥ n

⇣
n+ 2

jm
2

k⌘
⇥
⇣
n+ 2

jm
2

k⌘

m1 + 2

KX

k=2

jmk

2

k!
⇥

m1 + 2

KX

k=2

jmk

2

k!

More broadly for a set of filters of sizes the resulting filter will
have size:

mk ⇥mkK

Gaussian: An Additional Property

!39

G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)

G�(x) G

p
2�(x)

Let denote convolution. Let and be be two 1D Gaussians⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)

Convolution of two Gaussians is another Gaussian

Special case: Convolving with twice is equivalent to

Non-linear Filters

We’ve seen that linear filters can perform a variety of image transformations
— shifting
— smoothing
— sharpening

In some applications, better performance can be obtained by using non-linear
filters.

For example, the median filter (which is a very effective de-noising / smoothing
filter) selects the median value from each pixel’s neighborhood.

!40

Median Filter

Take the median value of the pixels under the filter:

!41

5 13 5 221

4 16 7 34

24 54 34 23

23 75 89 123

54 25 67 12

Image Output

Median Filter

Take the median value of the pixels under the filter:

!42

5 13 5 221

4 16 7 34

24 54 34 23

23 75 89 123

54 25 67 12

Image

4 5 5 7 13 16 24 34 54

Output

Median Filter

Take the median value of the pixels under the filter:

!43

5 13 5 221

4 16 7 34

24 54 34 23

23 75 89 123

54 25 67 12

Image

4 5 5 7 13 16 24 34 54

13

Output

Median Filter

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a ‘salt and
pepper’ noise or ’shot’ noise)

The median filter forces points with distinct values to be more like their neighbors

!44

Image credit: https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png

https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png

Bilateral Filter

An edge-preserving non-linear filter

Like a Gaussian filter:
— The filter weights depend on spatial distance from the center pixel 
— Pixels nearby (in space) should have greater influence than pixels far away

Unlike a Gaussian filter:
— The filter weights also depend on range distance from the center pixel  
— Pixels with similar brightness value should have greater influence than pixels
with dissimilar brightness value

!45

!46

Gaussian filter: weights of neighbor at a spatial offset away from the
center pixel given by:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

I(X,Y)

(x, y)

(with appropriate normalization)

Bilateral Filter

!47

Gaussian filter: weights of neighbor at a spatial offset away from the
center pixel given by:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

I(X,Y)

(x, y)

Bilateral filter: weights of neighbor at a spatial offset away from the center
pixel given by a product:

exp

� x

2+y

2

2�2
d

exp

� (I(X+x,Y +y)�I(X,Y))2

2�2
r

(x, y)

I(X,Y)

(with appropriate normalization)

(with appropriate normalization)

Bilateral Filter

!48

Gaussian filter: weights of neighbor at a spatial offset away from the
center pixel given by:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

I(X,Y)

(x, y)

Bilateral filter: weights of neighbor at a spatial offset away from the center
pixel given by a product:

exp

� x

2+y

2

2�2
d

exp

� (I(X+x,Y +y)�I(X,Y))2

2�2
r

(x, y)

I(X,Y)

(with appropriate normalization)

(with appropriate normalization)

domain
kernel

range
kernel

Bilateral Filter

!49

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

Bilateral Filter

!50

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Bilateral Filter

!51

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

�d = 0.45I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Bilateral Filter

!52

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

�d = 0.45I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

0.98 0.2

0.98 0.1

0.1

1

0.98

1 1

Range Kernel
�r = 0.45

Bilateral Filter

(this is different for each
locations in the image)

!53

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

�d = 0.45I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Range Kernel
�r = 0.45

0.08 0.02

0.08 0.01

0.01

0.12

0.12

0.12 0.20

Range * Domain Kernel

Bilateral Filter

(this is different for each
locations in the image)

multiply0.98 0.2

0.98 0.1

0.1

1

0.98

1 1

!54

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

�d = 0.45I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Range Kernel
�r = 0.45

0.08 0.02

0.08 0.01

0.01

0.12

0.12

0.12 0.20

Range * Domain Kernel

0.11 0.03

0.11 0.01

0.01

0.16

0.16

0.16 0.26

Bilateral Filter

(this is different for each
locations in the image)

multiply sum to 10.98 0.2

0.98 0.1

0.1

1

0.98

1 1

!55

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

�d = 0.45I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Range Kernel
�r = 0.45

0.08 0.02

0.08 0.01

0.01

0.12

0.12

0.12 0.20

Range * Domain Kernel

0.11 0.03

0.11 0.01

0.01

0.16

0.16

0.16 0.26

Bilateral Filter

(this is different for each
locations in the image)

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

⇥
X

= 0.1
multiply

Bilateral Filter

0.98 0.2

0.98 0.1

0.1

1

0.98

1 1

!56

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

�d = 0.45I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Range Kernel
�r = 0.45

0.08 0.02

0.08 0.01

0.01

0.12

0.12

0.12 0.20

Range * Domain Kernel

0.11 0.03

0.11 0.01

0.01

0.16

0.16

0.16 0.26

Bilateral Filter

(this is different for each
locations in the image)

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

⇥
X

= 0.1

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

⇥ = 0.3

X

multiply

Gaussian Filter (only)

Bilateral Filter

0.98 0.2

0.98 0.1

0.1

1

0.98

1 1

!57

Bilateral Filter

Input

Domain Kernel

Range Kernel Influence

Bilateral Filter
(domain * range)

Output

Images from: Durand and Dorsey, 2002

Bilateral Filter Application: Denoising

!58

Noisy Image Gaussian Filter Bilateral Filter

Slide Credit: Alexander Wong

!59 Slide Credit: Alexander Wong

Original Image After 5 iterations of Bilateral Filter

Bilateral Filter Application: Cartooning

�60

Bilateral Filter Application: Flash Photography

Non-flash images taken under low light conditions often suffer from excessive
noise and blur

But there are problems with flash images: 
— colour is often unnatural 
— there may be strong shadows or specularities

Idea: Combine flash and non-flash images to achieve better exposure and
colour balance, and to reduce noise

!61

Bilateral Filter Application: Flash Photography
System using ‘joint’ or ‘cross’ bilateral filtering:

’Joint’ or ’Cross’ bilateral: Range kernel is computed using a separate
guidance image instead of the input image

Figure Credit: Petschnigg et al., 2004

Aside: Linear Filter with ReLU

!62

Result of: Linear Image Filtering After Non-linear ReLU

Summary
We covered two three non-linear filters: Median, Bilateral, ReLU

Separability (of a 2D filter) allows for more efficient implementation (as two
1D filters)

Convolution is associative and symmetric

Convolution of a Gaussian with a Gaussian is another Gaussian

The median filter is a non-linear filter that selects the median in the
neighbourhood

The bilateral filter is a non-linear filter that considers both spatial distance
and range (intensity) distance, and has edge-preserving properties

!63

