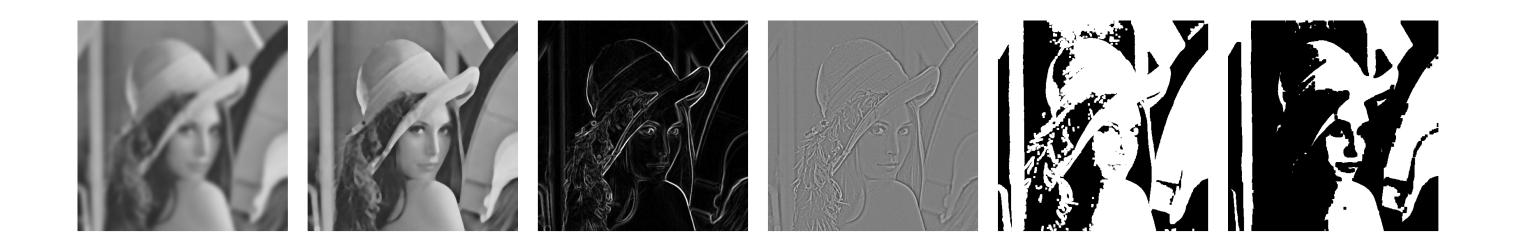


THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Lecture 6: Image Filtering (final)

Menu for Today (September 21, 2020)

Topics:

— **Non-linear** Filters: Median, ReLU

Readings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 4.4
- **Next** Lecture: Forsyth & Ponce (2nd ed.) 4.5

Reminders:

- I will add Office Hour on **Tuesdays** @ 5pm (Zoom link will be posted)

- **Bilateral** Filter

- Assignment 1: Image Filtering and Hybrid Images due September 30th — Discussions on **Piazza** are going reasonably well (avg response time 33min)

Today's "fun" Example: Visual Question Answering

http://vqa.cloudcv.org

Today's "fun" Example: Clever Hans

Today's "fun" Example: Clever Hans

Hans could get 89% of the math questions right

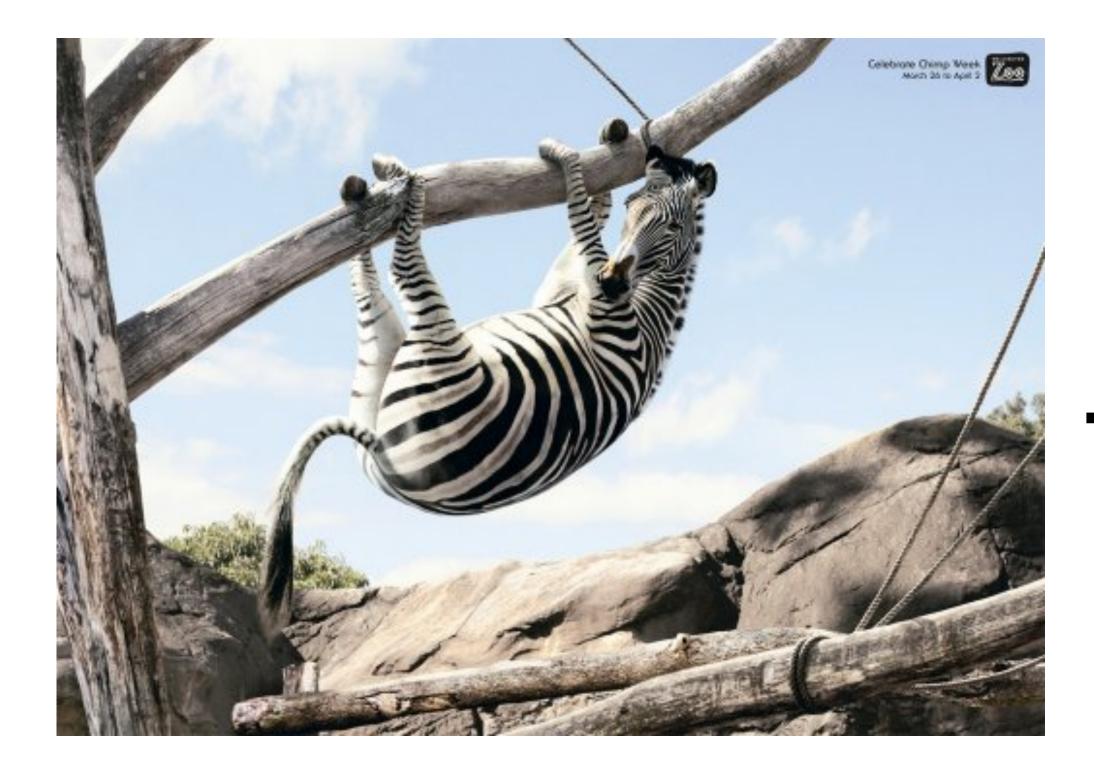
Today's "fun" Example: Clever Hans

The course was **smart**, just not in the way van Osten thought!

Hans could get 89% of the math questions right

Clever DNN

Visual Question Answering



Is there zebra climbing the tree?

Al agent Yes

Lecture 5: Re-cap

Linear filtering (one interpretation):

- new pixels are a weighted sum of original pixel values — "filter" defines weights

Linear filtering (another interpretation): each pixel influences the new value for itself and its neighbors - "filter" specifies the influences

Lecture 5: Re-cap

We covered two additional linear filters: **Gaussian**, **pillbox**

Separability (of a 2D filter) allows for more efficient implementation (as two 1D filters)

The Convolution Theorem: In **Fourier** space, convolution can be reduced to (complex) multiplication

- separable filter can be expressed as an **outer product** of two 1D filters

Lecture 5: Re-cap The Convolution Theorem

Convolution **Theorem**:

 $i'(x,y) = f(x,y) \otimes i(x,y)$ Let

then $\mathcal{I}'(w_x, w_y) = \mathcal{F}(w_x, w_y) \mathcal{I}(w_x, w_y)$

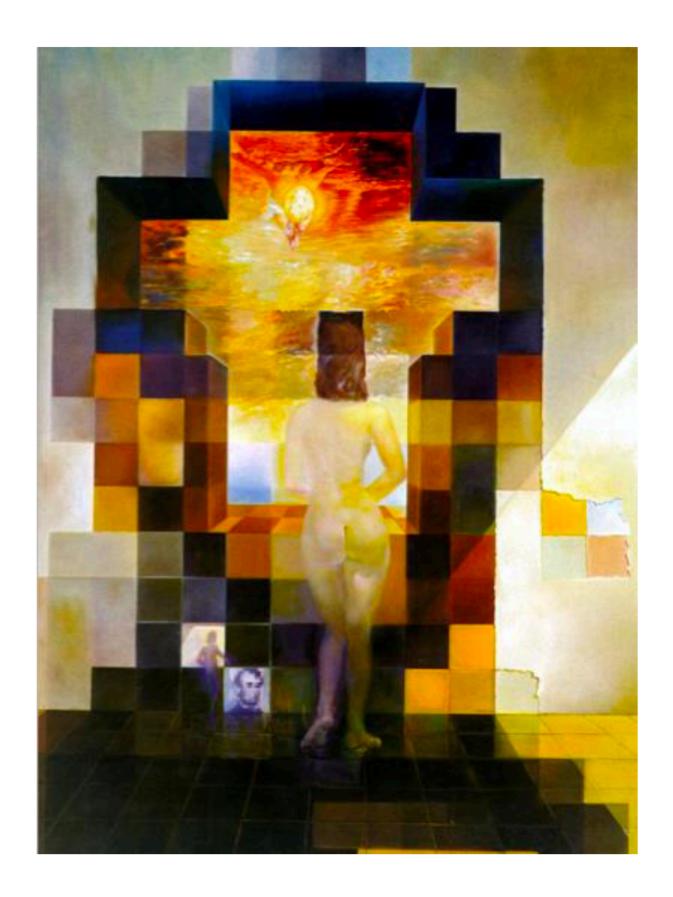
f(x,y) and i(x,y)

convolution can be reduced to (complex) multiplication

- where $\mathcal{I}'(w_x, w_y)$, $\mathcal{F}(w_x, w_y)$, and $\mathcal{I}(w_x, w_y)$ are Fourier transforms of i'(x, y),

At the expense of two **Fourier** transforms and one inverse Fourier transform,

Lecture 5: Assignment 1 Intuition

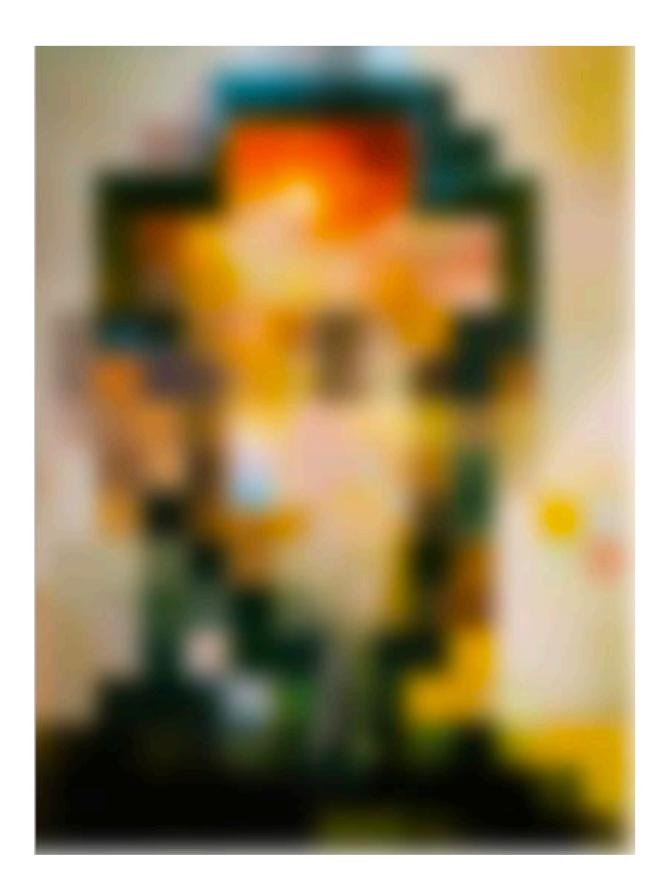


Gala Contemplating the Mediterranean Sea Which at Twenty Meters Becomes the Portrait of Abraham Lincoln (Homage to Rothko)

Salvador Dali, 1976

Preview of **Part 3** of your homework

Lecture 5: Assignment 1 Intuition

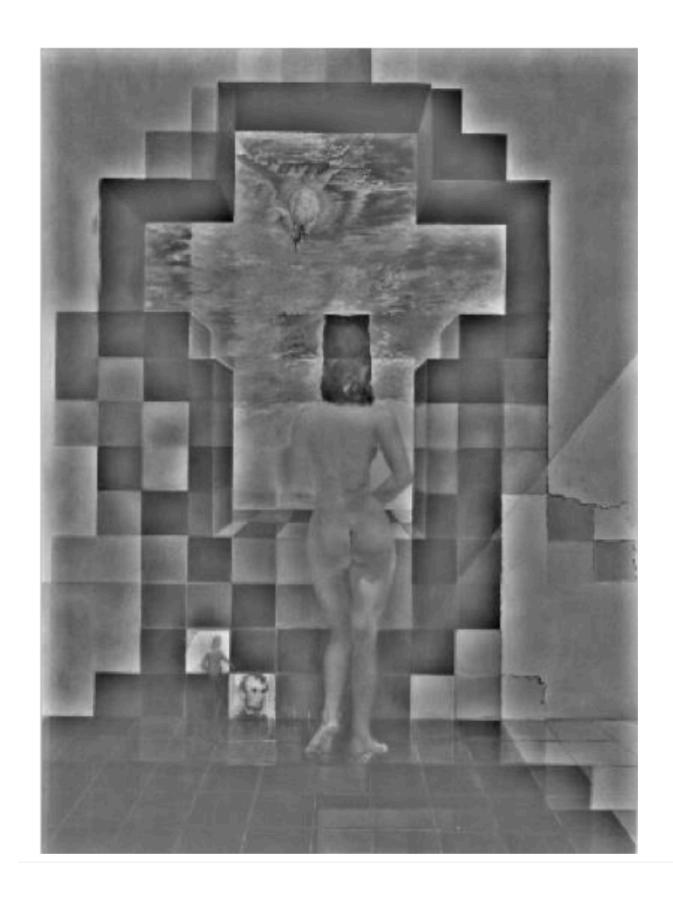


Low-pass filtered version

Preview of **Part 3** of your homework

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 5: Assignment 1 Intuition

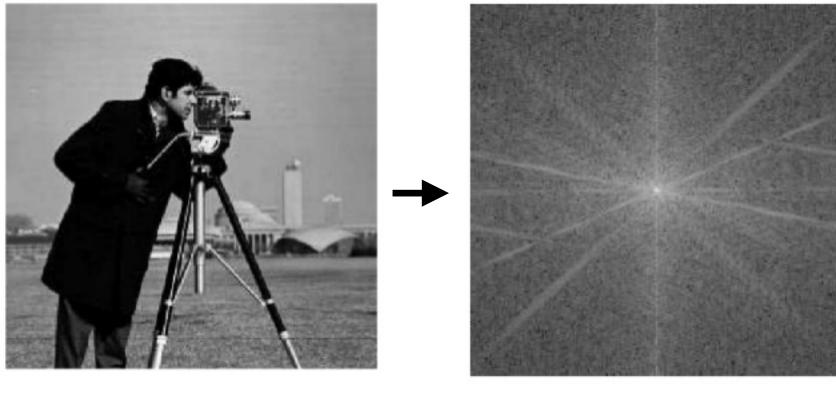


High-pass filtered version

Preview of **Part 3** of your homework

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

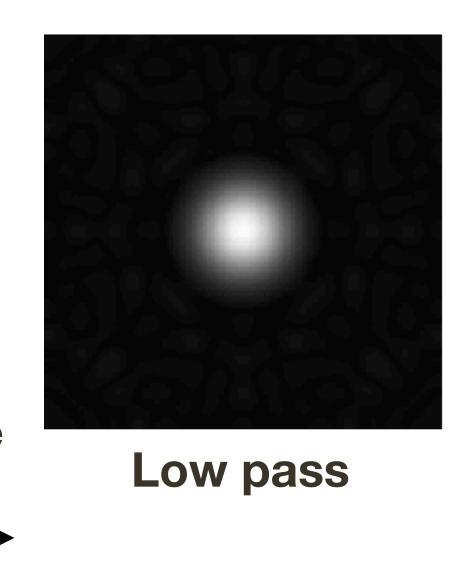
Lecture 5: Re-cap



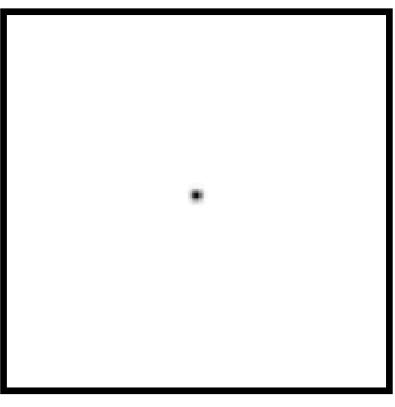
complex element-wise multiplication

image

FFT (Mag)

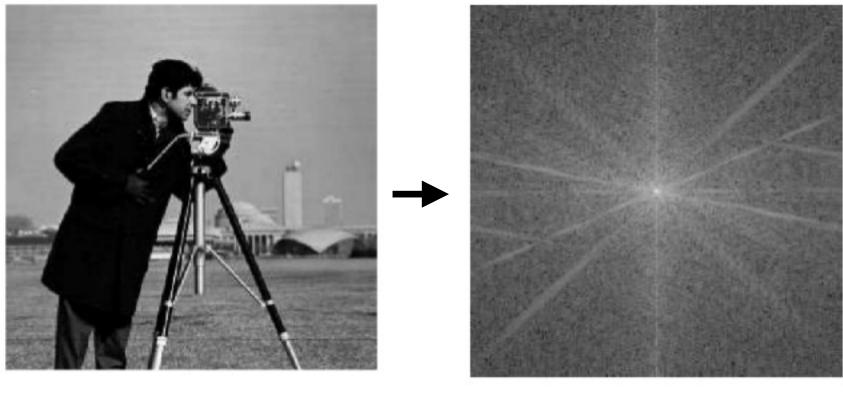


filtered image



filtered **image**

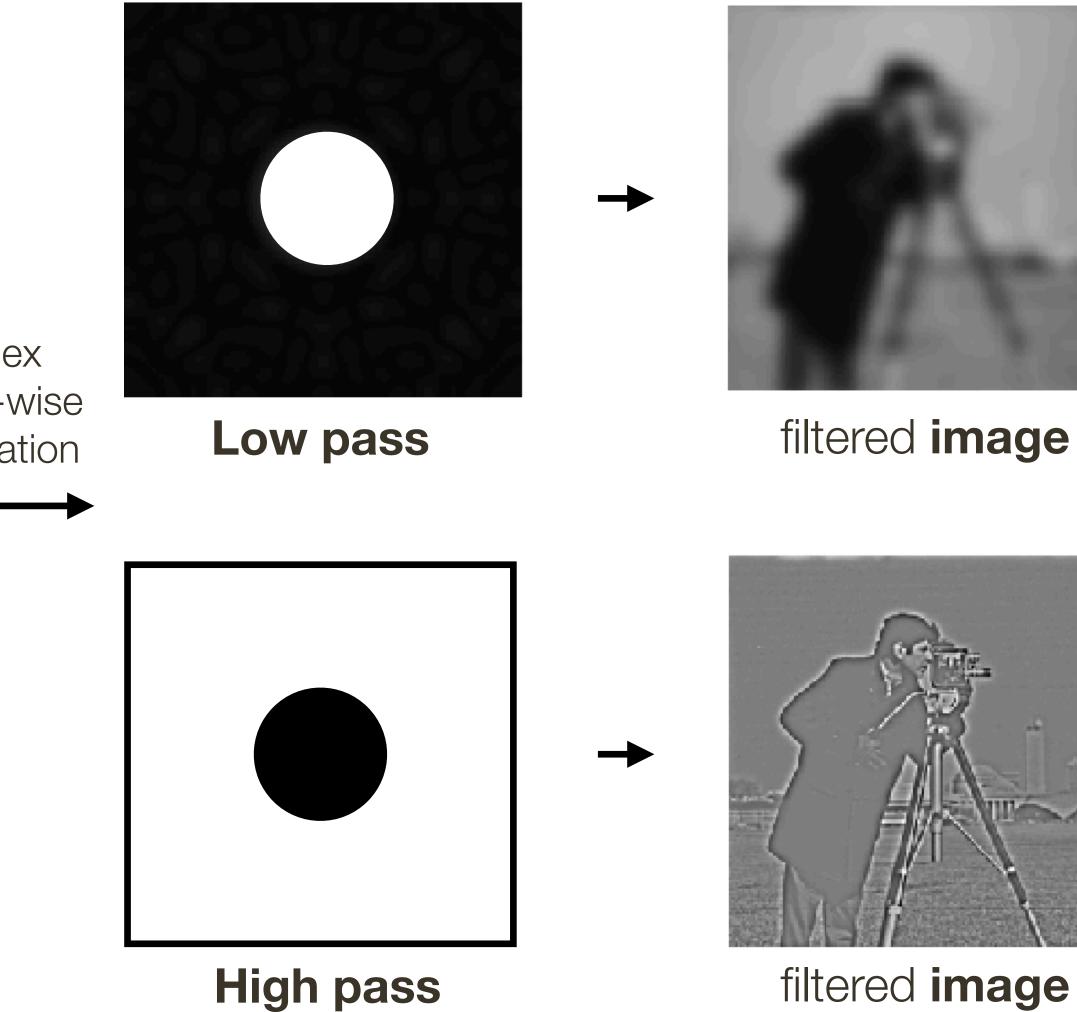
Perfect Low-pass / High-pass Filtering



complex element-wise multiplication

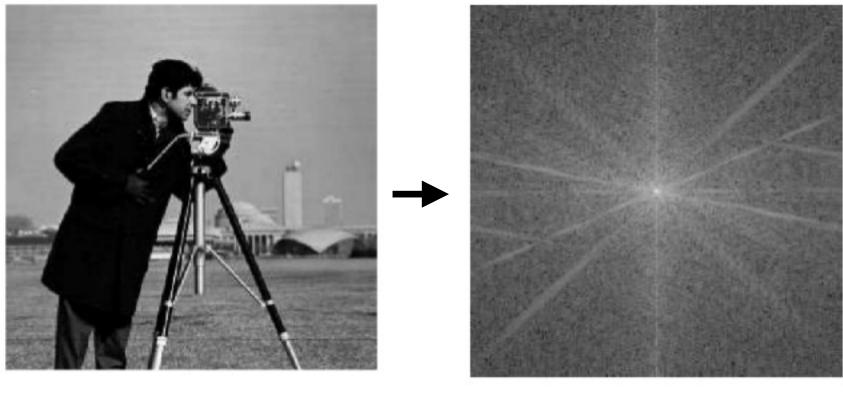
image

FFT (Mag)



filtered **image**

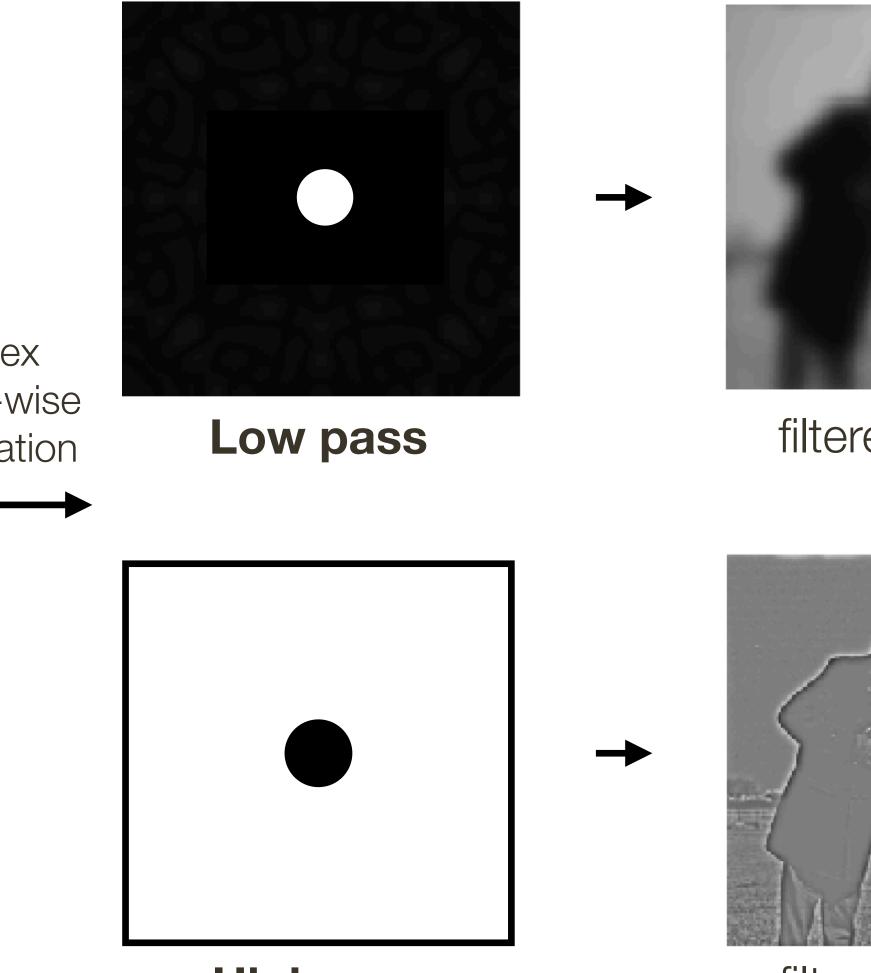
Perfect Low-pass / High-pass Filtering



complex element-wise multiplication

image

FFT (Mag)

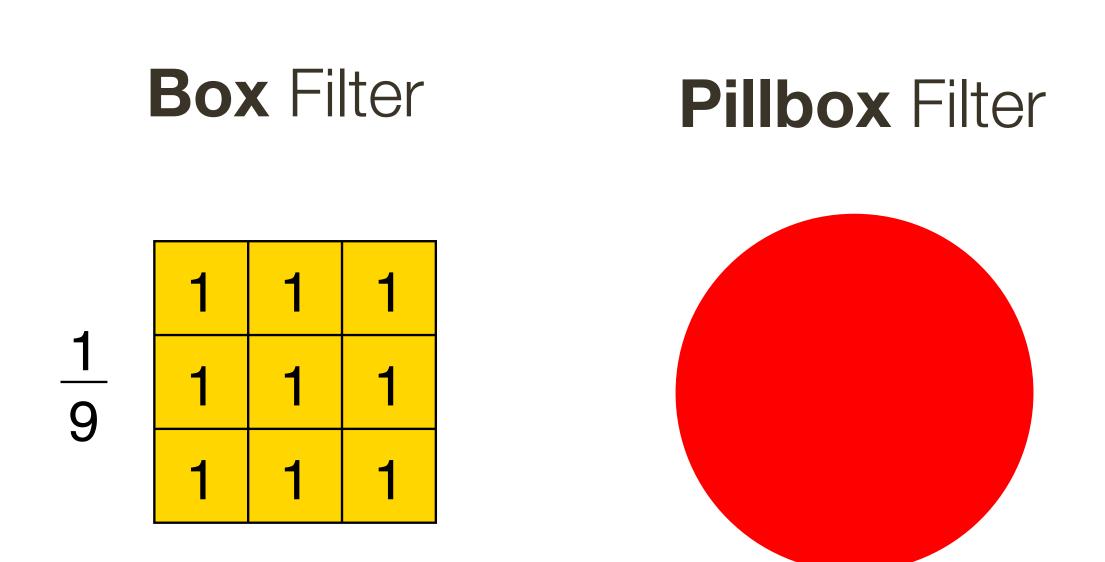


High pass

filtered image

filtered **image**

Low-pass Filtering = "Smoothing"?



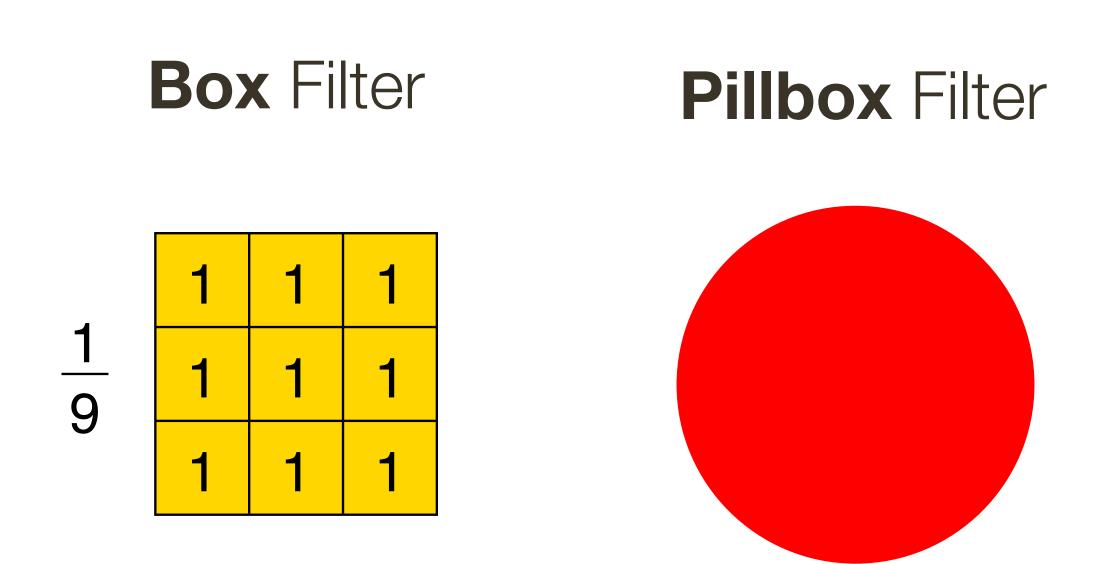
Are all of these **low-pass** filters?

Gaussian Filter

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

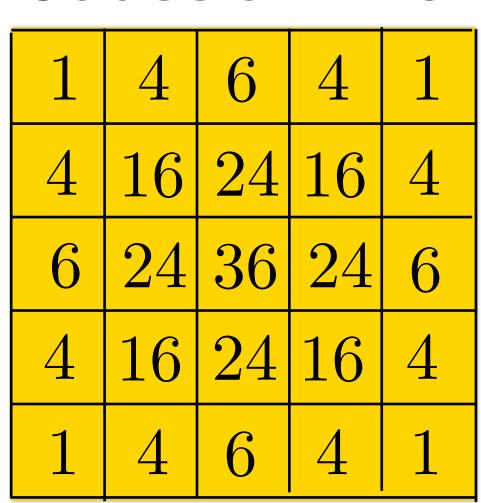
 $\frac{1}{256}$

Low-pass Filtering = "Smoothing"



Are all of these **low-pass** filters?

Low-pass filter: Low pass filter filters out all of the high frequency content of the image, only low frequencies remain

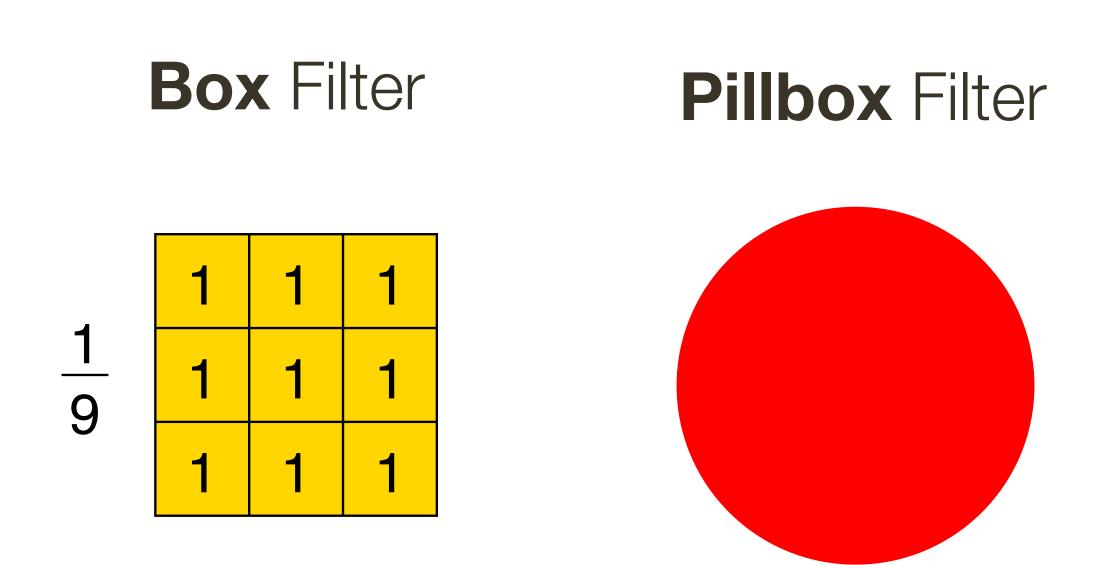


Gaussian Filter

1

256

Low-pass Filtering = "Smoothing"



Are all of these **low-pass** filters?

Low-pass filter: Low pass filter filters out all of the high frequency content of the image, only low frequencies remain

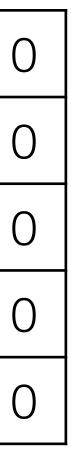
24 36 24

Gaussian Filter

\bigcirc $\left(\right)$ $\left(\right)$ $\left(\right)$

O

Image



After long detour ... lets go back to efficiency

Speeding Up **Convolution** (The Convolution Theorem)

Convolution **Theorem**:

 $i'(x,y) = f(x,y) \otimes i(x,y)$ Let

then $\mathcal{I}'(w_x, w_y) = \mathcal{F}(w_x, w_y) \mathcal{I}(w_x, w_y)$

f(x,y) and i(x,y)

convolution can be reduced to (complex) multiplication

- where $\mathcal{I}'(w_x, w_y)$, $\mathcal{F}(w_x, w_y)$, and $\mathcal{I}(w_x, w_y)$ are Fourier transforms of i'(x, y),

At the expense of two Fourier transforms and one inverse Fourier transform,

Speeding Up **Convolution** (The Convolution Theorem)

General implementation of **convolution**:

There are

Total:

Convolution if FFT space:

Cost of FFT/IFFT for image: $\mathcal{O}(n^2 \log n)$ Cost of FFT/IFFT for filter: $\mathcal{O}(m^2 \log m)$ Cost of convolution: $\mathcal{O}(n^2)$

At each pixel, (X, Y), there are $m \times m$ multiplications

 $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

Note: not a function of filter size !!!

Linear Filters: Properties (recall Lecture 4)

Let \otimes denote convolution. Let I(X, Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

Scaling: Let F be digital filter and let k be a scalar

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is **linear** if it satisfies both **superposition** and **scaling**

- $(F_1 + F_2) \otimes I(X, Y) = F_1 \otimes I(X, Y) + F_2 \otimes I(X, Y)$
- $(kF) \otimes I(X,Y) = F \otimes (kI(X,Y)) = k(F \otimes I(X,Y))$

Linear Filters: Additional Properties

Let \otimes denote convolution. Let I(X, Y) be a digital image. Let F and G be digital filters

- Convolution is **associative**. That is,

— Convolution is **symmetric**. That is,

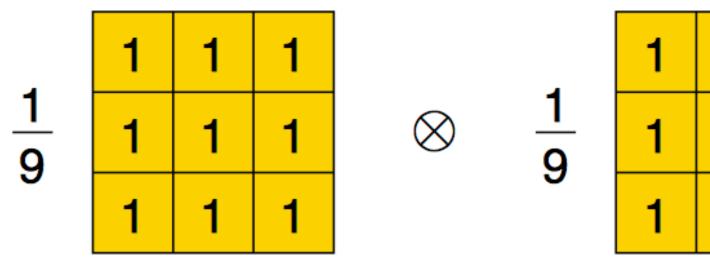
Convolving I(X, Y) with filter F and then convolving the result with filter G can be achieved in single step, namely convolving I(X, Y) with filter $G \otimes F = F \otimes G$

Note: Correlation, in general, is **not associative**.

$G \otimes (F \otimes I(X, Y)) = (G \otimes F) \otimes I(X, Y)$

$(G \otimes F) \otimes I(X, Y) = (F \otimes G) \otimes I(X, Y)$

filter = boxfilter(3)
signal.correlate2d(filter, filter, ' full')



3x3 Box

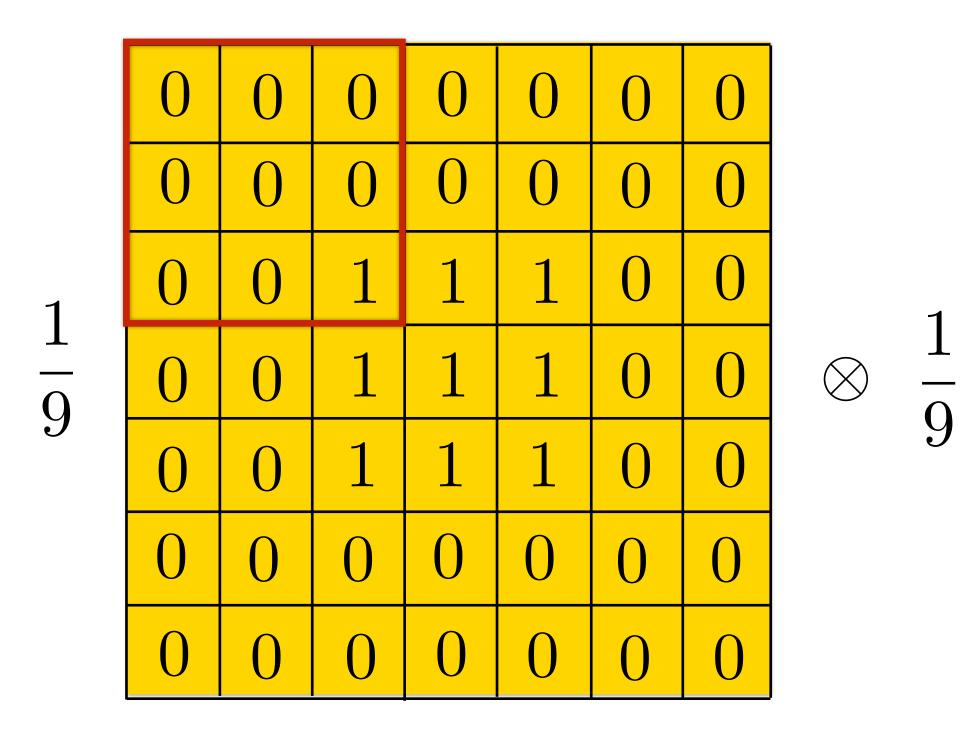
3x3 **Box**

1	1
1	1
1	1

=

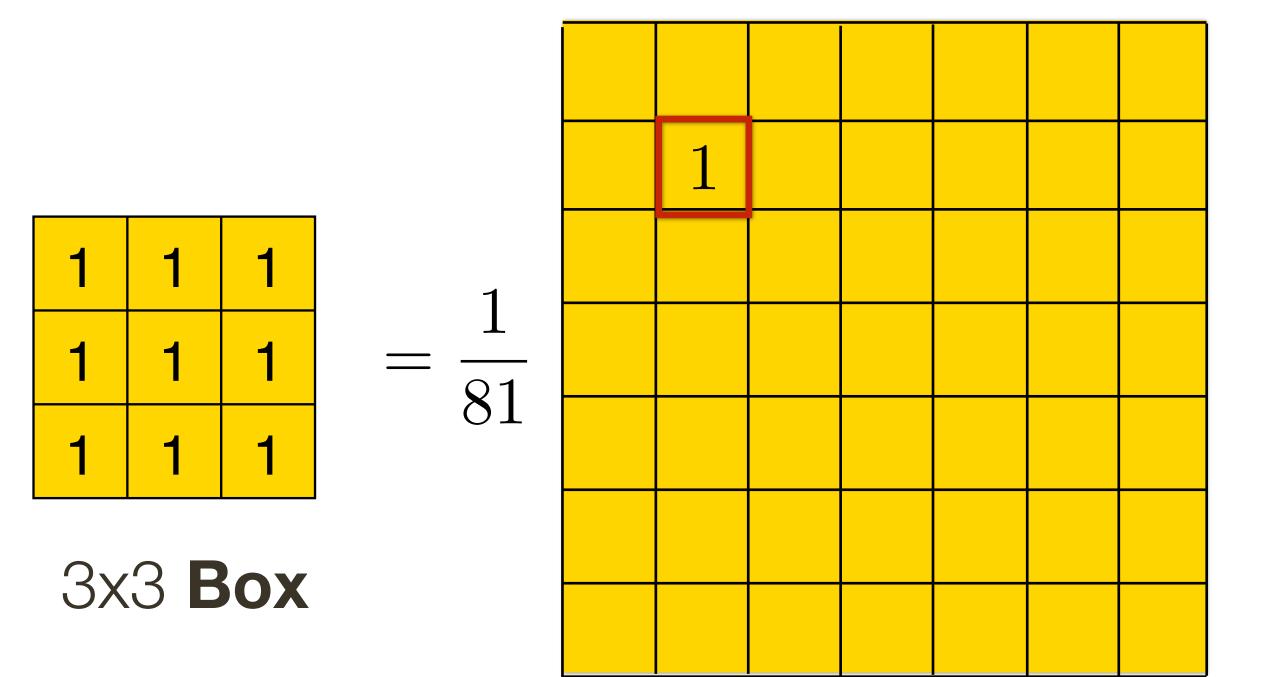
1	2	3	2	1
2	4	6	4	2
3	6	9	6	3
2	4	6	4	2
1	2	3	2	1

Treat one filter as padded "image"

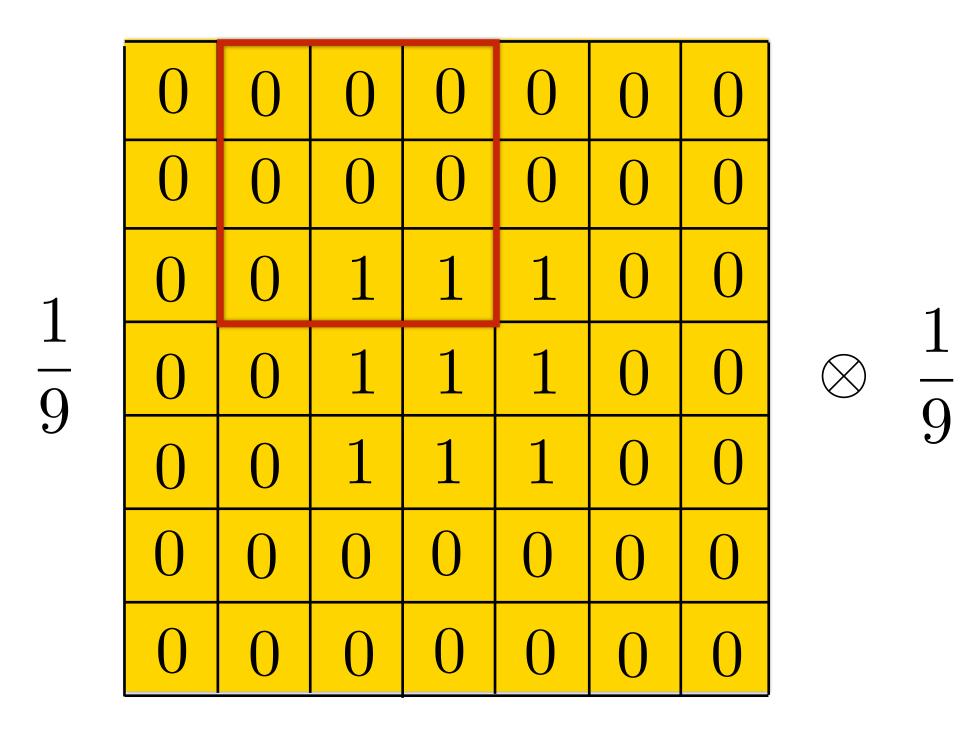


3x3 **Box**

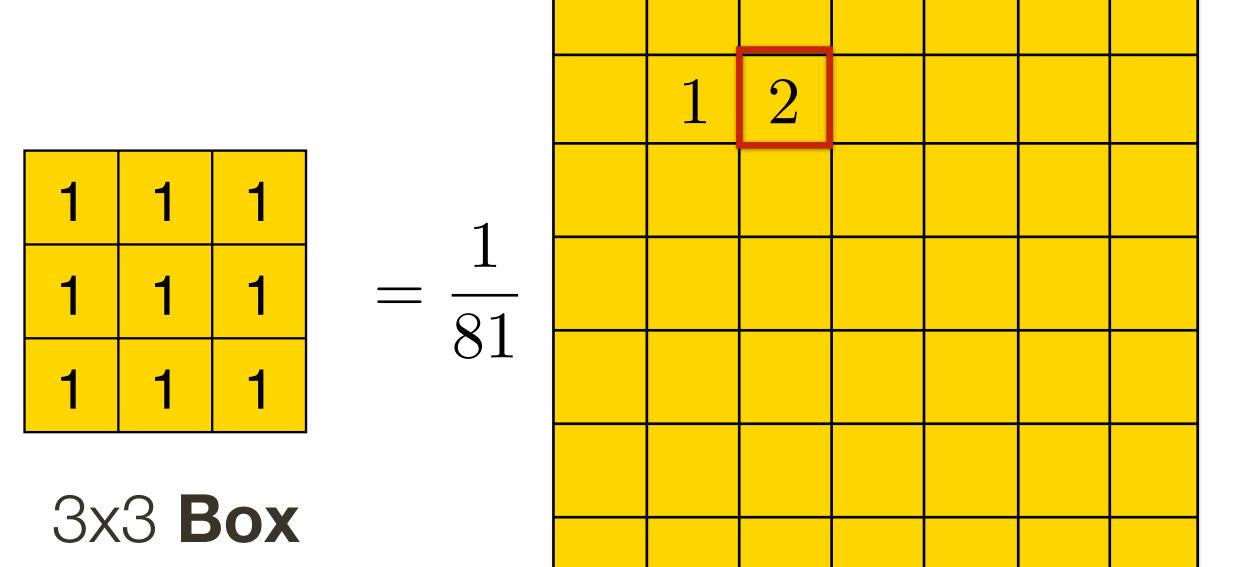
Note, in this case you have to pad maximally until two filters no longer overlap



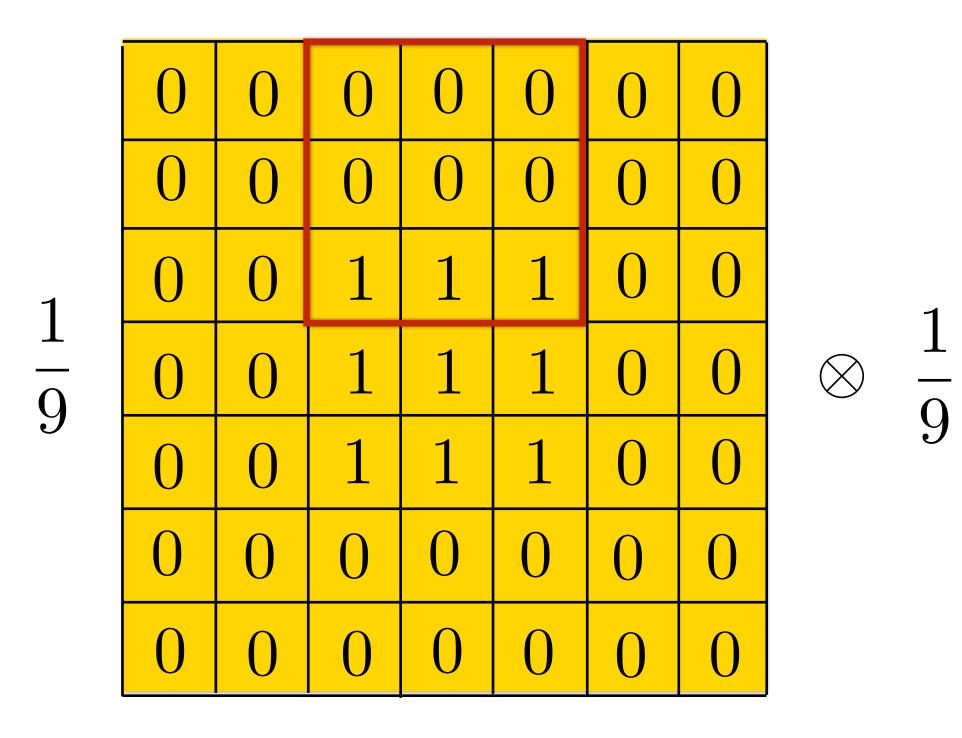
Treat one filter as padded "image"



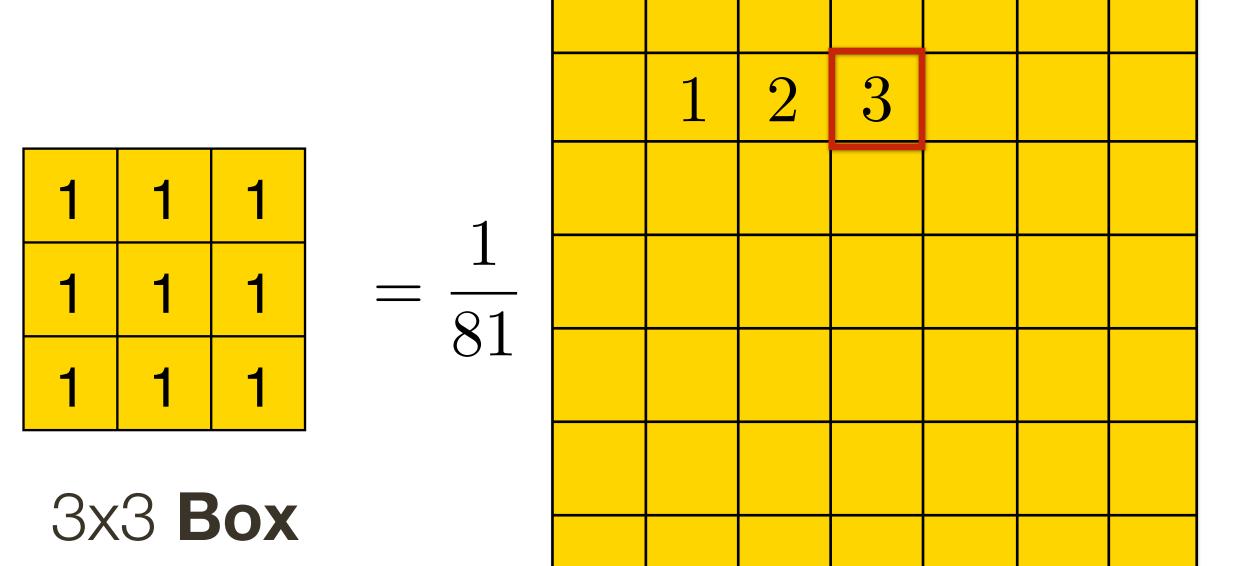
3x3 **Box**



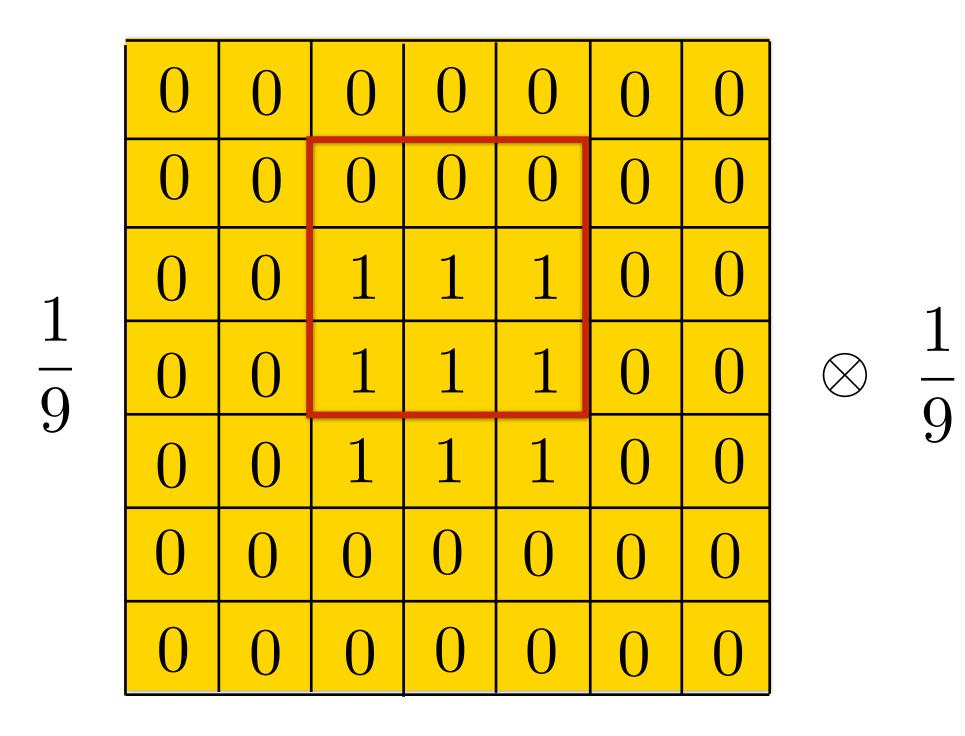
Treat one filter as padded "image"



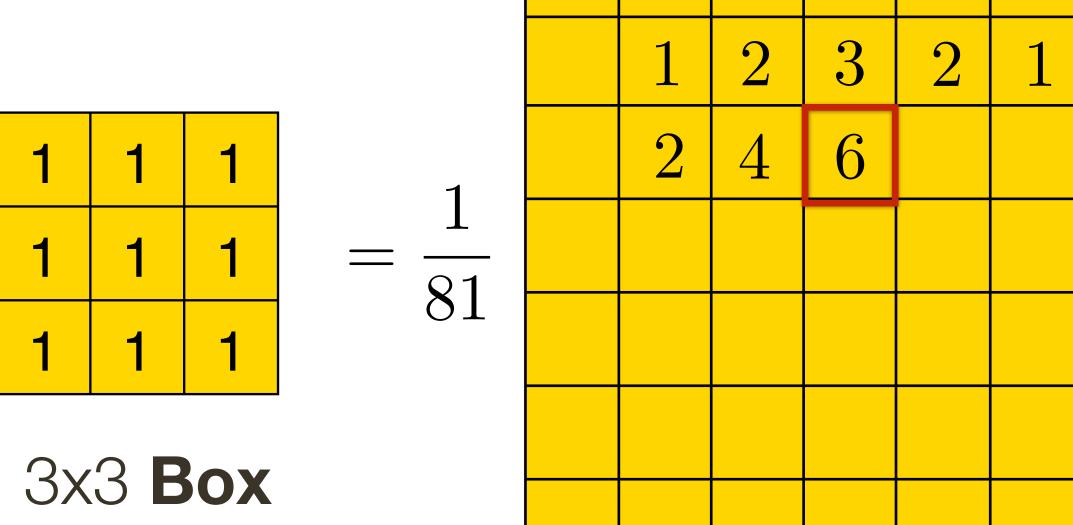
3x3 **Box**



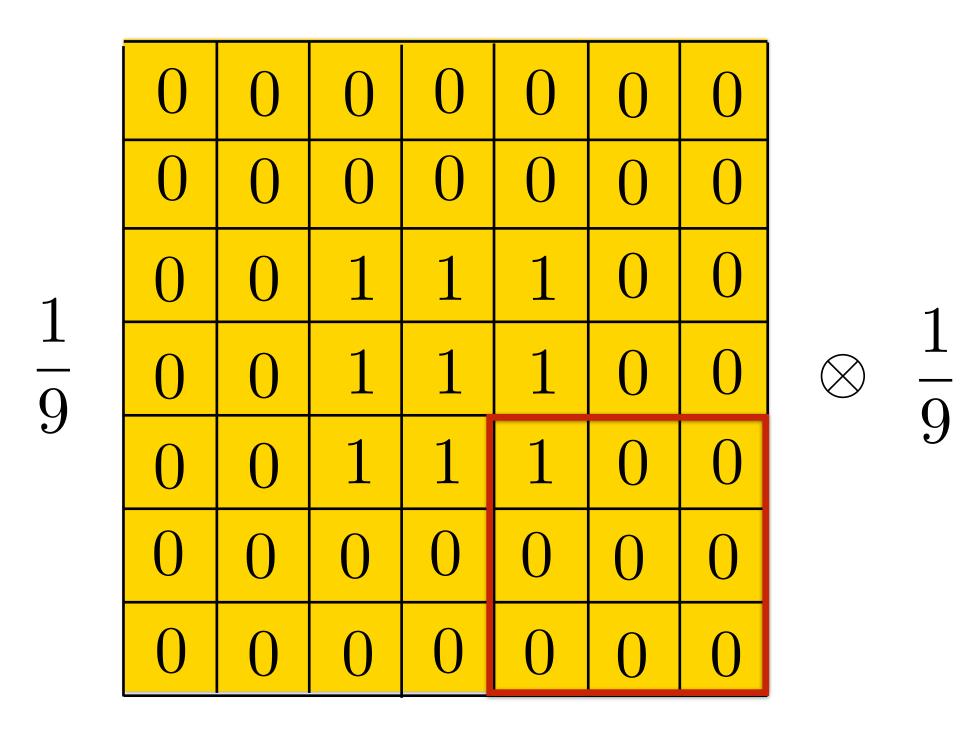
Treat one filter as padded "image"



3x3 **Box**



Treat one filter as padded "image"



3x3 **Box**

1 | 1 | 1 3x3 **Box**

1

1

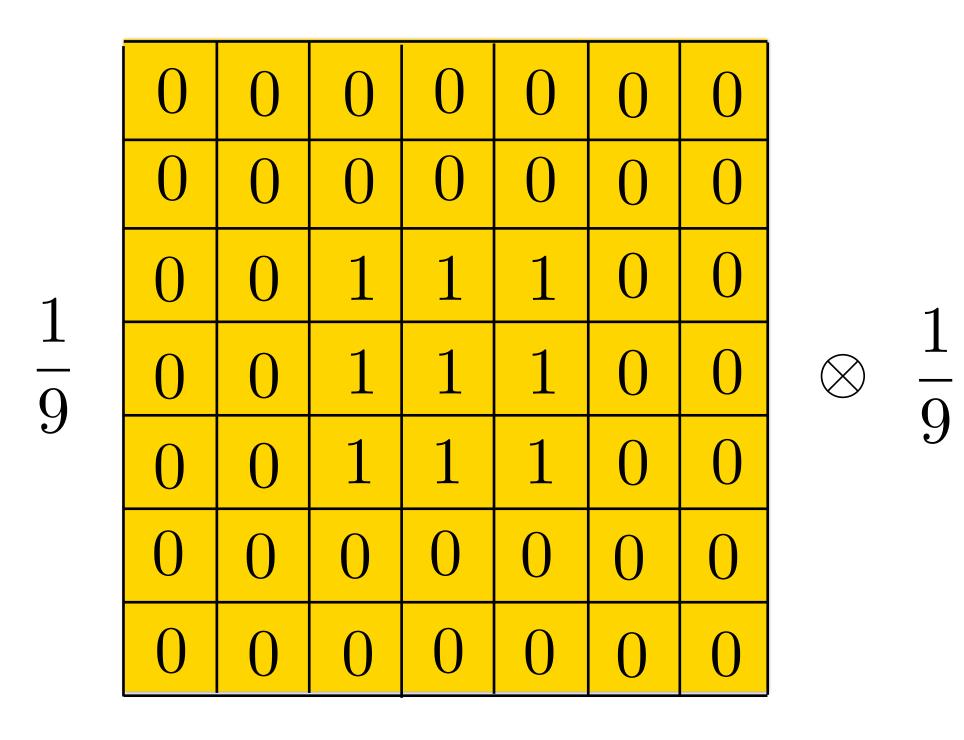
1

1

1

	1	2	3	2	1	
1	2	4	6	4	2	
$\frac{1}{01}$	3	6	9	6	3	
81	2	4	6	4	2	
	1	2	3	2	1	

Treat one filter as padded "image"



3x3 **Box**

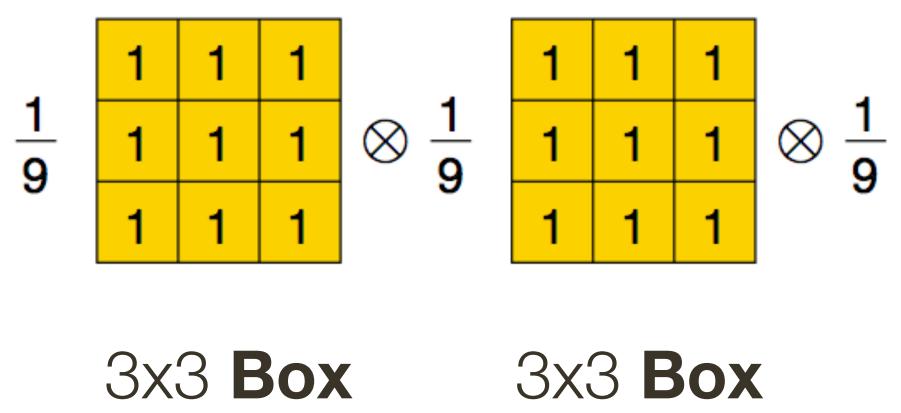
1 1 1 1 1 1 1 1 1

3x3 **Box**

$=\frac{1}{81}$

1	2	3	2	1
2	4	6	4	2
3	6	9	6	3
2	4	6	4	2
1	2	3	2	1

filter = boxfilter(3)temp = signal.correlate2d(filter, filter, 'full') signal.correlate2d(filter, temp,' full')



7

6

3

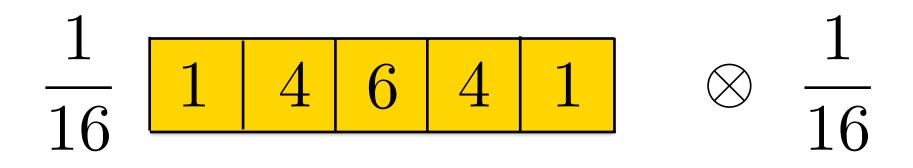
1

3

6

3x3 **Box**

Example: Separable Gaussian Filter



 $\frac{1}{256}$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

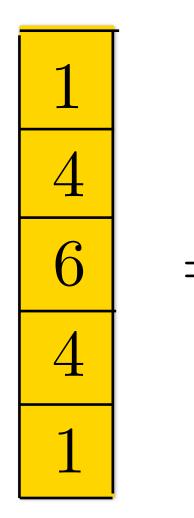
Example: Separable Gaussian Filter

 $\frac{1}{16}$

				_	
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	1	4	6	4	1
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
_					

 $\frac{1}{16}$

 \bigotimes



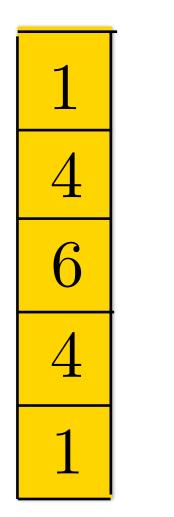
1

 $\overline{256}$

Example: Separable Gaussian Filter

 $\frac{1}{16}$

 \bigotimes



 $\overline{256}$

1	4	6	4	1
4	16			

Example: Separable Gaussian Filter

 $\frac{1}{16}$

 \bigotimes

 $\frac{1}{256}$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

Example: Separable Gaussian Filter

 $\frac{1}{16}$

 \bigotimes

 $\overline{256}$

16 24 24 36

Pre-Convolving Filters

Convolving two filters of size $m \times m$ and $n \times n$ results in filter of size:

$$\left(n+2\left\lfloor\frac{m}{2}\right\rfloor\right) \times \left(n+2\left\lfloor\frac{m}{2}\right\rfloor\right)$$

More broadly for a set of K filters of sizes $m_k \times m_k$ the resulting filter will have size:

$$\left(m_1 + 2\sum_{k=2}^{K} \left\lfloor \frac{m_k}{2} \right\rfloor\right) \times \left(m_1 + 2\sum_{k=2}^{K} \left\lfloor \frac{m_k}{2} \right\rfloor\right)$$

Gaussian: An Additional Property

Let \otimes denote convolution. Let $G_{\sigma_1}(x)$ and $G_{\sigma_2}(x)$ be be two 1D Gaussians

 $G_{\sigma_1}(x) \otimes G_{\sigma_2}(x)$

Convolution of two Gaussians is another Gaussian

Special case: Convolving with $G_{\sigma}(x)$ twice is equivalent to $G_{\sqrt{2}\sigma}(x)$

$$x) = G_{\sqrt{\sigma_1^2 + \sigma_2^2}}(x)$$

Non-linear Filters

- shifting
- smoothing
- sharpening

filters.

For example, the median filter (which is a very effective de-noising / smoothing filter) selects the **median** value from each pixel's neighborhood.

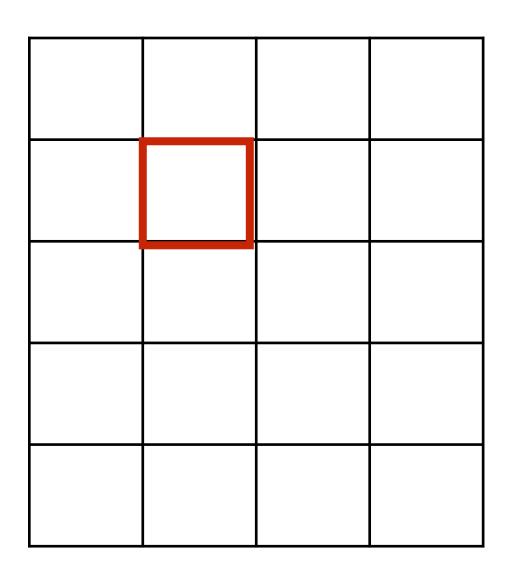
We've seen that **linear filters** can perform a variety of image transformations

In some applications, better performance can be obtained by using **non-linear**

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

Image



Output

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

4	5	5
---	---	---

Image

7 13	16	24	34	54	
------	----	----	----	----	--

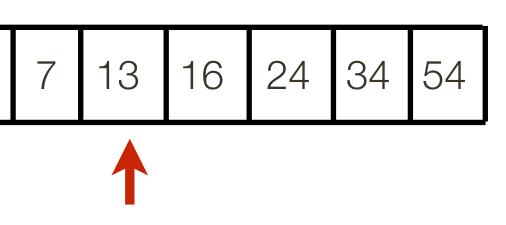
Output

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

4	5	5
---	---	---

Image



13	

Output

pepper' noise or 'shot' noise)

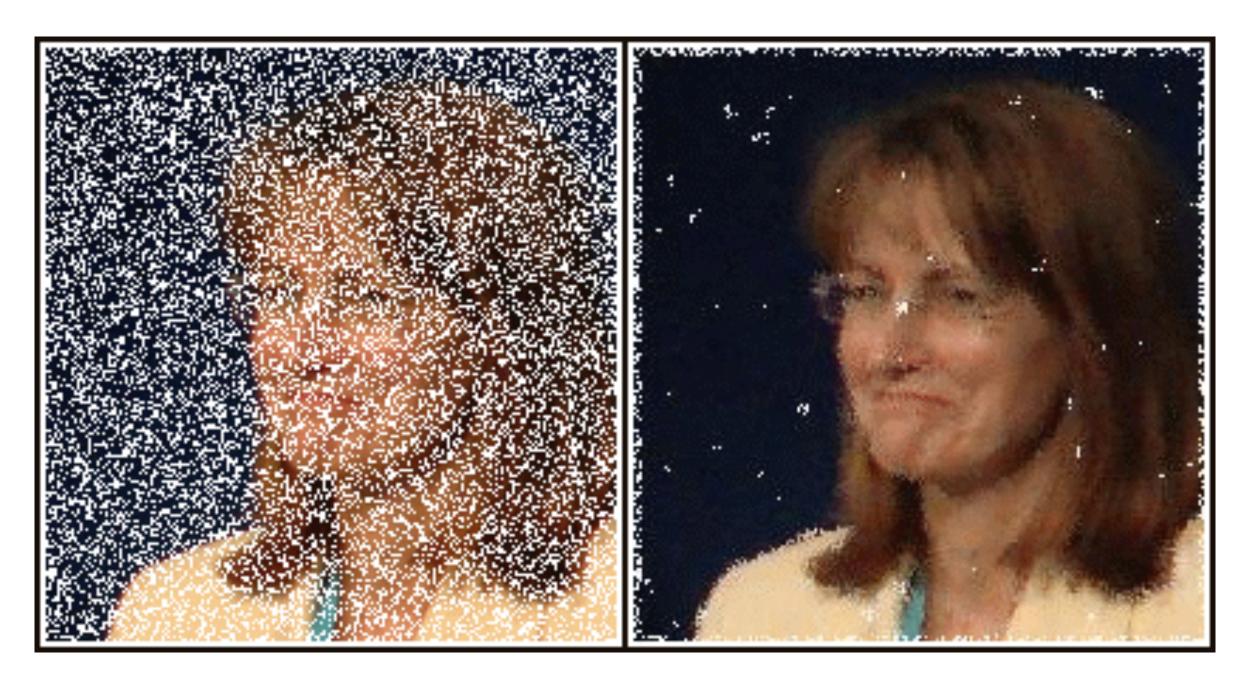


Image credit: <u>https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png</u>

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a 'salt and

The median filter forces points with distinct values to be more like their neighbors

An edge-preserving non-linear filter

Like a Gaussian filter:

- The filter weights depend on spatial distance from the center pixel
- **Unlike** a Gaussian filter:

- The filter weights also depend on range distance from the center pixel - Pixels with similar brightness value should have greater influence than pixels with dissimilar brightness value

- Pixels nearby (in space) should have greater influence than pixels far away

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

(with appropriate normalization)

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

(with appropriate normalization)

pixel I(X, Y) given by a product:

$$\exp^{-\frac{x^2+y^2}{2\sigma_d^2}} \exp^{-\frac{y^2+y^2}{2\sigma_d^2}} \exp^{-\frac{x^2+y^2}{2\sigma_d^2}} \exp^{-\frac{x^2+y^2}{2\sigma_d^2}}$$

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (x, y) away from the center

$$\frac{(I(X+x,Y+y)-I(X,Y))^2}{2\sigma_r^2}$$

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

(with appropriate normalization)

pixel I(X, Y) given by a product:

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (x, y) away from the center

$$\frac{(I(X+x,Y+y)-I(X,Y))^2}{2\sigma_r^2}$$
 range
kernel

image I(X,Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

49

image I(X,Y)

25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

image I(X, Y)

	-				
0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

image I(X, Y)

25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

image I(X, Y)

	-				
0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Domain Kernel $\sigma_d = 0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

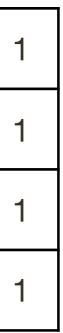


image I(X, Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

image I(X, Y)01 0 01 1 1

0.1	0	0.1	I		
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Range Kernel $\sigma_r = 0.45$ 0.98 0.98 0.2 0.1 1 0.98

(this is different for each locations in the image)

0.1

Domain Kernel $\sigma_d = 0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

image
$$I(X, Y)$$

25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

image
$$I(X, Y)$$

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Range * Domain Kernel Range Kernel $\sigma_r = 0.45$ 0.98 0.98 0.2 0.08 0.12 0.02 multiply 0.12 0.20 0.01 0.1 1 0.08 0.12 0.01 0.98 0.1

(this is different for each locations in the image)

Domain Kernel $\sigma_d = 0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

image
$$I(X, Y)$$

25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

image
$$I(X, Y)$$

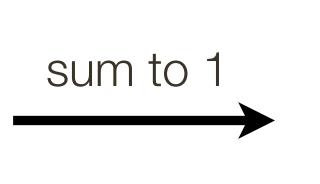
0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Range Kernel Range * Domain Kernel $\sigma_r = 0.45$ 0.98 0.98 0.2 0.08 0.12 0.02 multiply 0.12 0.20 0.01 0.1 1 0.08 0.12 0.01 0.98 0.1

(this is different for each locations in the image)

Domain Kernel $\sigma_d = 0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08



0.11	0.16	0.03
0.16	0.26	0.01
0.11	0.16	0.01

image
$$I(X, Y)$$

25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

image
$$I(X, Y)$$

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Range Kernel Range * Domain Kernel $\sigma_r = 0.45$ 0.98 0.98 0.2 0.08 0.12 0.02 multiply 0.12 0.20 0.01 0.1 1 0.08 0.12 0.01 0.98 0.1

(this is different for each locations in the image)

Domain Kernel $\sigma_{d} = 0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

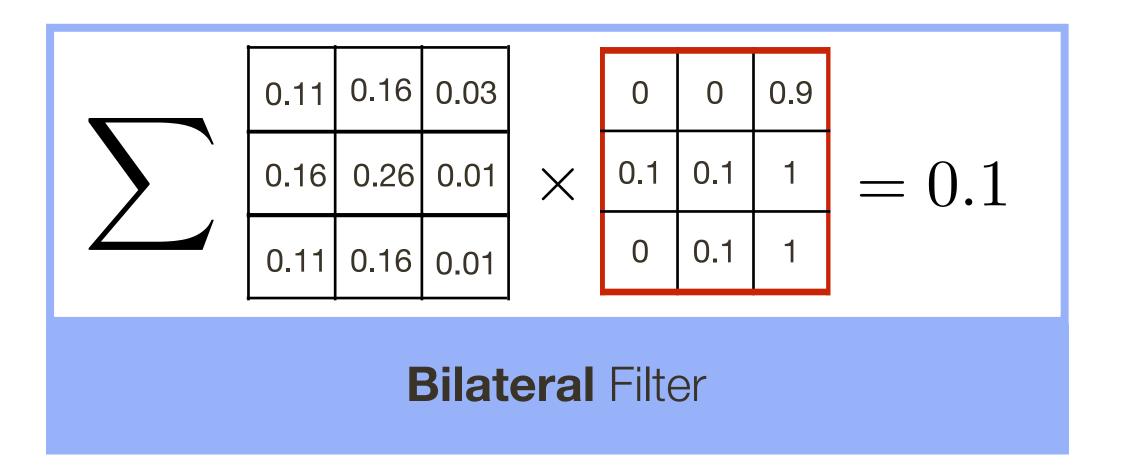


image
$$I(X, Y)$$

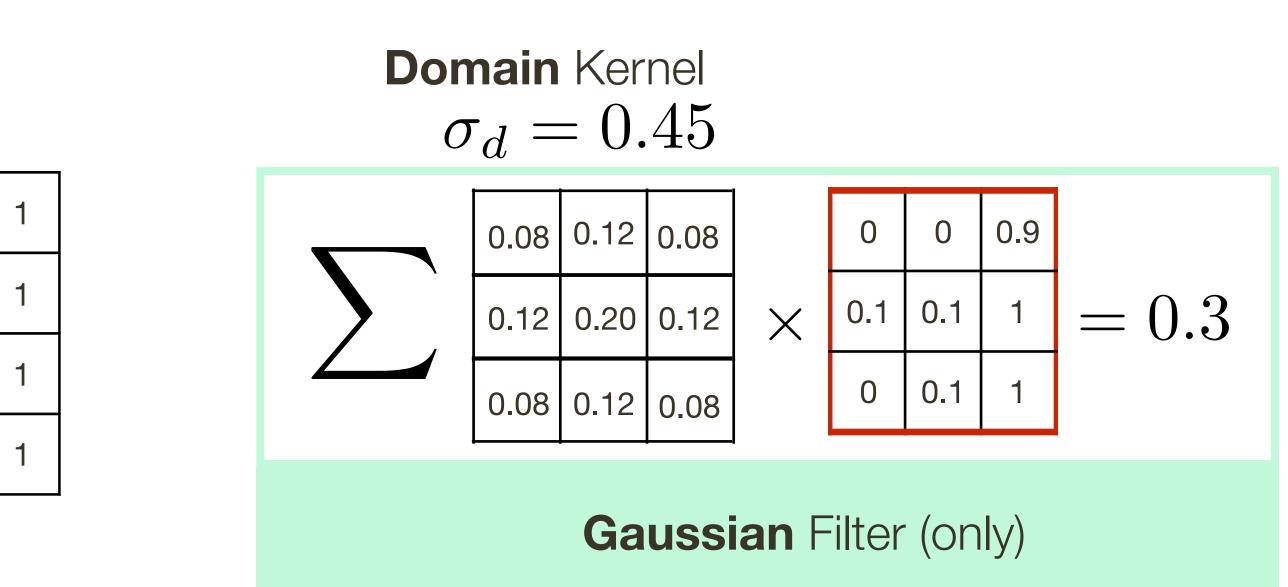
25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

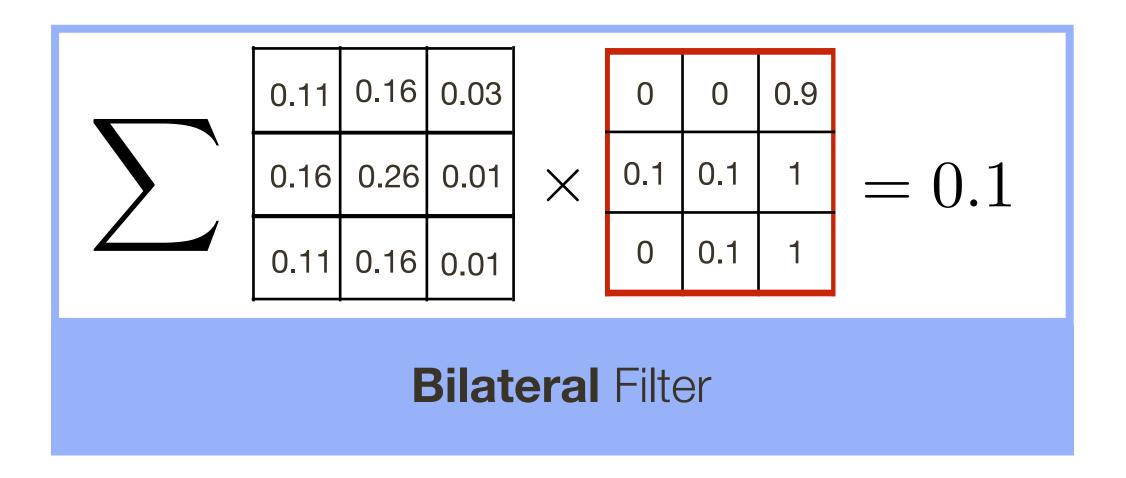
image
$$I(X, Y)$$

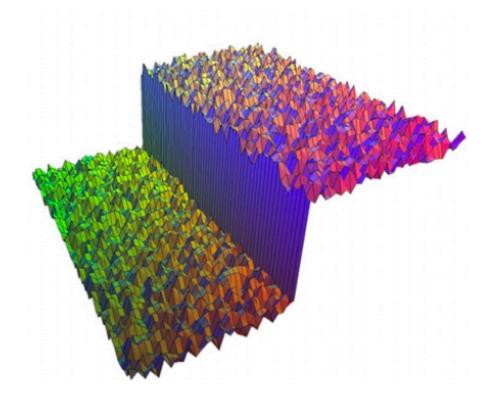
0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

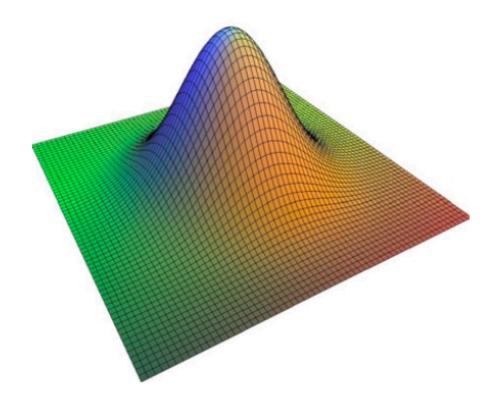
Range Kernel Range * Domain Kernel $\sigma_r = 0.45$ 0.98 0.98 0.2 0.08 0.12 0.02 multiply 0.12 0.20 0.01 0.1 1 0.08 0.12 0.01 0.98 0.1

(this is different for each locations in the image)



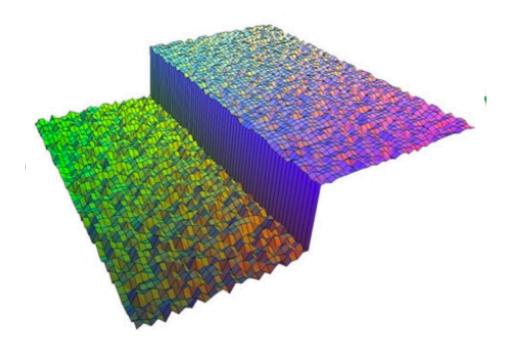




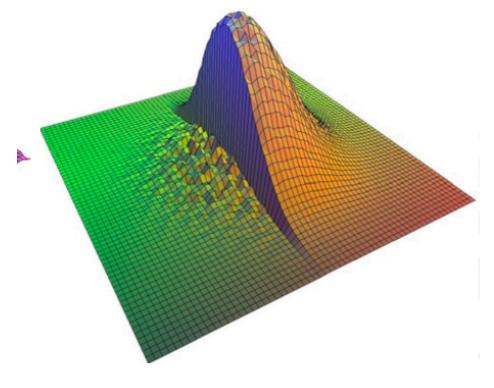


Domain Kernel

Input

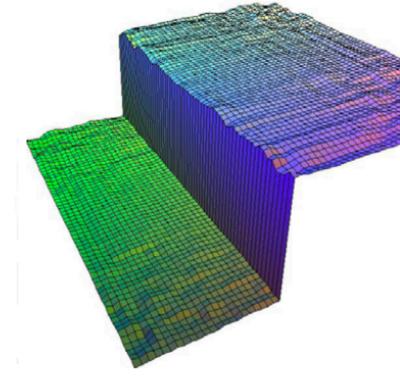


Range Kernel Influence



Bilateral Filter

(domain * range)



Output

Images from: Durand and Dorsey, 2002

Bilateral Filter Application: Denoising

Noisy Image

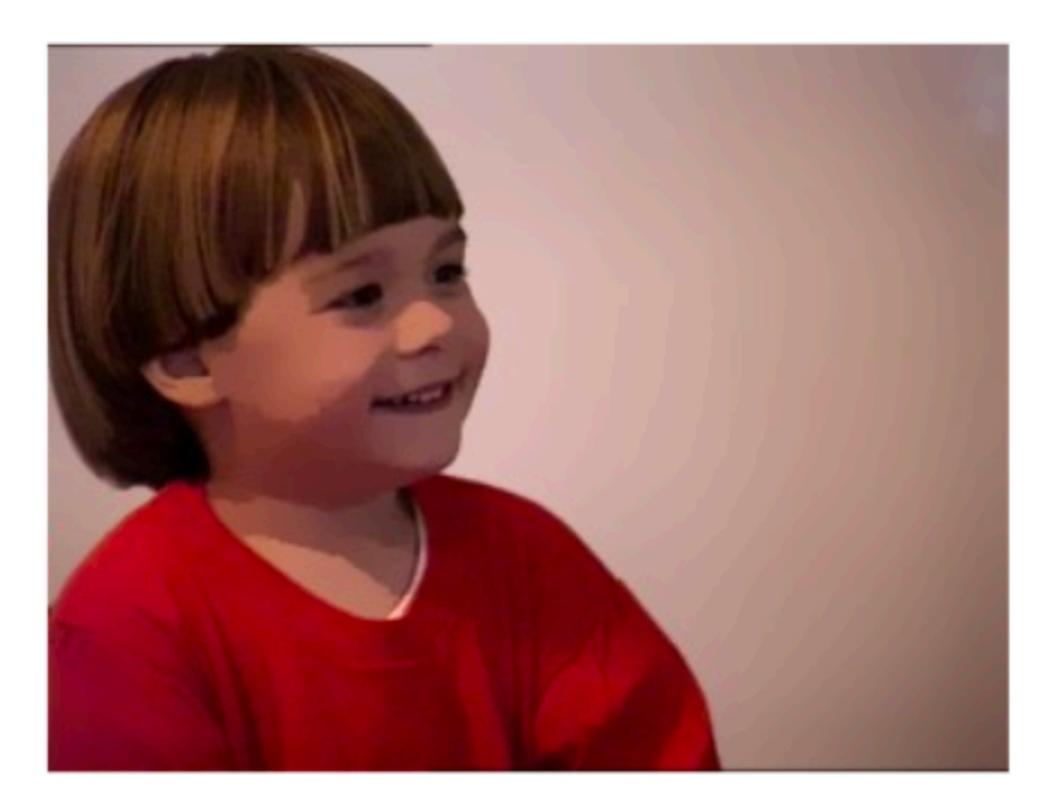
Gaussian Filter

Bilateral Filter

Slide Credit: Alexander Wong

Bilateral Filter Application: Cartooning

Original Image



After 5 iterations of **Bilateral** Filter

Slide Credit: Alexander Wong

Bilateral Filter Application: Flash Photography

noise and blur

But there are problems with **flash images**: — colour is often unnatural

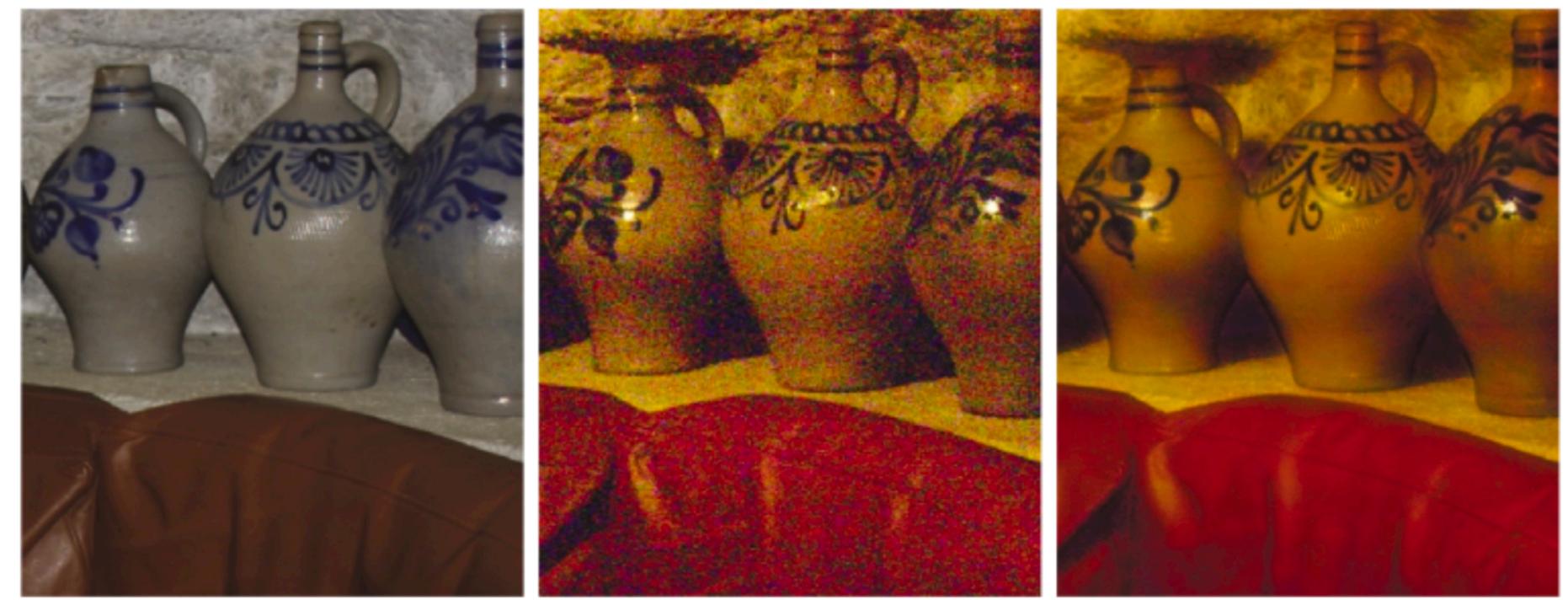
- there may be strong shadows or specularities

Idea: Combine flash and non-flash images to achieve better exposure and colour balance, and to reduce noise

Non-flash images taken under low light conditions often suffer from excessive

Bilateral Filter Application: Flash Photography

System using 'joint' or 'cross' bilateral filtering:



Flash

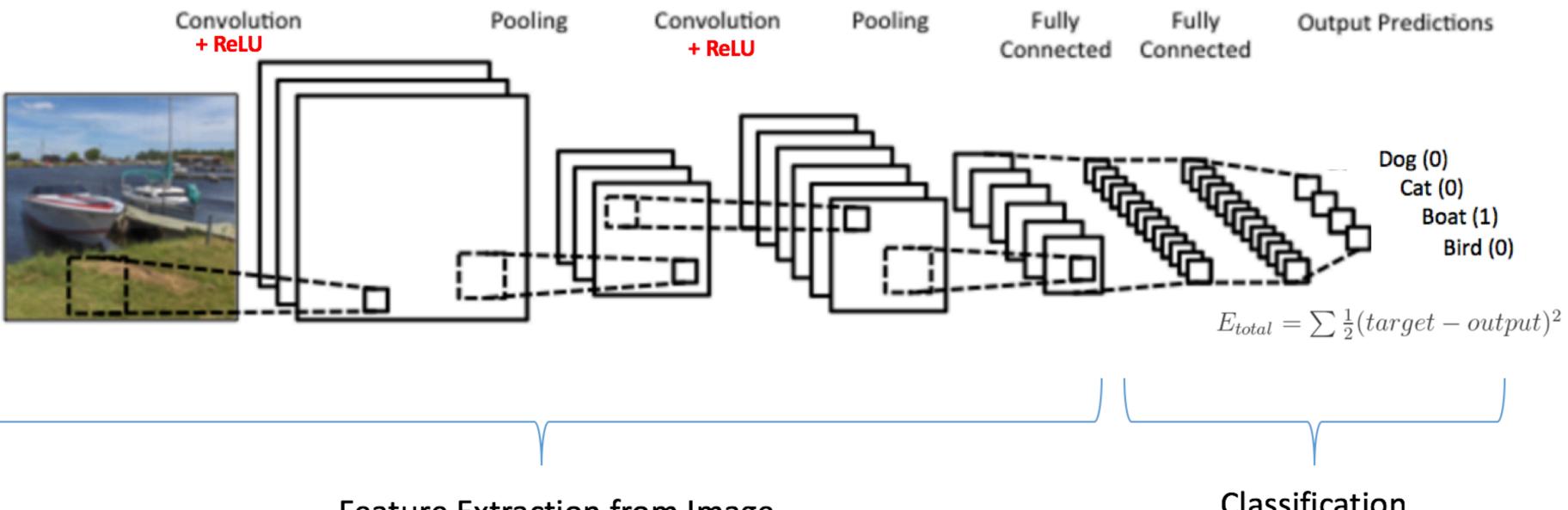
'Joint' or 'Cross' bilateral: Range kernel is computed using a separate guidance image instead of the input image

No-Flash

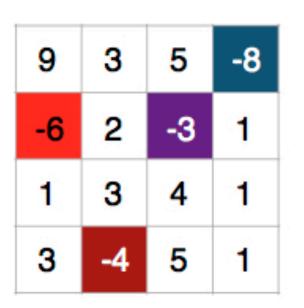
Detail Transfer with Denoising

Figure Credit: Petschnigg et al., 2004

Aside: Linear Filter with ReLU



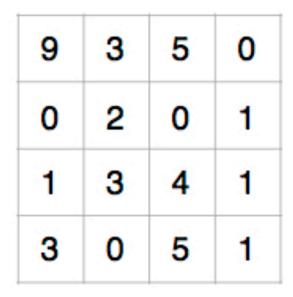
Feature Extraction from Image



Linear Image Filtering

Result of:

Classification



After Non-linear ReLU

Summary

We covered two three **non-linear filters**: Median, Bilateral, ReLU

1D filters)

Convolution is **associative** and **symmetric**

Convolution of a Gaussian with a Gaussian is another Gaussian

The **median filter** is a non-linear filter that selects the median in the neighbourhood

The **bilateral filter** is a non-linear filter that considers both spatial distance and range (intensity) distance, and has edge-preserving properties

Separability (of a 2D filter) allows for more efficient implementation (as two