THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 5:

mage Filtering (still continued)

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Menu for Today (september 18, 2020)

Topics:
— Gaussian and Pillbox filters — The Convolution Theorem
— Separability — Fourier Space Representations

— Today’s Lecture: none
— Next Lecture: Forsyth & Ponce (2nd ed.) 4.4

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due Wednsday, Sept 30th

— We will have our first quiz sometime next week (on Canvas). Format: Quiz is 1-2
minute per question (total time < 10 min). Can be started within 24 hour window.
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Lecture 4: Re-cap

— The correlation of F(X ,‘Y) and I(X,Y)is

I'(X,Y) = Z ZFZ (X +4,Y +7)

1=—k1=—k

output filter image (signal)

— Visual interpretation: Superimpose the filter F' on the image I at (X, Y),
perform an element-wise multiply, and sum up the values

— Convolution is ke correlation except filter “flipped’

f F(X,Y)=F(—X,—-Y) then correlation = convolution.
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Lecture 4: Re-cap

Ways to handle boundaries

— Ignore/ discard. Make the computation undefined for top/bottom k rows and left/right-most k columns
— Pad with zeros. Return zero whenever a value of | is required beyond the image bounds

— Assume periodicity. Top row wraps around to the bottom row; left wraps around to right

— Reflection across border. Local reflection of pixels across the top, bottom, left and right borders

Simple examples of filtering:
— COpyYy, shift, smoothing, sharpening

Linear filter properties:
— superposition, scaling, shift invariance

Characterization Theorem: Any linear, shift-invariant operation can be

expressed as a convolution
®



Example 5: Smoothing with a Box Filter
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Gonzales & Woods (3rd ed.) Figure 3.3



Smoothing

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point iIs 1 and every other point is O



Smoothing

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point iIs 1 and every other point is O

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)
The Gaussian is a good general smoothing model

— for phenomena (that are the sum of other small effects)
— whenever the Central Limit Theorem applies



Example 6: Smoothing with a Gaussian

Idea: \Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

1 z?2 t+y?
GO‘ (337 y) — ) 2 exXp - 20°

Forsyth & Ponce (2nd ed.)
Figure 4.2
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Example 6: Smoothing with a Gaussian

Idea: \Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

1 z?+y?
GO‘ (337 y) — ) 2 exXp  20°

Standard Deviation

Forsyth & Ponce (2nd ed.)
Figure 4.2
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Example 6: Smoothing with a Gaussian

Idea: \Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

1 z?2 t+y?
Ga (337 y) — ) 2 exXp - 20°

1. Define a continuous 2D function

2. Discretize 1t by evaluating this function on the Forsyth & Ponce (2nd ed.)
discrete pixel positions to obtain a filter Figure 4.2
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Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

Gy(—1,1) G,(0,1) G,(1,1)
G,(—1,0) G4(0,0) G5 (1,0)
Gy(—1,—1) G,(0,—1) G,(1,—1)
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Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 __2_ 1 _ 1 1 __2_
G,(—1,1) = 53 €XP 202 G,(0,1) = 53 €XP 202 G,(1,1) = 53 €XP 207
Go(—1.0) = —— exp 52 G (0,0) = — OO0 = i
— p— 20 o ] — o , — 20
N omg? P 2702 (1,0) oo P
1 _ 2 1 __1_ 1 _ 2
Gy(—1,—1) = 53 XD 202 | G,(0,—1) = 53 eXP 202 | Gg(1,—1) = 53 XD 202
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Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 €XP 202 G,(0,1) = 53 €XP 202 G,(1,1) = 53 €XP 207
G,(—1,0 : ~2,7 G,(0,0) = : G (1.0 L — 557
— — 20 o ] — o , p— 20
o(=1,0) ong? T 2702 (1,0) oo ¥
1 2 1 1 1 _ 2
Gy(—1,—1) = 53 XD 202 | G4(0,—1) = 53 eXP 202 | Gg(1,—1) = 53 XD 252
Witho =1 : 0.059 | 0.097 | 0.059
0.097 | 0.159 | 0.097
0.059 | 0.097 | 0.059
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Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 __2_
G,(—1,1) = 53 €XP 202 G,(0,1) = 53 €XP 202 G,(1,1) = 53 €XP 207
Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5
o(=1,0) omo? P T 2702 o(1,0) = omo? P 7
Go(—1,~1) = s exp 27 | Gol0,~1) = =5 exp 7 | Go(1,—1) = —— exp 27
ol—1,— — ex 20 2 o (U, — — ex 202 oL, — — 252
2o 2 P 202 b 202 XD
Witho =1 : 0.059 | 0.097 | 0.059 What happens if o is larger?
0.097 | 0.159 | 0.097
0.059 | 0.097 | 0.059
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Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 6XP 2 G,(0,1) = 53 ¢XP 2 G,(1,1) = 53 XP 2
Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5
-(—1,0) = 53 CXP % o(0:0) = 57 -(1,0) = 53 OXP 2
Gol—1,=1) =~ exp 7 | Go(0,—1) = ——exp 2 | Gy(l,—1) = —— exp™ 57
7 " oo P T " ooz P T " oo P
Witho =1 : What happens if o is larger?

—_ |—> |—>

— |— |—>

—_ |—> |—>
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Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 6XP 2 G,(0,1) = 53 ¢XP 2 G,(1,1) = 53 XP 2
Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5
O'(_ y ) 9 2 CXp 29 o\ o Vo2 O'( ) )_ 9 o2 CXp 29
Go(—1,-1) = s exp™ 57 | Go(0,—1) = ——exp 37 | Go(1,~1) = —— exp™ 72
T " o2 P T " oz P o(1,=1) = o2 P
Witho =1 : 0.059 | 0.097 | 0.059 What happens if o is larger?
0.097 | 0.159 | 0.097
| i ?
1050 | 0.097 Lo.05 What happens if o Is smaller”:
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Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 6XP 2 G,(0,1) = 53 ¢XP 2 G,(1,1) = 53 XP 2
Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5
-(—1,0) = 53 CXP % o(0:0) = 57 -(1,0) = 53 OXP 2
Gol—1,=1) =~ exp 7 | Go(0,—1) = ——exp 2 | Gy(l,—1) = —— exp™ 57
7 " oo P T " ooz P T " oo P
Witho =1 : What happens if o is larger?

What happens it o is smaller?

«— |— |—
«— | |
«— |— |—

. — Less blur



Example 6: Smoothing with a Gaussian

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and right)
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Box vs. Gaussian Filter

/X7 (Gaussian

original

/X{ boX

01 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fun: How to get shadow effect”
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Fun: How to get shadow effect”

University of
British
Columbia

Blur with a Gaussian kernel, then compose the blurred image with the original
(with some offset)

o3 Adopted from: loannis (Yannis) Gkioulekas (CMU)



Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2

G,(—1,1) = 53 €XP 202 G,(0,1) = 53 €XP 202 G,(1,1) = 53 €XP 207

Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5

o(=1,0) = o2 P T 2702 o(1,0) = omo? P

Gol—1,=1) =~ exp 7 | Go(0,—1) = ——exp 2 | Gy(l,—1) = —— exp™ 57

T " o2 P T " oz P T " o2 P

With o =1 0.059 | 0.097 | 0.059 What is the problem with this filter?

0.097 | 0.159 | 0.097
0.059 | 0.097 | 0.059
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Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 €XP 202 G,(0,1) = 53 €XP 202 G,(1,1) = 53 €XP 207
1 1 1 1 __1_
Go(—1,0) = 22 eXp 207 G5(0,0) = 22 G5(1,0) = D2 eXp 20°
Go(—1, 1) = — 5 | G(0,—1) = — s | Gl —1) = — ~ 552
O'(_ o ) — ) o CXP 29 J( y )_ 9 2 CXP 29 O'( ’ ) — 9 2 CXPp 2¢
With o =1 0.059 | 0.097 | 0.059 What is the problem with this filter?
0.097 | 0.159 | 0.097 does Nnot sum to 1
0.059 | 0.097 | 0.059
truncated too much
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Gaussian: Area Under the Curve
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Example 6: Smoothing with a Gaussian

Witho =1 0.059 | 0.097 | 0.059
0.097 1 0.159 | 0.097
0.059 [ 0.097 | 0.059
1 4 7 4
Better version of the (Gaussian filter:
4 | 16| 26| 16
— sums to 1 (normalized) 2‘73 2 | og | 41| 26
1 4 7 4 |

In general, you want the Gaussian filter to capture =30, for o = 1 => 7X7 filter

27



| ets talk about efficiency
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Efficient Implementation: Separability

A 2D function of X and y is separable if it can be written as the product of two
functions, one a function only of x and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:
— First, convolve each row with a 1D filter

— Then, convolve each column with a 1D filter

— Aside: or vice versa

The 2D Gaussian is the only (non trivial) 2D function that is both separable and
rotationally invariant.
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Box Fllter Example
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Separability: How do you know If filter is separable?

if a 2D filter can be expressed as an outer product of two 1D filters
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Efficient Implementation: Separability

For example, recall the 2D Gaussian:

1 z? y?
GO‘ (QZ‘, y) — ) 2 CXP 202

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y
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Efficient Implementation: Separability

For example, recall the 2D Gaussian:

1 902—|—y2
GO‘ (377 y) — 27_‘_0_2 CXP 207
1 a32 ( 1 y2 )
— exX 202 ex 202
( 2T O P > 2T O P
function of x function of y

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y
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Efficient Implementation: Separability

For example, recall the 2D Gaussian:

1 902—|—y2
GO‘ (377 y) — 27_‘_0_2 CXP 207
1 a32 ( 1 y2 )
— exX 202 ex 202
( 2T O P > 2T O P
function of x function of y

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

In this case the two functions are (identical) 1D Gaussians
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Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X ,‘Y), there are m X m multiplications

There are n X n pixelsin (X 7‘Y)

Total: m* x n® multiplications
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Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X ,‘Y), there are m X m multiplications

There are n X n pixelsin (X 7‘Y)

Total: m* x n® multiplications

Separable 2D Gaussian:
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Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X ,‘Y), there are m X m multiplications

There are n X n pixelsin (X 7‘Y)

Total: m* x n® multiplications

Separable 2D Gaussian:

At each pixel, (X ,\Y), there are  2m  multiplications

There are n Xn pixels in (X ,‘Y)

2

Total. 2m X n“ multiplications
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Example 7. Smoothing with a Pillbox

Let the radius (i.e., half diameter) of the filter be 7

In a contentious domain, a 2D (circular) pilloox filter, f (z, v), is defined as:

1 1 if 2+ 2 < r?
flz,y) = { S

T2 0 otherwise

1

Tre’

The scaling constant, ensures that the area of the filter is one
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Example 7. Smoothing with a Pillbox

Secall that the 2
separable and

D Gaussian is the only (non trivial) 2
rotationally invariant.

D function that 1s both

A 2D pillbox is rotationally invariant but not separable.

[here are occasions wnen we want to convolve an image with a 2D pilloox. hus,
t worth exploring possibilities tor efficient implementation.
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Example 7. Smoothing with a Pillbox

A 2D box filter can be expressed as the sum of a 2D pillbox and some “extra

corner bits”

42




Example 7. Smoothing with a Pillbox

Therefore, a 2D pilloox filter can be expressed as the difference of a 2D box
filter and those same “extra corner bits”

1
' A4
N N
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Example 7. Smoothing with a Pillbox

N RO

Implementing convolution with a 2D pilloox filter as the difference between
convolution with a box filter and convolution with the “extra corner bits” filter

allows us to take advantage of the separability of a box filter

Further, we can postpone scaling the output to a single, final step so that

convolution involves filters containing all O's and 1°s
— This means the required convolutions can be implemented without any

Mmultiplication at all
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Example 7. Smoothing with a Pillbox

Original 11 x 11 Pillbox

45



Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

Z = 2



Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,
Z =Y
Taking logarithms of both sides, one obtains

Inz=Inzx+Iny



Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,
Z =Y
Taking logarithms of both sides, one obtains

Inz=Inzx+Iny

Theretore



Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,
Z =Y
Taking logarithms of both sides, one obtains

Inz=Inxz+Iny

Theretore.
z = exp™? = exp

Interpretation: At the expense of two In() and one exp() computations,
Mmultiplication is reduced to admission
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Speeding Up Rotation

Another analogy: 2D rotation of a point by an angle & about the origin

The standard approach, In Euclidean coordinates, involves a matrix
multiplication

x! COS(x — Sin o T

Yy’ sincv Cos & Y

Suppose we transform to polar coordinates
(z,y) = (p,0) = (p, 0 + ) = (2',y')

Rotation becomes addition, at expense of one polar coordinate transtorm and
one Inverse polar coordinate transform
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Speeding Up Convolution (The Convolution Theorem)

Similarly, some image processing operations become cheaper in a

transform domain

f(x, y)—{ Transform
N —_ —

I(u, v)

Operation
R

R|T(u, v)]

Inverse
transform

> g(x,y)

w

Spatial \q/—————, Spatial

Transform domain

domain

Gonzales & Woods (3rd ed.) Figure 2.39
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Speeding Up Convolution (The Convolution Theorem)

Convolution Theorem:

| et ' (z,y) = f(z,y) ®i(z,y)

then Z'(wg,wy) = F(wz, wy) Z(wy, w,)

where T’ (wy, w, ), F(wg,w,), and Z(w,,w,) are Fourier transforms of ' (x, y),
f(z,y) and i(z,y)

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication

52



| ets take a detour ...
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VVhat follows IS for fun
(you will NOT be tested on this)



Fourier Transform (you will NOT be tested on this)

Basic building block:

Asin(wx + ¢)

Fourier’s claim: Add enough of these to get any periodic signal you want!

55 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

Basic building block:

Asin(wz + @)

amplitude \ ohase
siNUsoId variable
angular
frequency

Fourier’s claim: Add enough of these to get any periodic signal you want!

56 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function”

57 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function”

"',. | ,,.-\,\ / . f' \
I‘ ‘| ’ | / ‘\. "1" \
' | “ | | f | \ { \
| | | | / /
| | | | | — \ J \% + r?

| | \ | e \ f

| ,‘ | | \ / \ f

! | \ / J

e \ | \ \ )

./ '\“. / '
sin(27x)

58 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function”

": | | \ //.-'-‘ \ ,/,-"\.\\
‘l ," | / \ ff \\ 3 A \ A
v"" | | i"s | ,"‘, \\. f/ \ [\ | \ f'f \ /'} \\\ }f \ ff \\
l \ ' \ | |
\|| 1! ‘!\ II‘ — \\ n"‘} ""'. / + \l .} | k‘ /f \\ f l\ J' \ ,“} | ‘{
!\ - ',." ‘1\ 7\ !‘ " \ /',, \l\ j/ h\) \\J‘ \u’} \v" \\,} \ / |
\ J W/ N / \ /,"‘
: 1
sin(27x) 3 sin(273x)

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function”

‘, |‘| ,‘c' 'l"l }/ "\\ ’,'f" \‘\. \ 'ﬁ A N

’ n ,' / f\ | / l \‘ f \

! | | |' | / ‘\\ / \ f \ f | u .| \ [\ |

' | | | / f \ R Y B B \ | : \

| ﬁl ! ‘|| |‘ — | \\ "1 .“.. + \ l‘ \ ) ’/ “n l} \'\ .} '\ f '
| | | | | / \ / \ [ } VERVAR /
\ l‘ "I \ / \ ] Jd VvV OV Vv YUV
, 1 . : 1

f(x) = sin(27x) + 3 sin(27w3x) sin(27x) 3 sin(273zx)

80 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

e e e et e 2 ] P B — T —— A — > S ® S

U

~O
4
~O

square wave

6 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

//'\ \ /.f\\
/ \ / \ . : A
[\ [\ NN AN A NN
f \ f \ / \ f \ | \ | \
/ / | \ /
~ —+ \f\z’\/\.!\/\/
\ z/ \ / \/ \ [\ M YERY
\ /," '\ // ) " \J \V J \J \/
\\ , /.' \‘\ 3 /
square wave
'(..\,\‘ \ ’,‘ \
.’f ‘.\ ‘: ',|
— | \ } i\ ‘l
R
\/ “u’j \\_,f f "

62 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

U

l || |‘ ' "\' f‘\ ” ™ 3
\ f , \ l‘\ r‘\ f\ 'f\
| \ / \ | _I_ '/\'-/‘.l""\"‘\.‘”\""'.“."\"’
} v V V VVVV V V
:

square wave

ea—
I —
————

63 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

square wave

U

= e ATATAVAVAVAYAVAYAYAYAYAYA

o4

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

square wave

U

—+  MAAVAMAAAANY

ATA /\ﬁ

How would you
express this
mathematically’?

09

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

e e e et e 2 ] P B —— S —— B —— > S—® 4

AZ : sin(2mkx)
k=1

INfiNnite sum of sine waves
square wave

66 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

Basic building block:

Asin(wx + ¢)

Fourier’s claim: Add enough of these to get any periodic signal you want!

67 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

250 |-
A
200 - V L\
1580 |- 4
B (] T‘
100 |-
NJHL[ ‘“V | kL'\f
o[ (‘ A J\\ ! “Jk AP
A A’ ! A
00 l 510 | 1(l)O . 1;0 | 2(110

I'ixel point

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images
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Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image” Spatial frequency

69



Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image” Spatial frequency

Amplitude (magnitude) of Fourier transform (phase does not show desirable
correlations with image structure)

70



Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image” Spatial frequency

Amplitude (magnitude) of Fourier transform (phase does not show desirable
correlations with image structure)

Observation: [ow frequencies close

to the center

[a



Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image” Spatial frequency

W
N\ BN

©=150

(2



Fourier Transform (you will NOT be tested on this)

Spatial frequency

What are “frequencies” in an image”?
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Fourier Transform (you will NOT be tested on this

Image

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
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Fourier Transform (you will NOT be tested on this)

First (lowest) frequency, a.k.a. average

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
/5



Fourier Transform (you will NOT be tested on this)

Second frequency

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
/6




Fourier Transform (you will NOT be tested on this)

Third frequency

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
77




Fourier Transform (you will NOT be tested on this)

50% of frequencies

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
/8



Fourier Transform (you will NOT be tested on this

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
79



Fourier Transform (you will NOT be tested on this

30



Fourier Transform (you will NOT be tested on this

amplitude

Forsyth & Ponce (2nd ed.) Figure 4.6



Fourier Transform (you will NOT be tested on this

cheetah phase
with zebra
amplitude

zebra phase
with cheetah
amplitude

amplitude

Forsyth & Ponce (2nd ed.) Figure 4.6




Fourier Transform (you will NOT be tested on this)

Experiment. \Where of you see the stripes”

LTS

frequenc

93 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

Campbell-Robson contrast sensitivity curve

84 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



VWhat preceded was for fun
(you will NOT be tested on it)



Fourier [ransform

Preview of Part 3 of your homework

Gala Contemplating the Mediterranean
Sea Which at Twenty Meters Becomes
the Portrait of Abraham Lincoln
(Homage to Rothko)

Salvador Dali, 1976

36 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier [ransform

Preview of Part 3 of your homework

Low-pass filtered version

q7 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier ransform

Preview of Part 3 of your homework

High-pass filtered version

a8 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: You will not be tested on this ...

Piazza: \What is a low-pass filter”

A—..
*H

complex
element-wise | _
multiplication Low pass filtered image
—_—)
FFT (Mag)
—>
J \\

High pass filtered image

89



Low-pass Filtering = “Smoothing”

Box Filter Pillbox Filter Gaussian Filter

114]16(4]1

16|24]16

200

16(24]16

4
624|36|24
4
1

— | =~ O [

416 |4

Are all of these low-pass filters”
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Low-pass Filtering = “Smoothing”

Box Filter Pillbox Filter Gaussian Filter

114]16(4]1

4116|24|16
624|36|24
4
1

200

16(24]16
416 |4

— | =~ O [

Are all of these low-pass filters”

Low-pass filter: Low pass filter filters out all of the high
frequency content of the image, only low frequencies remain
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Low-pass Filtering = “Smoothing”

Box Filter Pillbox Filter Gaussian Filter
114|641
1 111 . 4116|24|16| 4
g L1111 Src |0124[36]24] 6
11 4116(24|16| 4
11416411 01010710710
0olo|0|0]|O
Are all of these low-pass filters? 0l0|1]0]0
olojo|0]|oO
Low-pass filter: Low pass filter filters out all of the high 0[0[0|0]|0O

frequency content of the image, only low frequencies remain
Image
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After long detour ...
lets go back to efficiency



Speeding Up Convolution (The Convolution Theorem)

Convolution Theorem:

| et ' (z,y) = f(z,y) ®i(z,y)

then Z'(wg,wy) = F(wz, wy) Z(wy, w,)

where T’ (wy, w, ), F(wg,w,), and Z(w,,w,) are Fourier transforms of ' (x, y),
f(z,y) and i(z,y)

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication
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Speeding Up Convolution (The Convolution Theorem)

General implementation of convolution:

At each pixel, (X ,‘Y), there are m X m multiplications

There are n X n pixelsin (X >‘Y)

Total: m* x n® multiplications

Convolution if FFT space:

Cost of FFT/IFFT for image: O(n?logn)
Cost of FFT/IFFT for filter: O (m? log m)

Cost of convolution: O(TLQ) Note: not a function of filter size !!!
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Linear Filters: Properties (ecal Lecture 3)

L et ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let F; and F, be digital filters

(Fi+ )1 X,Y)=FI(X,Y)+ FoI(X,Y)
Scaling: Let F' be digital filter and let £ lbe a scalar

(kF) @ I[(X,Y)=F® (kI(X,Y)) = k(FQI(X,Y))
Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation Is linear If it satisfies both superposition and scaling
90



Linear Filters: Additional Properties

Let ® denote convolution. Let I(X,Y) be a digital image. Let /and G be
digital filters

— Convolution is associative. That Is,
GRIFRIINX,Y)=(GECRF)RI(X,Y)

— Convolution is symmetric. That is,
(GRIF)RIX,Y)=FGRKIX,Y)

Convolving I(X,Y) with filter /" and then convolving the result with filter G can
be achieved in single step, namely convolving I(X,Y) withfiter GQ F = F ® G

Note: Correlation, in general, is not associative.
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