THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 4:

mage Filtering (continued)

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Menu for Today (september 16, 2020)

Topics: Image Filtering (also topic for next two classes)

— Linear filters — Filter examples: Box, Gaussian
— Correlation / Convolution

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5
— Next Lecture: none

Reminders:

— Assignment 1: Image Filtering and Hybrid Images is out, due September 30th
— Midterm is scheduled for Week 7, October 21st




Today’s “fun” Example:

Developed by the French company Varioptic, the lenses consist of an oil-
based and a water-based fluid sandwiched between glass discs. Electric
charge causes the boundary between oil and water to change shape, altering
the lens geometry and therefore the lens focal length

The intended applications are:
auto-focus and image
stabilization. No moving parts.
Fast response. Minimal power
consumption.

Video Source: https://www.youtube.com/watch?v=2c6ICdDFOY8
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Today’s “fun” Example:

Electrostatic field between the column of water and the electron (other side of
oower supply attached to the pipe) — see full video for complete explanation

Video Source: https://www.youtube.com/watch?v=NjLJ77luBdM

4


https://www.youtube.com/watch?v=NjLJ77IuBdM

Today’s “fun” Example:

Electrostatic field between the column of water and the electron (other side of
oower supply attached to the pipe) — see full video for complete explanation

Video Source: https://www.youtube.com/watch?v=NjLJ77luBdM

4


https://www.youtube.com/watch?v=NjLJ77IuBdM

Today’s “fun” Example:

As one example, in 2010, Cognex signed a license agreement with Varioptic to
add auto-focus capabillity to it DataMan line of industrial ID readers (press
release May 29, 2012)

Video Source: https://www.youtube.com/watch?v=EU8[ Xxip1NM

5


https://www.youtube.com/watch?v=EU8LXxip1NM

Today’s “fun” Example:

As one example, in 2010, Cognex signed a license agreement with Varioptic to
add auto-focus capabillity to it DataMan line of industrial ID readers (press
release May 29, 2012)

Video Source: https://www.youtube.com/watch?v=EU8[ Xxip1NM

5


https://www.youtube.com/watch?v=EU8LXxip1NM

Lecture 3: Re-cap hin Lens Equation




Lecture 3: Re-cap

Another way of looking at the focal length of a lens. The iIncoming rays, parallel
to the optical axis, converge to a single point a distance f behind the lens.
This Is where we want to place the image plane.

Image lens [ f

plane
v Let z go to -Infinity



Lecture 3: Re-cap hin Lens Equation

|s convergence projection point directly / inversely proportional to world position®

https://www.physicsclassroom.com/class/refrn/Le8son-5/Converging-Lenses-Object-Image-Relations



Lecture 3: Re-cap hin Lens Equation

|s convergence projection point directly / inversely proportional to world position®

11 1 , 2 f
2z f 2+ f
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Lecture 3: Re-cap hin Lens Equation

|s convergence projection point directly / inversely proportional to world position®

11 1 o 2 f
2z f _z—|—f
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Lecture 3: Re-cap hin Lens Equation

|s convergence projection point directly / inversely proportional to world position®

1 1 1 , 2 f
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Objects further away than the
focal length
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Lecture 3: Re-cap hin Lens Equation

|s convergence projection point directly / inversely proportional to world position®

1 1 1 , 2 f
_— — Y
A A z+ f
. zf
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L’Hopital’s Rule

Objects further away than the
focal length
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Lecture 3: Re-cap hin Lens Equation

|s convergence projection point directly / inversely proportional to world position®

11 1 o 2 f
A A _z—|—f

Objects at 2 x focal length

https://www.physicsclassroom.com/class/refrn/Leston-5/Converging-Lenses-Object-Image-Relations



Lecture 3: Re-cap hin Lens Equation

|s convergence projection point directly / inversely proportional to world position®

11 1 , 2f
2z f Tt
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Objects at 2 x focal length
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Lecture 3: Re-cap hin Lens Equation

|s convergence projection point directly / inversely proportional to world position®

11 1 o 2 f
A A _z—|—f

Objects at the focal length

https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations



Lecture 3: Re-cap hin Lens Equation

|s convergence projection point directly / inversely proportional to world position®

11 1 o 2 f
2z f _z—|-f

Objects closer than the focal
length

https://www.physicsclassroom.com/class/refrn/Les$on-5/Converging-Lenses-Object-Image-Relations



Lecture 3. Re-cap Lens Imaging Artifacts

Chromatic aberration
— Index of refraction depends on wavelength, A, of light
— Light of different colours follows different paths

— Therefore, not all colours can be In equal focus

Scattering at the lens surface

— Some light is reflected at each lens surface

There are other geometric phenomena/distortions
— pincushion distortion
— arrel distortion

— elc
15



Lecture 3: Re-cap Human kye

Conjunctiva ,
Vitreous humor

. Zonule fibers
Iris
Fovea
Cornea

— The eye has an iris (like a camera) —

— ———
- — —

-
Macula
---------------- lutea

— - —
— —

— Focusing is done by changing Aqucons Lens opﬁcaxis/ Disk
shape of lens

Optic nerve

Retina

Ciliary body Choroid

Sclera

— When the eye is properly focused,
ight from an object outside the eye IS

imaged on the retina pupil = pinhole / aperture

— [he retina contains light receptors
called rods and cones

retina = film / digital sensor

Slide adopted from: Steve Seitz
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What types of transformations can we do”

I1(X,Y)

Filtering l Warping
7(x, V)
changes range of image function changes domain of image function

17 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What types of filtering can we do”

Point Operation

H . o

Neighborhood Operation

H H o

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Examples of Point Processing

darken

invert

lower contrast

non-linear lower contrast

lighten raise contrast
fid
| ) _l?;(;
: >
=
- W

19

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

non-linear raise contrast




Examples of Point Processing

darken

invert

lower contrast

non-linear lower contrast

I[(X,Y) — 128
lighten raise contrast
i
- » \’{?‘\A -~ »
,: x é
3 > BV

19

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

non-linear raise contrast
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Darkening v.s. Contrast

Brightness: all pixels get lighter/darker, relative difference between pixel
values stays the same

Contrast: relative difference between pixel values becomes higher / lower

112 72

e N

o g
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Examples of Point Processing
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non-linear raise contrast
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7 1/3
(X, Y) X 255
255

non-linear raise contrast
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Examples of Point Processing

darken lower contrast non-linear lower contrast

. > | ..r“i"
[(X,Y 1/3
I(X,Y) I(X,Y)— 128 (X, Y) [(X,Y) X 255
2 255
invert ighten raise contrast non-linear raise contrast
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01 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Examples of Point Processing

darken

lower contrast non-linear lower contrast
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Examples of Point Processing

darken

I(X,Y)

invert

lower contrast non-linear lower contrast

~ - »
=
A
=
[(X,Y) 1(x,Y)\'?
I(X,Y)— 128 : 5
( ) 5 ( o E ) X 259
lighten raise contrast non-linear raise contrast
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I(X,Y)+ 128 I(X,Y) x 2 T X 255

22

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What types of transformations can we do”

I1(X,Y)

Filtering l Warping
7(x, V)
changes range of image function changes domain of image function

03 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What types of filtering can we do”

Point Operation

H . o

Neighborhood Operation

H H o

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




| Inear Filters

Let I(X,Y) be an n x n digital image (for convenience we let width = height)

Let FI(X,Y)be another m x m digital image (our “filter” or “kernel”)
A

Filter

Image

For convenience we will assume m Is odd. (Here, m = 5)
25



| Inear Filters

T

Lot k= |2
A

Compute a new image, I'(X, YY), as follows

I'X,Y) =

output

1=—k1=—k

k k

> [P

filter

i Y

image (signal)

I
N 4 O — N

2-10 1 2
]

Intuition: each pixel in the output Image is a linear combination of the same
iINndex pixel and its neighboring pixels in the original image

20



| Inear Filters

For a give X and Y, superimpose the
filter on the image centered at (X, Y")

27




| Inear Filters

For a give X and Y, superimpose the
filter on the image centered at (X, Y")

Compute the new pixel value, I' (X,Y),
as the sum of m X m values, where each
value is the product of the original pixel
value in I(X,Y) and the corresponding
values In the filter

28




| Inear Filters

The computation Is repeated for each
(X,Y)

29




Linear Filter Example

| I1(X,Y)

Image
| oo Pl lelele]l [ITI1ITTILILITL[
FX,Y) Pl [T LT
filter o o fofsofsofsofofsofo 0| [ [ [ [ L 1 [ [
1 o0 o [o [sofsofsofsofsofo [o| [ [ [ | | [ [ ||
5 o Jo [o [sofoisofsofolo 0| [T | [ [ I | [ [
o0 Jo [o [sofsofsofsofsoo [o| [ [ [ L L | [ [
ofofofofofofoololo] [ L1 L1 1L L[]
ofofofofofofolofolo]l [ L1 L1111
ofofsofo o fofofofofo|l [ L L1 L L1111
umumumumum HEEEEEEEEEE

I'(X,Y) = ZZF@Q (X +12,Y +9)

j=—ki1=—k

output filter image (signal)

30 Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Linear Filter Example
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Linear Filter Example
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33 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

image I(X’ Y)

F(X,Y)

filter

I'(X,Y) = ZZF@Q (X +12,Y +9)

j=—ki1=—k

output filter image (signal)

34 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

F(X,Y)

filter

I'X,Y) =

image I(X’ Y)

N
HE N

(X +14,Y + 7)

> 3 [FG )

j=—ki1=—k

output filter image (signal)

35 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

F(X,Y)

filter

I'X,Y) =

image I(X’ Y)
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output filter image (signal)

36 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example
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filter
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Linear Filter Example

image I(X’ Y)

F(X,Y)

filter

N
B

I'(X,Y) = ZZF@Q (X +12,Y +9)

j=—ki1=—k

output filter image (signal)

38 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

image I(X’ Y)

o Jofoofolofo
ko k

I'X,Y)= Y » F(i,j)I(X+iY +j)

j=—ki=—

F(X,Y)

filter

N
B

output filter image (signal)

39 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

I'(X,Y)

output

N
5]
N
3

k k

I'X,Y)= Y » F(i,j)I(X+iY +j)

j=—ki=—

filter image (signal)

40 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

| I[(X,Y) I'X,Y)
Image output
| cofoofololeololod [T T [L[1_
F(X,Y) [ofofofofofofofofofo}  [TJo[o]eo]30]s0 30 20 o]
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: o0 Jo Jo ofoifsofsofolo [o | [T [ I [ [ [ [ [
o0 Jo Jo [sofsofsofsofsefo [o| [T [ | [ [ [ [ [
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k

I'(X,Y) = ZZF@Q (X +12,Y +9)

j=—ki1=—k

output filter image (signal)

A Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

. I1(X,Y)

Image
| oo fo ool lo] [T 111111
F(X,Y) [ o fofo[ofo[ofo[o o [10[2030[30 302010
filter o o [o 5005050500 o~ ol T[T
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I'(X,Y) = ZZF@Q (X +12,Y +9)

j=—ki1=—k

output filter image (signal)

49 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

CHED)
|
|
|
|
|
|

| oo o looolelelo]l [ L1111
F(X,Y) [fofofofofofofofo o]  [lo]w]e]s]0[s0]20]io]
filter 0 [0 [0 [so[sofs0[50[50]0 [o EEEEEEE
| o [0 [s0]50 50 [0[0 [0 EREEEEE
5 0 [50[50 500 [0 EEEEEEE
T [ [

1T [ [

EEEEEEE

T [ [

HEE

I'X,Y) = I(X +i,Y + j)

image (signal)

output

43 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example
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|
|
|
|
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| I1(X,Y)

Image
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I'(X,Y) = ZZF@Q (X +12,Y +9)

j=—ki1=—k

output filter image (signal)

A4 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

ol B
L[] [BfE]

N
EEEEERG

ol B
HEEEEEEROCE

N
HEEEEEERCER

k k

I'X,Y)= Y » F(i,j)I(X+iY +j)

j=—ki=—

filter image (signal)

A5 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

ol B
L[] [BfE]

N
EEEERE0

ol B
HEEEEEEROCE

N
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k k

I'X,Y)= Y » F(i,j)I(X+iY +j)

j=—ki=—

filter image (signal)

A6 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

el B ol B
o= - ol O
N N
HEESEE8E880E8R

filter image (signal)

17 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

I'(X,Y) = ZZF@Q (X +12,Y +9)
1=—k1=—k

output filter image (signal)

48 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L inear Filter Example

oy TR s

filter

e

I'X,Y)= Y » F(i,j)I(X+i,Y +j)

J=—ki=- filter image (signal)

49 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



| Inear Filters

k k

I'X,Y)= Y » F(i,j)I(X+iY +j)

j=—ki1=—k

output filter image (signal)

For a give X and Y, superimpose the filter on the image centered at (X, Y')

Compute the new pixel value, I' (X,Y), as the sum of m x m values, where
each value is the product of the original pixel value in I(X,Y") and the
corresponding values In the filter

50



Linear Filters

Let's do some accounting ...
k: k

I'X,Y) = Fzg (X +4,Y +7)
output j__k ==K

51



| Inear Filters

Let's do some accounting ...
k k

I'X,Y)= Y » F(i,j)I(X+iY +j)

1=—ki1=—k

output filter image (signal)

At each pixel, (X,Y), there are m x m multiplications

51



| Inear Filters

Let's do some accounting ...
k k

I'X,Y)= Y » F(i,j)I(X+iY +j)

j=—ki1=—k

output filter image (signal)

At each pixel, (X,Y), there are m x m multiplications

There are nXn pixelsin (X ,‘Y)

51



| Inear Filters

Let's do some accounting ...
k k

I'X,Y)= Y » F(i,j)I(X+iY +j)

j=—ki1=—k

output filter image (signal)

At each pixel, (X,Y), there are m x m multiplications

There are nXn pixelsin (X ,‘Y)

Total: m? x n® multiplications

51



| Inear Filters

Let's do some accounting ...
k k

I'X,Y)= Y » F(i,j)I(X+iY +j)

output j=—hki=—k

filter

image (signal)

At each pixel, (X,Y), there are m x m multiplications

There are

nxn pixelsin (X,Y)

Total:

When m is fixed, small constant, this is O(n?

51

> x n® multiplications

). But when m = n thisis O(m

4).



| Inear Filters: Boundary Effects

52



| Inear Filters: Boundary c=ffects

Three standard ways to deal with boundaries:

1. lgnore these locations: Make the computation undefined for the top and
bottom & rows and the leftmost and rightmost & columns

53



| Inear Filters: Boundary c=ffects

Three standard ways to deal with boundaries:

1. lgnore these locations: Make the computation undefined for the top and
bottom & rows and the leftmost and rightmost & columns

2. Pad the image with zeros: Return zero whenever a value of | is required
at some position outside the defined limits of Xand Y

o4



| Inear Filters: Boundary Effects
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| Inear Filters: Boundary c=ffects

Four standard ways to deal with boundaries:

1. lgnore these locations: Make the computation undefined for the top and
bottom k rows and the leftmost and rightmost & columns

2. Pad the image with zeros: Return zero whenever a value of | is required
at some position outside the defined limits of X and Y

3. Assume periodicity: The top row wraps around to the bottom row; the
leftmost column wraps around to the rightmost column
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| Inear Filters: Boundary Effects
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| Inear Filters: Boundary Effects
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| Inear Filters: Boundary c=ffects

Four standard ways to deal with boundaries:

1. lgnore these locations: Make the computation undefined for the top and
bottom k rows and the leftmost and rightmost & columns

2. Pad the image with zeros: Return zero whenever a value of | is required
at some position outside the defined limits of X and Y

3. Assume periodicity: The top row wraps around to the bottom row; the
leftmost column wraps around to the rightmost column

4. Reflect boarder: Copy rows/columns locally by reflecting over the edge
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| Inear Filters: Boundary c=ffects

Four standard ways to deal with boundaries:

1. lgnore these locations: Make the computation undefined for the top and
bottom k rows and the leftmost and rightmost & columns

2. Pad the image with zeros: Return zero whenever a value of | is required
at some position outside the defined limits of X and Y

3. Assume periodicity: The top row wraps around to the bottom row; the
leftmost column wraps around to the rightmost column

4. Reflect boarder: Copy rows/columns locally by reflecting over the edge
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A short exercise ...
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Example 1: WWarm up

Original Filter Result
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Example 1: WWarm up

Original Filter Result
(no change)
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Example 2.

Original Filter Result
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Example 2.

Original Filter Result
(sift left by 1 pixel)
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Example 3.

11111
1
o [111]1
111 -
Original Filter Result

(filter sums to 1)
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Example 3.

1111
1
g | 1]1]1
1111
Original Filter Result
(filter sums to 1) (blur with a box filter)
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Example 4.

Original

©|—=

Filter
(filter sums to 1)

69

Result



Example 4.

0|00 11011
1
0(2]0 o | 1]1]1
O|0]|O0 1011
Original Filter Result

(filter sums to 1) (sharpening)
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Example 4.

Original

(Scaled)
Image Itself Blurred Version
O|0|0
1
0|20 9
O|0|0
Filter

(filter sums to 1)

70

Result
(sharpening)



Example 4.

Why have filters sum up to 17

Original Filter Result
(filter sums to 1) (sharpening)

[a



Example 4: Sharpening

Before

(2



Example 4: Sharpening
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Before After
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Linear Filters: Correlation vs. Convolution

Definition: Correlation
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Linear Filters: Correlation vs. Convolution

Definition: Correlation

k k
I'X,Y)y= Y » F@i,)I(X+iY +j)
1=—k 1=—
Definition: Convolution
k k

I'(X,Y) = Z > Fi, ) I(X —i,Y — j)

l4s



Definition: Correlation

d
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C

d

e

f
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N

Filter

/0

Linear Filters: Correlation vs. Convolution

Output



Linear Filters: Correlation vs. Convolution

Definition: Correlation

I'X,Y)y= Y » F@i,)I(X+iY +j)

j=—ki=—Fk

d

b

k

d

e

9

N

Filter

k

/0

+ 40

Output

1 77€J

=1a+ 2b + 3C
€ 5563 L

- 8h +
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Linear Filters: Correlation vs. Convolution

Definition: Correlation

la4

k k
I'X,Y)y= Y » F@i,)I(X+iY +j)
1=—k1=—k
Definition: Convolution
k k
I'X,Y)= > > F@)HI(X~-i,Y —j)
1=—k1=—k
a|b|c
d|e|f
g | h| |
Filter Image Output




Linear Filters: Correlation vs. Convolution

Definition: Correlation

Definition: Convolution

I'X,Y)y= Y » F@i,)I(X+iY +j)

j=—ki=—Fk

I'X,Y)y= % » F(i,j)I(X—iY —j)

j=—ki=—Fk

d

b

C

k

k

d

e

f

9

N

Filter

k

k

la4

+ 60

Output

1 CBEJ

=09a+8b+ 7C
€ 5563 L

- 2h + 1]
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Linear Filters: Correlation vs. Convolution

Definition: Correlation

Definition: Convolution

(rotated by 180)

Filter

Y

¢

I'X,Y)y= Y » F@i,)I(X+iY +j)

j=—ki=—Fk

I'X,Y)y= % » F(i,j)I(X—iY —j)

j=—ki=—Fk

}

o

P

d

b

C

k

k

O

9

e

d

e

f

9

N

Filter

k

k

/3

+ 60

Output

1 CBEJ

=09a+8b+ 7C
€ 5563 L

- 2h + 1]

41



Linear Filters: Correlation vs. Convolution

Definition: Correlation

k k
I'X,Y)= % » F(i,j))I(X+i,Y +j)
j=—ki=—k
Definition: Convolution
k k
I'X,Y)y= > > F@i,j)I(X—4iY —j)
j=—ki=—k
ok k
=D > Fli—)I(X +i,Y
j=—ki=—Fk

Note: if FI(X,Y) = F(—X,-Y) then correlation = convolution.
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Preview: \Why convolutions are important’

Who has heard of Convolutional Neural Networks (CNNs)?

HIDDEN LAYERS CLASSIFICATION
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Preview: \Why convolutions are important’

Who has heard of Convolutional Neural Networks (CNNs)?

What about Deep Learning?

j [: — BICYCLE

CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY SOFTMAX

> : PUT
Il O -~ VRN comuc;o Y,
HIDDEN LAYERS CLASSIFICATION
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Preview: \Why convolutions are important’

Who has heard of Convolutional Neural Networks (CNNs)?

What about Deep Learning?

L 7 INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY SOFTMAX

\ j \ CONNECTED /
Y Y
HIDDEN LAYERS CLASSIFICATION

Basic operations in CNNs are convolutions (with learned linear filters) followed
oy non-linear functions.

Note: [his results in non-linear filters.

30



L inear rilters: Properties

L et ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let F; and F, be digital filters

(Fl+ )@ I(X,Y)=F QI(X,Y)+ Ko I(X,Y)



L inear rilters: Properties

L et ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let F; and F, be digital filters

(Fl+ )@ I(X,Y)=F QI(X,Y)+ Ko I(X,Y)

Scaling: Let F' be digital filter and let £ lbe a scalar

(kFYQI(X,Y)=F® (kI(X,Y)) = k(F®I(X,Y))



L inear rilters: Properties

L et ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let F; and F, be digital filters

(Fl+ )@ I(X,Y)=F QI(X,Y)+ Ko I(X,Y)

Scaling: Let F' be digital filter and let £ lbe a scalar
(kF) @ I[(X,)Y)=F® (kI(X,Y)) = k(F Q I(X,Y))

Shift Invariance: Output is local (i.e., no dependence on absolute position)

83



Linear Filters: Shift Invariance

Output does not depend on absolute position

84



L inear rilters: Properties

L et ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let F; and F, be digital filters

(Fi+ )1 X,Y)=FI(X,Y)+ FoI(X,Y)
Scaling: Let F' be digital filter and let £ lbe a scalar

(kF) @ I[(X,Y)=F® (kI(X,Y)) = k(FQI(X,Y))
Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation Is linear If it satisfies both superposition and scaling
35



Linear Systems: Characterization Theorem

Any linear, shift invariant operation can be expressed as convolution

380



Example 5: Smoothing with a Box Filter

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Filter has equal positive values that some up to 1

Replaces each pixel with the average of itself and its local neighlborhood

— Box filter is also referred to as average filter or mean filter
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Example 5: Smoothing with a Box Filter

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and middle)

33



Example 5: Smoothing with a Box Filter

What happens if we increase the width (size) of the box filter”?

89



Example 5: Smoothing with a Box Filter

Original

HXO

15X15

a '
T =

]
!

a

aaaaaaaa aaaaaaaa.
| ~.xnmB B | ..o....‘
...a ...a
L
aaaaaaaa saaaaaad
=2l §
sad
{1}
veaaaaaad

3X3

Ox9

35x35

Gonzales & Woods (3rd ed.) Figure 3.3
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Smoothing

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point iIs 1 and every other point is O

91



Lecture 2: Re-cap

N\

N

/

* image credit: https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

92

=

:\
\.



https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

Smoothing

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point iIs 1 and every other point is O

0100|010
1111 0[(0|0|0]O0
%111 01011010
1 11| 1 01001010
0100|010

Filter

Image
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Smoothing

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction

— Image in which the center point iIs 1 and every other point is O

o
@)
o

11 1
:
9 11 1
11 1
Filter

OO0 | O |0 |0

OO |10 |0 |0
oo | =100
OO0 |10 |0 |0

OO0 | O |0 |0

Image

94

OO0 |0 | O

OO0 |0O | O

Result




Smoothing

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point iIs 1 and every other point is O

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)
The Gaussian is a good general smoothing model

— for phenomena (that are the sum of other small effects)
— whenever the Central Limit Theorem applies

95



Example 6: Smoothing with a Gaussian

Idea: \Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

1 z?2 t+y?
GO‘ (337 y) — ) 2 exXp - 20°

Forsyth & Ponce (2nd ed.)
Figure 4.2
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Example 6: Smoothing with a Gaussian

Idea: \Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

1 z?2 t+y?
GO‘ (337 y) — ) 2 exXp - 20°

Forsyth & Ponce (2nd ed.)
Figure 4.2
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Example 6: Smoothing with a Gaussian

Idea: \Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

1 z?+y?
GO‘ (337 y) — ) 2 exXp  20°

Standard Deviation

Forsyth & Ponce (2nd ed.)
Figure 4.2
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Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

Gy(—1,1) G,(0,1) G,(1,1)
G,(—1,0) G4(0,0) G5 (1,0)
Gy(—1,—1) G,(0,—1) G,(1,—1)

99




Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 __2_ 1 _ 1 1 __2_
G,(—1,1) = 53 €XP 202 G,(0,1) = 53 €XP 202 G,(1,1) = 53 €XP 207
Go(—1.0) = —— exp 52 G (0,0) = — OO0 = i
— p— 20 o ] — o , — 20
N omg? P 2702 (1,0) oo P
1 _ 2 1 __1_ 1 _ 2
Gy(—1,—1) = 53 XD 202 | G,(0,—1) = 53 eXP 202 | Gg(1,—1) = 53 XD 202
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Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 €XP 202 G,(0,1) = 53 €XP 202 G,(1,1) = 53 €XP 207
G,(—1,0 : ~2,7 G,(0,0) = : G (1.0 L — 557
— p— 20 o ] — o , — 20
o(=1,0) ong? T 2702 (1,0) oo ¥
1 2 1 1 1 _ 2
Gy(—1,—1) = 53 XD 202 | G4(0,—1) = 53 eXP 202 | Gg(1,—1) = 53 XD 252
Witho =1 : 0.059 | 0.097 | 0.059
0.097 | 0.159 | 0.097
0.059 | 0.097 | 0.059
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Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 __2_
G,(—1,1) = 53 €XP 202 G,(0,1) = 53 €XP 202 G,(1,1) = 53 €XP 207
Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5
o(=1,0) omo? P T 2702 o(1,0) = omo? P 7
Go(—1,~1) = s exp 27 | Gol0,~1) = =5 exp 7 | Go(1,—1) = —— exp 27
ol—1,— — ex 20 2 o (U, — — ex 202 oL, — — 252
2o 2 P 202 b 202 XD
Witho =1 : 0.059 | 0.097 | 0.059 What happens if o is larger?
0.097 | 0.159 | 0.097
0.059 | 0.097 | 0.059
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Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 6XP 2 G,(0,1) = 53 ¢XP 2 G,(1,1) = 53 XP 2
Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5
-(—1,0) = 53 CXP % o(0:0) = 57 -(1,0) = 53 OXP 2
Gol—1,=1) =~ exp 7 | Go(0,—1) = ——exp 2 | Gy(l,—1) = —— exp™ 57
7 " oo P T " ooz P T " oo P
Witho =1 : What happens if o is larger?

—_ |—> |—>

— |— |—>

—_ |—> |—>

103

— More blur




Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 6XP 2 G,(0,1) = 53 ¢XP 2 G,(1,1) = 53 XP 2
Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5
O'(_ y ) 9 2 CXp 29 o\ o Vo2 O'( ) )_ 9 o2 CXp 29
Go(—1,-1) = s exp™ 57 | Go(0,—1) = ——exp 37 | Go(1,~1) = —— exp™ 72
T " o2 P T " oz P o(1,=1) = o2 P
Witho =1 : 0.059 | 0.097 | 0.059 What happens if o is larger?
0.097 | 0.159 | 0.097
| i ?
1050 | 0.097 Lo.05 What happens if o Is smaller”:
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Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 6XP 2 G,(0,1) = 53 ¢XP 2 G,(1,1) = 53 XP 2
Go(—1.0) = —— exp~ 5 G (0,0) = — C10) = L x5
-(—1,0) = 53 CXP % o(0:0) = 57 -(1,0) = 53 OXP 2
Gol—1,=1) =~ exp 7 | Go(0,—1) = ——exp 2 | Gy(l,—1) = —— exp™ 57
7 " oo P T " ooz P T " oo P
Witho =1 : What happens if o is larger?

What happens it o is smaller?

«— |— |—
«— | |
«— |— |—

o — Less blur



Example 6: Smoothing with a Gaussian

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and right)
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Box vs. Gaussian Filter

/X7 (Gaussian

original

/X{ boX

107 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Summary

— The correlation of F(X,Y) and I(X,Y)is:
k k

I'X,Y)= Y » F@i,)I(X+i,Y +j)

j=—ki=—

— Visual interpretation: Superimpose the filter ' on the image I at (X, Y),
perform an element-wise multiply, and sum up the values

— Convolution is like correlation except filter "flipped”
f F(X,Y)=F(—X,—-Y) then correlation = convolution.

— Characterization Theorem: Any linear, spatially invariant operation can be
expressed as a convolution
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