Lecture 34: Clustering

CPSC 425: Computer Vision

Diagram showing clusters of data points in different colors.
Menu for Today (December 2nd, 2020)

Topics:
- Grouping
- Image Segmentation
- Agglomerative Clustering with a Graph
- Classification

Readings:
- Today’s Lecture: Forsyth & Ponce (2nd ed.) 15.1, 15.2, 17.2

Reminders:
- Assignment 6: Deep Learning due tonight (no-penalty until Friday 11:59pm)
- Assignment 4 & 5 grading
- Quiz 6 due at the end of the day today
- Final study material is up, additional office hours next week
Today’s “fun” Example: Adversarial Examples for CNNs

- Bus
- Chicken
- Building
- Soap dispenser
- Praying mantis
- Dog

[Szegedy et. al., 2013]
Today’s “fun” Example: Adversarial Examples for CNNs

[Szegedy et. al., 2013]
Today’s “fun” Example: Adversarial Examples for CNNs

[Papernot et. al.]
Today’s “fun” Example: Adversarial Examples for CNNs
Today’s “fun” Example: Adversarial Examples for CNNs
Humans routinely group features that belong together when looking at a scene. What are some cues that we use for grouping?
Humans routinely group features that belong together when looking at a scene. What are some cues that we use for grouping?

- Similarity
- Symmetry
- Common Fate
- Proximity
- ...
Grouping in Human Vision

A. Kanizsa triangle
B. Tse’s volumetric worm
C. Idesawa’s spiky sphere
D. Tse’s “sea monster”

Figure credit: Steve Lehar
Grouping in Human Vision
Grouping in Human Vision

“UNMISSABLE... A BRITISH CLASSIC”

Slide credit: Kristen Grauman
Incredible way of making my two star review seem like I didn’t hate the film
Clustering

It is often useful to be able to **group** together **image regions** with similar appearance (e.g. roughly coherent colour or texture)

- image compression
- approximate nearest neighbour search
- base unit for higher-level recognition tasks
- moving object detection in video sequences
- video summarization
Recall: **Object Proposals**

Superpixels Straddling

— Favors regions with a well-defined closed boundary
— Measures the extent to which superpixels (obtained by image segmentation) contain pixels both inside and outside of the window

Figure credit: Alexe et al., 2012
Clustering is a set of techniques to try to find components that belong together (i.e., components that form clusters).

- Unsupervised learning (access to data, but no labels)

Two basic clustering approaches are

- agglomerative clustering
- divisive clustering
Agglomerative Clustering

Each data point starts as a separate cluster. Clusters are recursively merged.

Algorithm:
Make each point a separate cluster
Until the clustering is satisfactory
 Merge the two clusters with the smallest inter-cluster distance
end
Agglomerative Clustering
Agglomerative Clustering
Agglomerative Clustering
Divisive Clustering

The entire data set starts as a single cluster. Clusters are recursively split.

Algorithm:
Construct a single cluster containing all points
Until the clustering is satisfactory
 Split the cluster that yields the two components
 with the largest inter-cluster distance
end
Divisive Clustering
Divisive Clustering
Divisive Clustering
Divisive Clustering
Inter-Cluster Distance

How can we define the cluster distance between two clusters C_1 and C_2 in agglomerative and divisive clustering? Some common options:

- the distance between the closest members of C_1 and C_2
 \[
 \min d(a, b), \ a \in C_1, \ b \in C_2
 \]
 - single-link clustering

- the distance between the farthest members of C_1 and a member of C_2
 \[
 \max d(a, b), \ a \in C_1, \ b \in C_2
 \]
 - complete-link clustering
Inter-Cluster Distance

How can we define the cluster distance between two clusters C_1 and C_2 in agglomerative and divisive clustering? Some common options:

an average of distances between members of C_1 and C_2

\[
\frac{1}{|C_1||C_2|} \sum_{a \in C_1} \sum_{b \in C_2} d(a, b)
\]

– group average clustering
Dendrogram

The algorithms described generate a hierarchy of clusters

Forsyth & Ponce (2nd ed.) Figure 9.15
Dendrogram

The algorithms described generate a hierarchy of clusters, which can be visualized with a dendrogram.

Forsyth & Ponce (2nd ed.) Figure 9.15
A simple dataset is shown below. Draw the dendrogram obtained by agglomerative clustering with single-link (closest member) inter-cluster distance.
A Short Exercise

A simple dataset is shown below. Draw the dendrogram obtained by agglomerative clustering with single-link (closest member) inter-cluster distance.
A Short **Exercise**

A simple dataset is shown below. Draw the dendrogram obtained by agglomerative clustering with single-link (closest member) inter-cluster distance.
A Short Exercise

A simple dataset is shown below. Draw the dendrogram obtained by agglomerative clustering with single-link (closest member) inter-cluster distance.
A Short Exercise

A simple dataset is shown below. Draw the dendrogram obtained by agglomerative clustering with single-link (closest member) inter-cluster distance.
A Short Exercise

A simple dataset is shown below. Draw the dendrogram obtained by agglomerative clustering with single-link (closest member) inter-cluster distance.
K-Means Clustering

Assume we know how many clusters there are in the data - denote by K

Each cluster is represented by a cluster center, or mean

Our objective is to minimize the representation error (or quantization error) in letting each data point be represented by some cluster center

Minimize

$$\sum_{i \in \text{clusters}} \left\{ \sum_{j \in \text{ith cluster}} ||x_j - \mu_i||^2 \right\}$$
K-Means Clustering

K-means clustering alternates between two steps:

1. Assume the cluster centers are known (fixed). Assign each point to the closest cluster center.
2. Assume the assignment of points to clusters is known (fixed). Compute the best center for each cluster, as the mean of the points assigned to the cluster.

The algorithm is initialized by choosing K random cluster centers.

K-means converges to a local minimum of the objective function
— Results are initialization dependent
Example 1: K-Means Clustering

![K-Means Clustering Diagram]

- **True Clusters**
 - The diagram illustrates the clustering of data points into different clusters, demonstrating the effectiveness of the K-Means algorithm in grouping similar data points together.
Example 1: K-Means Clustering

Clusters at iteration 1
Example 1: K-Means Clustering
Example 1: K-Means Clustering

Clusters at iteration 3
Example 1: K-Means Clustering
Example 2: Mixed Vegetables

Original Image

Segmentation Using Colour

K-means using colour alone, 11 segments
Example 2: Mixed Vegetables

K-means using colour alone, 11 segments

Forsyth & Ponce (2nd ed.) Figure 9.18
Example 2: Mixed Vegetables

K-means using colour alone, 20 segments

Forsyth & Ponce (2nd ed.) Figure 9.19
An Exercise

Sketch an example of a 2D dataset for which agglomerative clustering performs well (finds the two true clusters) but K-means clustering fails.
An Exercise

Sketch an example of a 2D dataset for which agglomerative clustering performs well (finds the two true clusters) but K-means clustering fails.
Discussion of K-Means

Advantages:
— Algorithm always converges
— Easy to implement

Disadvantages:
— The number of classes, K, needs to be given as input
— Algorithm doesn’t always converge to the (globally) optimal solution
— Limited to compact/spherical clusters
We just saw a simple example of segmentation based on colour and position, but segmentation typically makes use of a richer set of features.

— texture
— corners, lines, …
— geometry (size, orientation, …)
Agglomerative Clustering with a Graph

Suppose we represent an image as a weighted graph.

Any pixels that are neighbours are connected by an edge.

Each edge has a weight that measures the similarity between the pixels
— can be based on colour, texture, etc.
— low weights \(\rightarrow\) similar, high weights \(\rightarrow\) different

We will segment the image by performing an agglomerative clustering guided by this graph.
Recall that we need to define the inter-cluster distance for agglomerative clustering. Let

\[d(C_1, C_2) = \min_{v_1 \in C_1, v_2 \in C_2, (v_1, v_2) \in \epsilon} w(v_1, v_2) \]

We also need to determine when to stop merging.
Denote the ‘internal difference’ of a cluster as the largest weight in the minimum spanning tree of the cluster, $M(C)$:

$$\text{int}(C) = \max_{e \in M(C)} w(e)$$
Denote the ‘internal difference’ of a cluster as the largest weight in the minimum spanning tree of the cluster, $M(C)$:

$$\text{int}(C') = \max_{e \in M(C')} w(e)$$

This is not going to work for small clusters: \(\text{int}(C') + \tau(C')\)

where \(\tau(C') = \frac{k}{|C'|}\)
Agglomerative Clustering with a Graph

Algorithm: (Felzenszwalb and Huttenlocher, 2004)

Make each point a separate cluster.
Sort edges in order of non-decreasing weight so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_r)$

For $i = 1$ to r
 If both ends of e_i lie in the same cluster
 Do nothing
 Else
 One end is in cluster C_l and the other is in cluster C_m
 If $d(C_l, C_m) \leq MInt(C_l, C_m)$
 Merge C_l and C_m
 Report the remaining set of clusters.

Report the remaining set of clusters.
Agglomerative Clustering with a Graph

Image credit: KITTI Vision Benchmark
Summary

To use standard clustering techniques we must define an **inter-cluster** distance measure

A **dendrogram** visualizes a hierarchical clustering process

K-means is a clustering technique that iterates between

1. Assume the cluster centers are known. Assign each point to the closest cluster center.

2. Assume the assignment of points to clusters is known. Compute the best cluster center for each cluster (as the mean).

K-means clustering is initialization dependent and converges to a local minimum
Thank you!