
Lecture 31: Convolutional Neural Networks

CPSC 425: Computer Vision

!1

Menu for Today (November 25, 2020)
Topics:

— Convolutional Layers

Redings:
— Today’s Lecture: N/A

— Next Lecture: N/A

Reminders:
— Assignment 6: Deep Learning due Wednsday, December 2nd

— Pooling Layer

!3

Today’s “fun” Example: Yolo Object Detector

!3

Today’s “fun” Example: Yolo Object Detector

!4

Fully Connected Layer

�

0

@
4X

i=1

4X

j=1

W1,i,jI(i, j) + b1

1

A

Linear Layer

Fully Connected Layer

!5

Fully Connected Layer

�

0

@
4X

i=1

4X

j=1

W1,i,jI(i, j) + b1

1

A

�

0

@
4X

i=1

4X

j=1

W2,i,jI(i, j) + b2

1

A

!6

Fully Connected Layer

�

0

@
4X

i=1

4X

j=1

W1,i,jI(i, j) + b1

1

A

�

0

@
4X

i=1

4X

j=1

W2,i,jI(i, j) + b2

1

A

�

0

@
4X

i=1

4X

j=1

W3,i,jI(i, j) + b3

1

A

!7

Fully Connected Layer

�

0

@
4X

i=1

4X

j=1

W1,i,jI(i, j) + b1

1

A

�

0

@
4X

i=1

4X

j=1

W2,i,jI(i, j) + b2

1

A

�

0

@
4X

i=1

4X

j=1

W3,i,jI(i, j) + b3

1

A

�

0

@
4X

i=1

4X

j=1

W4,i,jI(i, j) + b4

1

A

!8

Fully Connected Layer

�

0

@
4X

i=1

4X

j=1

W1,i,jI(i, j) + b1

1

A

�

0

@
4X

i=1

4X

j=1

W2,i,jI(i, j) + b2

1

A

�

0

@
4X

i=1

4X

j=1

W3,i,jI(i, j) + b3

1

A

�

0

@
4X

i=1

4X

j=1

W4,i,jI(i, j) + b4

1

A

4 x 4 + 1 = 15

4 x 4 + 1 = 15

4 x 4 + 1 = 15

4 x 4 + 1 = 15

!9

�

0

@
3X

i=1

3X

j=1

W1,i,jI(i, j) + b1

1

A

Locally Connected Layer

!10

�

0

@
3X

i=1

3X

j=1

W2,i,jI(i+ 1, j) + b2

1

A

�

0

@
3X

i=1

3X

j=1

W1,i,jI(i, j) + b1

1

A

Locally Connected Layer

!11

�

0

@
3X

i=1

3X

j=1

W3,i,jI(i, j + 1) + b3

1

A

�

0

@
3X

i=1

3X

j=1

W2,i,jI(i+ 1, j) + b2

1

A

�

0

@
3X

i=1

3X

j=1

W1,i,jI(i, j) + b1

1

A

Locally Connected Layer

!12

Locally Connected Layer

�

0

@
3X

i=1

3X

j=1

W4,i,jI(i+ 1, j + 1) + b4

1

A

�

0

@
3X

i=1

3X

j=1

W3,i,jI(i, j + 1) + b3

1

A

�

0

@
3X

i=1

3X

j=1

W2,i,jI(i+ 1, j) + b2

1

A

�

0

@
3X

i=1

3X

j=1

W1,i,jI(i, j) + b1

1

A

!13

Locally Connected Layer

�

0

@
3X

i=1

3X

j=1

W4,i,jI(i+ 1, j + 1) + b4

1

A

�

0

@
3X

i=1

3X

j=1

W3,i,jI(i, j + 1) + b3

1

A

�

0

@
3X

i=1

3X

j=1

W2,i,jI(i+ 1, j) + b2

1

A

�

0

@
3X

i=1

3X

j=1

W1,i,jI(i, j) + b1

1

A

3 x 3 + 1 = 10

3 x 3 + 1 = 10

3 x 3 + 1 = 10

3 x 3 + 1 = 10

!14

Locally Connected Layer

!15

Convolutional Layer

�

0

@
3X

i=1

3X

j=1

Wi,jI(i, j) + b

1

A

!16

�

0

@
3X

i=1

3X

j=1

Wi,jI(i+ 1, j) + b

1

A

�

0

@
3X

i=1

3X

j=1

Wi,jI(i, j) + b

1

A

Convolutional Layer

!17

�

0

@
3X

i=1

3X

j=1

Wi,jI(i, j + 1) + b

1

A

�

0

@
3X

i=1

3X

j=1

Wi,jI(i+ 1, j) + b

1

A

�

0

@
3X

i=1

3X

j=1

Wi,jI(i, j) + b

1

A

Convolutional Layer

!18

�

0

@
3X

i=1

3X

j=1

Wi,jI(i+ 1, j + 1) + b

1

A

�

0

@
3X

i=1

3X

j=1

Wi,jI(i, j + 1) + b

1

A

�

0

@
3X

i=1

3X

j=1

Wi,jI(i+ 1, j) + b

1

A

�

0

@
3X

i=1

3X

j=1

Wi,jI(i, j) + b

1

A

Convolutional Layer

!19

�

0

@
3X

i=1

3X

j=1

Wi,jI(i+ 1, j + 1) + b

1

A

�

0

@
3X

i=1

3X

j=1

Wi,jI(i, j + 1) + b

1

A

�

0

@
3X

i=1

3X

j=1

Wi,jI(i+ 1, j) + b

1

A

�

0

@
3X

i=1

3X

j=1

Wi,jI(i, j) + b

1

A

Convolutional Layer

3 x 3 + 1 = 10

0 x 0 + 0 = 0

0 x 0 + 0 = 0

0 x 0 + 0 = 0

!20

Convolutional Layer: Interpretation #1

Multiple neurons that share weights

neurons output

!21

Convolutional Layer: Interpretation #2

One neuron applied as convolution (by shifting)

neurons output

!22

Convolutional Layer: Interpretation #2

One neuron applied as convolution (by shifting)

neurons

output

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

!39

Convolutional Layer: Interpretation #2

One neuron applied as convolution (by shifting)

neurons output

�

0

@
3X

i=1

3X

j=1

Wi,jI(i, j) + b

1

A

Similar to Filter in Convolution / Correlation

Convolution Layer

?

2

4
�1 0 1
�1 0 1
�1 0 1

3

5

Convolution Layer

?

2

4
0.11 0.11 0.11
0.11 0.11 0.11
0.11 0.11 0.11

3

5

Convolutional Layer

* slide from Marc’Aurelio Renzato

Filter size: 10 x 10

Example: 200 x 200 image (small)
x 40K hidden units

Learn multiple filters

of filters: 20

Convolutional Layer

* slide from Marc’Aurelio Renzato

Filter size: 10 x 10

Example: 200 x 200 image (small)
x 40K hidden units

Learn multiple filters

= 2000 parameters

of filters: 20

!43

Convolutional Layer: Interpretation #2

One neuron applied as convolution (by shifting)

neurons output

!44

Convolutional Layer: Interpretation #2

One neuron applied as convolution (by shifting)

neurons

output

Convolutional Layer

32 height

32 width

3 depth

32 x 32 x 3 image (note the image preserves spatial structure)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

5 x 5 x 3 filter

Convolutional Layer

32 height

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Convolve the filter with the image
(i.e., “slide over the image spatially,
computing dot products”)

Convolutional Layer

32 height

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

5 x 5 x 3 filter

Convolve the filter with the image
(i.e., “slide over the image spatially,
computing dot products”

Filters always extend the full depth of the input volume

Convolutional Layer

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

1 number: the result of taking a dot product
between the filter and a small 5 x 5 x 3 part
of the image

W

T
x+ b,where W,x 2 R75

5 x 5 x 3 filter ()
W

T
x+ b,where W,x 2 R75

Convolutional Layer

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

1 number: the result of taking a dot product
between the filter and a small 5 x 5 x 3 part
of the image

W

T
x+ b,where W,x 2 R75

5 x 5 x 3 filter ()
W

T
x+ b,where W,x 2 R75

How many parameters does the layer have?

Convolutional Layer

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

1 number: the result of taking a dot product
between the filter and a small 5 x 5 x 3 part
of the image

W

T
x+ b,where W,x 2 R75

5 x 5 x 3 filter ()
W

T
x+ b,where W,x 2 R75

How many parameters does the layer have? 76

Convolutional Layer

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all
spatial locations

5 x 5 x 3 filter ()
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map

Convolutional Layer

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all
spatial locations

5 x 5 x 3 filter ()
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map

consider another green filter

Convolutional Layer

32 width

3 depth
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolutional
layer

28 width

6 depth

28 height

activation mapIf we have 6 5x5 filter, we’ll get 6 separate activation maps:

32 height

this results in the “new image” of size 28 x 28 x 6!

The number of neurons in a layer is determined by depth and stride parameter
— also affected by zero-padding

Depth: Controls number of neurons that connect to the same region of the
input layer
— a set of neurons connected to the same region is called a depth column

Stride: Controls spatial density. How far apart are depth columns?

!52

Convolutional Layer

Convolutional Layer: Closer Look at Spatial Dimensions

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all
spatial locations

5 x 5 x 3 filter ()
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

CONV,
ReLU
e.g. 10 5x5x6
filters

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,
ReLU
e.g. 10 5x5x6
filters

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,
ReLU
e.g. 10 5x5x6
filters

CONV,
ReLU

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,
ReLU
e.g. 10 5x5x6
filters

CONV,
ReLU

With padding we can achieve no shrinking (32 -> 28 -> 24); shrinking quickly
(which happens with larger filters) doesn’t work well in practice

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Receptive Fields

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,
ReLU
e.g. 10 5x5x6
filters

CONV,
ReLU

What does a neuron in green layer sees?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Receptive Fields

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,
ReLU
e.g. 10 5x5x6
filters

CONV,
ReLU

What does a neuron in green layer sees?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

9 x 9 pixel patch

Convolutional neural networks can be seen as learning a hierarchy of filters.

As we go deeper in the network, filters learn and respond to increasingly
specialized structures  
— The first layers may contain simple orientation filters, middle layers may
respond to common substructures, and final layers may respond to entire
objects

!57

Convolutional Neural Network (ConvNet)

What filters do networks learn?

[Zeiler and Fergus, 2013]

What filters do networks learn?

[Zeiler and Fergus, 2013]

!60

Today’s “fun” Example: Deep Dream — Algorithmic Pareidolia

!60

Today’s “fun” Example: Deep Dream — Algorithmic Pareidolia

Pooling Layer
Let us assume the filter is an “eye” detector

How can we make detection spatially invariant
(insensitive to position of the eye in the image)

* slide from Marc’Aurelio Renzato

Pooling Layer
Let us assume the filter is an “eye” detector

How can we make detection spatially invariant
(insensitive to position of the eye in the image)

By “pooling” (e.g., taking a max) response
over a spatial locations we gain robustness
to position variations

* slide from Marc’Aurelio Renzato

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?

None!

Max Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4
max pool with 2 x 2 filter

and stride of 2

activation map

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Average Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

3.25 5.25

2 2
avg pool with 2 x 2 filter

and stride of 2

activation map

Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

Google’s “Inception” network

Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set

Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set deeper = better

Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set deeper = better

Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set

requires knowledge of the nature of the problem

deeper = better

Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

• Parameters: trainable parameters of the network, including weights/biases of
linear/fc layers, parameters of the activation functions, etc.

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set

requires knowledge of the nature of the problem

deeper = better

Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

• Parameters: trainable parameters of the network, including weights/biases of
linear/fc layers, parameters of the activation functions, etc.

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set

optimized using SGD or variants

requires knowledge of the nature of the problem

deeper = better

Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

• Parameters: trainable parameters of the network, including weights/biases of
linear/fc layers, parameters of the activation functions, etc.
• Hyper-parameters: parameters, including for optimization, that are not optimized

directly as part of training (e.g., learning rate, batch size, drop-out rate)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set

optimized using SGD or variants

requires knowledge of the nature of the problem

deeper = better

Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

• Parameters: trainable parameters of the network, including weights/biases of
linear/fc layers, parameters of the activation functions, etc.
• Hyper-parameters: parameters, including for optimization, that are not optimized

directly as part of training (e.g., learning rate, batch size, drop-out rate)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set

optimized using SGD or variants

grid search

requires knowledge of the nature of the problem

deeper = better

Multivariate Regression
Input: Output:

Value of all stocks at closing of
NASDAQ today (3,300 stocks)

Value of Microsoft, Google, Apple
stock at opening tomorrow

Multivariate Regression
Input: feature vector Output: output vector x 2 Rn y 2 Rm

Value of all stocks at closing of
NASDAQ today (3,300 stocks)

Value of Microsoft, Google, Apple
stock at opening tomorrow

Multivariate Regression
Input: feature vector Output: output vector x 2 Rn y 2 Rm

Neural Network (input + intermediate hidden layers) f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; � 1  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)

with sigmoid activations:
with Tanh activations:
with ReLU activations:

Multivariate Regression
Input: feature vector Output: output vector x 2 Rn y 2 Rm

Neural Network (input + intermediate hidden layers)

Neural Network (output): linear layer

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; � 1  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)

with sigmoid activations:
with Tanh activations:
with ReLU activations:

ŷ = g(x;W,b) = Wf(x;⇥) + b : Rk ! Rm

Multivariate Regression
Input: feature vector Output: output vector x 2 Rn y 2 Rm

Neural Network (input + intermediate hidden layers)

Neural Network (output): linear layer

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; � 1  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)

with sigmoid activations:
with Tanh activations:
with ReLU activations:

Loss:

ŷ = g(x;W,b) = Wf(x;⇥) + b : Rk ! Rm

L(y, ŷ) = ||y � ŷ||2

Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers) f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

Binary Classification (Bernoulli)

Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): threshold hidden output (which is a sigmoid)

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

ŷ = 1[f(x;⇥) > 0.5]

Binary Classification (Bernoulli)

Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): threshold hidden output (which is a sigmoid)

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

ŷ = 1[f(x;⇥) > 0.5]

Problem: Not differentiable, probabilistic interpretation maybe desirable

Binary Classification (Bernoulli)

Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

can interpret the score as the log-odds of (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)

Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

Loss: similarity between two distributions

can interpret the score as the log-odds of (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)

Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

Loss: L(y, ŷ) = �y log[f(x;⇥)]� (1� y) log[1� f(x;⇥)]

can interpret the score as the log-odds of (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)

Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

Loss: L(y, ŷ) =
⇢

�log[1� f(x;⇥)] y = 0
�log[f(x;⇥)] y = 1

can interpret the score as the log-odds of (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)

Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

Minimizing this loss is the same as maximizing log likelihood of data

p(y = 1) = f(x;⇥)

Loss: L(y, ŷ) =
⇢

�log[1� f(x;⇥)] y = 0
�log[f(x;⇥)] y = 1

Binary Classification (Bernoulli)

Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers) f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

y 2 {0, 1}

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

Binary Classification (Bernoulli)

Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): linear layer with one neuron and sigmoid activation

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

y 2 {0, 1}

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

Binary Classification (Bernoulli)

Input: feature vector Output: muticlass labelx 2 Rn

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

(one-hot encoding)

Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm

Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =

exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j]

Neural Network (output): softmax function, where probability of class k is:

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm

Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =

exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j]

Neural Network (output): softmax function, where probability of class k is:

L(y, ˆy) = H(y, ˆy) = �
X

i

yi log ˆyi = � log

ˆyi

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm

Loss:

Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =

exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j]

Neural Network (output): softmax function, where probability of class k is:

L(y, ˆy) = H(y, ˆy) = �
X

i

yi log ˆyi = � log

ˆyi

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

Special case for multi-class single label

(one-hot encoding)

f(x;⇥) : Rn ! Rm

Loss:

Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set

requires knowledge of the nature of the problem

deeper = better

Specification of neural architecture will define a computational graph.

Training

Initialize parameters of all layers
For a fixed number of iterations or until convergence

— Form mini-batch of examples (randomly chosen from a training dataset)

— Compute forward pass to make predictions for every example and
compute the loss (this involves recursively calling forward() for each intermediate layer along
computational graph)
— Compute backwards pass to compute the gradient of the loss with
respect to each parameter for each example (involves traversing computational graph in
reverse order calling backward() on intermediate nodes and composing intermediate gradients — chain rule)
— Update parameters of all layers, by taking a step in the negative
average gradient direction (computed over all examples in the mini-batch)

!91

Inference / Prediction

Compute forward pass with optimized parameters on test examples

!92

Monitoring Learning: Visualizing the (training) loss

* slide from Li, Karpathy, Johnson’s CS231n at Stanford

Monitoring Learning: Visualizing the (training) loss

Big gap = overfitting

Solution: increase regularization

No gap = undercutting

Solution: increase model capacity

Small gap = ideal

* slide from Li, Karpathy, Johnson’s CS231n at Stanford

Convolutional Neural Networks

VGG-16 Network

Convolutional Layer: Closer Look at Spatial Dimensions

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all
spatial locations

5 x 5 x 3 filter ()
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map

Convolutional Layer: 1x1 convolutions

56 width

64 depth

56 x 56 x 64 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

32 filters of size, 1 x 1 x 64

56 height

56 x 56 x 32 image

56 width

32 depth

56 height

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,
ReLU
e.g. 10 5x5x6
filters

CONV,
ReLU

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Convolutional Layer Summary

Accepts a volume of size: Wi ⇥Hi ⇥Di

Convolutional Layer Summary

Accepts a volume of size: Wi ⇥Hi ⇥Di (for mini-batch)N ⇥Wi ⇥Hi ⇥Di

Convolutional Layer Summary

Accepts a volume of size:
Requires hyperparameters:
 — Number of filters: (for typical networks)
 — Spatial extent of filters: (for a typical networks)
 — Stride of application: (for a typical network)
 — Zero padding: (for a typical network)

Wi ⇥Hi ⇥Di

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

(for mini-batch)N ⇥Wi ⇥Hi ⇥Di

Convolutional Layer Summary

Accepts a volume of size:
Requires hyperparameters:
 — Number of filters: (for typical networks)
 — Spatial extent of filters: (for a typical networks)
 — Stride of application: (for a typical network)
 — Zero padding: (for a typical network)
Produces a volume of size:

Wi ⇥Hi ⇥Di

W
o

⇥H
o

⇥D
o

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

(for mini-batch)N ⇥W
o

⇥H
o

⇥D
o

(for mini-batch)N ⇥Wi ⇥Hi ⇥Di

Convolutional Layer Summary

Accepts a volume of size:
Requires hyperparameters:
 — Number of filters: (for typical networks)
 — Spatial extent of filters: (for a typical networks)
 — Stride of application: (for a typical network)
 — Zero padding: (for a typical network)
Produces a volume of size:

Wi ⇥Hi ⇥Di

W
o

⇥H
o

⇥D
o

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

W
o

= (W
i

� F + 2P)/S + 1 H
o

= (H
i

� F + 2P)/S + 1 D
o

= K

(for mini-batch)N ⇥Wi ⇥Hi ⇥Di

(for mini-batch)N ⇥W
o

⇥H
o

⇥D
o

Convolutional Layer Summary

Accepts a volume of size:
Requires hyperparameters:
 — Number of filters: (for typical networks)
 — Spatial extent of filters: (for a typical networks)
 — Stride of application: (for a typical network)
 — Zero padding: (for a typical network)
Produces a volume of size:

Number of total learnable parameters:

Wi ⇥Hi ⇥Di

W
o

⇥H
o

⇥D
o

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

W
o

= (W
i

� F + 2P)/S + 1 H
o

= (H
i

� F + 2P)/S + 1 D
o

= K

(F ⇥ F ⇥Di)⇥K +K

(for mini-batch)N ⇥Wi ⇥Hi ⇥Di

(for mini-batch)N ⇥W
o

⇥H
o

⇥D
o

Convolutional Neural Networks

VGG-16 Network

CNNs: Reminder Fully Connected Layers

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Input Activation

3072 10
(32 x 32 x 3 image -> stretches to 3072 x 1)

W

T
x+ b,where W 2 R10⇥3072

each neuron looks at the full
input volume

Convolutional Neural Networks

VGG-16 Network

Convolutional Neural Networks

VGG-16 Network

Convolutional Neural Networks

VGG-16 Network

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?

None!

Max Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4
max pool with 2 x 2 filter

and stride of 2

activation map

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Average Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

3.25 5.25

2 2
avg pool with 2 x 2 filter

and stride of 2

activation map

Pooling Layer Receptive Field

* slide from Marc’Aurelio Renzato

If convolutional filters have size KxK and stride 1, and pooling layer has pools of
size PxP, then each unit in the pooling layer depends upon a patch (at the input of
the preceding conv. layer) of size: (P+K-1)x(P+K-1)

Pooling Layer Receptive Field
If convolutional filters have size KxK and stride 1, and pooling layer has pools of
size PxP, then each unit in the pooling layer depends upon a patch (at the input of
the preceding conv. layer) of size: (P+K-1)x(P+K-1)

* slide from Marc’Aurelio Renzato

Pooling Layer Summary

Accepts a volume of size:
Requires hyperparameters:
 — Spatial extent of filters:
 — Stride of application:
Produces a volume of size:

Number of total learnable parameters: 0

Wi ⇥Hi ⇥Di

W
o

⇥H
o

⇥D
o

K

F

W
o

= (W
i

� F)/S + 1 H
o

= (H
i

� F)/S + 1 D
o

= D
i

Convolutional Neural Networks

VGG-16 Network

