
Lecture 31: Convolutional Neural Networks

CPSC 425: Computer Vision 
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Menu for Today (November 25, 2020)
Topics: 

— Convolutional Layers

Redings: 
— Today’s Lecture:  N/A                                 

— Next Lecture:       N/A

Reminders: 
— Assignment 6: Deep Learning due Wednsday, December 2nd 

— Pooling Layer 
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Today’s “fun” Example: Yolo Object Detector
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Locally Connected Layer
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Convolutional Layer
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Convolutional Layer: Interpretation #1

Multiple neurons that share weights

neurons output
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Convolutional Layer: Interpretation #2

One neuron applied as convolution (by shifting)

neurons output
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Convolutional Layer: Interpretation #2

One neuron applied as convolution (by shifting)

neurons

output



Convolutional Layer

* slide from Marc’Aurelio Renzato 
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Convolutional Layer: Interpretation #2

One neuron applied as convolution (by shifting)

neurons output
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Convolutional Layer

* slide from Marc’Aurelio Renzato 

Filter size: 10 x 10 

Example: 200 x 200 image (small)  
x 40K hidden units 

Learn multiple filters

# of filters: 20



Convolutional Layer

* slide from Marc’Aurelio Renzato 

Filter size: 10 x 10 

Example: 200 x 200 image (small)  
x 40K hidden units 

Learn multiple filters

= 2000 parameters

# of filters: 20
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Convolutional Layer: Interpretation #2

One neuron applied as convolution (by shifting)

neurons output
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Convolutional Layer: Interpretation #2

One neuron applied as convolution (by shifting)

neurons

output



Convolutional Layer

32 height

32 width

3 depth

32 x 32 x 3 image (note the image preserves spatial structure)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



5 x 5 x 3 filter

Convolutional Layer

32 height

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Convolve the filter with the image 
(i.e., “slide over the image spatially, 
computing dot products”)



Convolutional Layer

32 height

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

5 x 5 x 3 filter

Convolve the filter with the image 
(i.e., “slide over the image spatially, 
computing dot products”

Filters always extend the full depth of the input volume



Convolutional Layer

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

1 number: the result of taking a dot product 
between the filter and a small 5 x 5 x 3 part 
of the image

W

T
x+ b,where W,x 2 R75

5 x 5 x 3 filter (      )
W

T
x+ b,where W,x 2 R75
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Convolutional Layer

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

1 number: the result of taking a dot product 
between the filter and a small 5 x 5 x 3 part 
of the image

W

T
x+ b,where W,x 2 R75

5 x 5 x 3 filter (      )
W

T
x+ b,where W,x 2 R75

How many parameters does the layer have? 76



Convolutional Layer

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all 
spatial locations

5 x 5 x 3 filter (      )
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map



Convolutional Layer

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all 
spatial locations

5 x 5 x 3 filter (      )
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map

consider another green filter



Convolutional Layer

32 width

3 depth
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolutional 
layer

28 width

6 depth

28 height

activation mapIf we have 6 5x5 filter, we’ll get 6 separate activation maps:

32 height

this results in the “new image” of size 28 x 28 x 6! 



The number of neurons in a layer is determined by depth and stride parameter 
— also affected by zero-padding  

Depth: Controls number of neurons that connect to the same region of the 
input layer 
— a set of neurons connected to the same region is called a depth column 

Stride: Controls spatial density. How far apart are depth columns?  

!52

Convolutional Layer



Convolutional Layer: Closer Look at Spatial Dimensions

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all 
spatial locations

5 x 5 x 3 filter (      )
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map



CONV, 
ReLU 
e.g. 6 5x5x3 
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Convolutional Neural Network (ConvNet)
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CONV, 
ReLU 
e.g. 6 5x5x3 
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

CONV, 
ReLU 
e.g. 10 5x5x6 
filters

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



CONV, 
ReLU 
e.g. 6 5x5x3 
filters

Convolutional Neural Network (ConvNet)

32 width
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ReLU 
e.g. 10 5x5x6 
filters

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height
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6 depth
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10 depth

24 height

CONV, 
ReLU 
e.g. 10 5x5x6 
filters

CONV, 
ReLU

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



CONV, 
ReLU 
e.g. 6 5x5x3 
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV, 
ReLU 
e.g. 10 5x5x6 
filters

CONV, 
ReLU

With padding we can achieve no shrinking (32 -> 28 -> 24); shrinking quickly 
(which happens with larger filters) doesn’t work well in practice 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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CONV, 
ReLU 
e.g. 6 5x5x3 
filters

Receptive Fields

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV, 
ReLU 
e.g. 10 5x5x6 
filters

CONV, 
ReLU

What does a neuron in green layer sees? 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

9 x 9 pixel patch 



Convolutional neural networks can be seen as learning a hierarchy of filters.  

As we go deeper in the network, filters learn and respond to increasingly 
specialized structures  
— The first layers may contain simple orientation filters, middle layers may 
respond to common substructures, and final layers may respond to entire 
objects  
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Convolutional Neural Network (ConvNet)



What filters do networks learn?

[ Zeiler and Fergus, 2013 ]



What filters do networks learn?

[ Zeiler and Fergus, 2013 ]
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Pooling Layer 
Let us assume the filter is an “eye” detector  

How can we make detection spatially invariant 
(insensitive to position of the eye in the image)

* slide from Marc’Aurelio Renzato 



Pooling Layer 
Let us assume the filter is an “eye” detector  

How can we make detection spatially invariant 
(insensitive to position of the eye in the image)

By “pooling” (e.g., taking a max) response 
over a spatial locations we gain robustness 
to position variations

* slide from Marc’Aurelio Renzato 



Pooling Layer
• Makes representation smaller, more manageable and spatially invariant 
• Operates over each activation map independently 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Pooling Layer
• Makes representation smaller, more manageable and spatially invariant 
• Operates over each activation map independently 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?

None!



Max Pooling

1 1 2 4
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3 2 1 0
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6 8

3 4
max pool with 2 x 2 filter 

and stride of 2

activation map 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Average Pooling

1 1 2 4
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3.25 5.25

2 2
avg pool with 2 x 2 filter 

and stride of 2

activation map 
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dimensionality of each layer and connections (defines computational graph)

Google’s “Inception” network
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Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph) 

• Loss function: objective function being optimized (softmax, cross entropy, etc.) 

• Parameters: trainable parameters of the network,  including weights/biases of 
linear/fc layers, parameters of the activation functions, etc. 
• Hyper-parameters: parameters, including for optimization, that are not optimized 

directly as part of training (e.g., learning rate, batch size, drop-out rate)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set 

optimized using SGD or variants 

grid search

requires knowledge of the nature of the problem

deeper = better
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NASDAQ today (3,300 stocks)

Value of Microsoft, Google, Apple 
stock at opening tomorrow
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stock at opening tomorrow



Multivariate Regression 
Input: feature vector Output: output vector x 2 Rn y 2 Rm

Neural Network (input + intermediate hidden layers) f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; � 1  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)

with sigmoid activations:
with Tanh activations:
with ReLU activations:



Multivariate Regression 
Input: feature vector Output: output vector x 2 Rn y 2 Rm

Neural Network (input + intermediate hidden layers)

Neural Network (output): linear layer

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; � 1  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)

with sigmoid activations:
with Tanh activations:
with ReLU activations:

ŷ = g(x;W,b) = Wf(x;⇥) + b : Rk ! Rm



Multivariate Regression 
Input: feature vector Output: output vector x 2 Rn y 2 Rm

Neural Network (input + intermediate hidden layers)

Neural Network (output): linear layer

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; � 1  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)

with sigmoid activations:
with Tanh activations:
with ReLU activations:

Loss: 

ŷ = g(x;W,b) = Wf(x;⇥) + b : Rk ! Rm

L(y, ŷ) = ||y � ŷ||2



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers) f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): threshold hidden output (which is a sigmoid)

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

ŷ = 1[f(x;⇥) > 0.5]

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): threshold hidden output (which is a sigmoid)

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

ŷ = 1[f(x;⇥) > 0.5]

Problem: Not differentiable, probabilistic interpretation maybe desirable 

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

can interpret the score as the log-odds of            (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

Loss: similarity between two distributions 

can interpret the score as the log-odds of            (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

Loss: L(y, ŷ) = �y log[f(x;⇥)]� (1� y) log[1� f(x;⇥)]

can interpret the score as the log-odds of            (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

Loss: L(y, ŷ) =
⇢

�log[1� f(x;⇥)] y = 0
�log[f(x;⇥)] y = 1

can interpret the score as the log-odds of            (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

Minimizing this loss is the same as maximizing log likelihood of data

p(y = 1) = f(x;⇥)

Loss: L(y, ŷ) =
⇢

�log[1� f(x;⇥)] y = 0
�log[f(x;⇥)] y = 1

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers) f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

y 2 {0, 1}

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): linear layer with one neuron and sigmoid activation

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

y 2 {0, 1}

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

Binary Classification (Bernoulli)



Input: feature vector Output: muticlass labelx 2 Rn

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

(one-hot encoding)



Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm



Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =

exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j ]

Neural Network (output): softmax function, where probability of class k is:

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm



Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =

exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j ]

Neural Network (output): softmax function, where probability of class k is:

L(y, ˆy) = H(y, ˆy) = �
X

i

yi log ˆyi = � log

ˆyi

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm

Loss:



Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =

exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j ]

Neural Network (output): softmax function, where probability of class k is:

L(y, ˆy) = H(y, ˆy) = �
X

i

yi log ˆyi = � log

ˆyi

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

Special case for multi-class single label

(one-hot encoding)

f(x;⇥) : Rn ! Rm

Loss:



Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph) 

• Loss function: objective function being optimized (softmax, cross entropy, etc.) 

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set 

requires knowledge of the nature of the problem

deeper = better

Specification of neural architecture will define a computational graph. 



Training

Initialize parameters of all layers 
For a fixed number of iterations or until convergence 

— Form mini-batch of examples (randomly chosen from a training dataset) 

— Compute forward pass to make predictions for every example and 
compute the loss (this involves recursively calling forward() for each intermediate layer along 
computational graph) 
— Compute backwards pass to compute the gradient of the loss with 
respect to each parameter for each example (involves traversing computational graph in 
reverse order calling backward() on intermediate nodes and composing intermediate gradients — chain rule) 
— Update parameters of all layers, by taking a step in the negative 
average gradient direction (computed over all examples in the mini-batch) 

!91



Inference / Prediction 

Compute forward pass with optimized parameters on test examples 

!92



Monitoring Learning: Visualizing the (training) loss

* slide from Li, Karpathy, Johnson’s CS231n at Stanford



Monitoring Learning: Visualizing the (training) loss

Big gap = overfitting 

Solution: increase regularization

No gap = undercutting

Solution: increase model capacity

Small gap = ideal

* slide from Li, Karpathy, Johnson’s CS231n at Stanford



Convolutional Neural Networks

VGG-16 Network



Convolutional Layer: Closer Look at Spatial Dimensions

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all 
spatial locations

5 x 5 x 3 filter (      )
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map



Convolutional Layer: 1x1 convolutions 

56 width

64 depth

56 x 56 x 64 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

32 filters of size, 1 x 1 x 64

56 height

56 x 56 x 32 image 

56 width

32 depth

56 height



CONV, 
ReLU 
e.g. 6 5x5x3 
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV, 
ReLU 
e.g. 10 5x5x6 
filters

CONV, 
ReLU

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer Summary 

Accepts a volume of size: Wi ⇥Hi ⇥Di



Convolutional Layer Summary 

Accepts a volume of size: Wi ⇥Hi ⇥Di (for mini-batch                               )N ⇥Wi ⇥Hi ⇥Di



Convolutional Layer Summary 

Accepts a volume of size: 
Requires hyperparameters: 
  — Number of filters:       (for typical networks                                          )  
  — Spatial extent of filters:     (for a typical networks                         )   
  — Stride of application:      (for a typical network                 )  
  — Zero padding:      (for a typical network                     ) 

Wi ⇥Hi ⇥Di

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

(for mini-batch                               )N ⇥Wi ⇥Hi ⇥Di



Convolutional Layer Summary 

Accepts a volume of size: 
Requires hyperparameters: 
  — Number of filters:       (for typical networks                                          )  
  — Spatial extent of filters:     (for a typical networks                         )   
  — Stride of application:      (for a typical network                 )  
  — Zero padding:      (for a typical network                     )  
Produces a volume of size:  

Wi ⇥Hi ⇥Di

W
o

⇥H
o

⇥D
o

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

(for mini-batch                                 )N ⇥W
o

⇥H
o

⇥D
o

(for mini-batch                               )N ⇥Wi ⇥Hi ⇥Di



Convolutional Layer Summary 

Accepts a volume of size: 
Requires hyperparameters: 
  — Number of filters:       (for typical networks                                          )  
  — Spatial extent of filters:     (for a typical networks                         )   
  — Stride of application:      (for a typical network                 )  
  — Zero padding:      (for a typical network                     )  
Produces a volume of size:   

Wi ⇥Hi ⇥Di

W
o

⇥H
o

⇥D
o

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

W
o

= (W
i

� F + 2P )/S + 1 H
o

= (H
i

� F + 2P )/S + 1 D
o

= K

(for mini-batch                               )N ⇥Wi ⇥Hi ⇥Di

(for mini-batch                                 )N ⇥W
o

⇥H
o

⇥D
o



Convolutional Layer Summary 

Accepts a volume of size: 
Requires hyperparameters: 
  — Number of filters:       (for typical networks                                          )  
  — Spatial extent of filters:     (for a typical networks                         )   
  — Stride of application:      (for a typical network                 )  
  — Zero padding:      (for a typical network                     )  
Produces a volume of size:   

Number of total learnable parameters:

Wi ⇥Hi ⇥Di

W
o

⇥H
o

⇥D
o

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

W
o

= (W
i

� F + 2P )/S + 1 H
o

= (H
i

� F + 2P )/S + 1 D
o

= K

(F ⇥ F ⇥Di)⇥K +K

(for mini-batch                               )N ⇥Wi ⇥Hi ⇥Di

(for mini-batch                                 )N ⇥W
o

⇥H
o

⇥D
o



Convolutional Neural Networks

VGG-16 Network



CNNs: Reminder Fully Connected Layers

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Input Activation

3072 10
(32 x 32 x 3 image -> stretches to 3072 x 1)

W

T
x+ b,where W 2 R10⇥3072

each neuron looks at the full 
input volume



Convolutional Neural Networks

VGG-16 Network



Convolutional Neural Networks

VGG-16 Network



Convolutional Neural Networks

VGG-16 Network



Pooling Layer
• Makes representation smaller, more manageable and spatially invariant 
• Operates over each activation map independently 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Pooling Layer
• Makes representation smaller, more manageable and spatially invariant 
• Operates over each activation map independently 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?



Pooling Layer
• Makes representation smaller, more manageable and spatially invariant 
• Operates over each activation map independently 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?

None!



Max Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4
max pool with 2 x 2 filter 

and stride of 2

activation map 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Average Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

3.25 5.25

2 2
avg pool with 2 x 2 filter 

and stride of 2

activation map 



Pooling Layer Receptive Field

* slide from Marc’Aurelio Renzato 

If convolutional filters have size KxK and stride 1, and pooling layer has pools of 
size PxP, then each unit in the pooling layer depends upon a patch (at the input of 
the preceding conv. layer) of size: (P+K-1)x(P+K-1)



Pooling Layer Receptive Field
If convolutional filters have size KxK and stride 1, and pooling layer has pools of 
size PxP, then each unit in the pooling layer depends upon a patch (at the input of 
the preceding conv. layer) of size: (P+K-1)x(P+K-1)

* slide from Marc’Aurelio Renzato 



Pooling Layer Summary 

Accepts a volume of size: 
Requires hyperparameters: 
  — Spatial extent of filters:      
  — Stride of application:       
Produces a volume of size:   

Number of total learnable parameters: 0

Wi ⇥Hi ⇥Di

W
o

⇥H
o

⇥D
o

K

F

W
o

= (W
i

� F )/S + 1 H
o

= (H
i

� F )/S + 1 D
o

= D
i



Convolutional Neural Networks

VGG-16 Network


