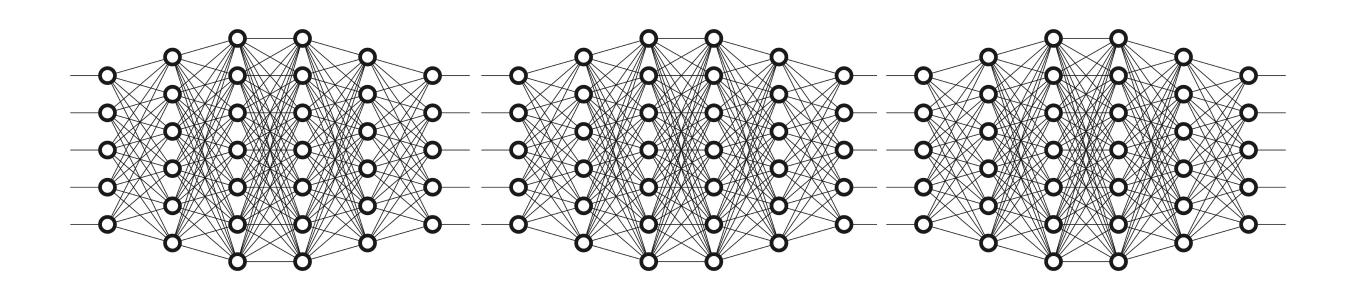


THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



Lecture 31: Convolutional Neural Networks

Menu for Today (November 25, 2020)

Topics:

Convolutional Layers

Redings:

- Today's Lecture: N/A
- **Next** Lecture: N/A

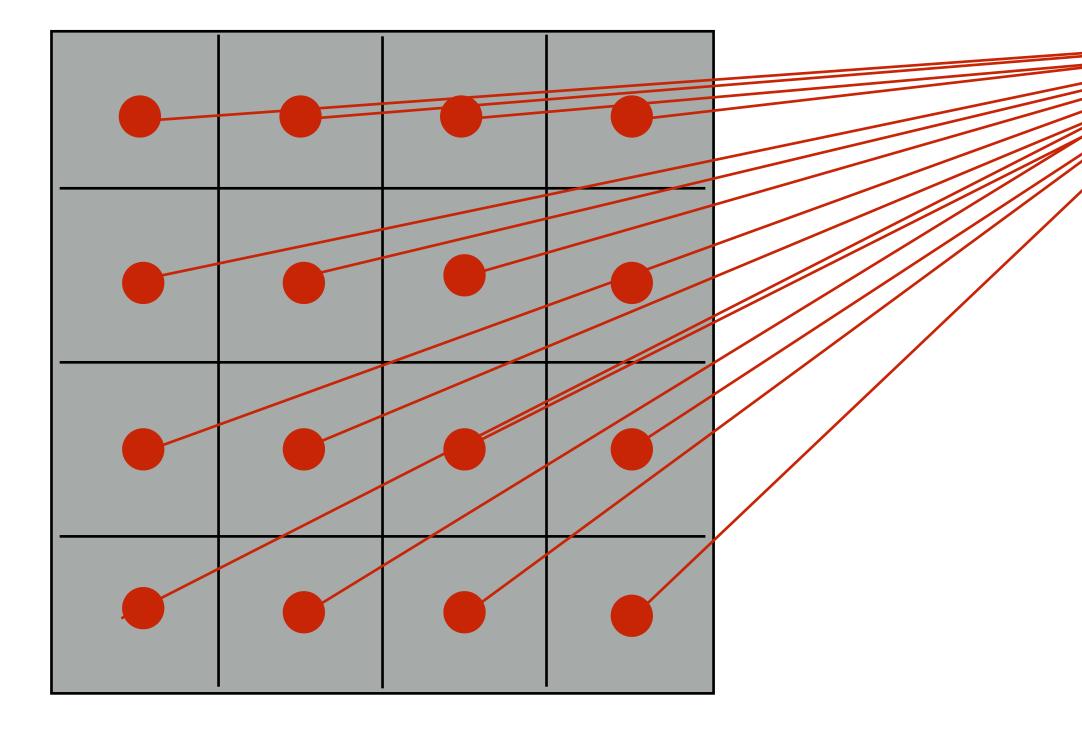
Reminders:

- Assignment 6: Deep Learning due Wednsday, December 2nd

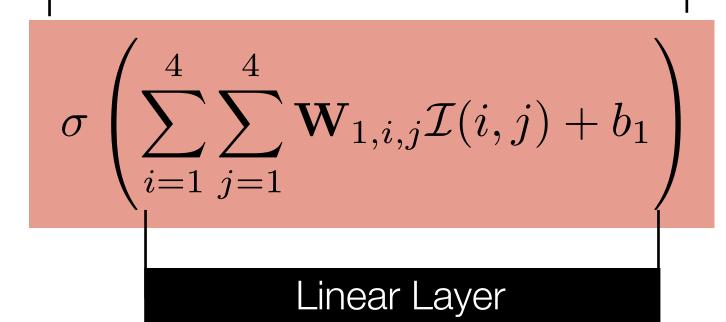
Pooling Layer

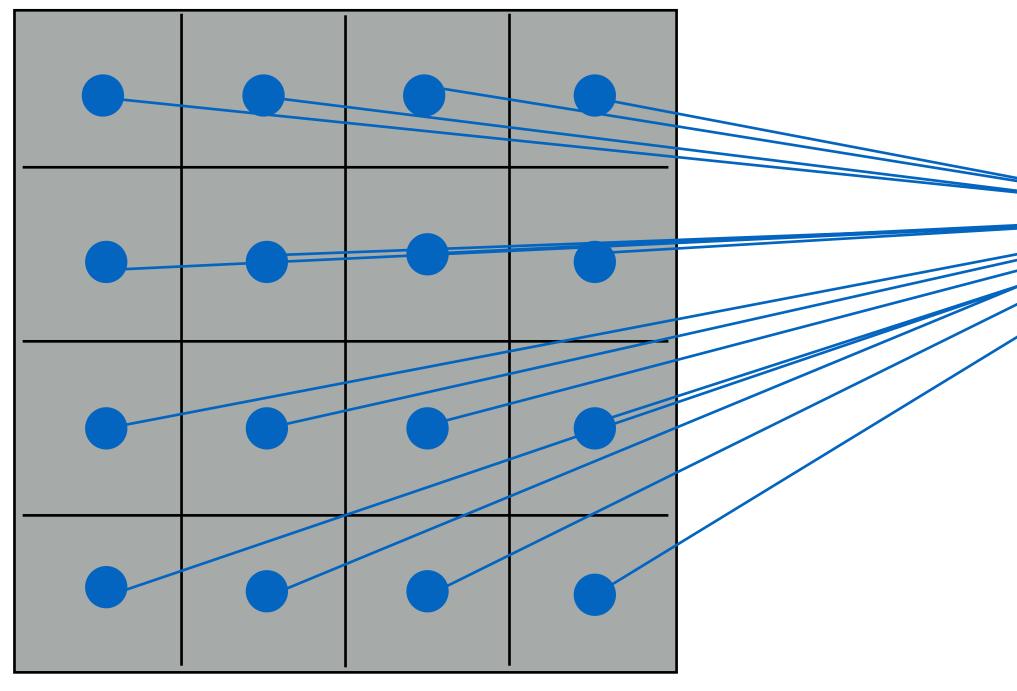
Today's "fun" Example: Yolo Object Detector

Today's "fun" Example: Yolo Object Detector

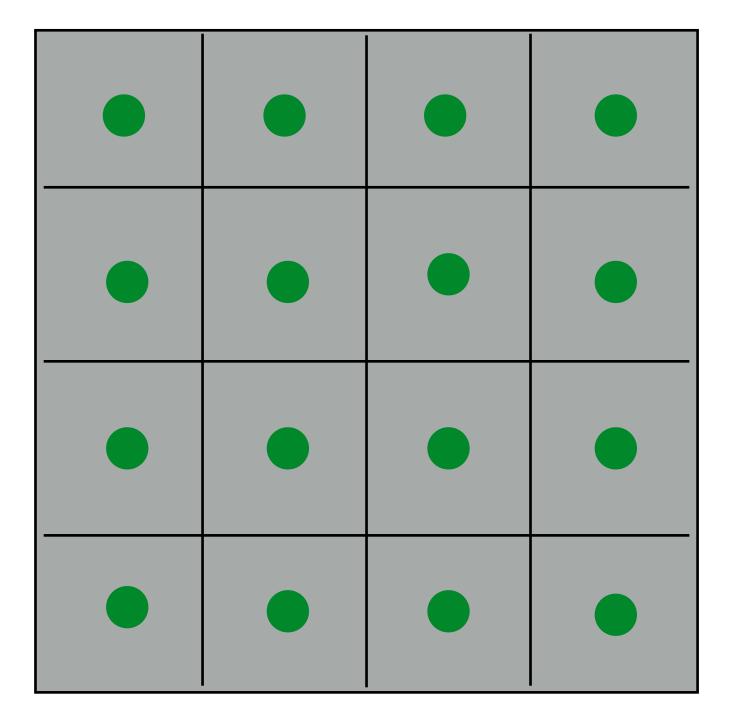


Fully Connected Layer

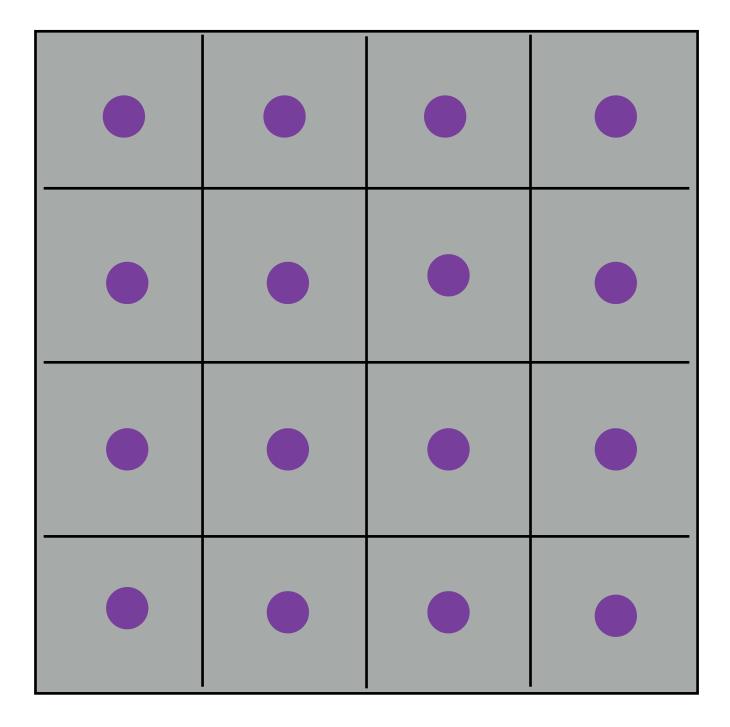




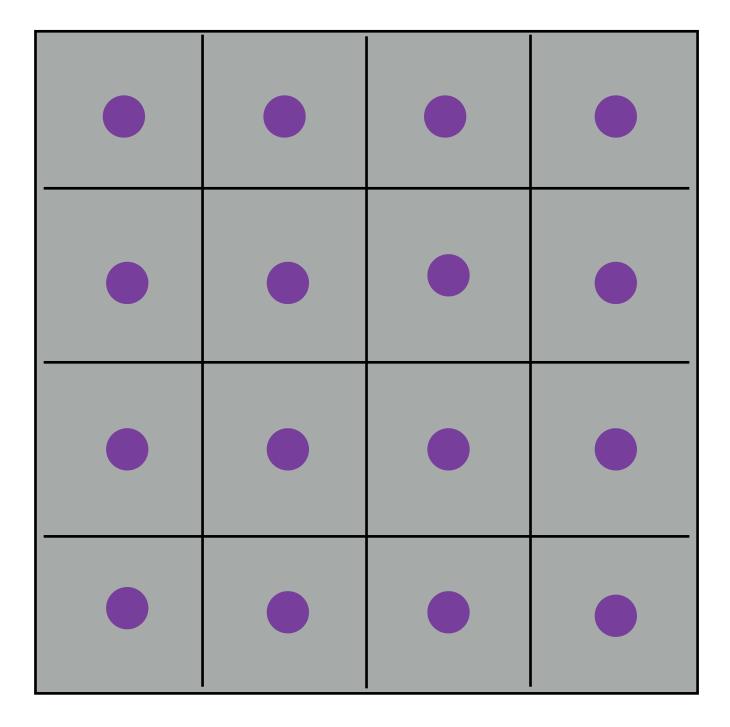
$$\sigma \left(\sum_{i=1}^{4} \sum_{j=1}^{4} \mathbf{W}_{1,i,j} \mathcal{I}(i,j) + b_1 \right)$$
$$\sigma \left(\sum_{i=1}^{4} \sum_{j=1}^{4} \mathbf{W}_{2,i,j} \mathcal{I}(i,j) + b_2 \right)$$



$$\sigma \left(\sum_{i=1}^{4} \sum_{j=1}^{4} \mathbf{W}_{1,i,j} \mathcal{I}(i,j) + b_1 \right)$$
$$\sigma \left(\sum_{i=1}^{4} \sum_{j=1}^{4} \mathbf{W}_{2,i,j} \mathcal{I}(i,j) + b_2 \right)$$
$$\sigma \left(\sum_{i=1}^{4} \sum_{j=1}^{4} \mathbf{W}_{3,i,j} \mathcal{I}(i,j) + b_3 \right)$$

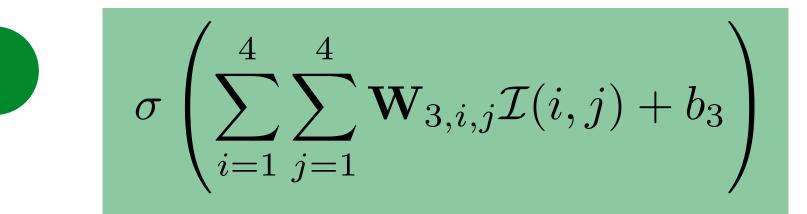


$$\sigma \left(\sum_{i=1}^{4} \sum_{j=1}^{4} \mathbf{W}_{1,i,j} \mathcal{I}(i,j) + b_1 \right)$$
$$\sigma \left(\sum_{i=1}^{4} \sum_{j=1}^{4} \mathbf{W}_{2,i,j} \mathcal{I}(i,j) + b_2 \right)$$
$$\sigma \left(\sum_{i=1}^{4} \sum_{j=1}^{4} \mathbf{W}_{3,i,j} \mathcal{I}(i,j) + b_3 \right)$$
$$\sigma \left(\sum_{i=1}^{4} \sum_{j=1}^{4} \mathbf{W}_{4,i,j} \mathcal{I}(i,j) + b_4 \right)$$



$$\sigma \left(\sum_{i=1}^{4} \sum_{j=1}^{4} \mathbf{W}_{1,i,j} \mathcal{I}(i,j) + b_1 \right)$$
$$\mathbf{4 \times 4 + 1 = 15}$$
$$\sigma \left(\sum_{i=1}^{4} \sum_{j=1}^{4} \mathbf{W}_{2,i,j} \mathcal{I}(i,j) + b_2 \right)$$

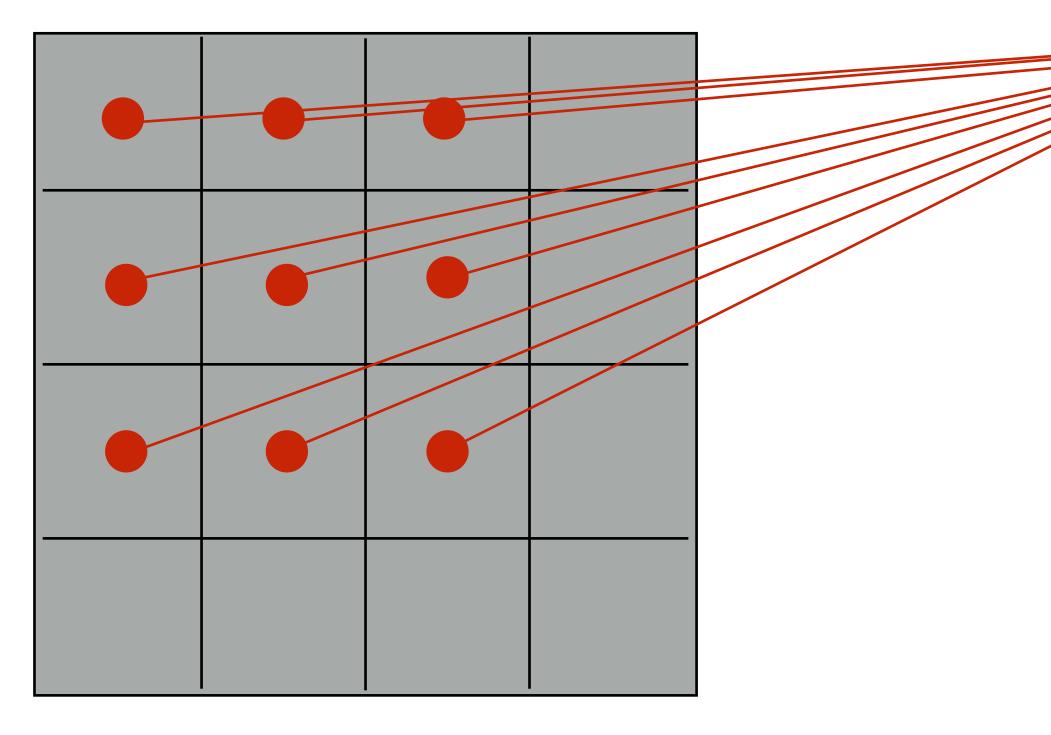
4 x 4 + 1 = 15



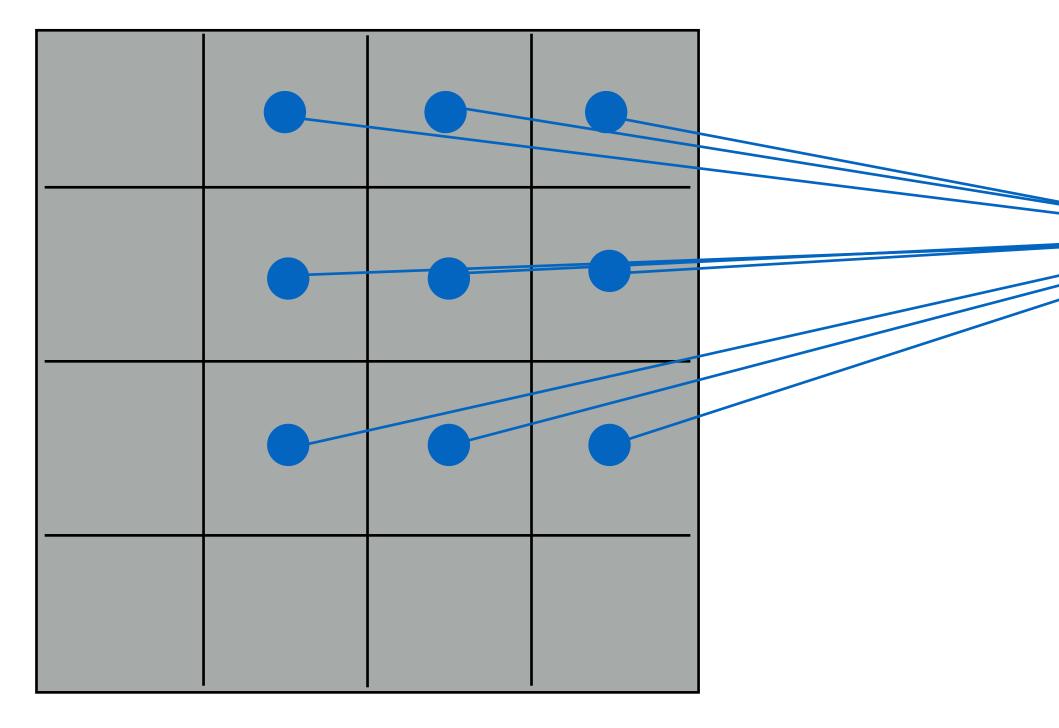
4 x 4 + 1 = 15

$$\sigma\left(\sum_{i=1}^{4}\sum_{j=1}^{4}\mathbf{W}_{4,i,j}\mathcal{I}(i,j)+b_4\right)$$

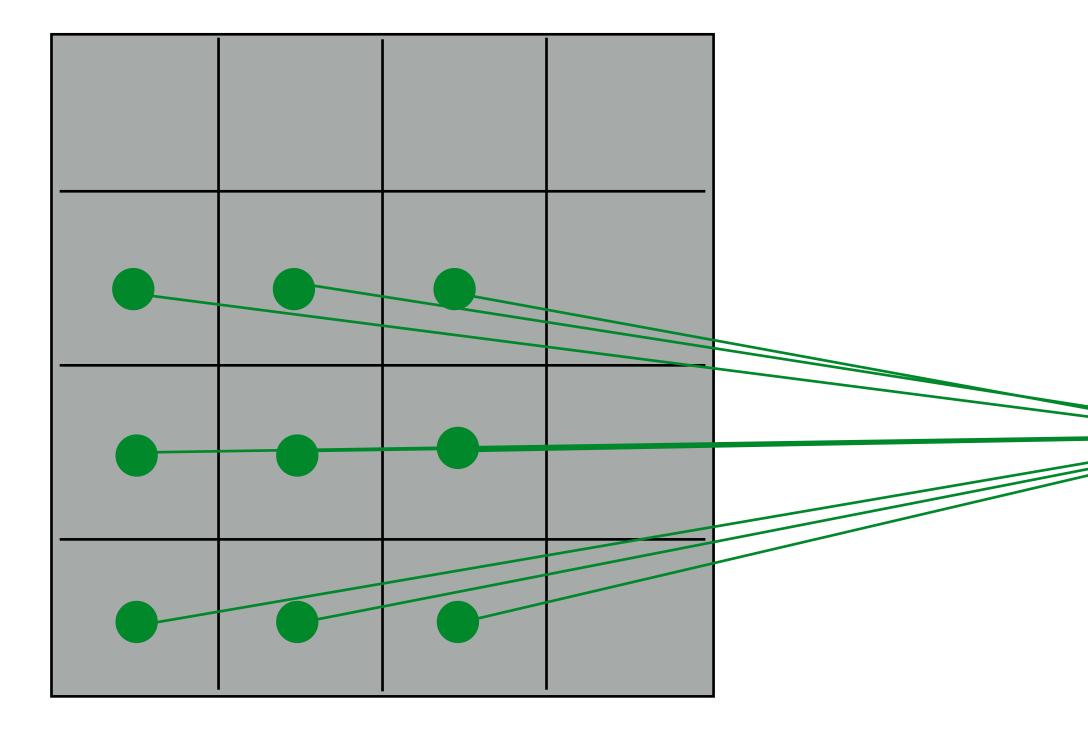
4 x 4 + 1 = 15



$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{1,i,j} \mathcal{I}(i,j) + b_1 \right)$$

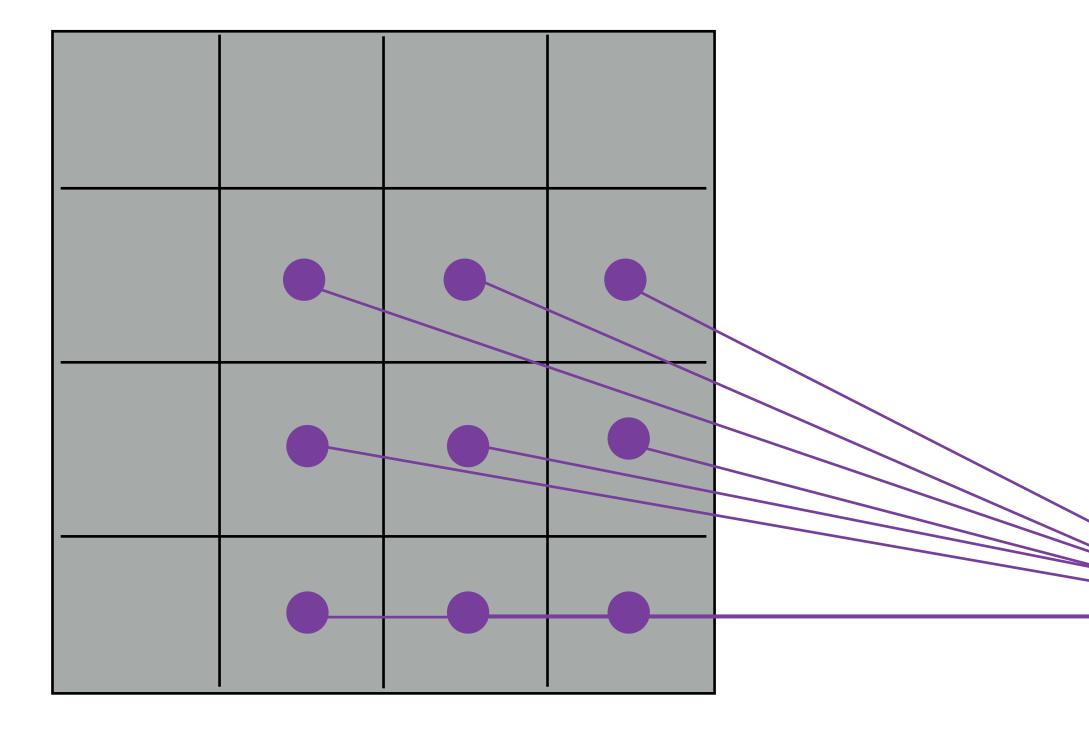


$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{1,i,j} \mathcal{I}(i,j) + b_1 \right)$$
$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{2,i,j} \mathcal{I}(i+1,j) + b_2 \right)$$



$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{1,i,j} \mathcal{I}(i,j) + b_1 \right)$$
$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{2,i,j} \mathcal{I}(i+1,j) + b_2 \right)$$

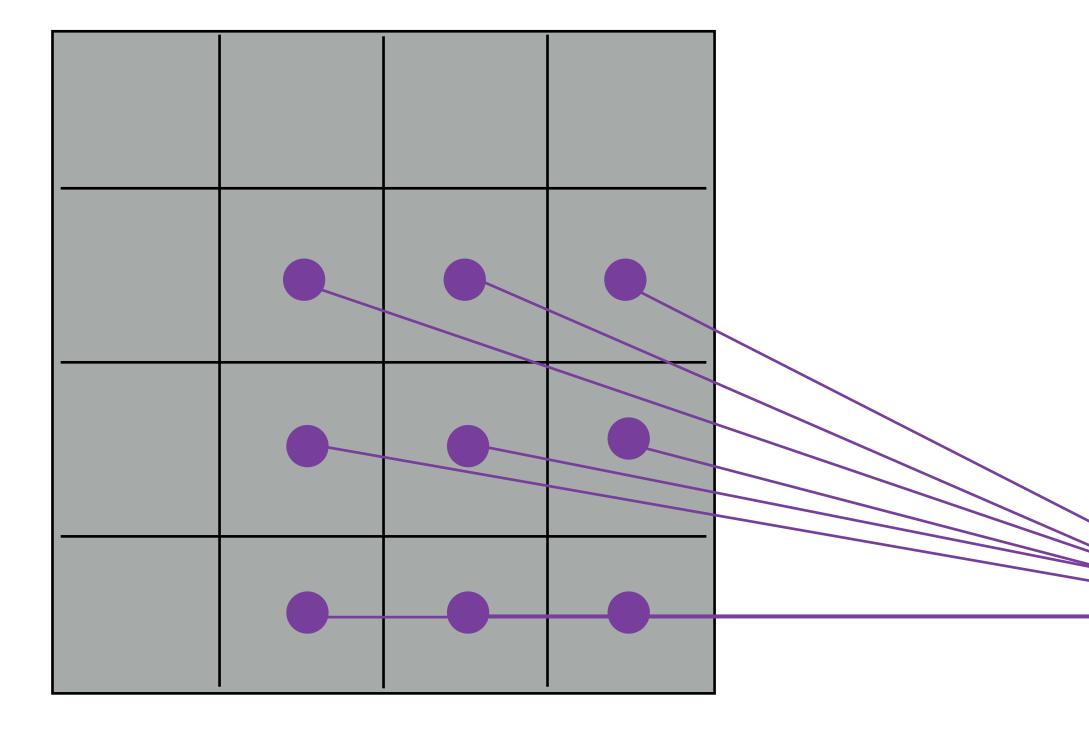
$$\sigma\left(\sum_{i=1}^{3}\sum_{j=1}^{3}\mathbf{W}_{3,i,j}\mathcal{I}(i,j+1)+b_3\right)$$



$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{1,i,j} \mathcal{I}(i,j) + b_1 \right)$$
$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{2,i,j} \mathcal{I}(i+1,j) + b_2 \right)$$
$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{3,i,j} \mathcal{I}(i,j+1) + b_3 \right)$$
$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{4,i,j} \mathcal{I}(i+1,j+1) + b_4 \right)$$

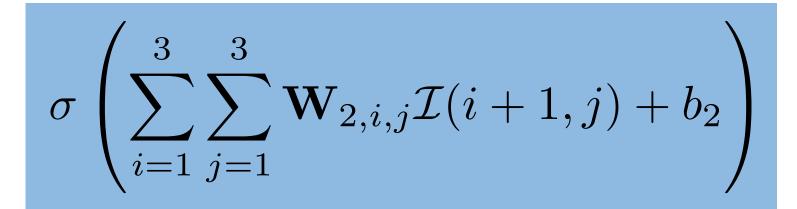
12

 σ

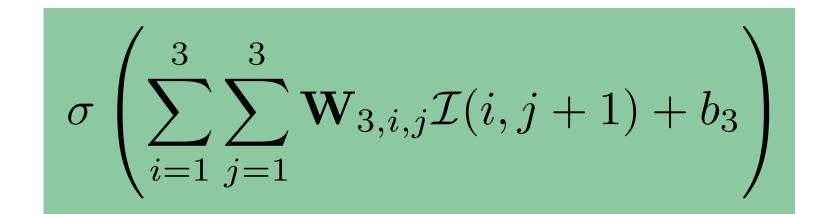


$$\sigma\left(\sum_{i=1}^{3}\sum_{j=1}^{3}\mathbf{W}_{1,i,j}\mathcal{I}(i,j)+b_1\right)$$

3 x 3 + 1 = 10



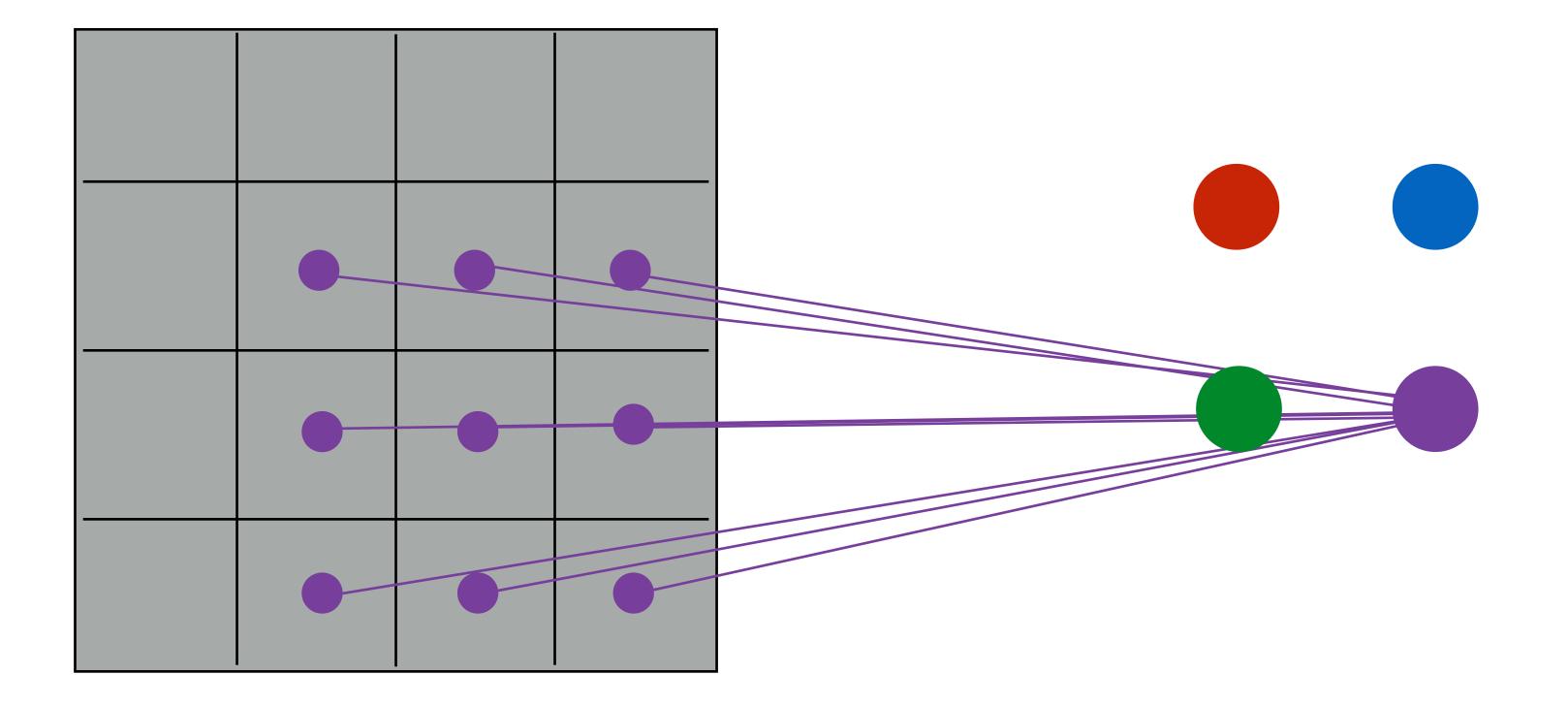
3 x 3 + 1 = 10

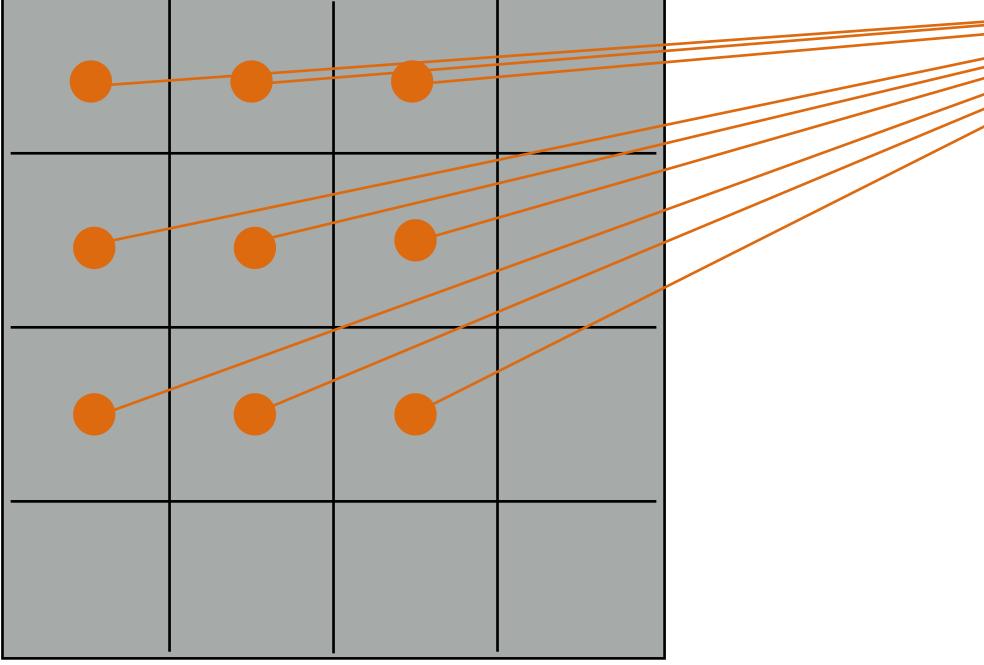


3 x 3 + 1 = 10

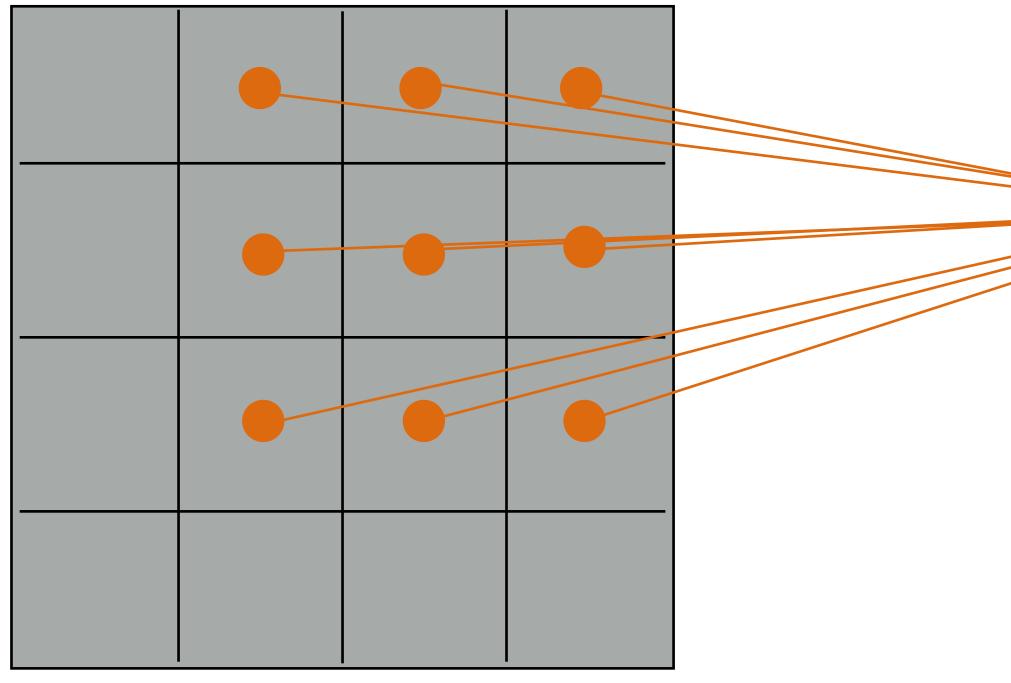
$$\sigma\left(\sum_{i=1}^{3}\sum_{j=1}^{3}\mathbf{W}_{4,i,j}\mathcal{I}(i+1,j+1)+b_4\right)$$

3 x 3 + 1 = 10

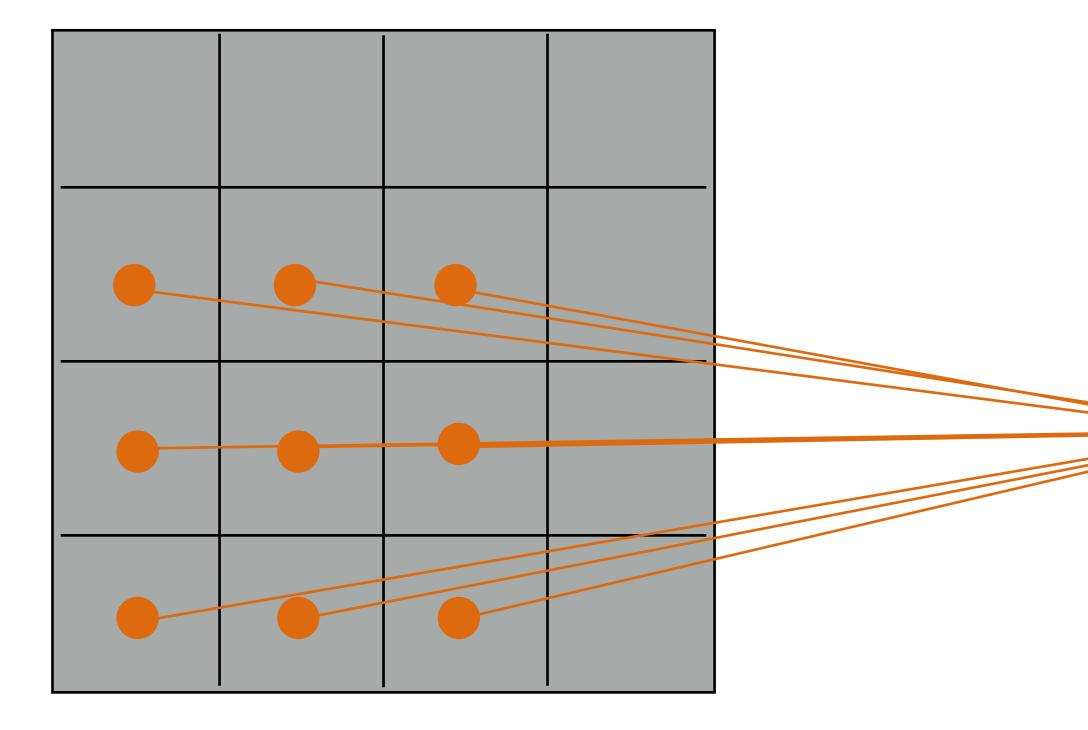




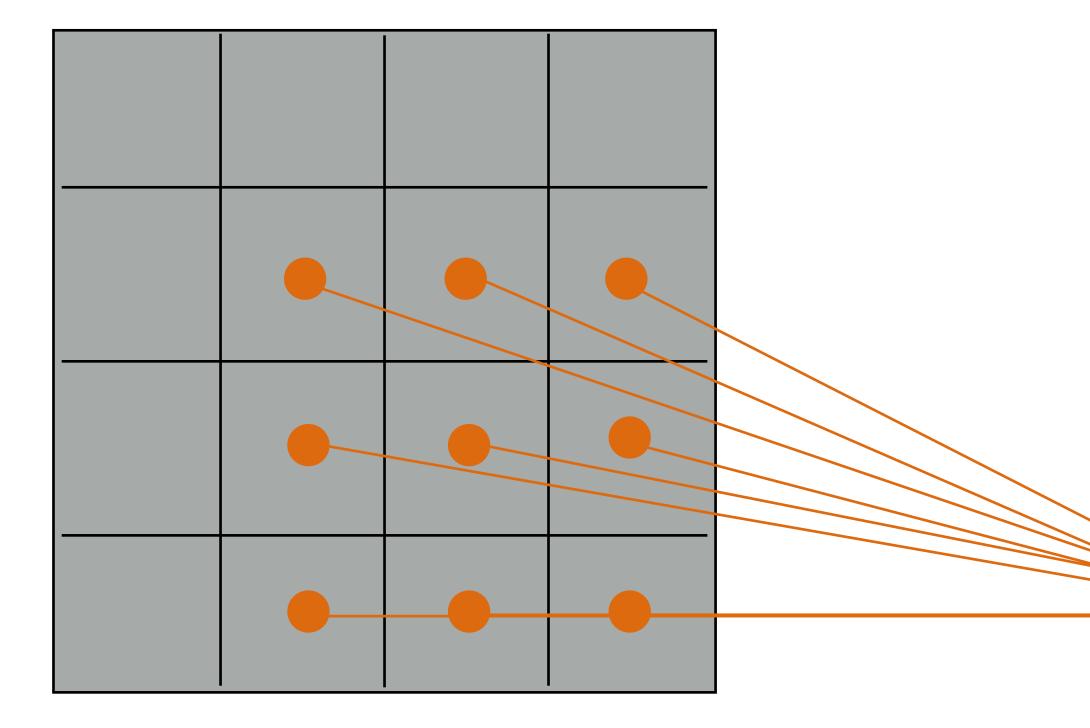
$$\sigma\left(\sum_{i=1}^{3}\sum_{j=1}^{3}\mathbf{W}_{i,j}\mathcal{I}(i,j)+b\right)$$



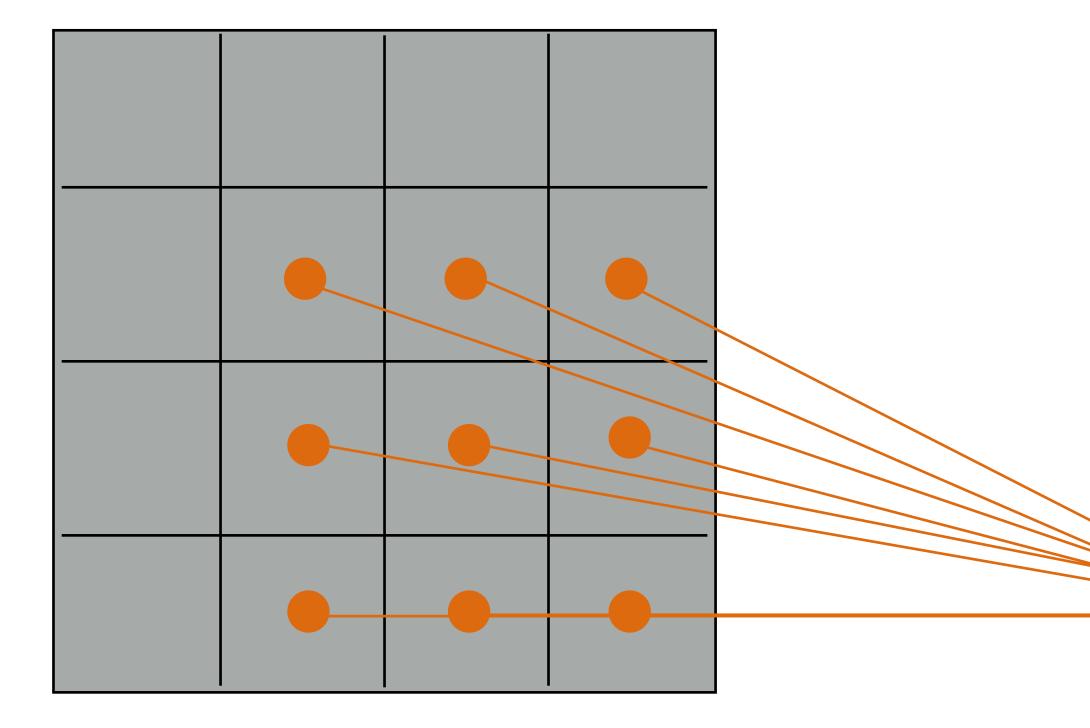
$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{i,j} \mathcal{I}(i,j) + b \right)$$
$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{i,j} \mathcal{I}(i+1,j) + b \right)$$



$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{i,j} \mathcal{I}(i,j) + b \right)$$
$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{i,j} \mathcal{I}(i+1,j) + b \right)$$
$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{i,j} \mathcal{I}(i,j+1) + b \right)$$



$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{i,j} \mathcal{I}(i,j) + b \right)$$
$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{i,j} \mathcal{I}(i+1,j) + b \right)$$
$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{i,j} \mathcal{I}(i,j+1) + b \right)$$
$$\sigma \left(\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{W}_{i,j} \mathcal{I}(i+1,j+1) + b \right)$$

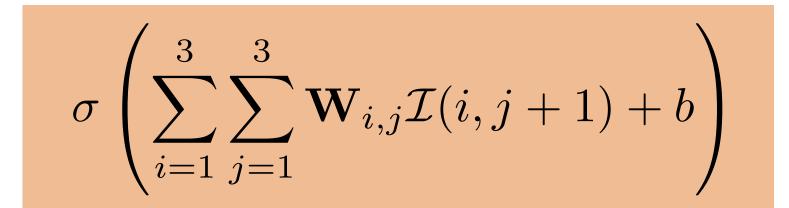


$$\sigma\left(\sum_{i=1}^{3}\sum_{j=1}^{3}\mathbf{W}_{i,j}\mathcal{I}(i,j)+b\right)$$

3 x 3 + 1 = 10

$$\sigma\left(\sum_{i=1}^{3}\sum_{j=1}^{3}\mathbf{W}_{i,j}\mathcal{I}(i+1,j)+b\right)$$

 $0 \times 0 + 0 = 0$

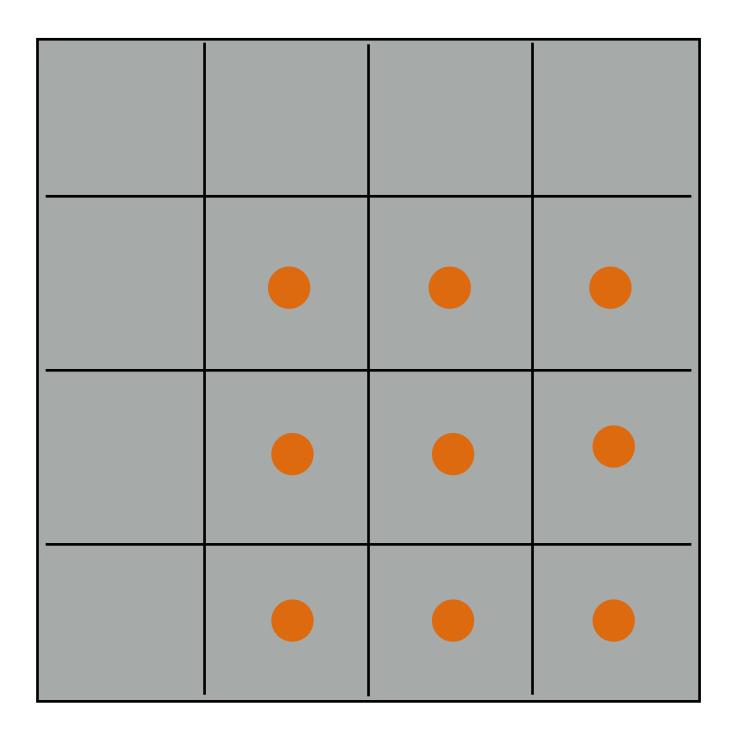


 $0 \times 0 + 0 = 0$

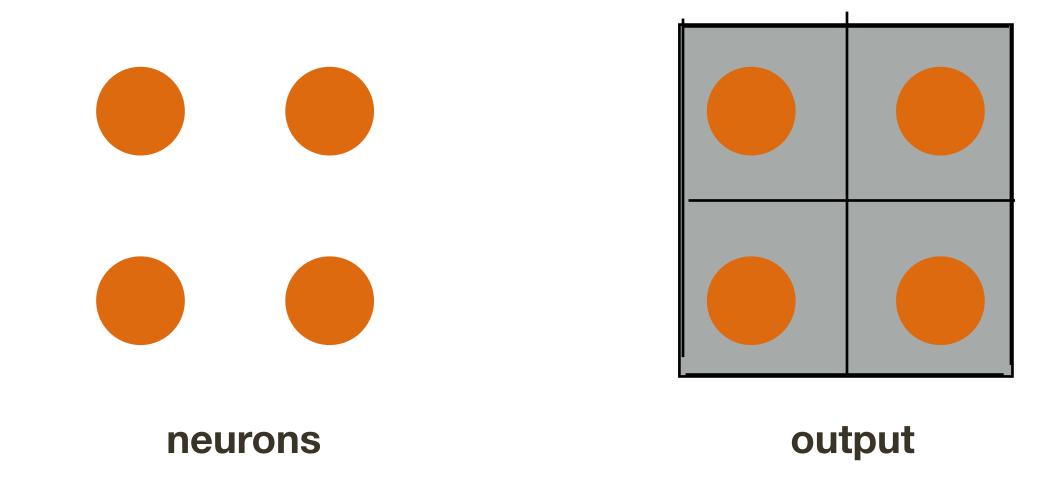
$$\sigma\left(\sum_{i=1}^{3}\sum_{j=1}^{3}\mathbf{W}_{i,j}\mathcal{I}(i+1,j+1)+b\right)$$

 $0 \times 0 + 0 = 0$

Convolutional Layer: Interpretation #1

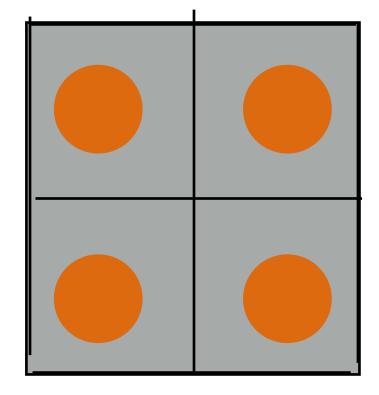


Multiple neurons that share weights



Convolutional Layer: Interpretation #2

One neuron applied as convolution (by shifting)

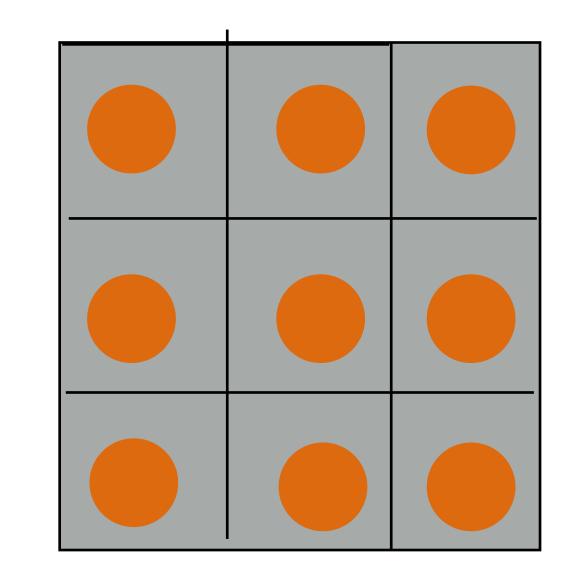


neurons

output

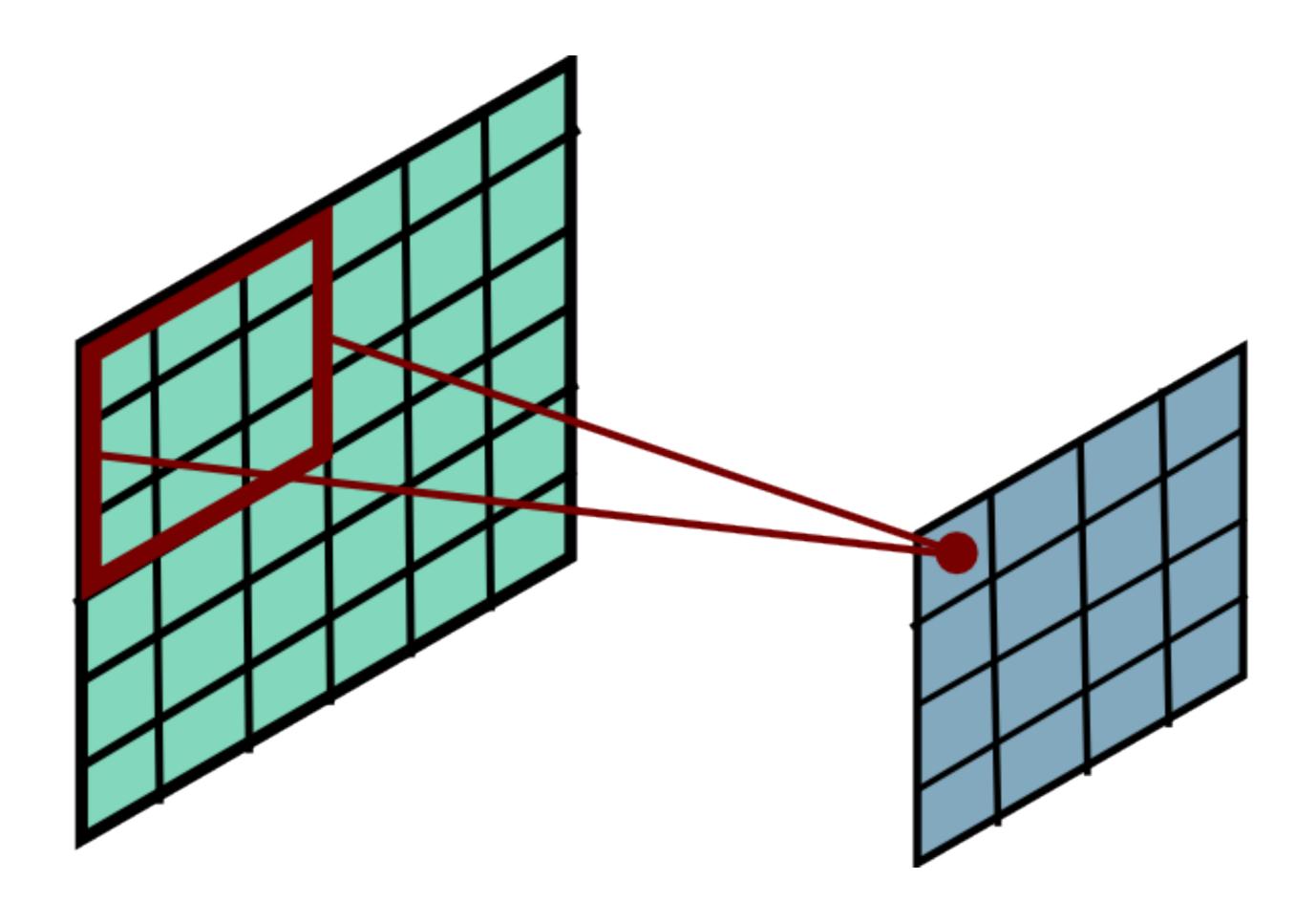
Convolutional Layer: Interpretation #2

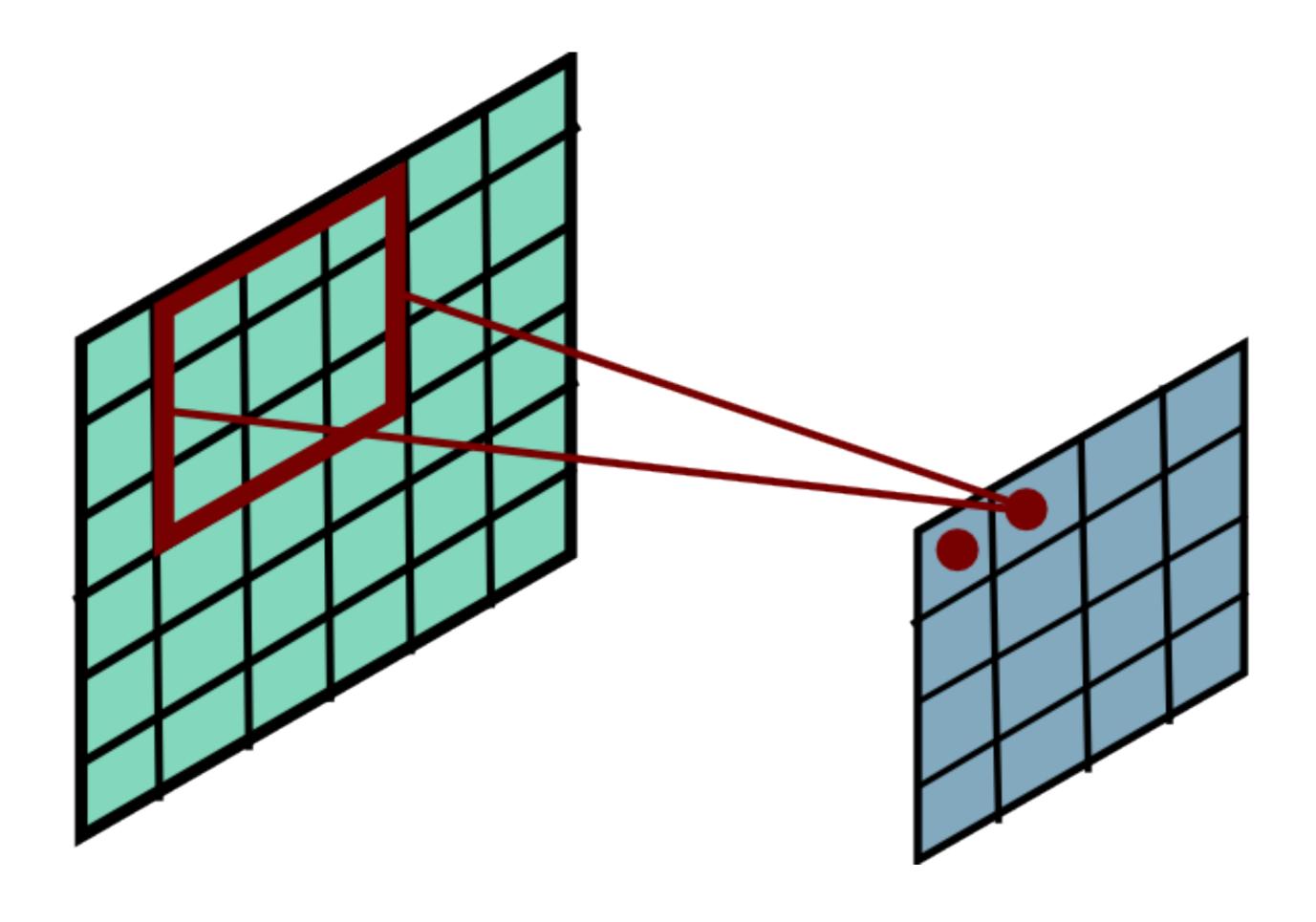
One neuron applied as convolution (by shifting)

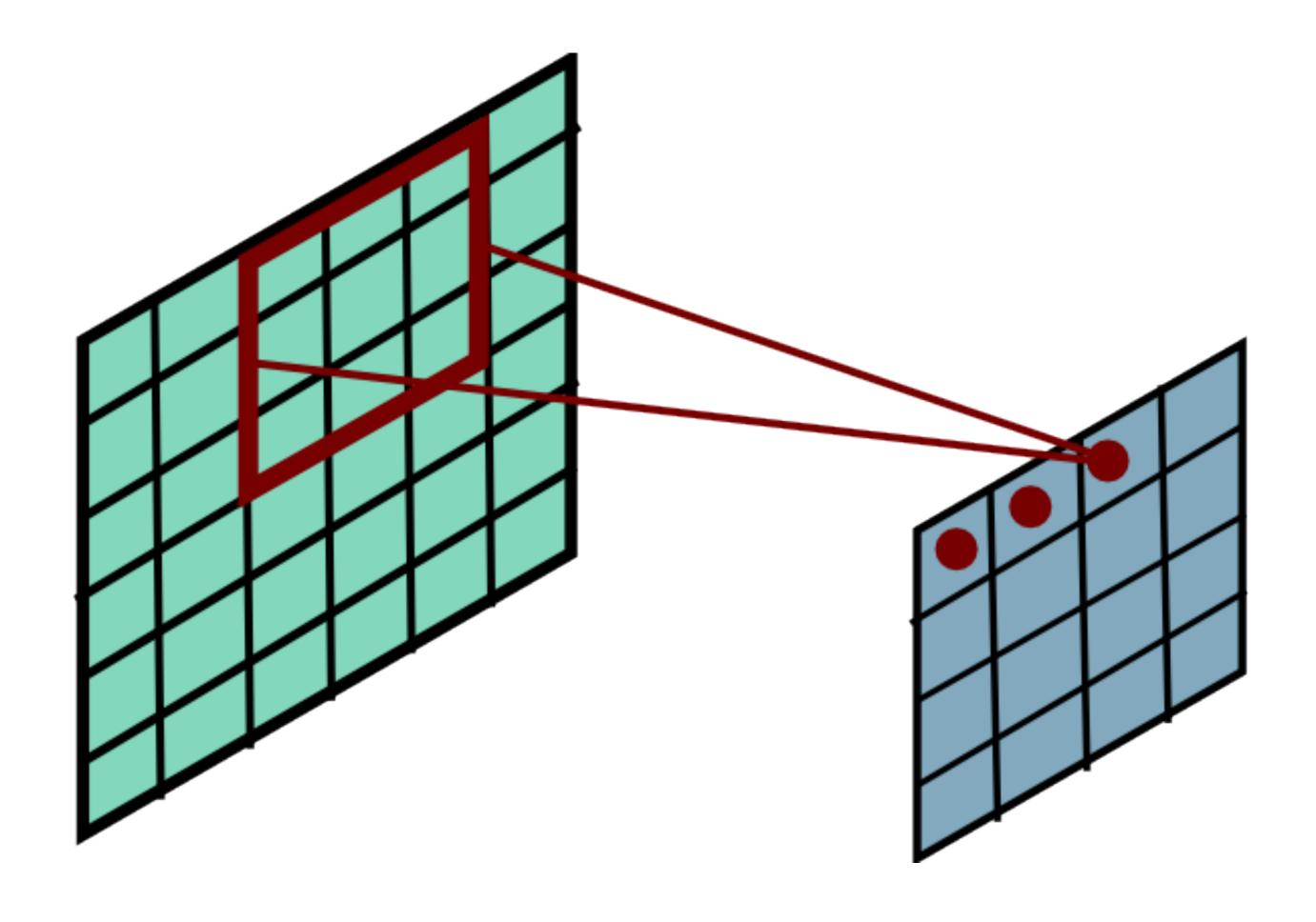


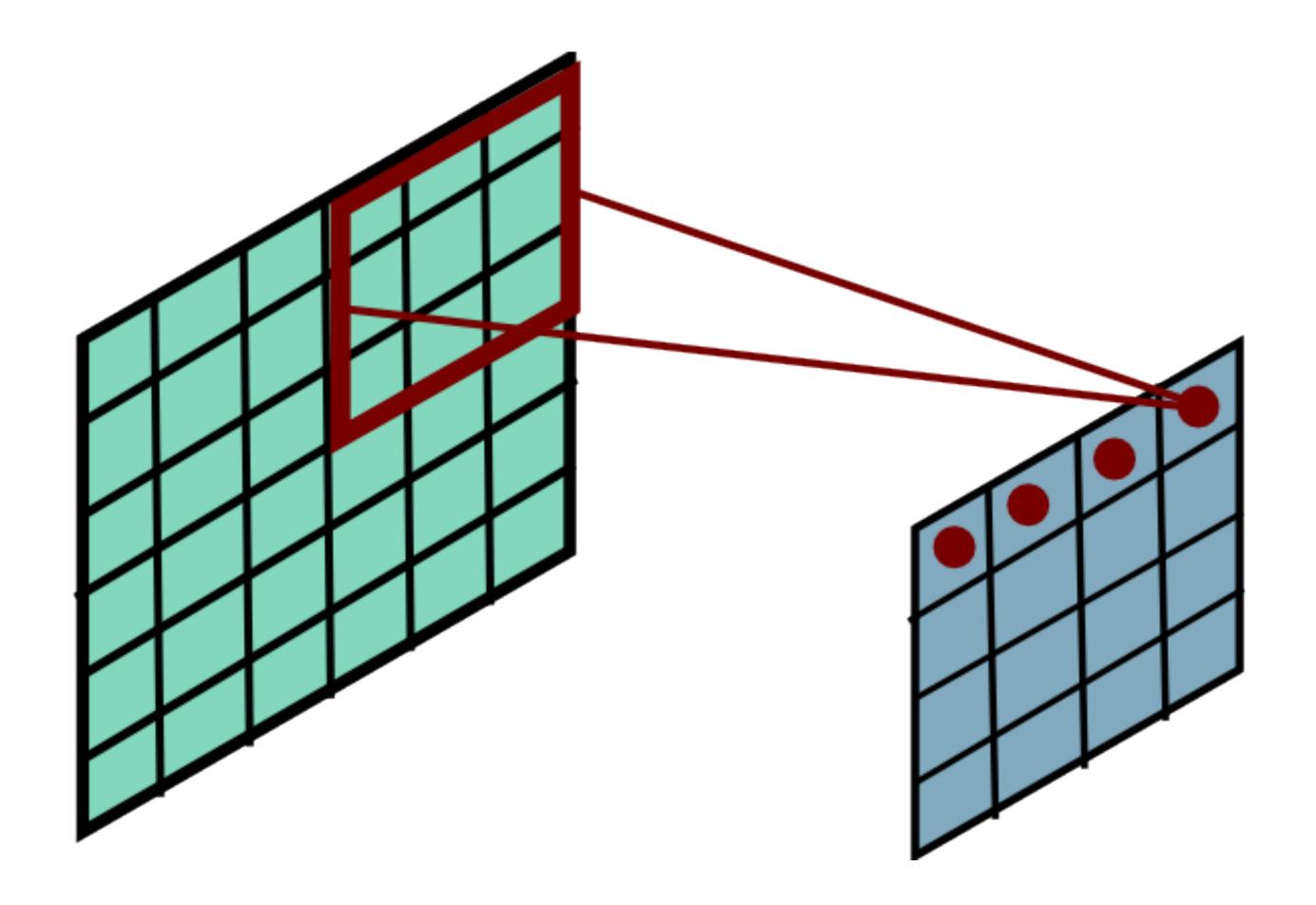
output

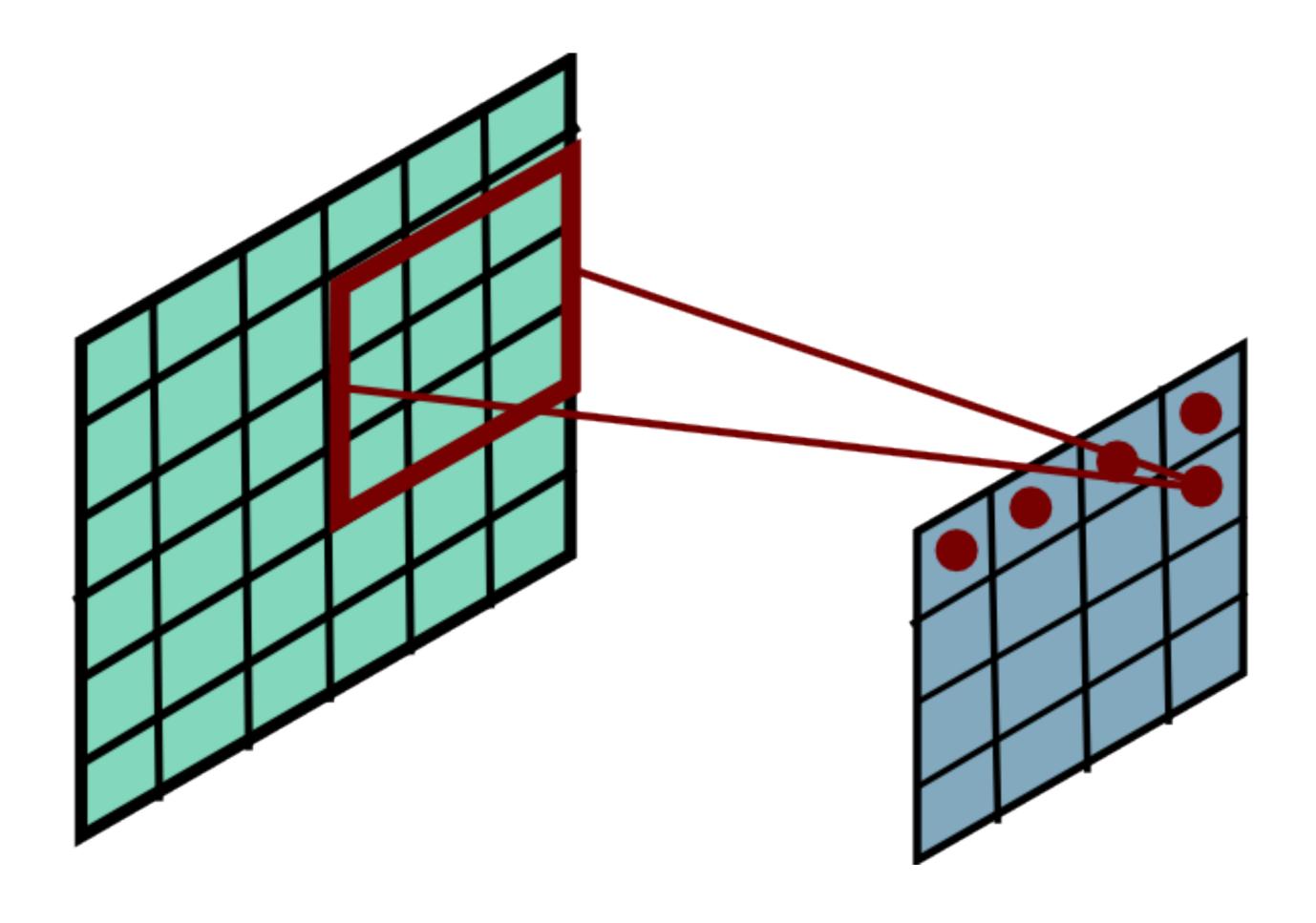
neurons

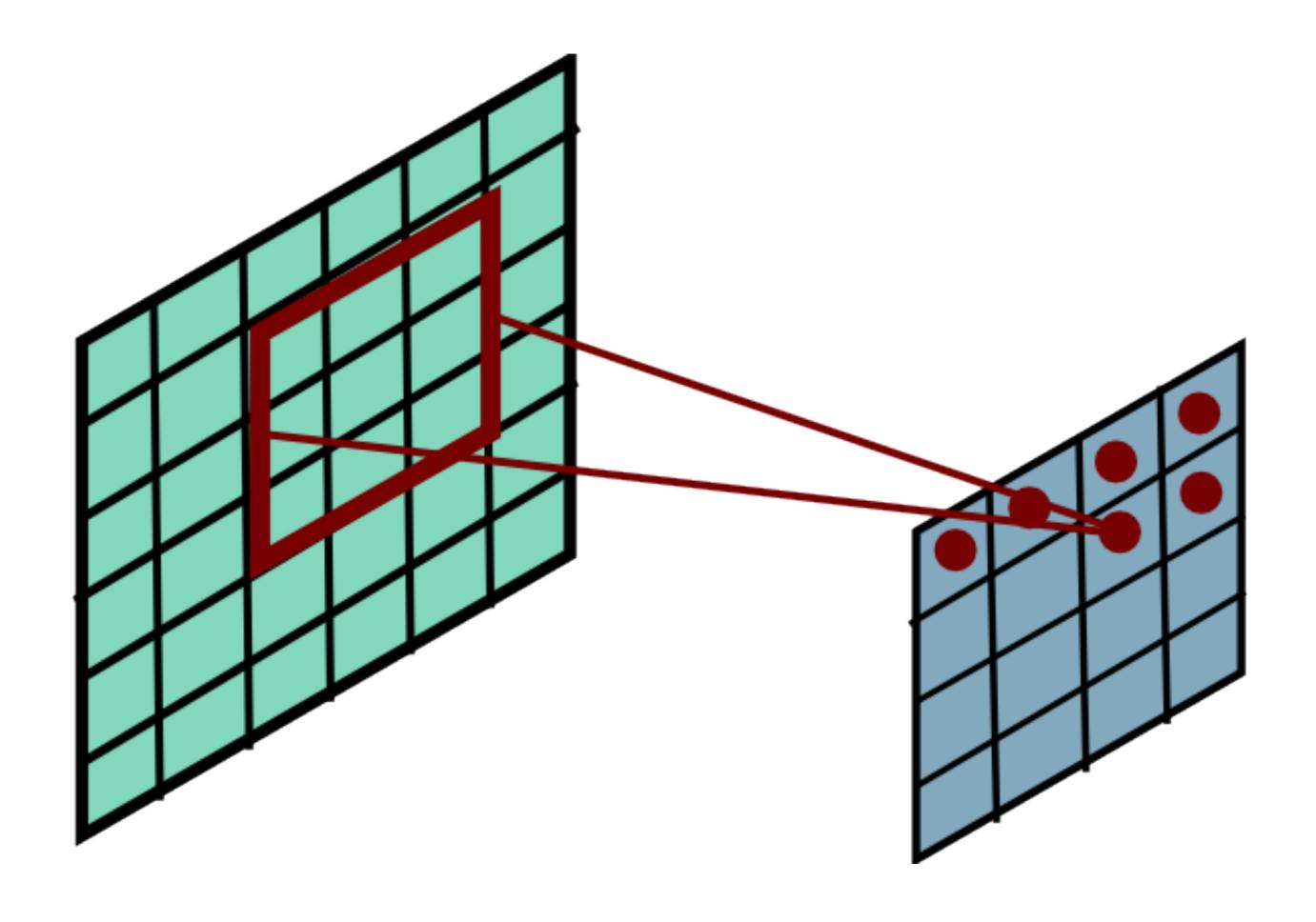


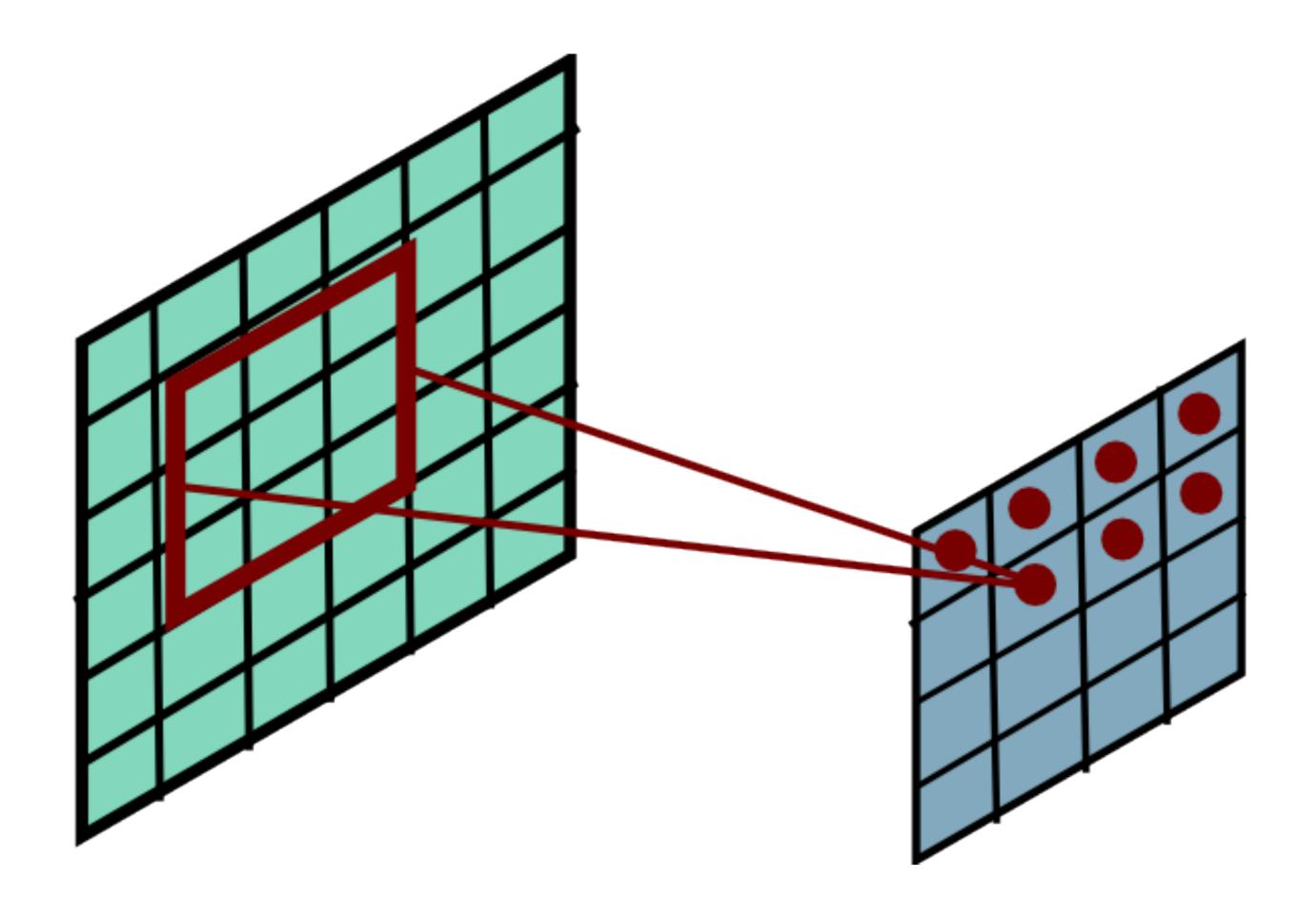


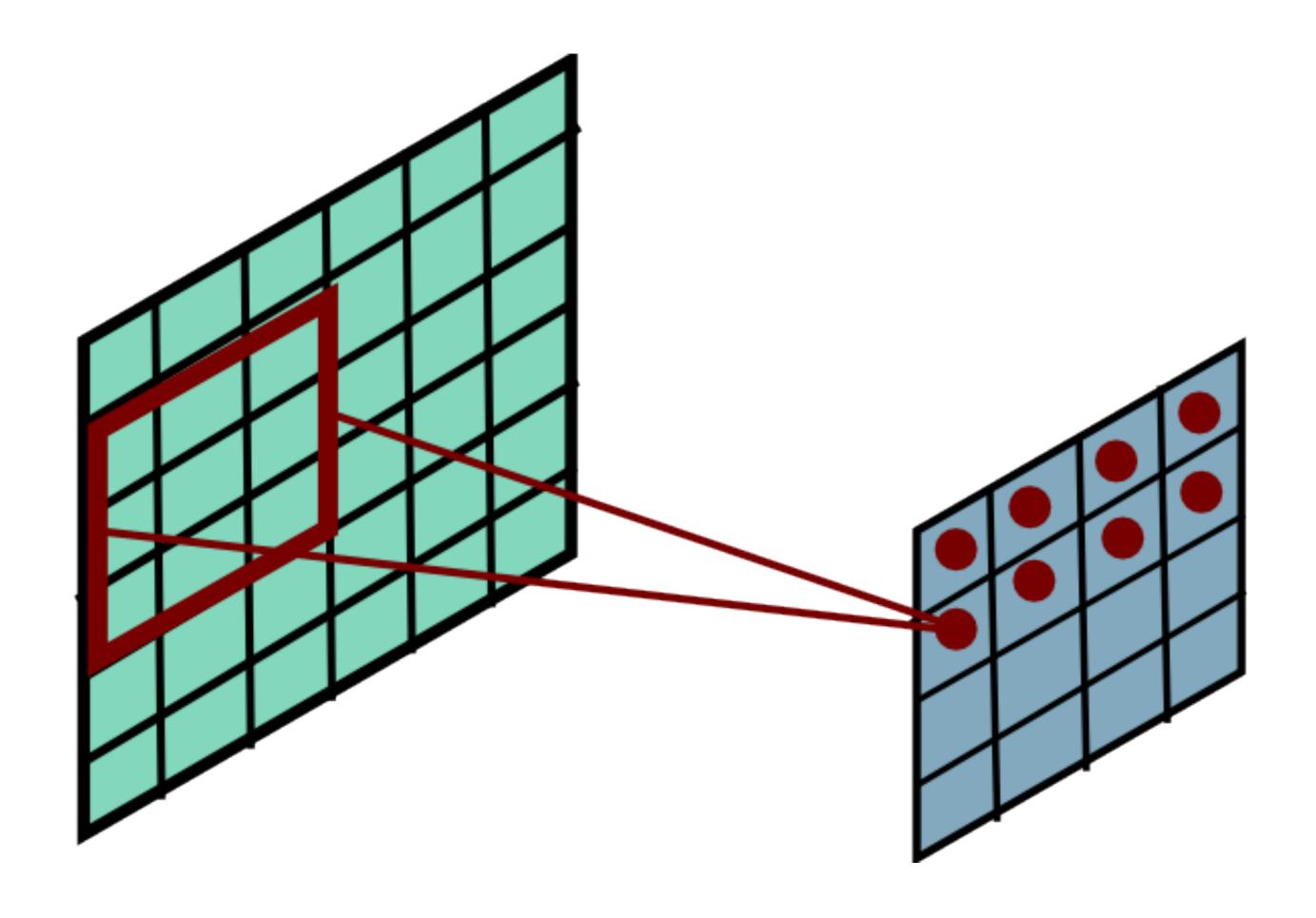


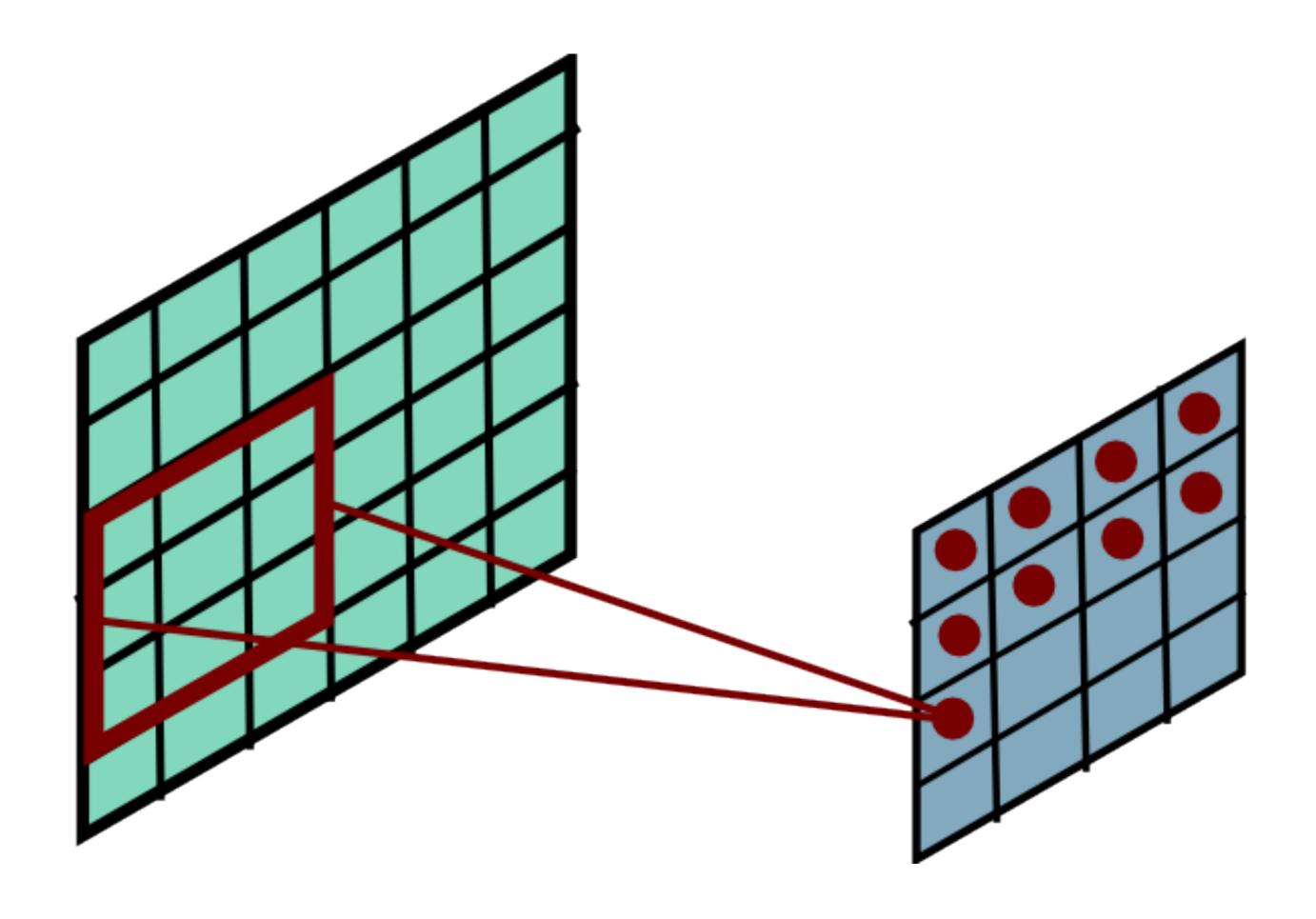


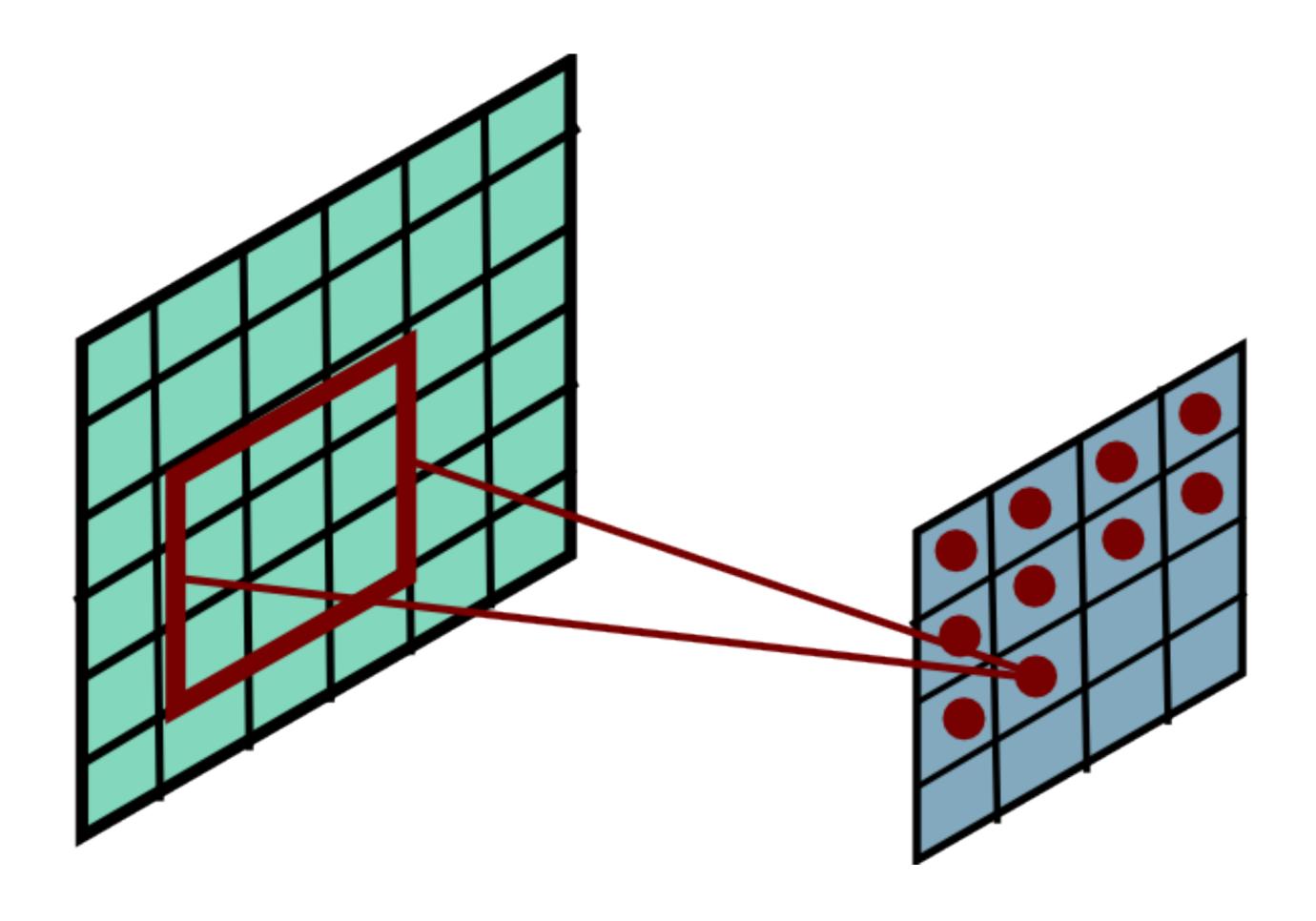


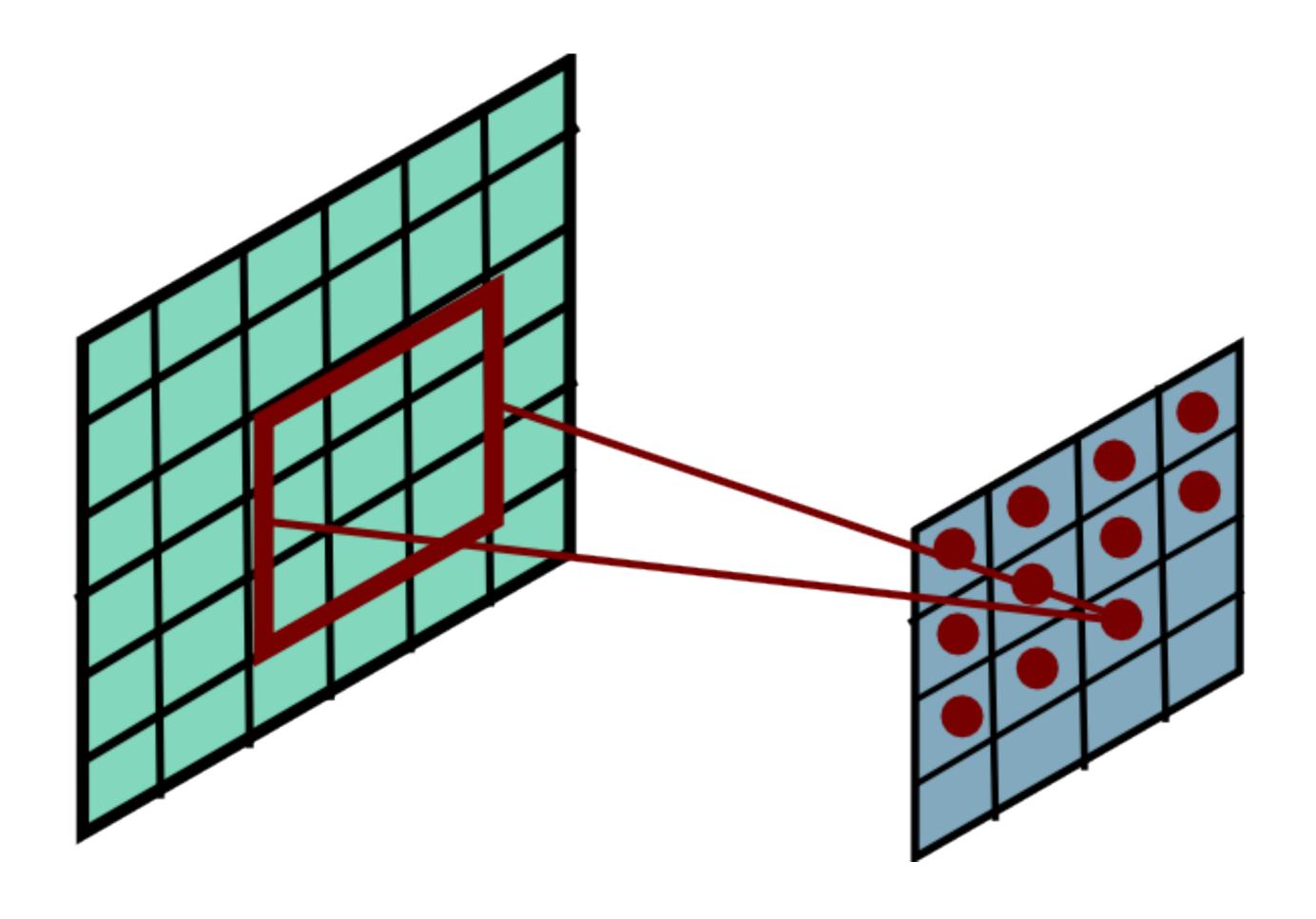


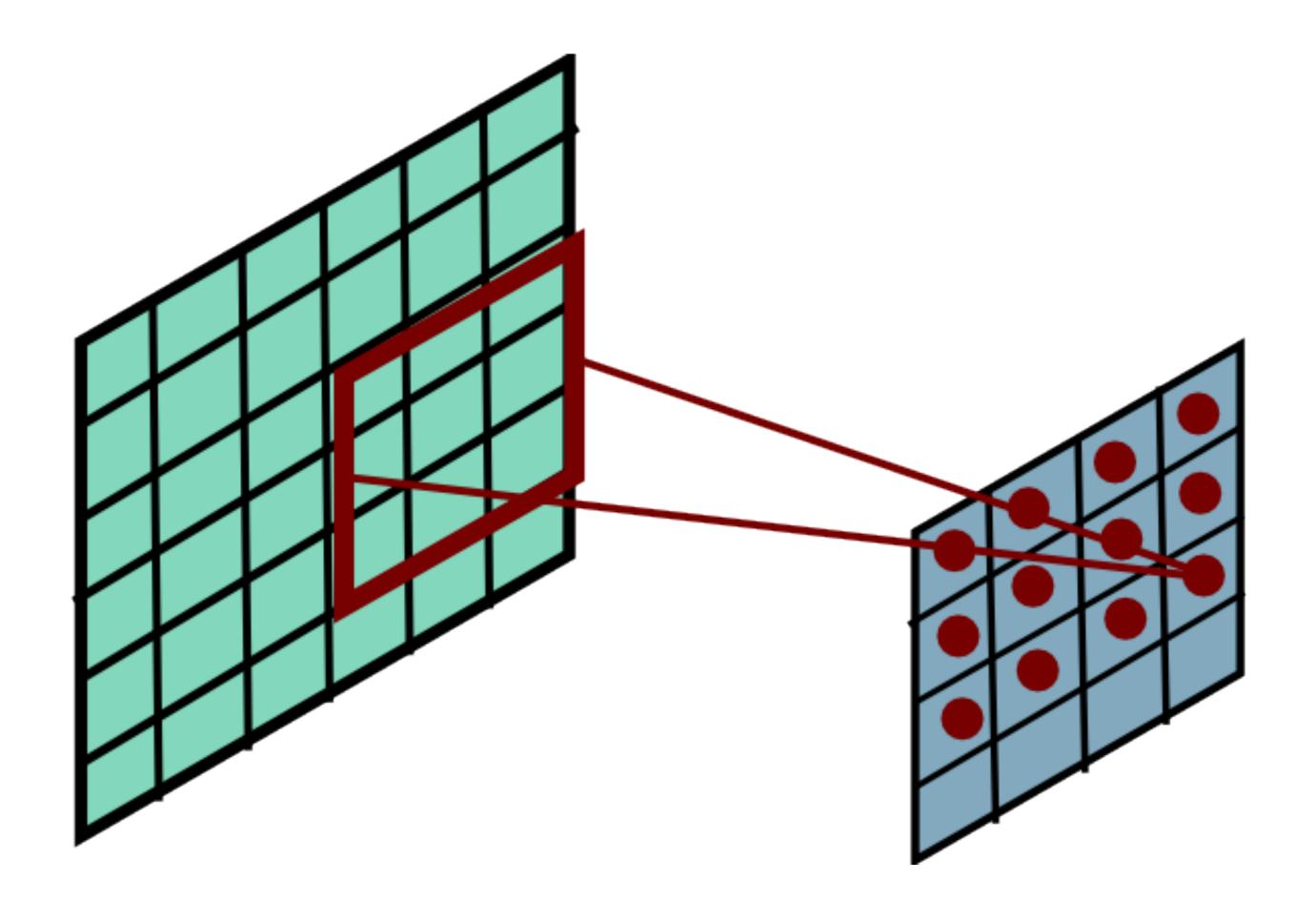


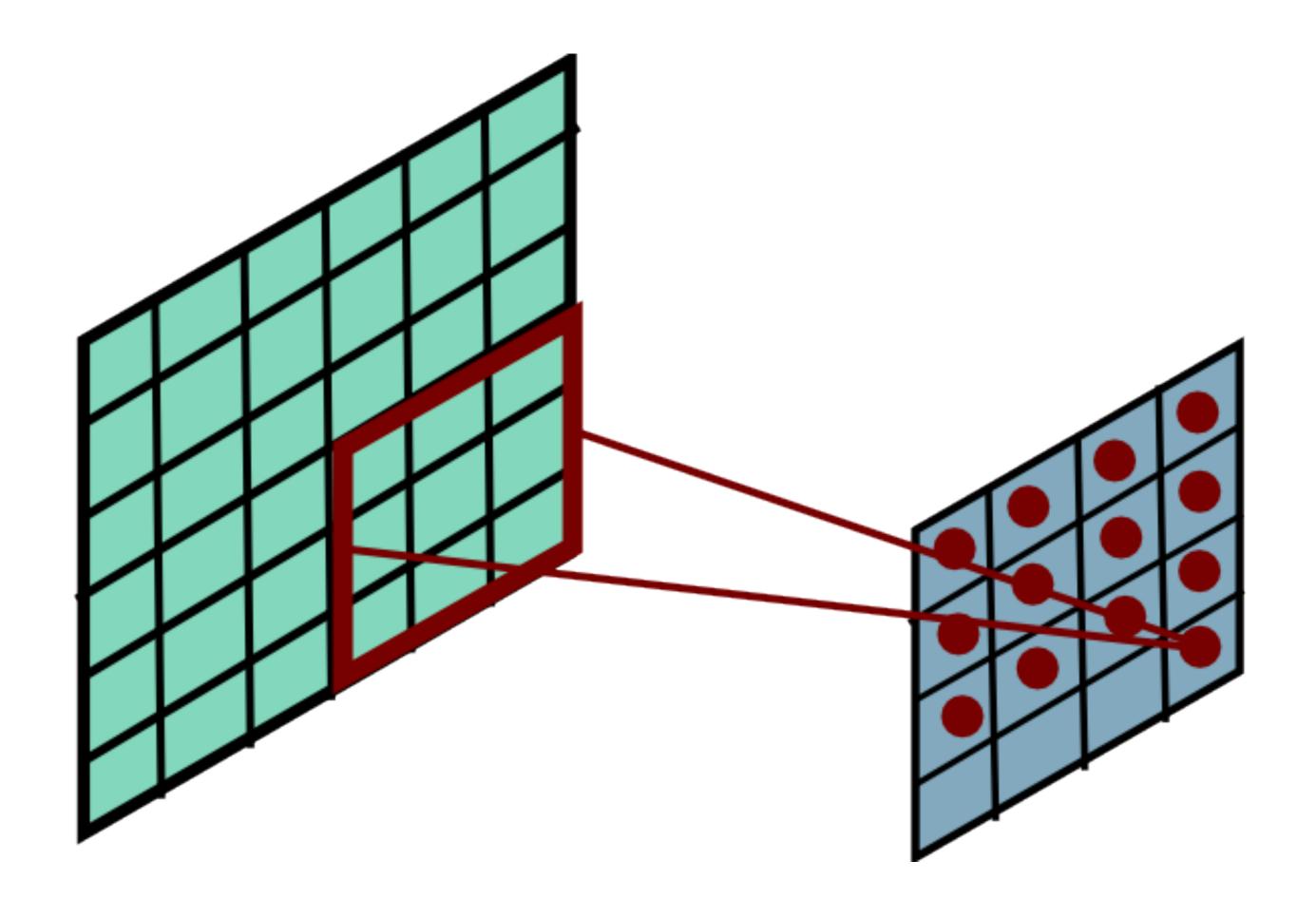


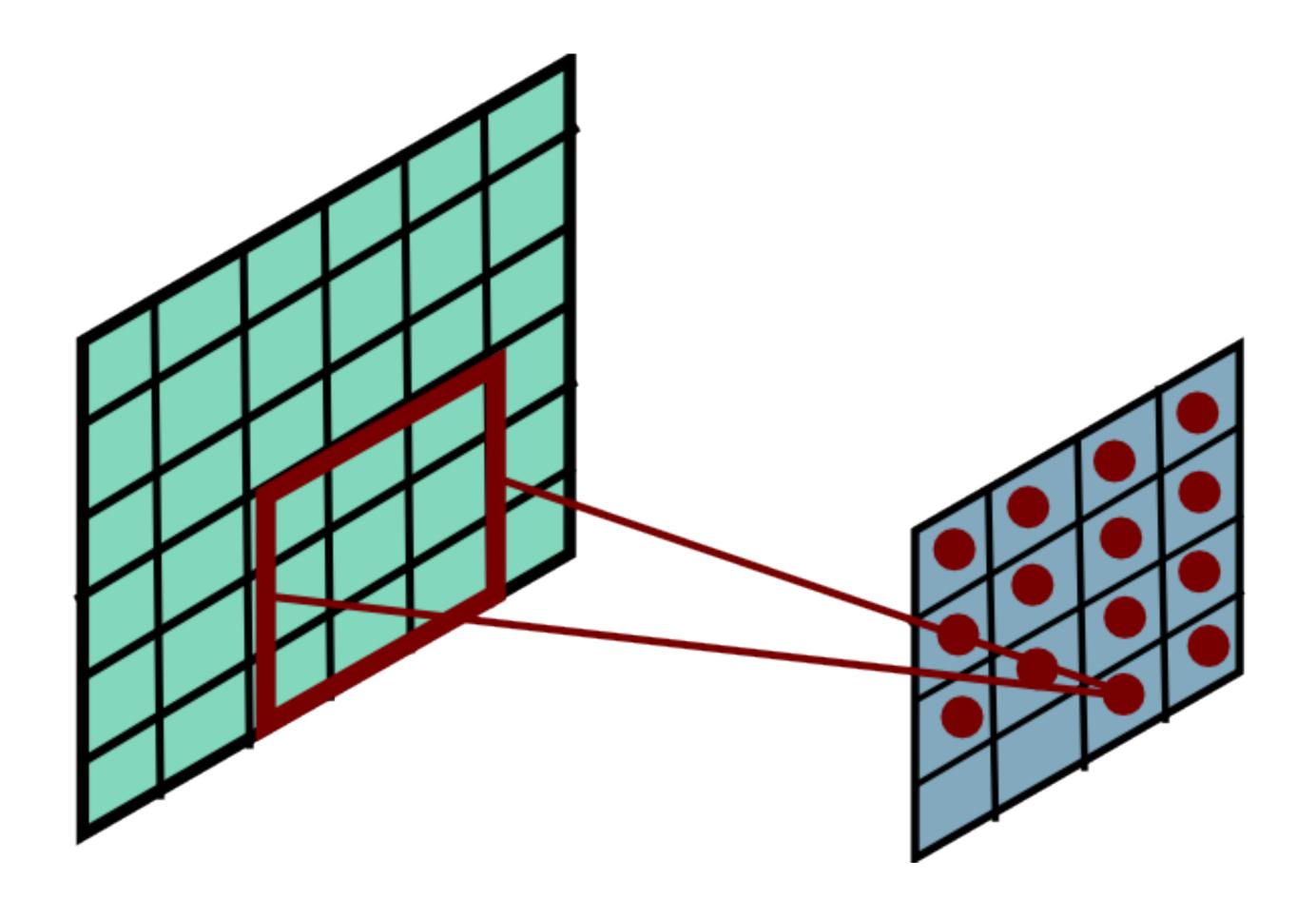


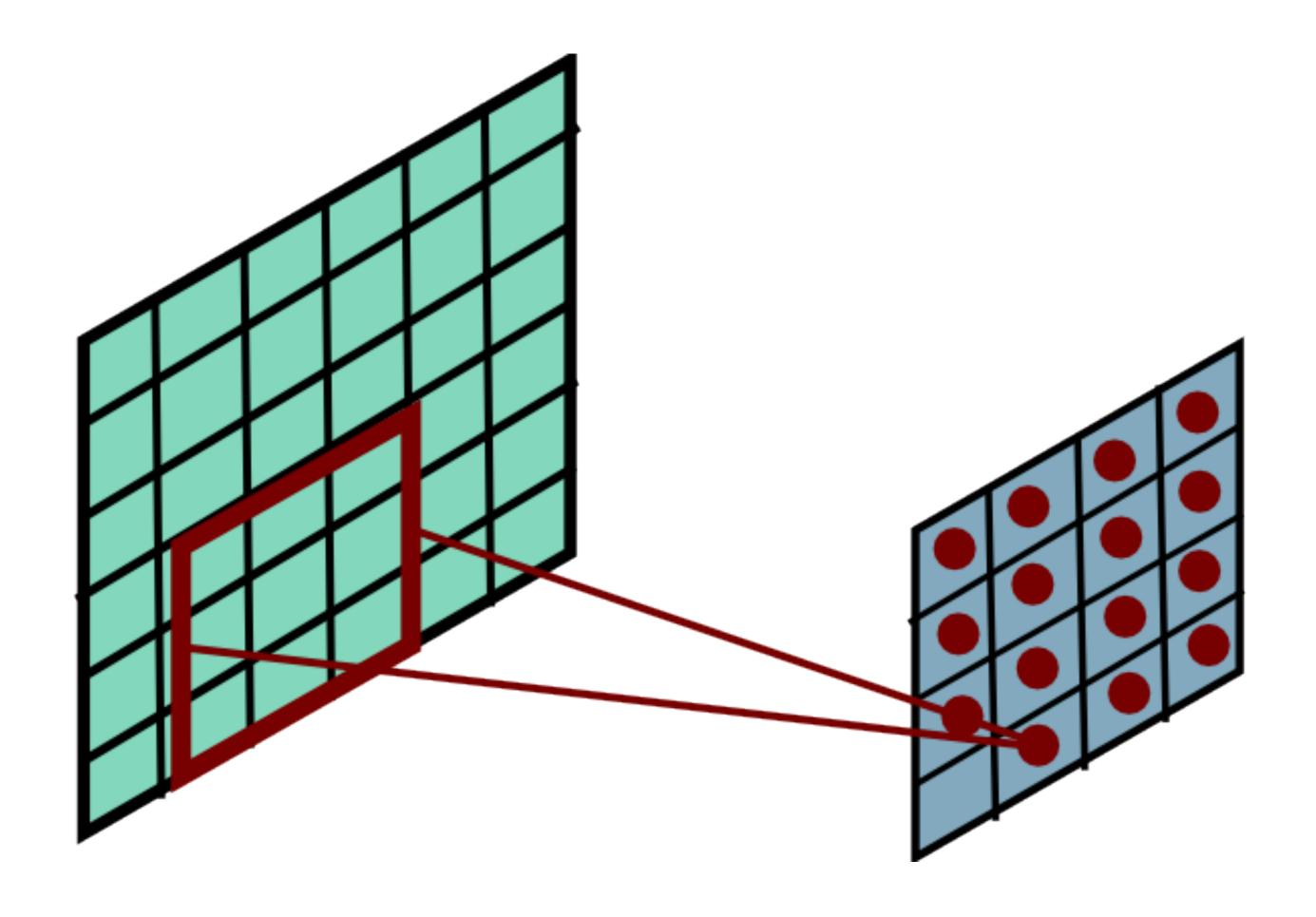


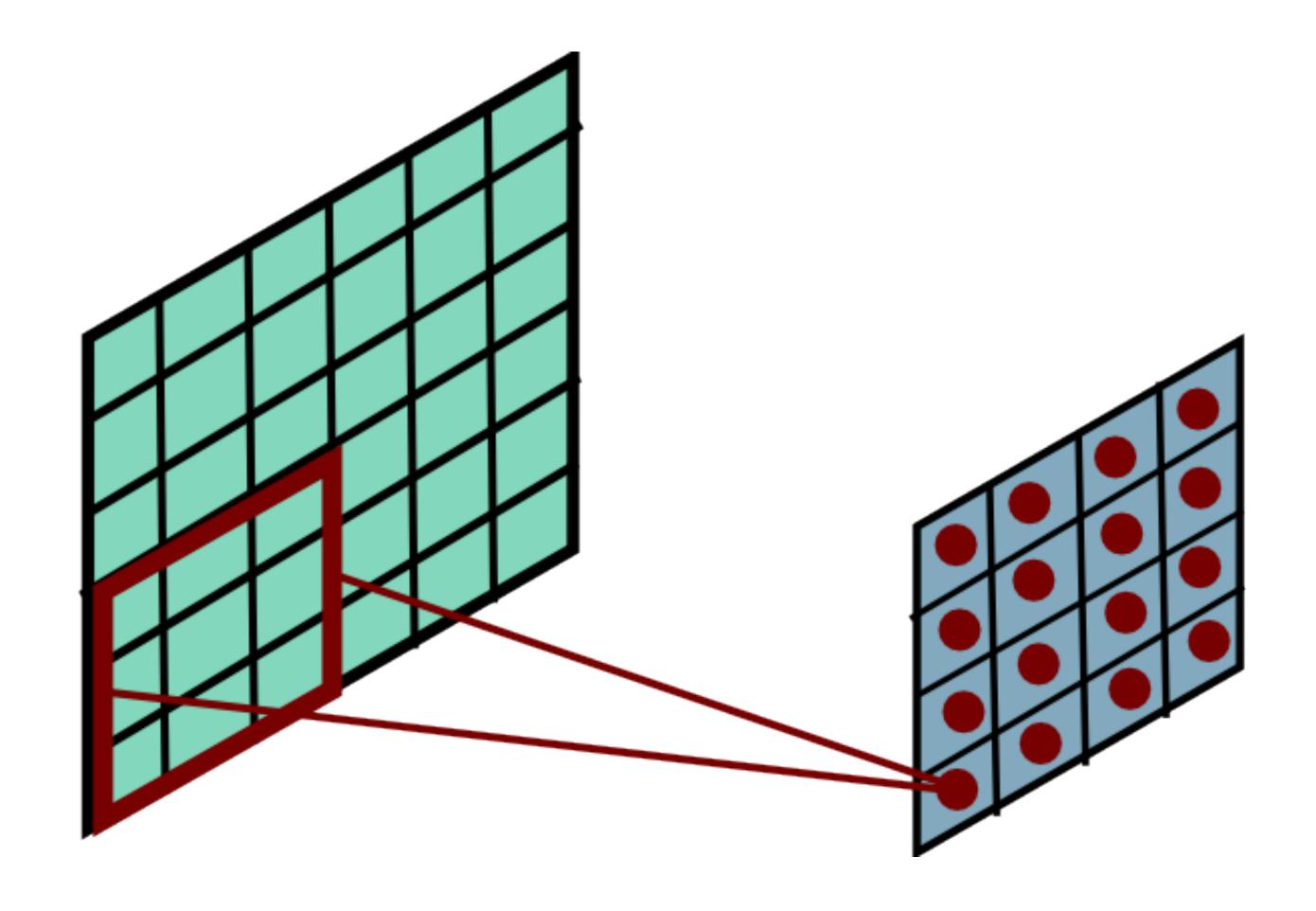






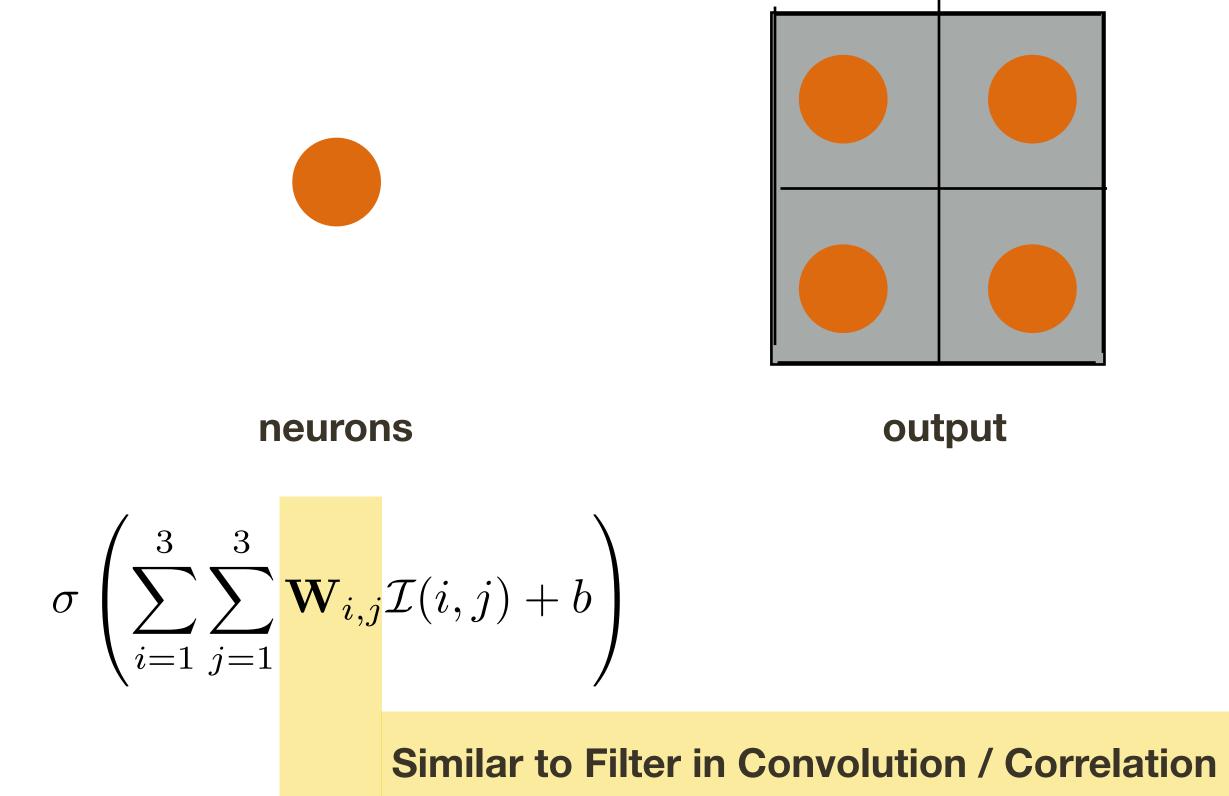




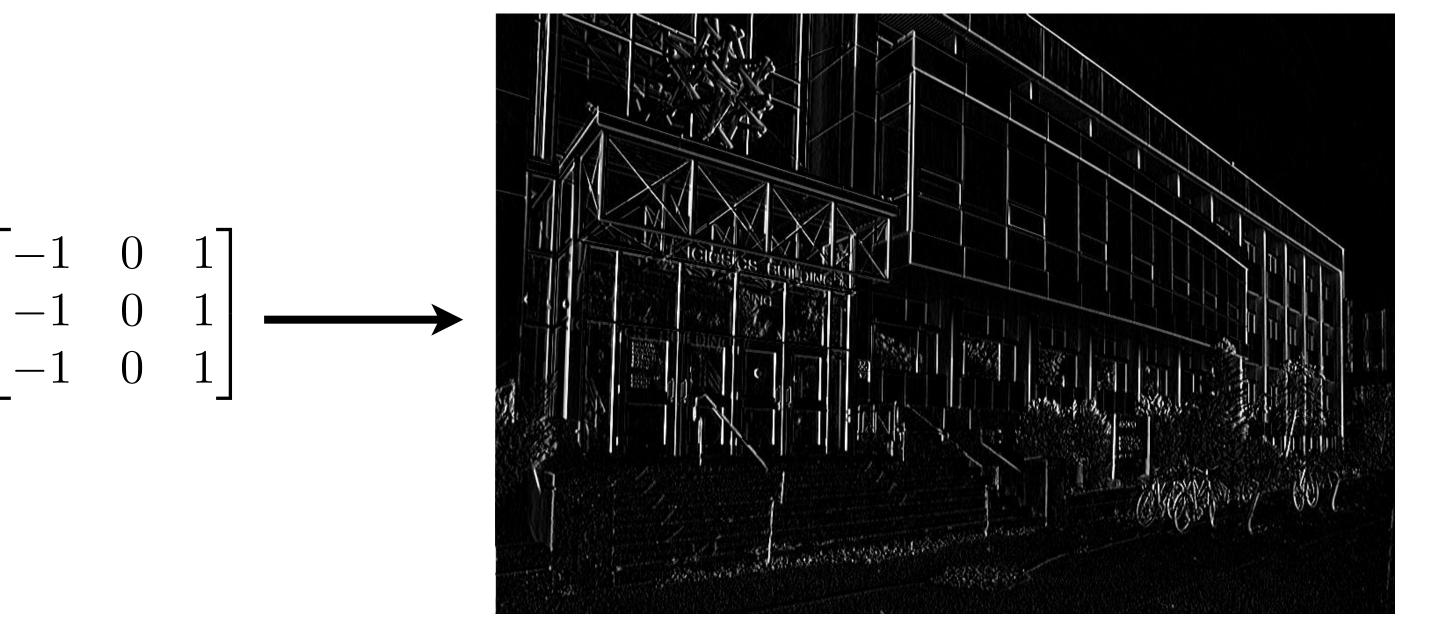


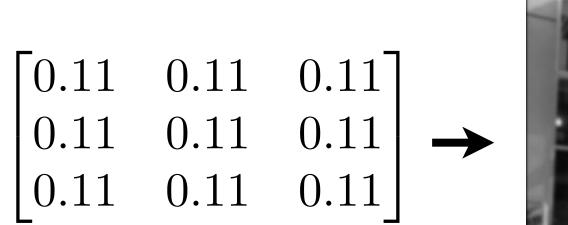
Convolutional Layer: Interpretation #2

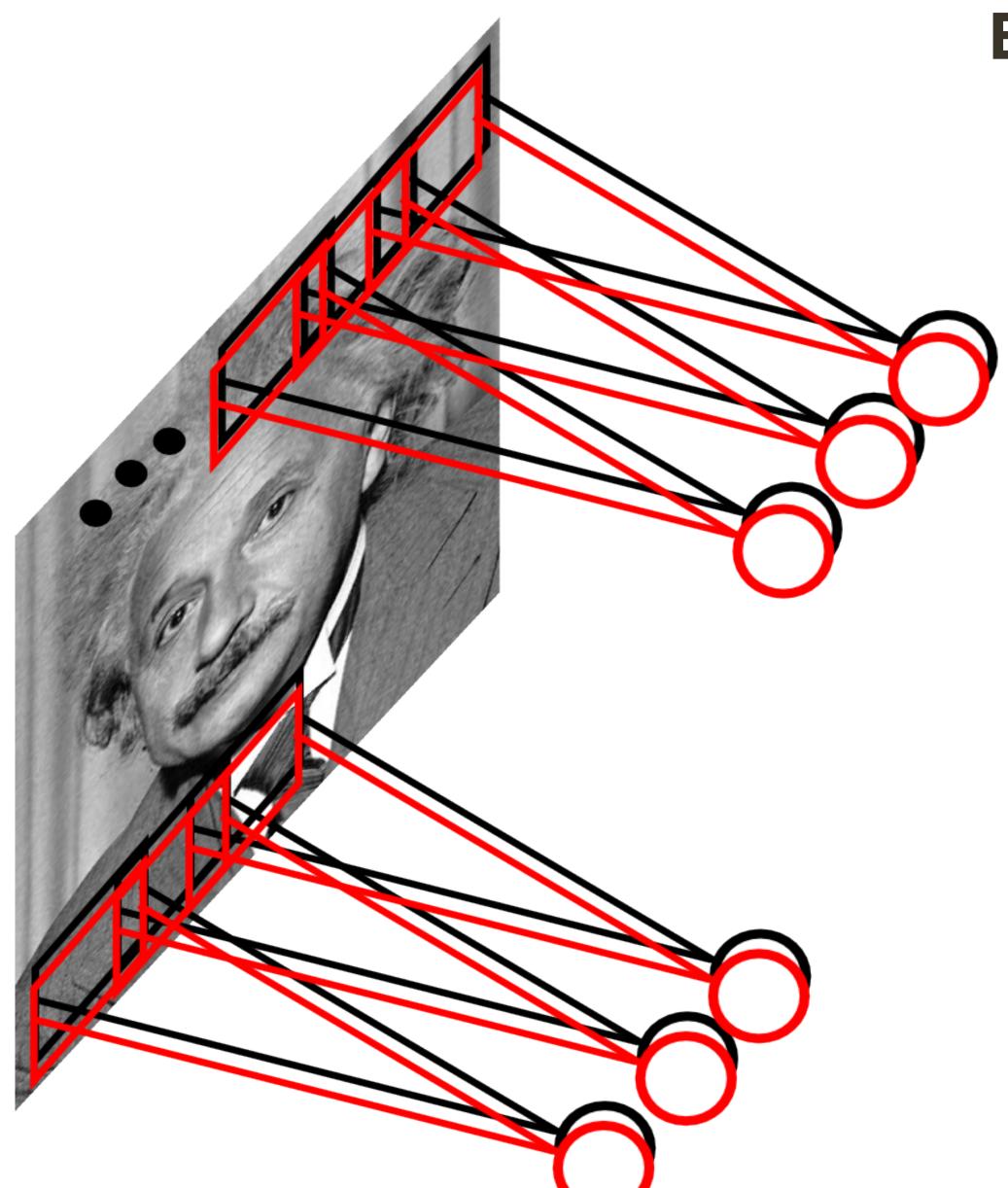
One neuron applied as convolution (by shifting)



— \star







Example: 200 x 200 image (small) x 40K hidden units

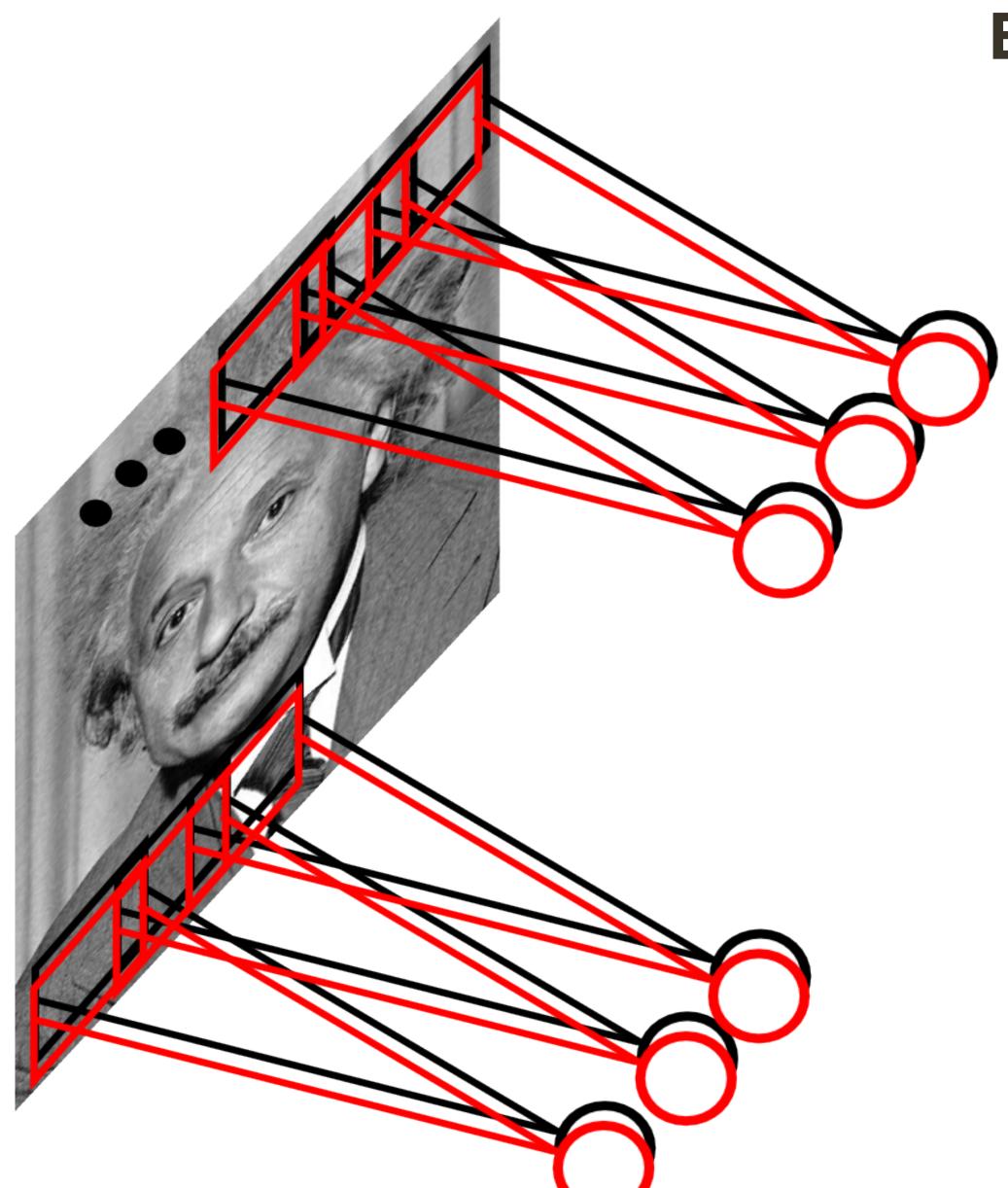
Filter size: 10 x 10

of filters: 20

Learn multiple filters

* slide from Marc'Aurelio Renzato

†*1*



Example: 200 x 200 image (small) x 40K hidden units

Filter size: 10 x 10

of filters: 20

= 2000 parameters

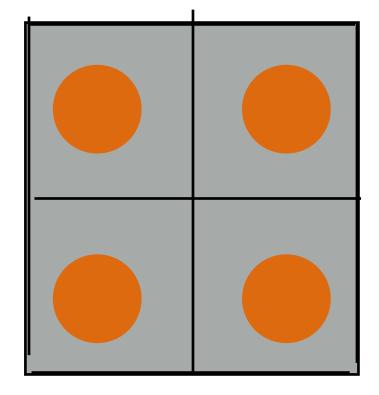
Learn multiple filters

* slide from Marc'Aurelio Renzato

†*1*

Convolutional Layer: Interpretation #2

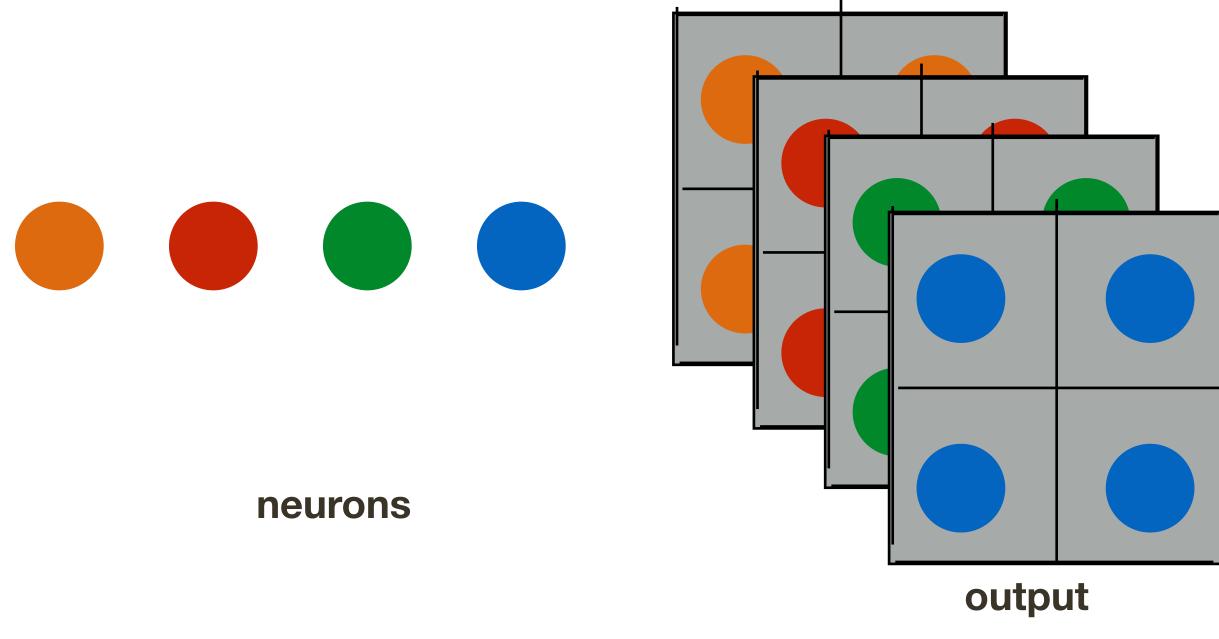
One neuron applied as convolution (by shifting)



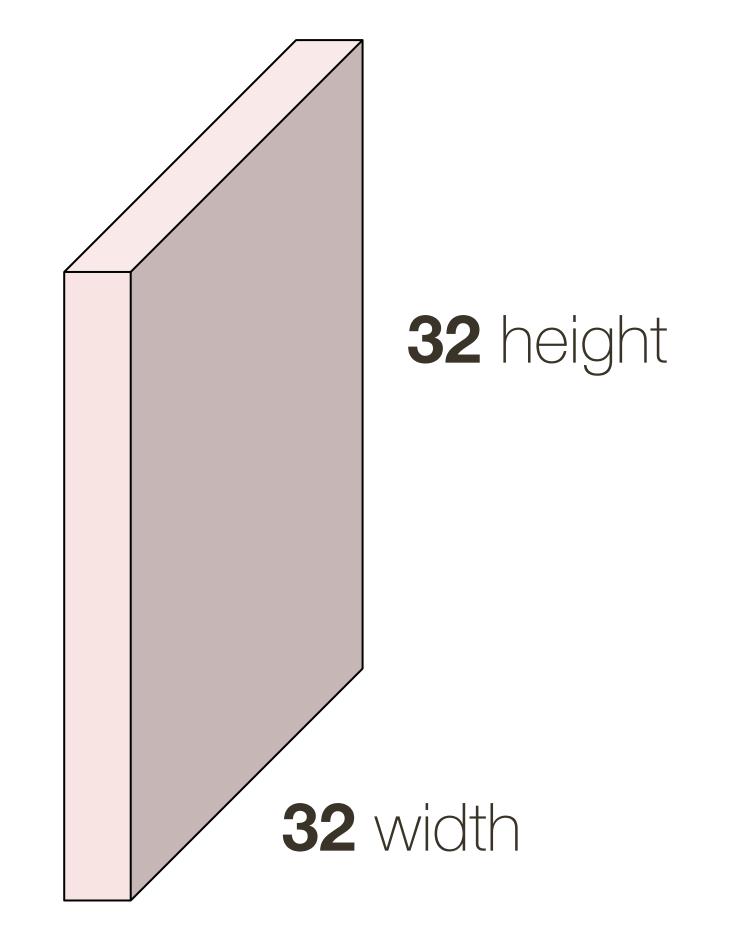
output

Convolutional Layer: Interpretation #2

One neuron applied as convolution (by shifting)

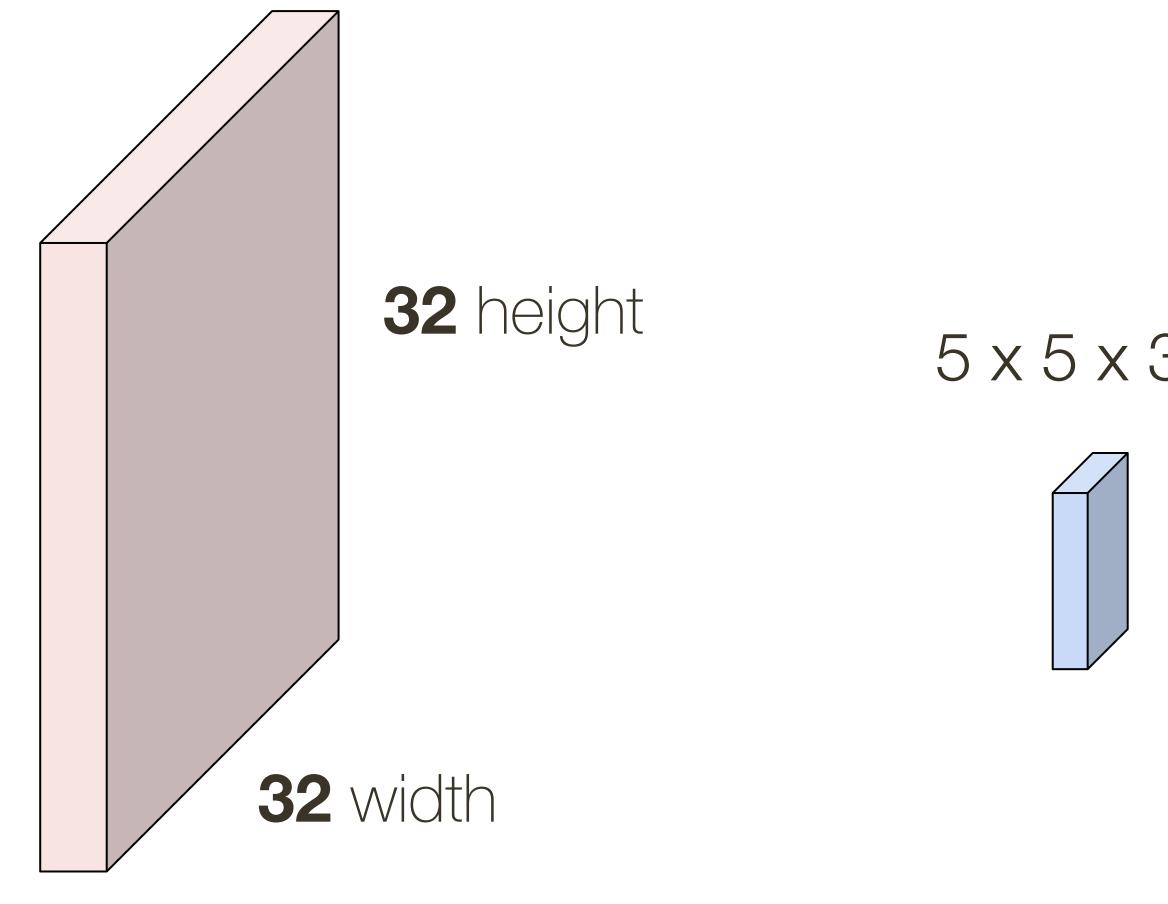


32 x 32 x 3 image (note the image preserves spatial structure)



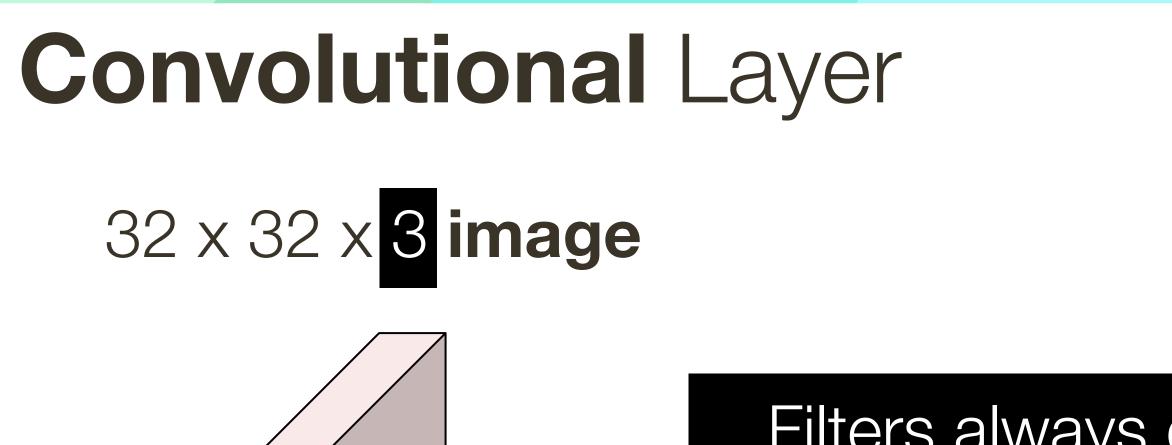
3 depth

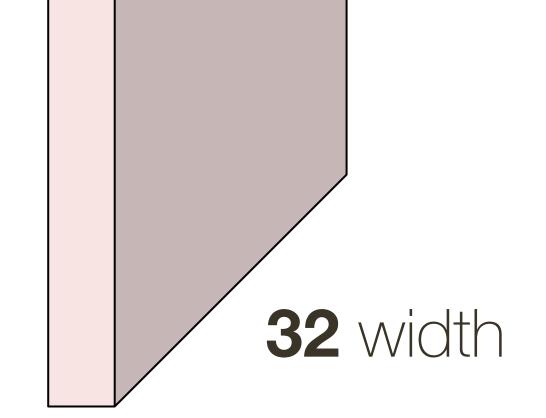
32 x 32 x 3 **image**



$5 \times 5 \times 3$ filter

Convolve the filter with the image (i.e., "slide over the image spatially, computing dot products")



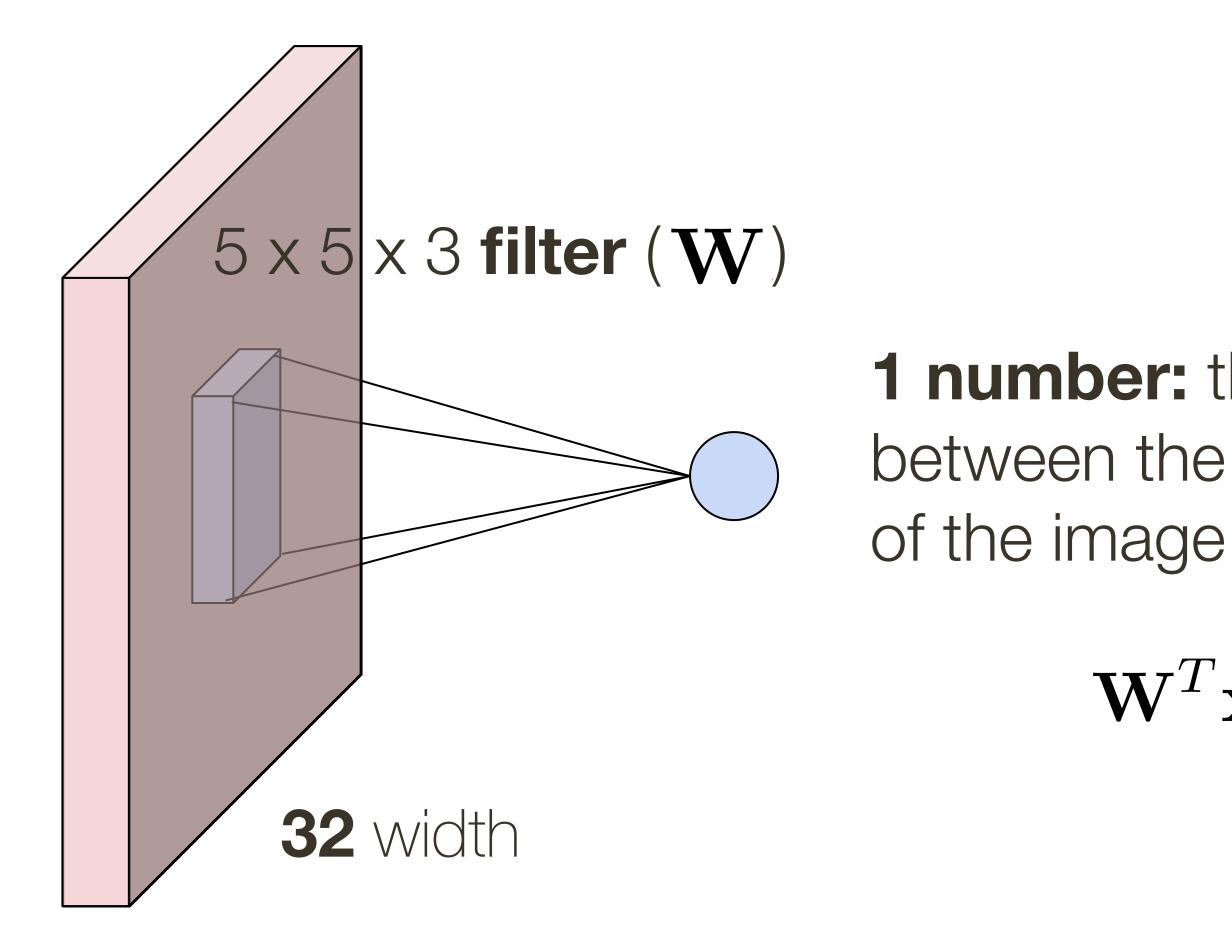


Filters always extend the full depth of the input volume

5 x 5 x 3 filter

Convolve the filter with the image (i.e., "slide over the image spatially, computing dot products"

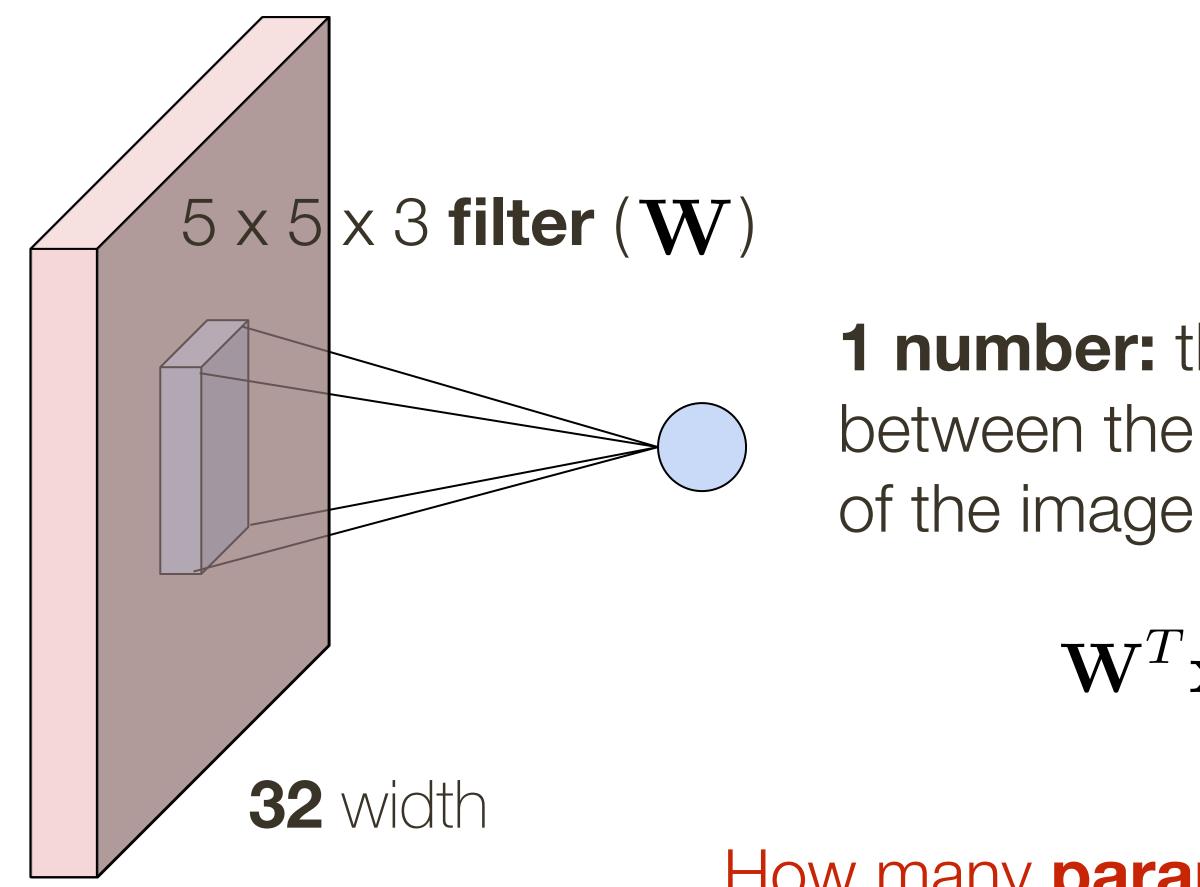
32 x 32 x 3 **image**



1 number: the result of taking a dot product between the filter and a small 5 x 5 x 3 part of the image

$$\mathbf{W}^T \mathbf{x} + b$$
, where $\mathbf{W}, \mathbf{x} \in \mathbb{R}^{75}$

32 x 32 x 3 **image**

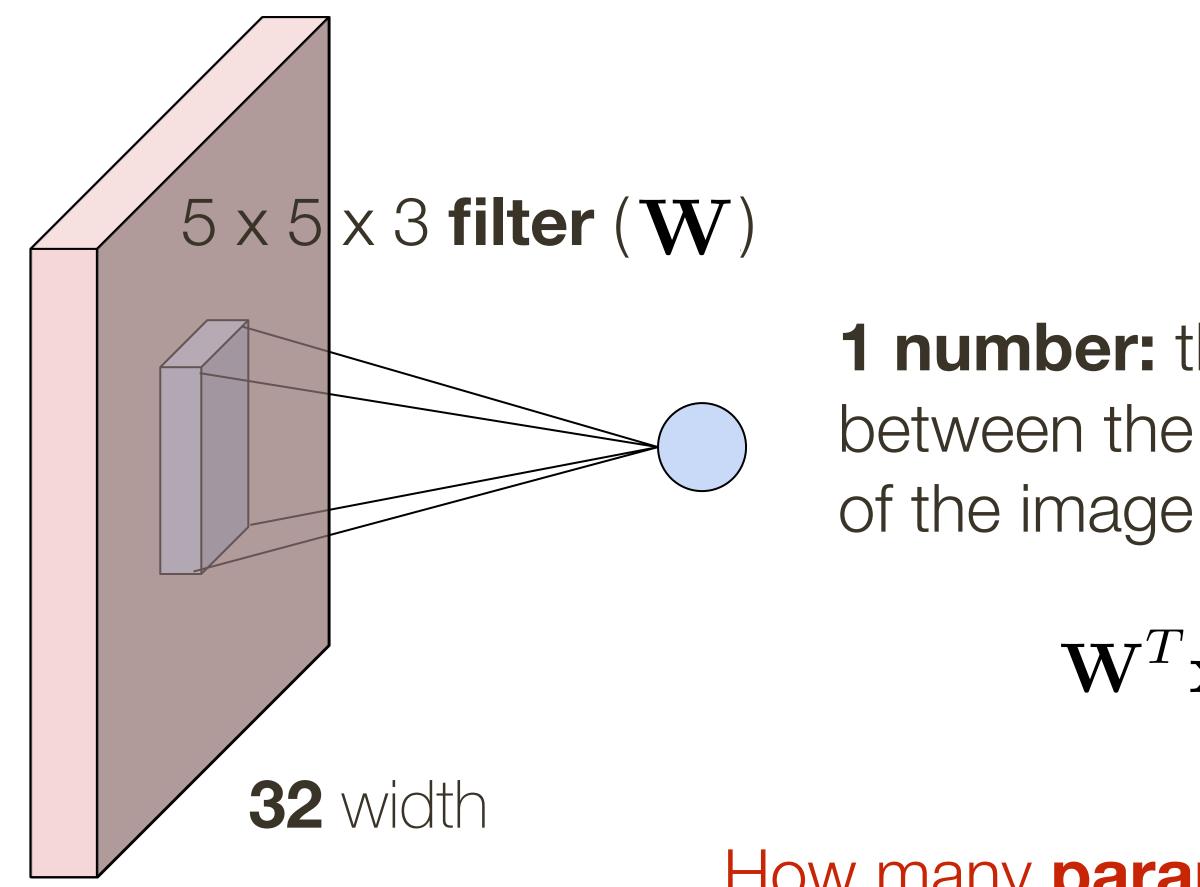


1 number: the result of taking a dot product between the filter and a small 5 x 5 x 3 part of the image

$$\mathbf{W}^T \mathbf{x} + b$$
, where $\mathbf{W}, \mathbf{x} \in \mathbb{R}^{75}$

How many **parameters** does the layer have?

32 x 32 x 3 **image**

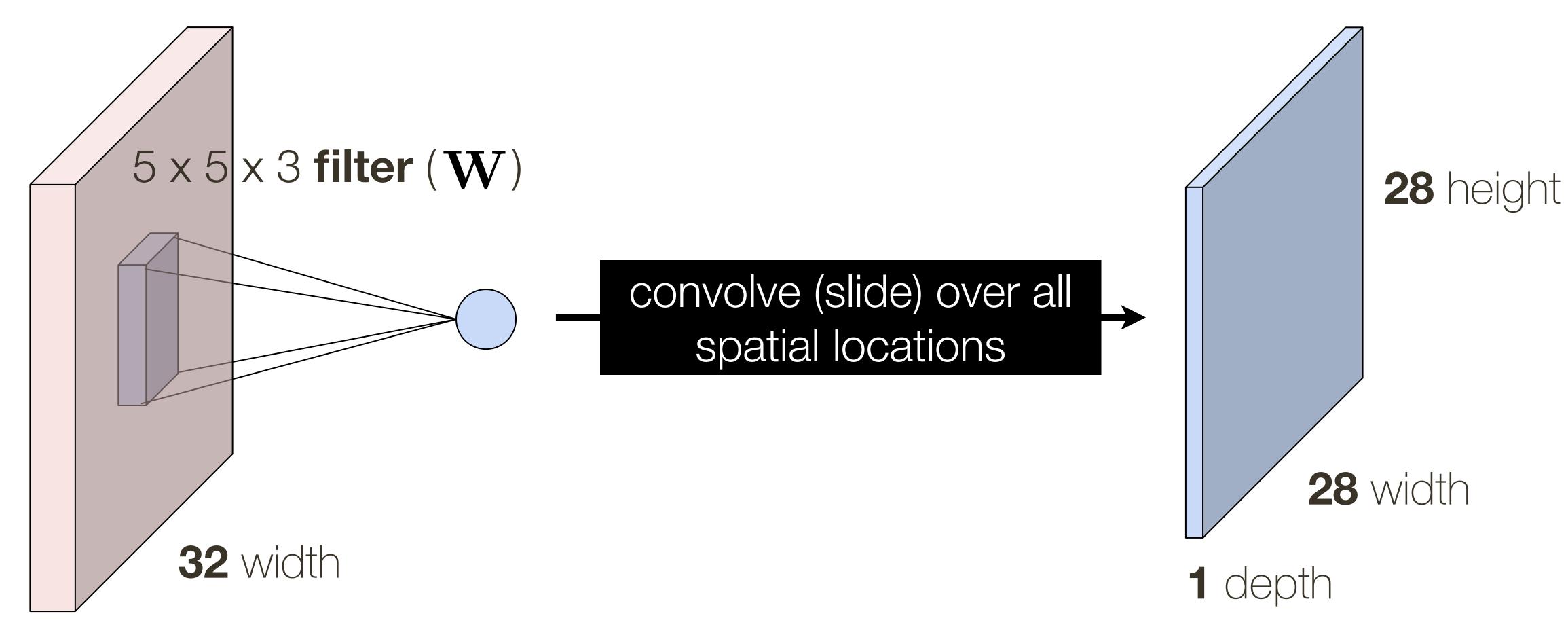


1 number: the result of taking a dot product between the filter and a small 5 x 5 x 3 part of the image

$$\mathbf{W}^T \mathbf{x} + b$$
, where $\mathbf{W}, \mathbf{x} \in \mathbb{R}^{75}$

How many **parameters** does the layer have? **76**

32 x 32 x 3 **image**

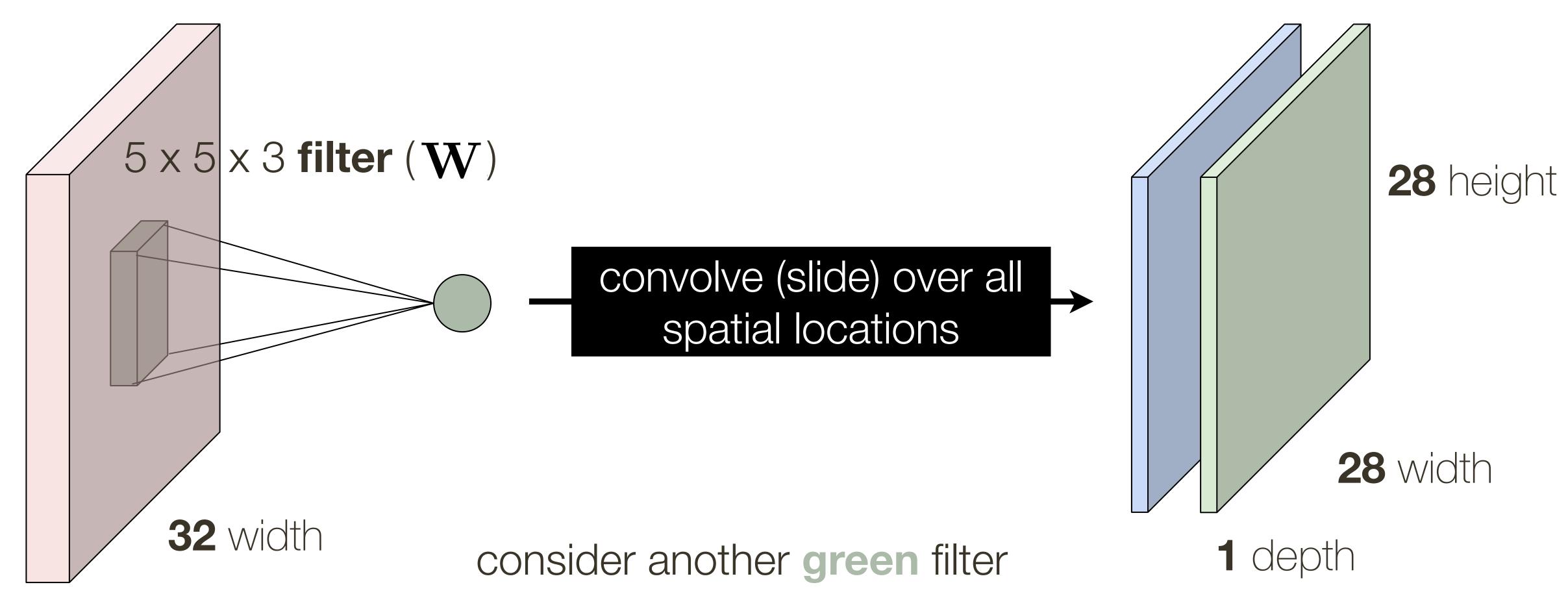


activation map

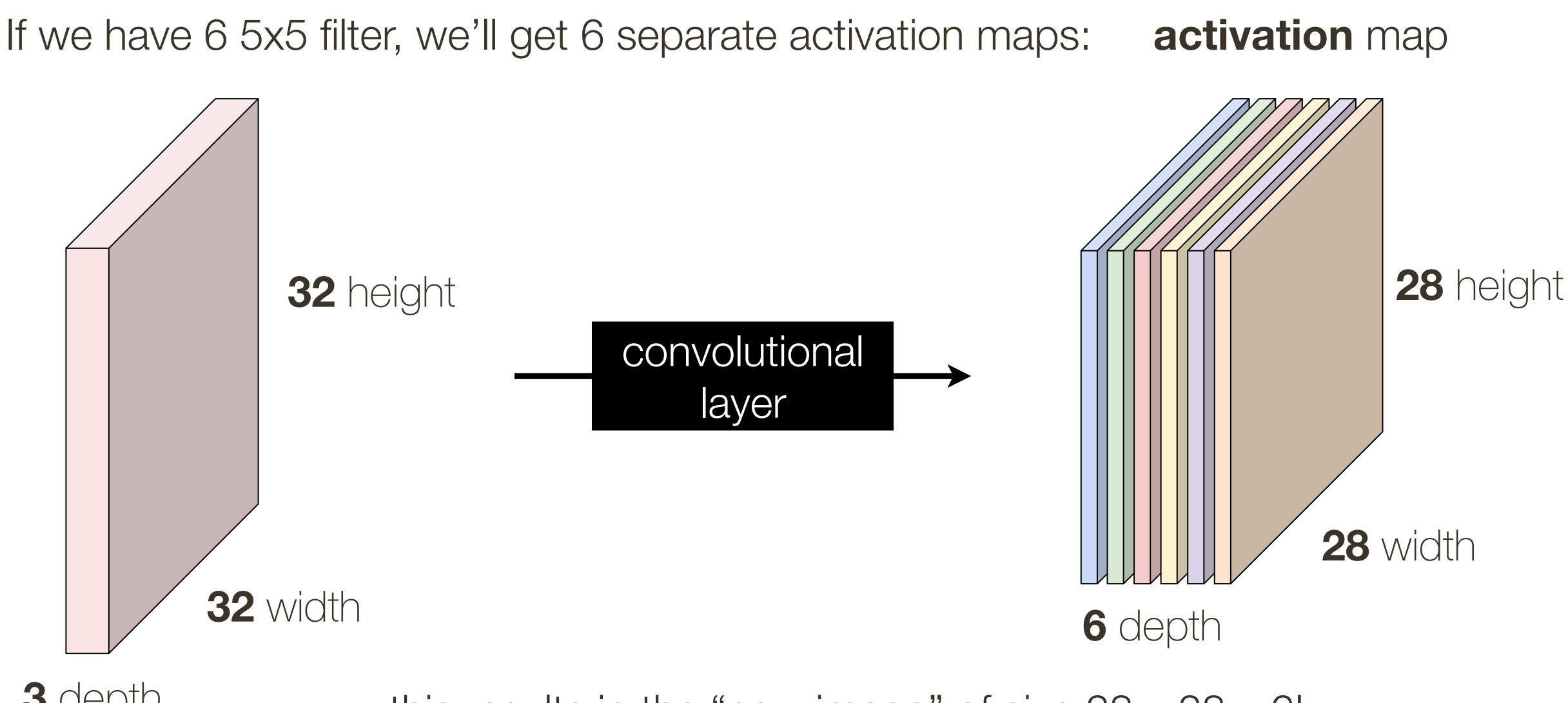
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

t

32 x 32 x 3 **image**



activation map



this results in the "new image" of size 28 x 28 x 6!

- also affected by zero-padding
- input layer
- **Stride:** Controls spatial density. How far apart are depth columns?

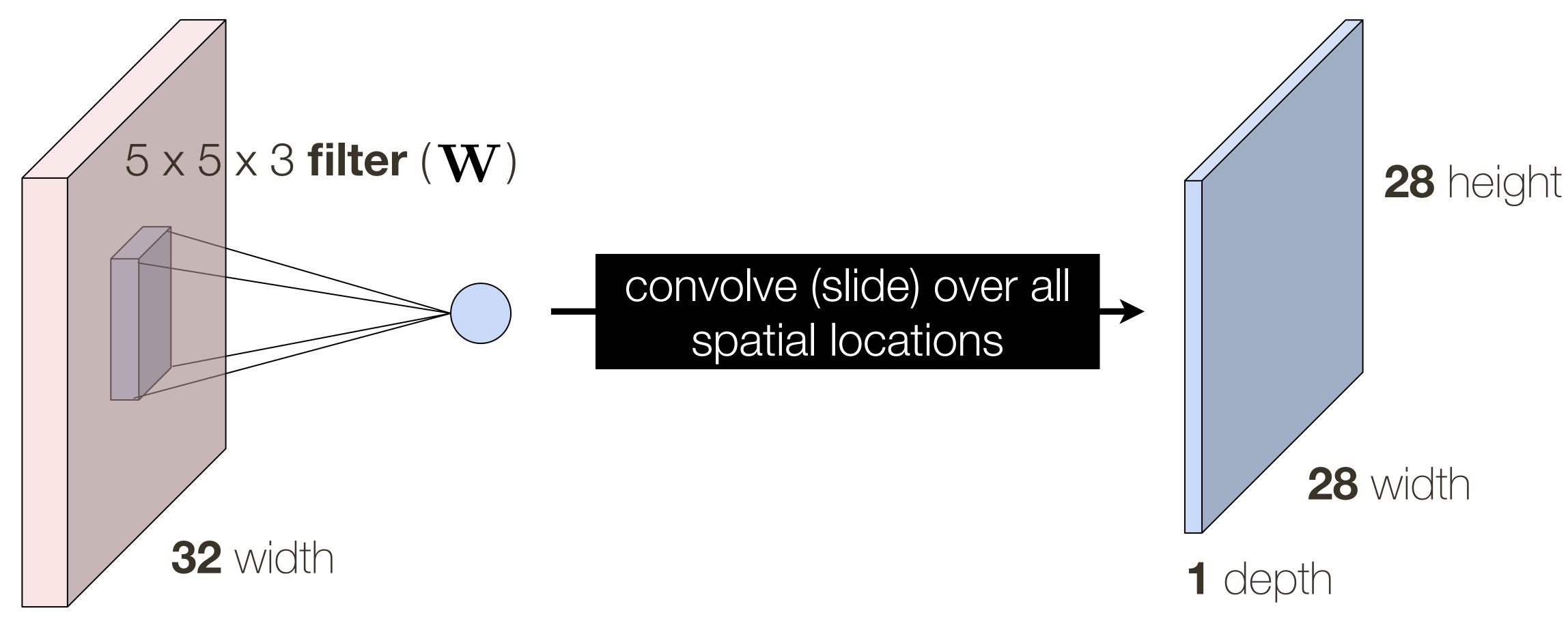
The number of neurons in a layer is determined by depth and stride parameter

Depth: Controls number of neurons that connect to the same region of the

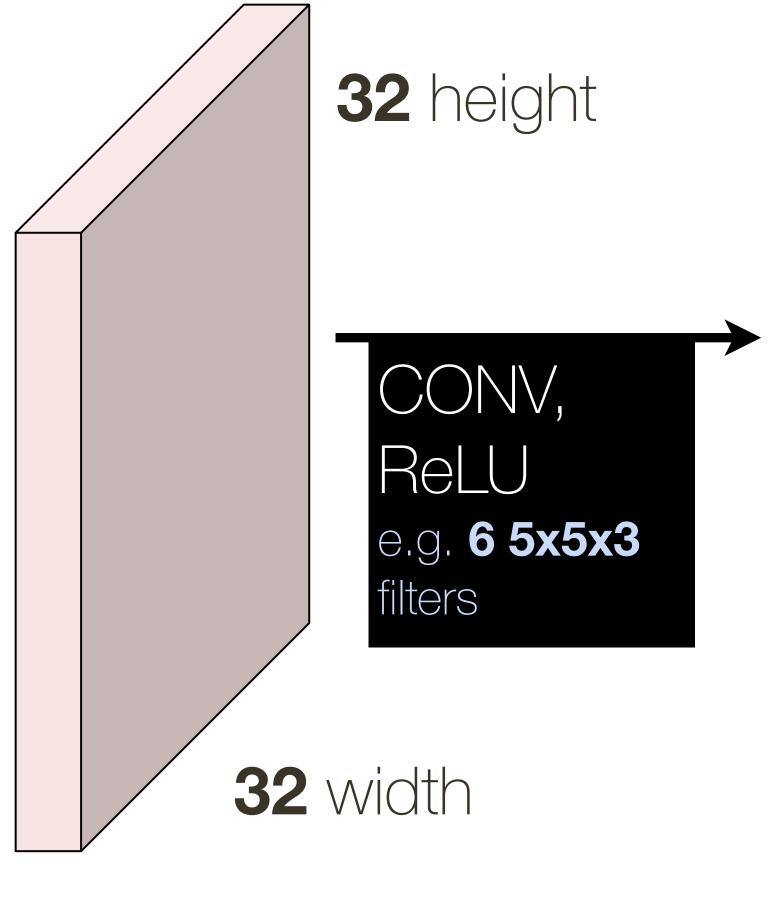
— a set of neurons connected to the same region is called a **depth column**

Convolutional Layer: Closer Look at Spatial Dimensions

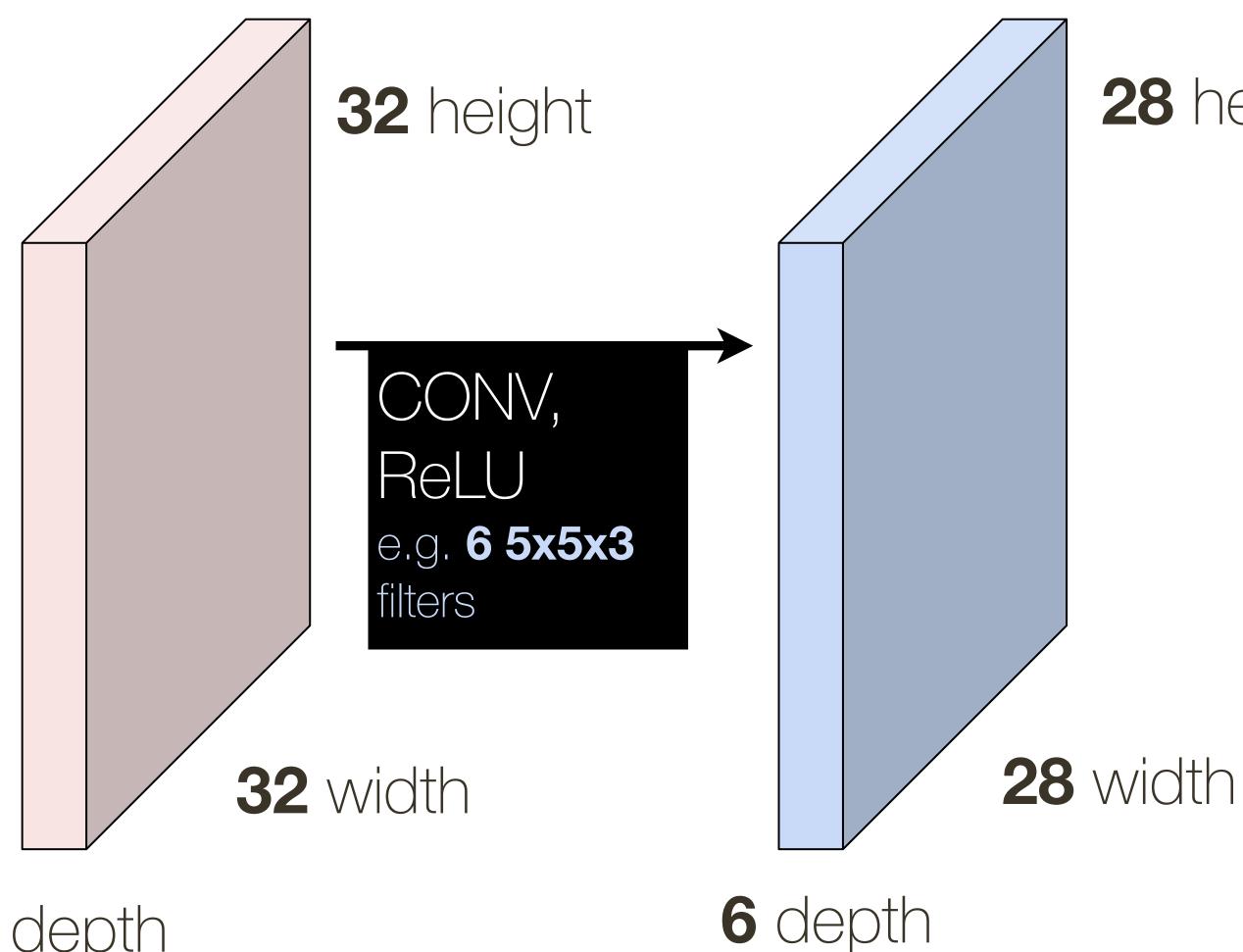
32 x 32 x 3 **image**



activation map

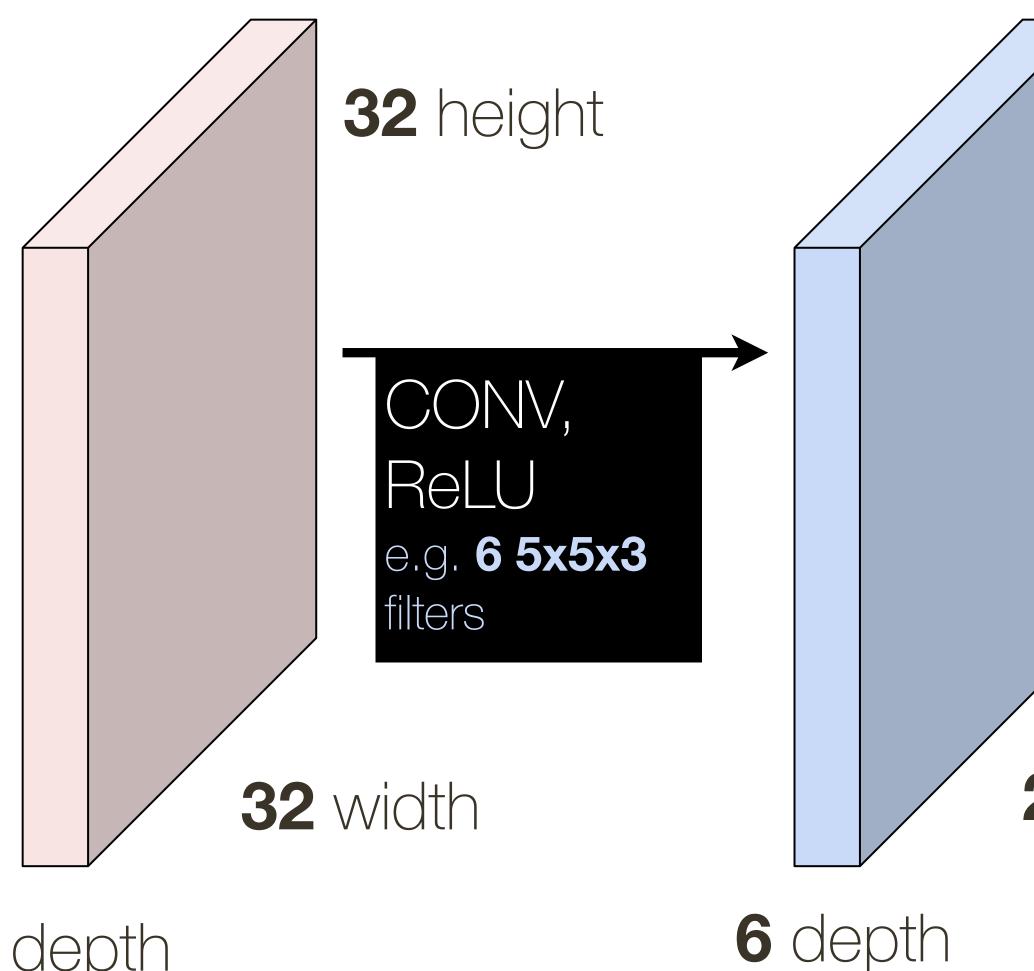


3 depth

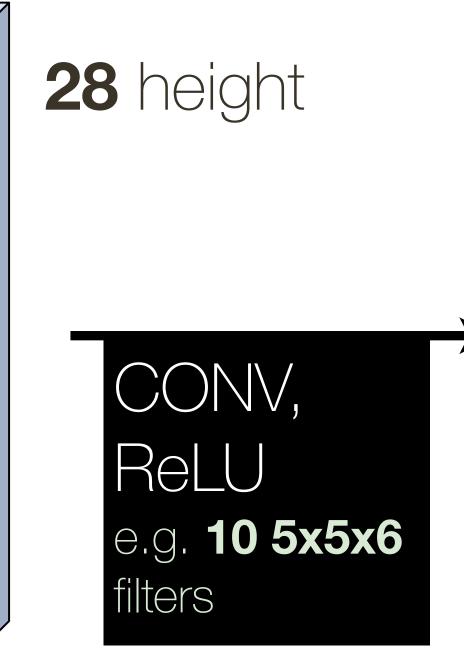


3 depth

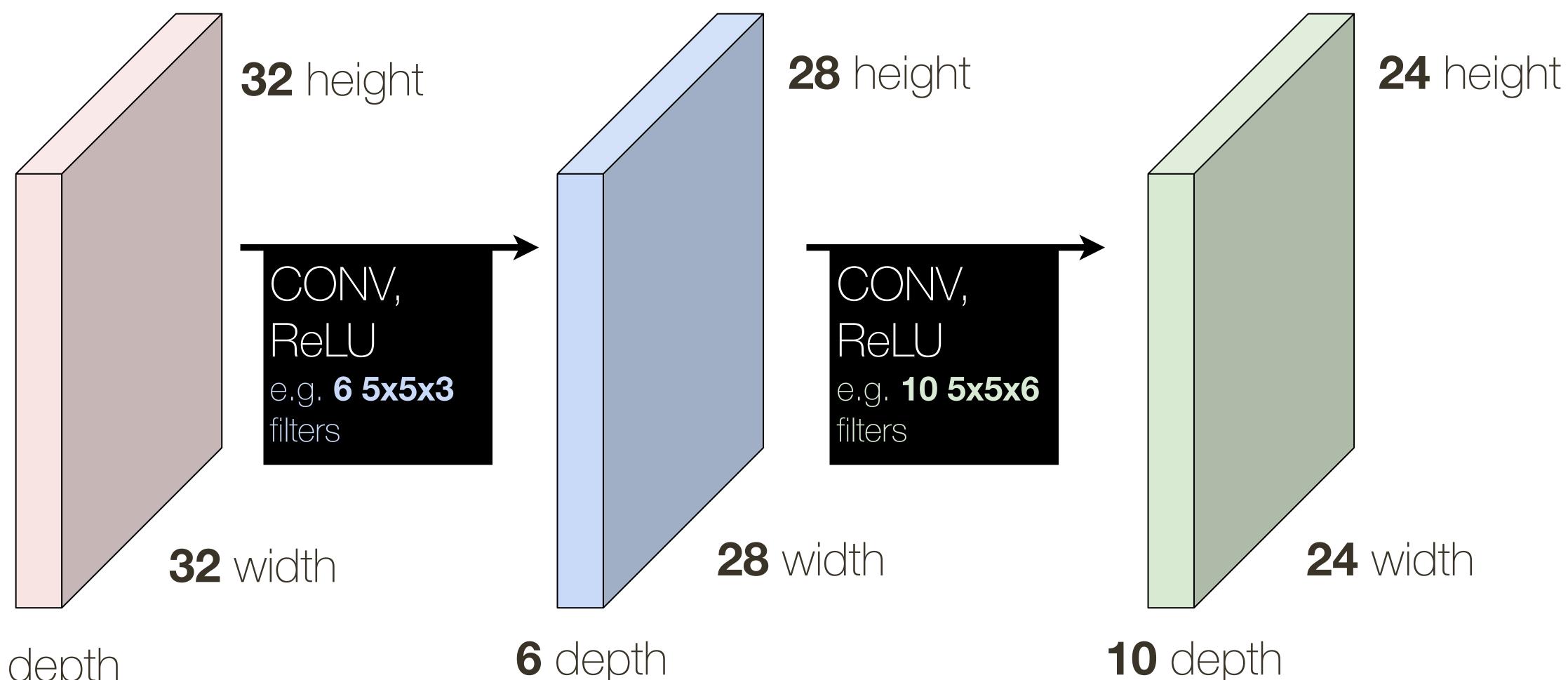
28 height



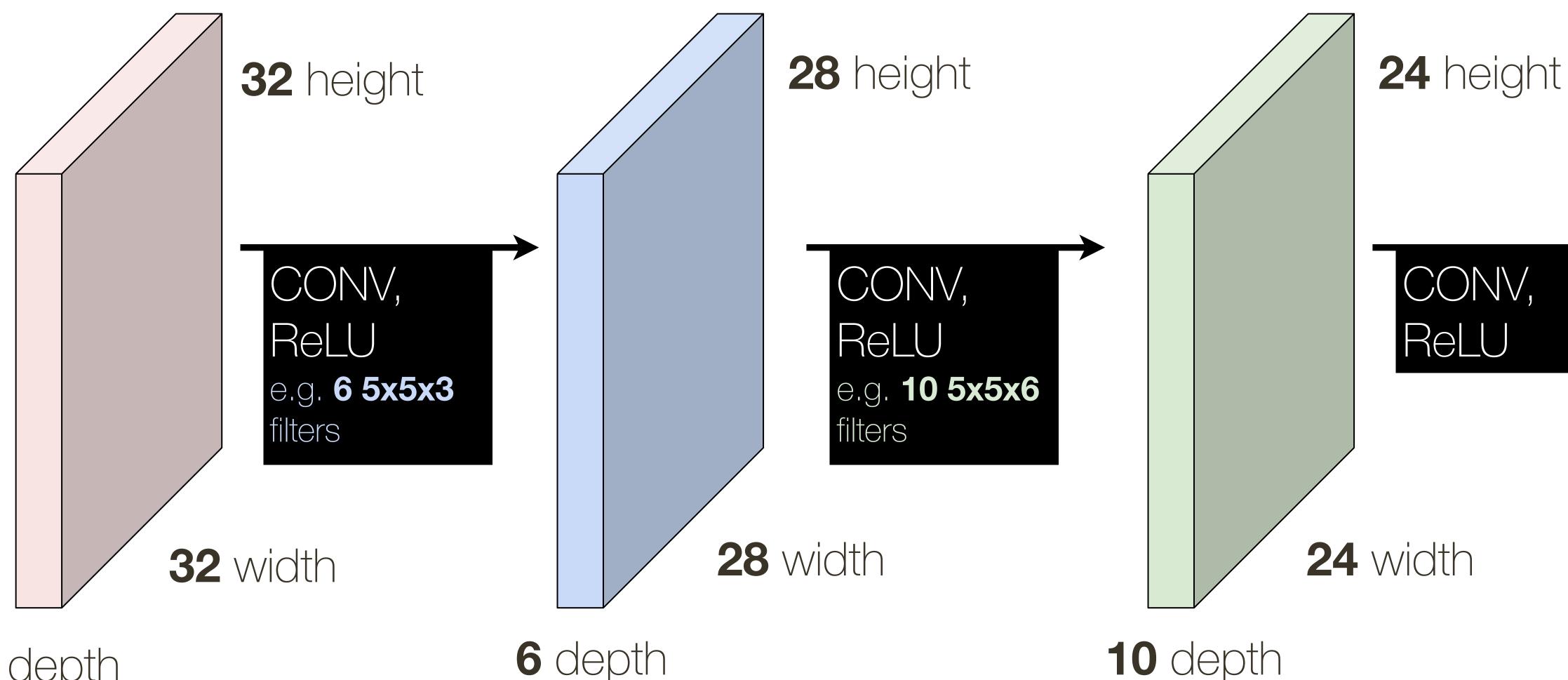
3 depth



28 width

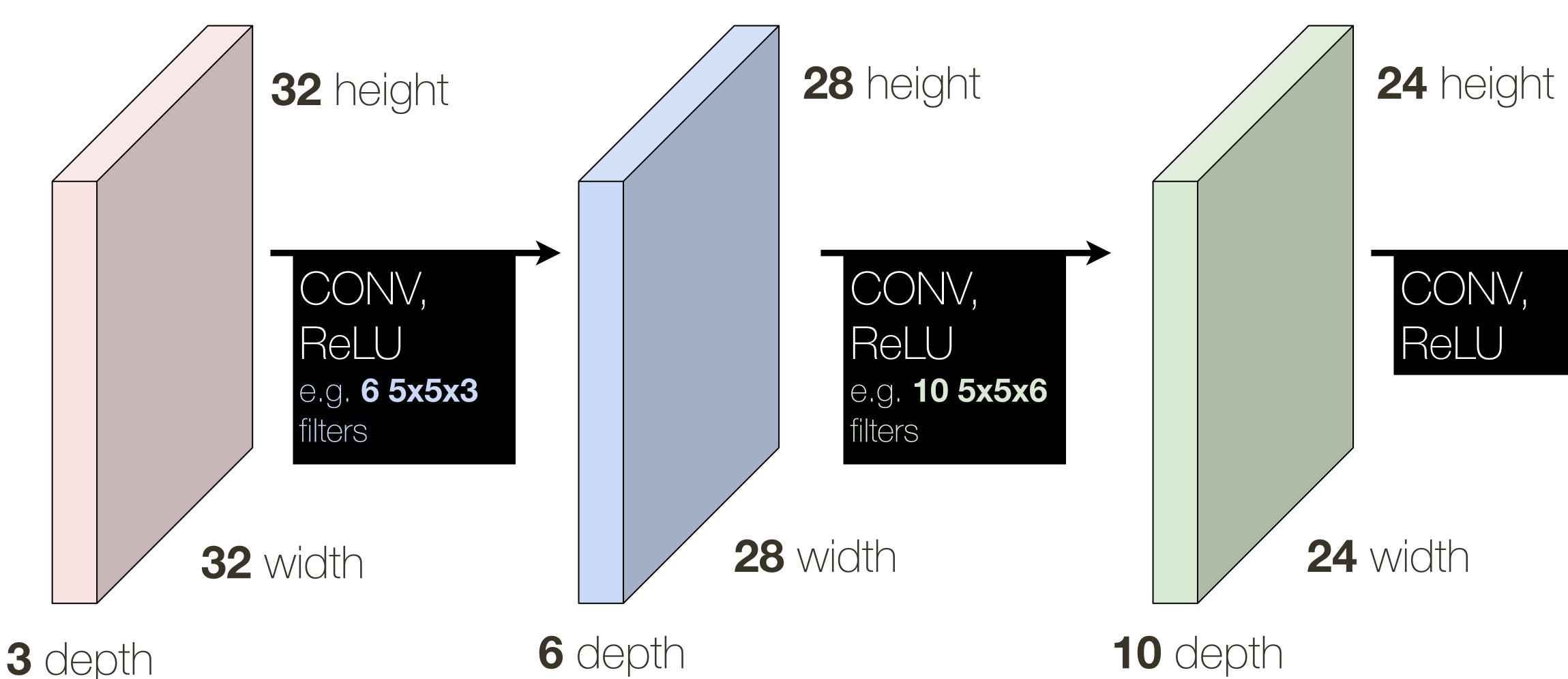


3 depth

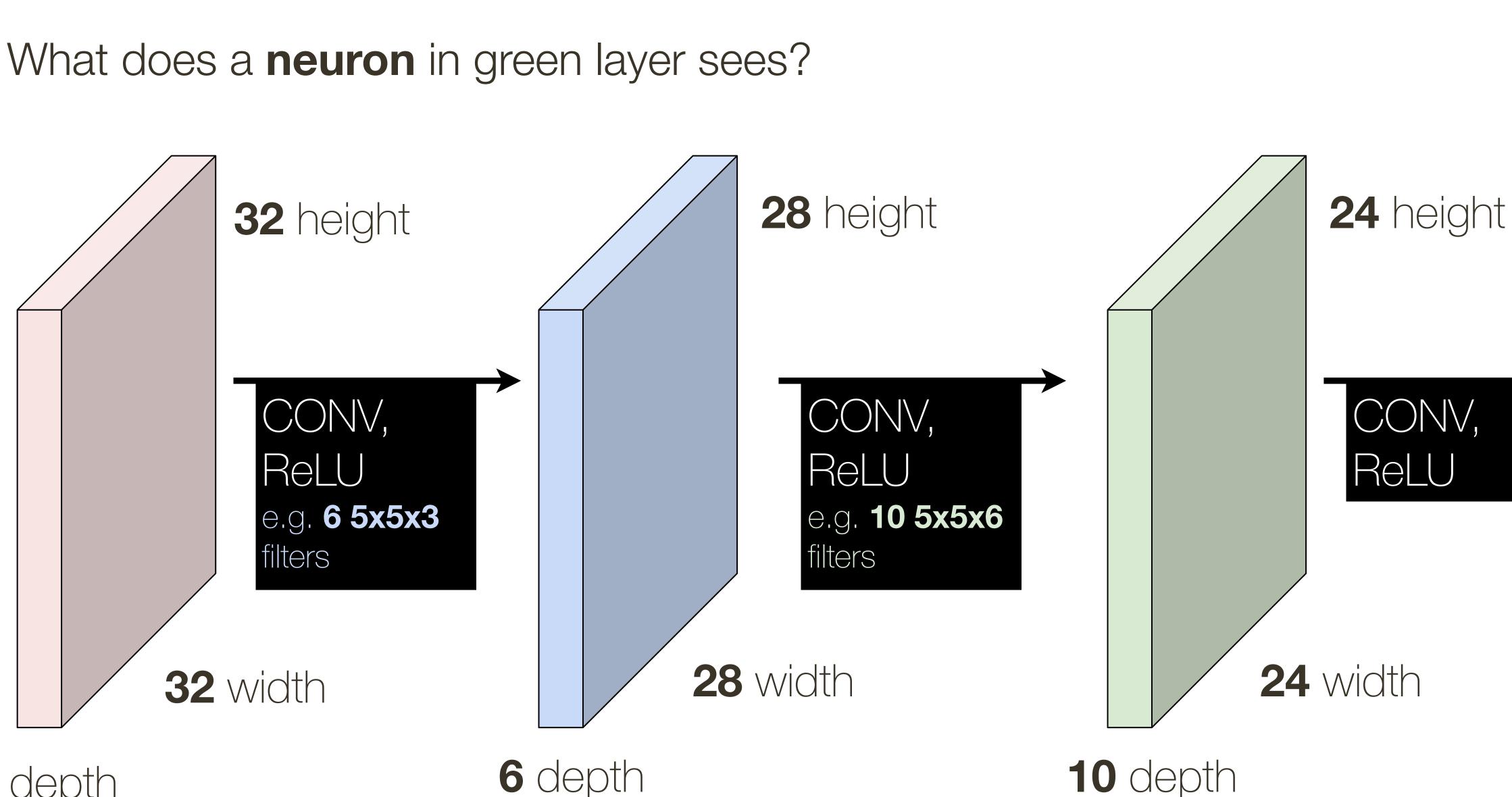


3 depth

With padding we can achieve no shrinking (32 -> 28 -> 24); shrinking quickly (which happens with larger filters) doesn't work well in practice



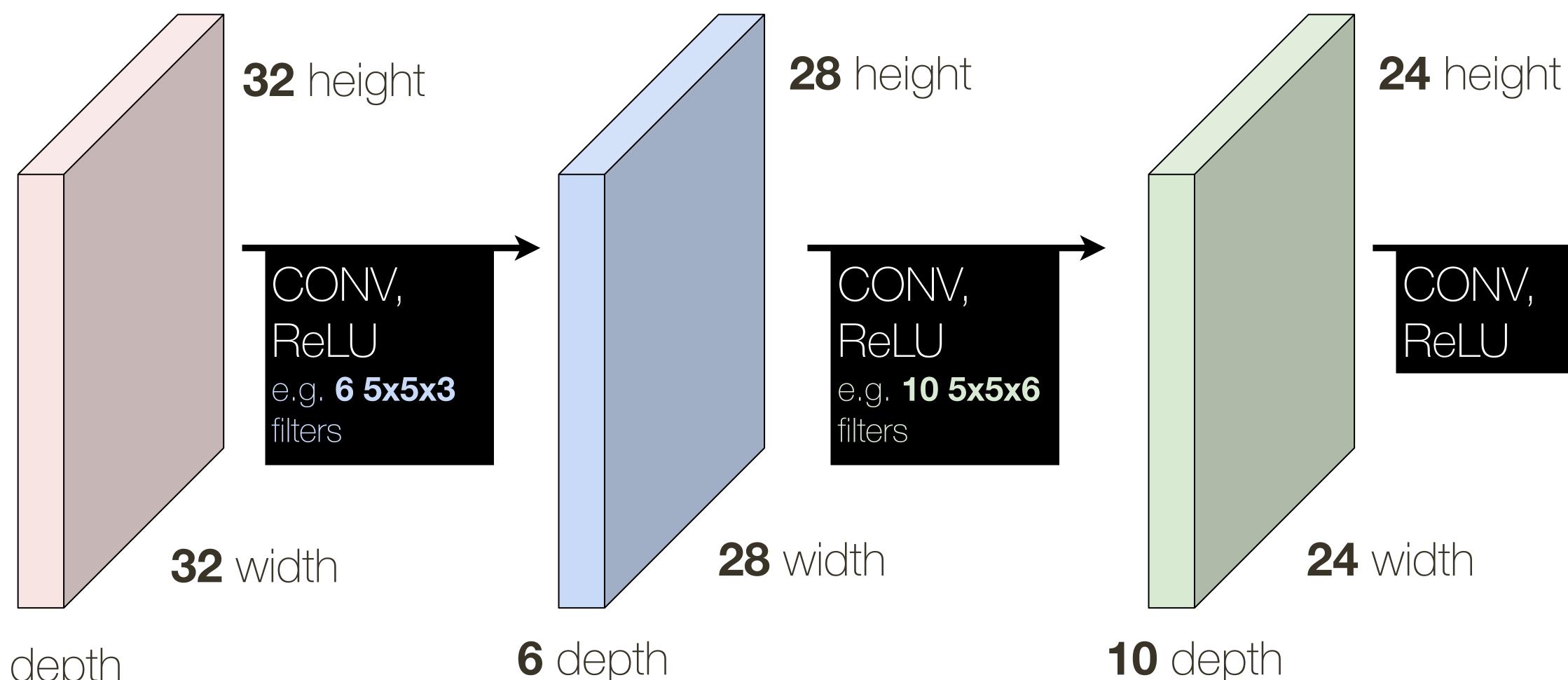
Receptive Fields



3 depth

Receptive Fields

What does a **neuron** in green layer sees?



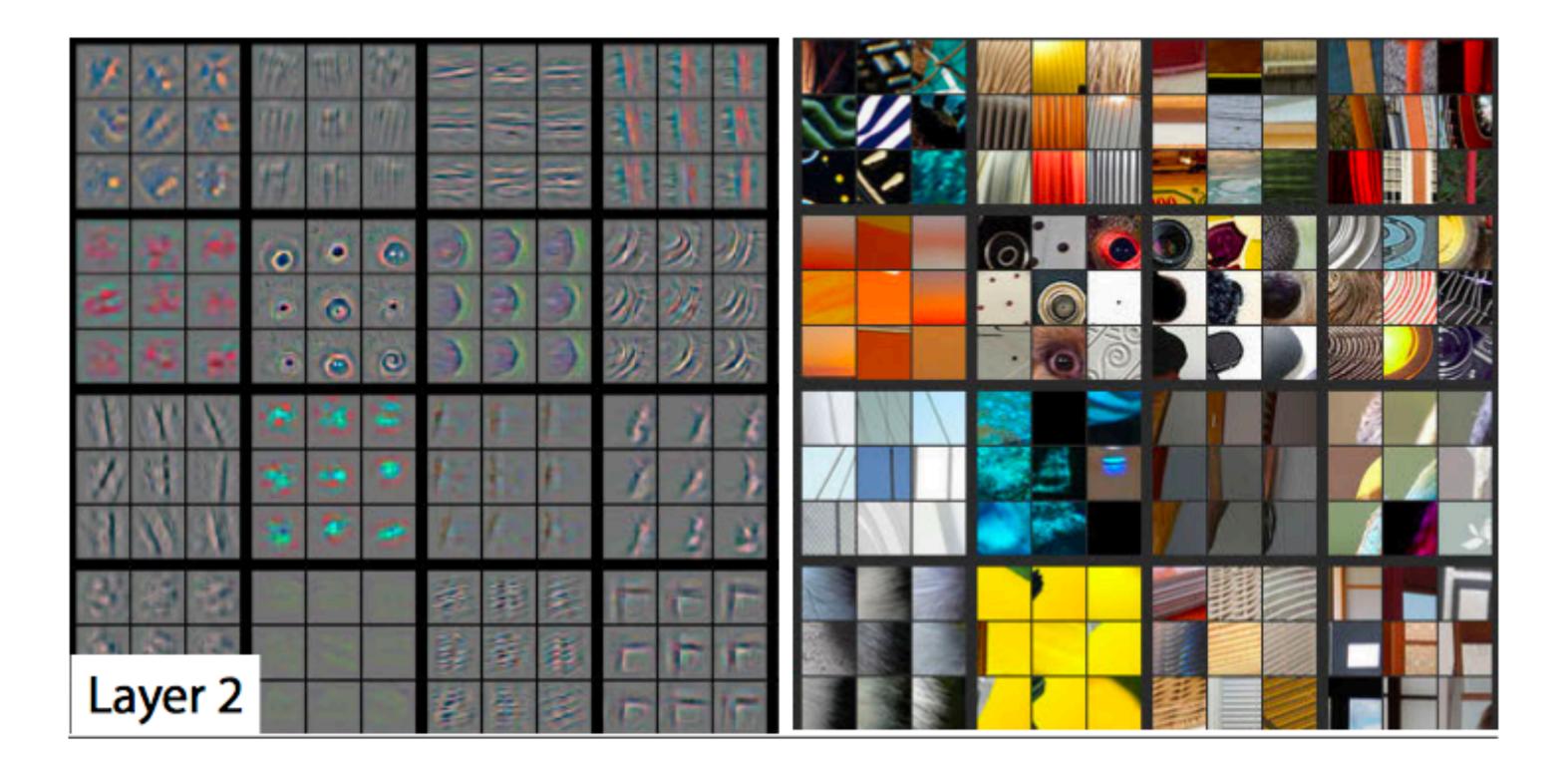
3 depth

As we go deeper in the network, filters learn and respond to increasingly specialized structures - The first layers may contain simple orientation filters, middle layers may respond to common substructures, and final layers may respond to entire objects

- **Convolutional neural networks** can be seen as learning a hierarchy of filters.

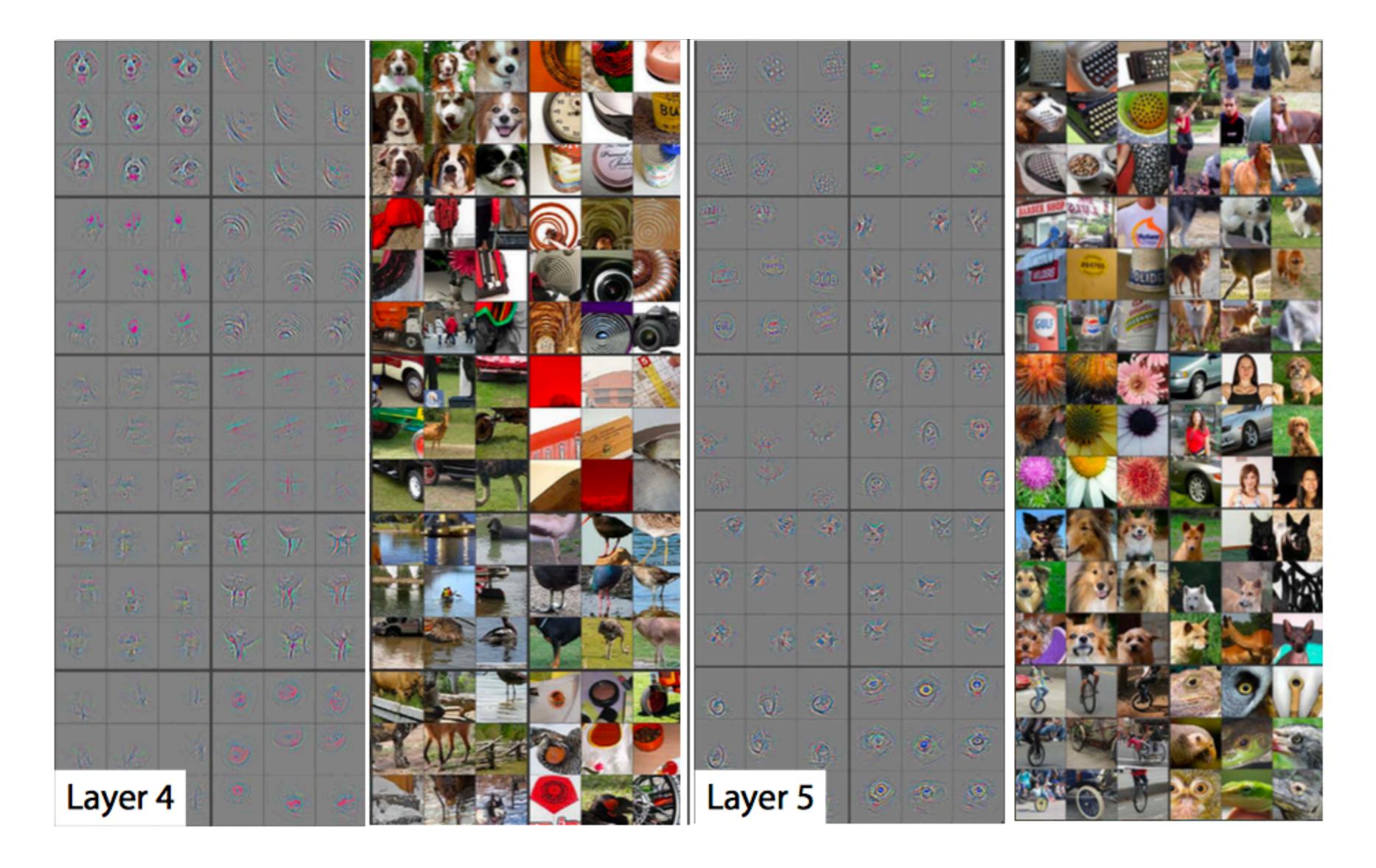
What filters do networks learn?

Layer 1



[Zeiler and Fergus, 2013]

What filters do networks learn?



[Zeiler and Fergus, 2013]

Today's "fun" Example: Deep Dream — Algorithmic Pareidolia

Today's "fun" Example: Deep Dream — Algorithmic Pareidolia

Pooling Layer

Let us assume the filter is an "eye" detector

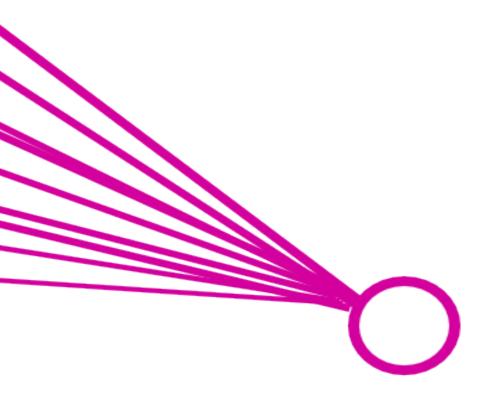
How can we make detection spatially invariant (insensitive to position of the eye in the image)

Pooling Layer

Let us assume the filter is an "eye" detector

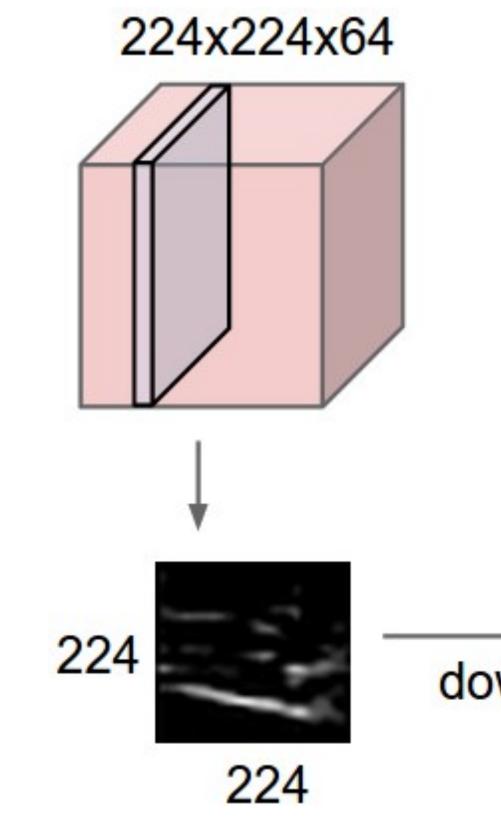
How can we make detection spatially invariant (insensitive to position of the eye in the image)

> By "pooling" (e.g., taking a max) response over a spatial locations we gain robustness to position variations

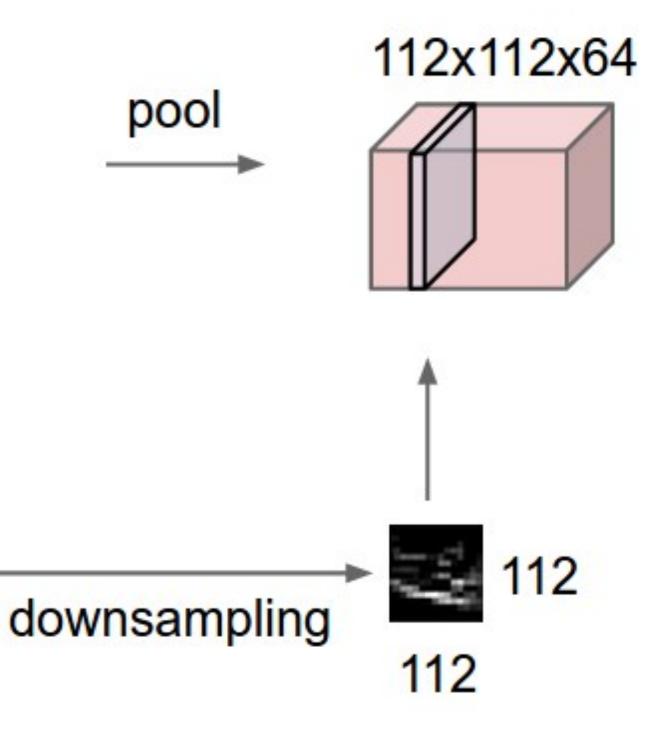


Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently



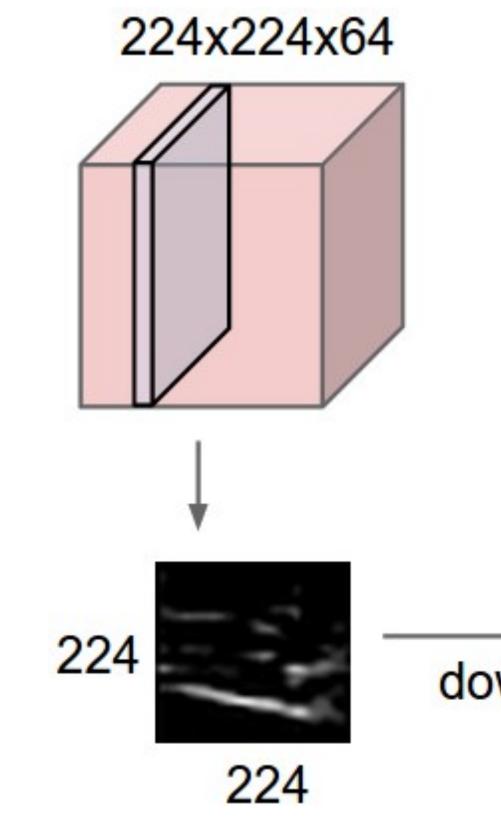
e manageable and spatially invariant independently



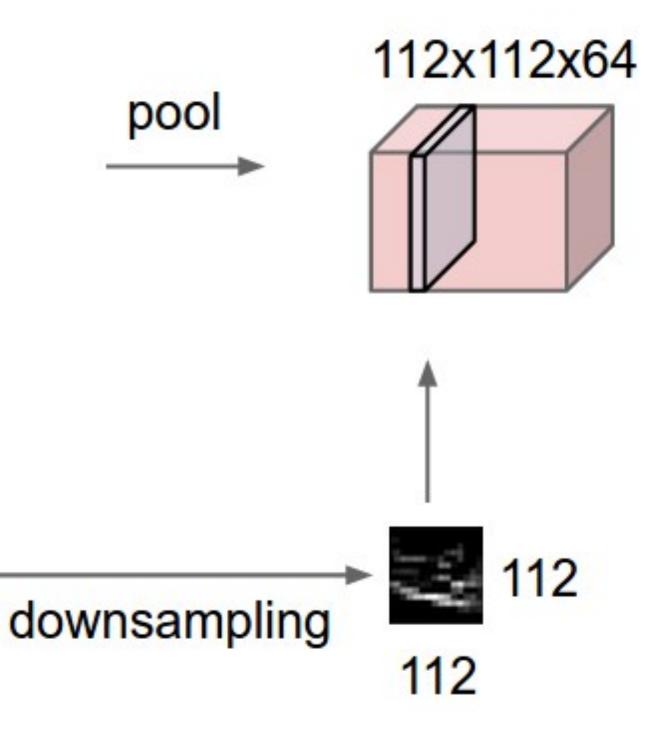
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently



e manageable and spatially invariant independently

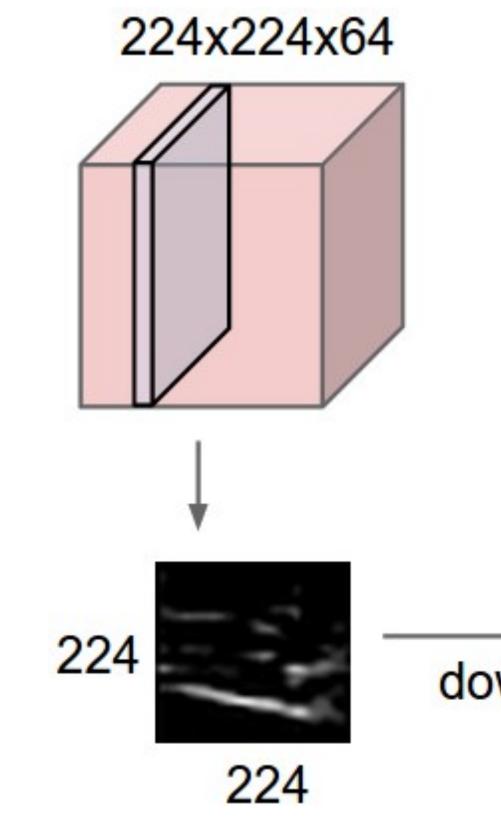


* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

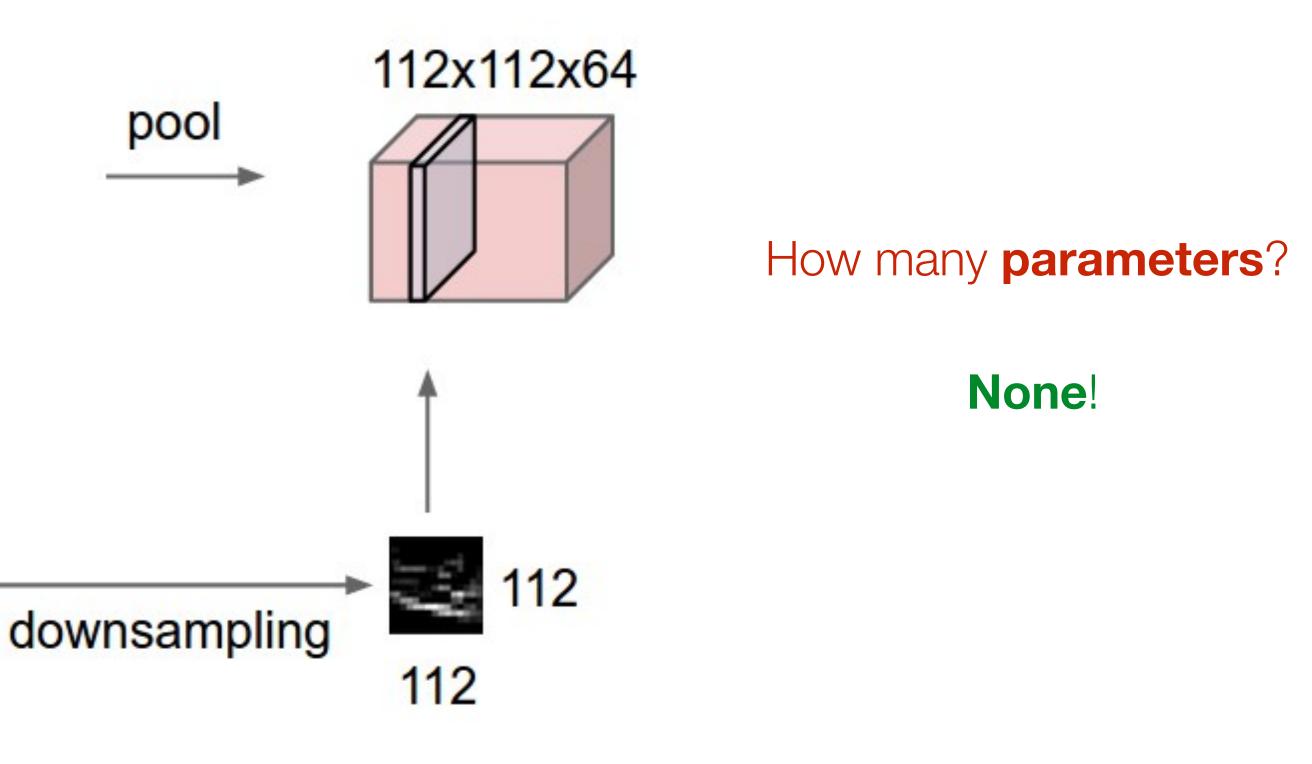
How many **parameters**?

Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently



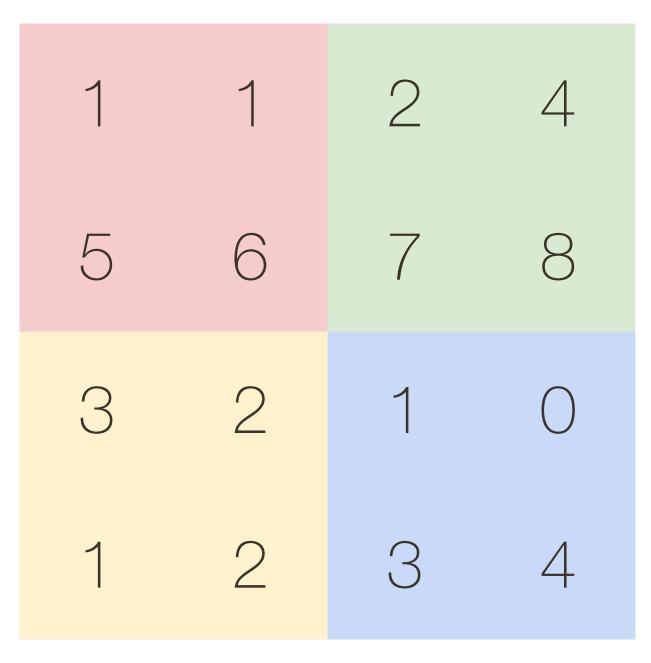
e manageable and spatially invariant independently



* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Max **Pooling**

activation map



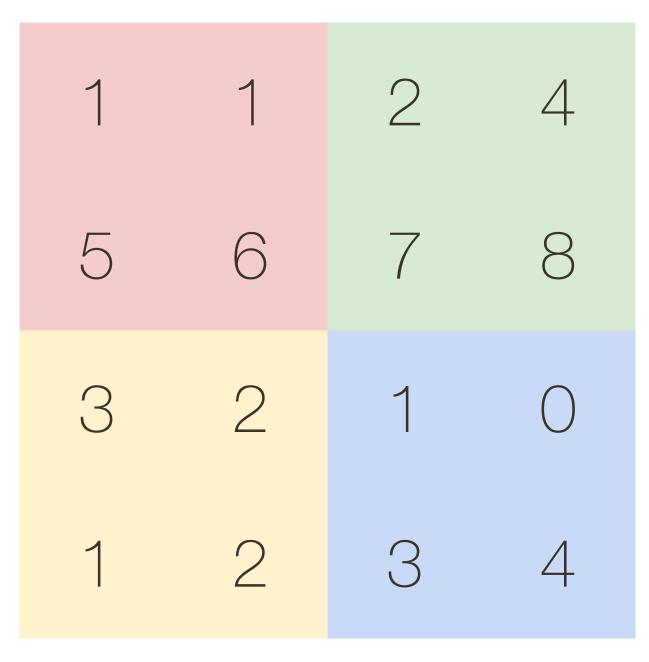
max pool with 2 x 2 filter and stride of 2

6 8 3 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

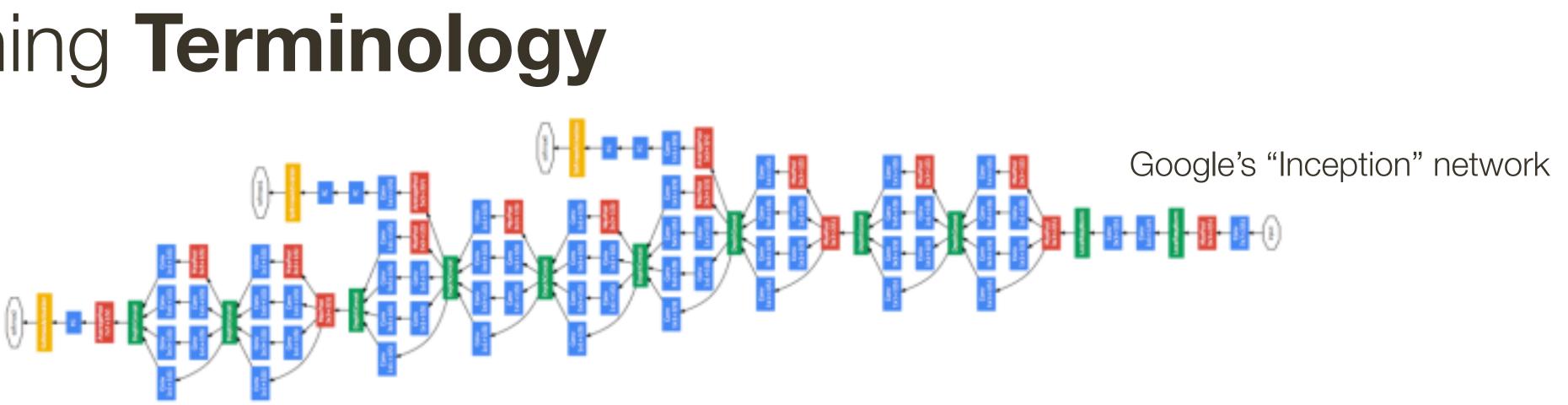
Average **Pooling**

activation map

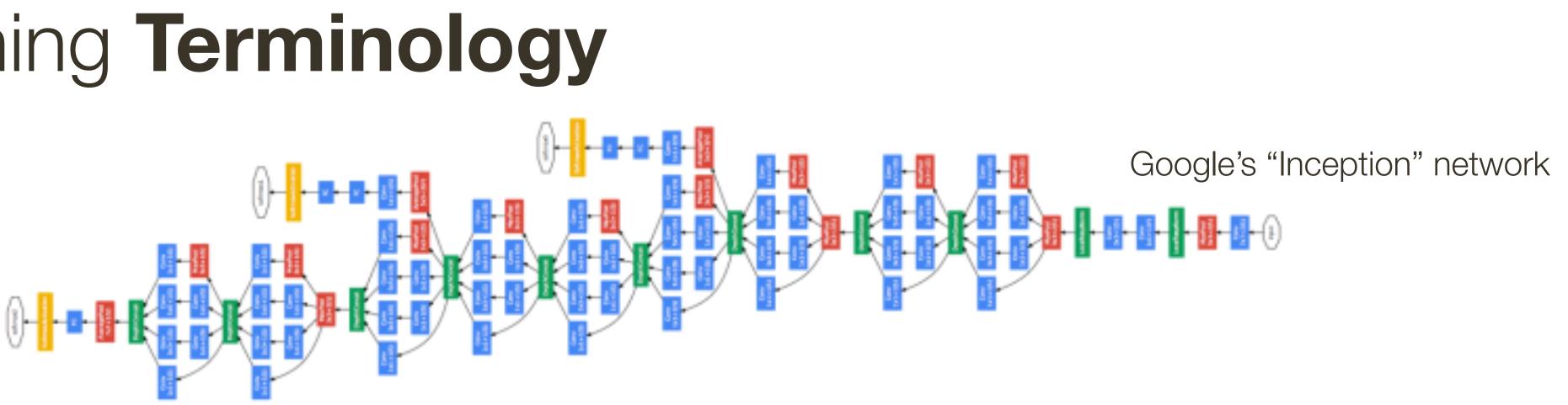


avg pool with 2 x 2 filter and stride of 2

3.25 5.25 2 2

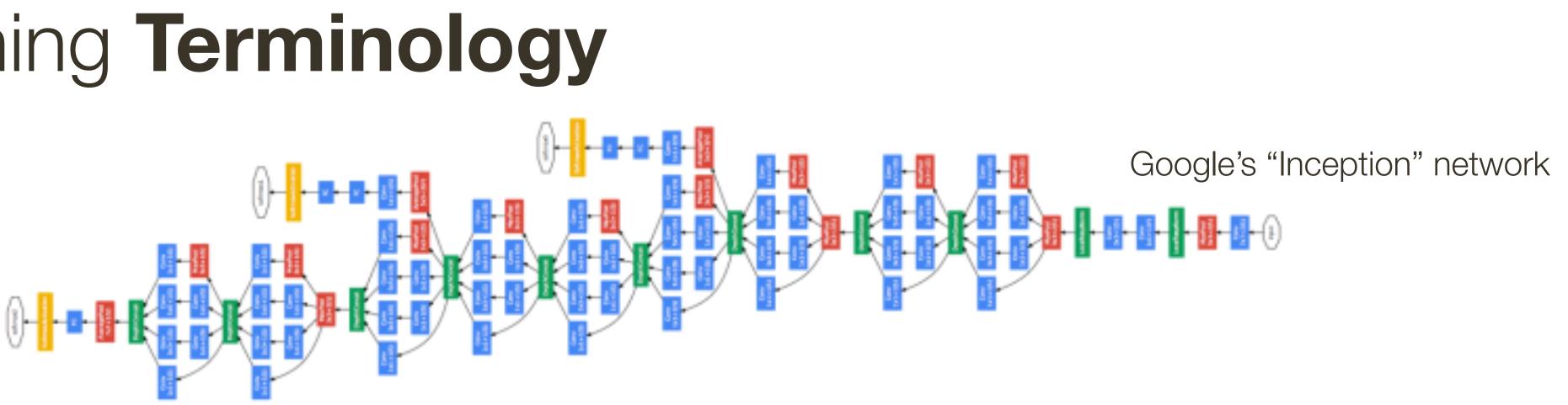


• Network structure: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)



generally kept fixed, requires some knowledge of the problem and NN to sensibly set

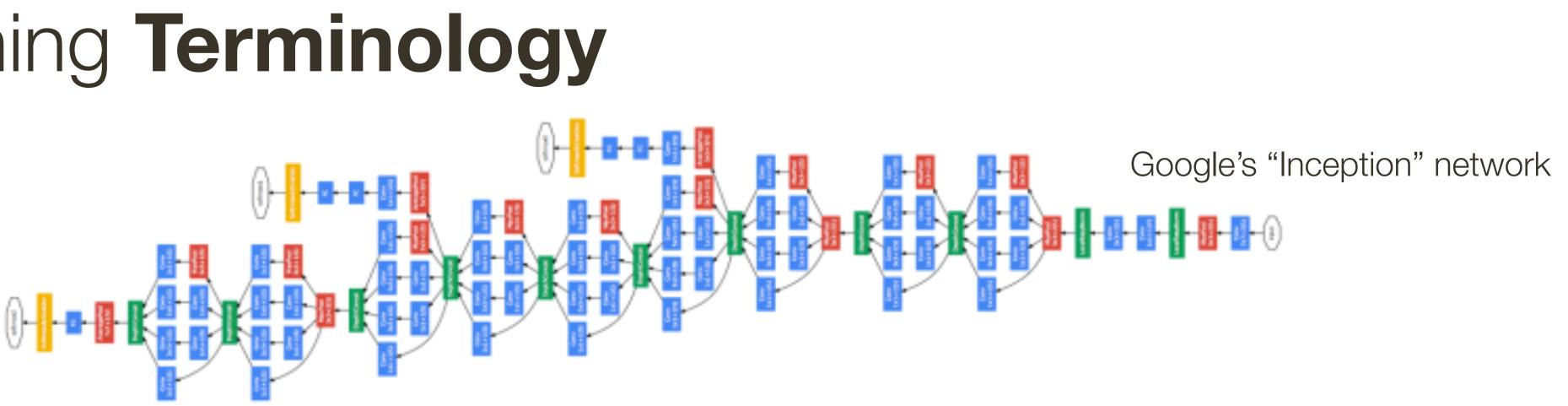
• **Network structure:** number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)



generally kept fixed, requires some knowledge of the problem and NN to sensibly set

• **Network structure:** number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

deeper = better

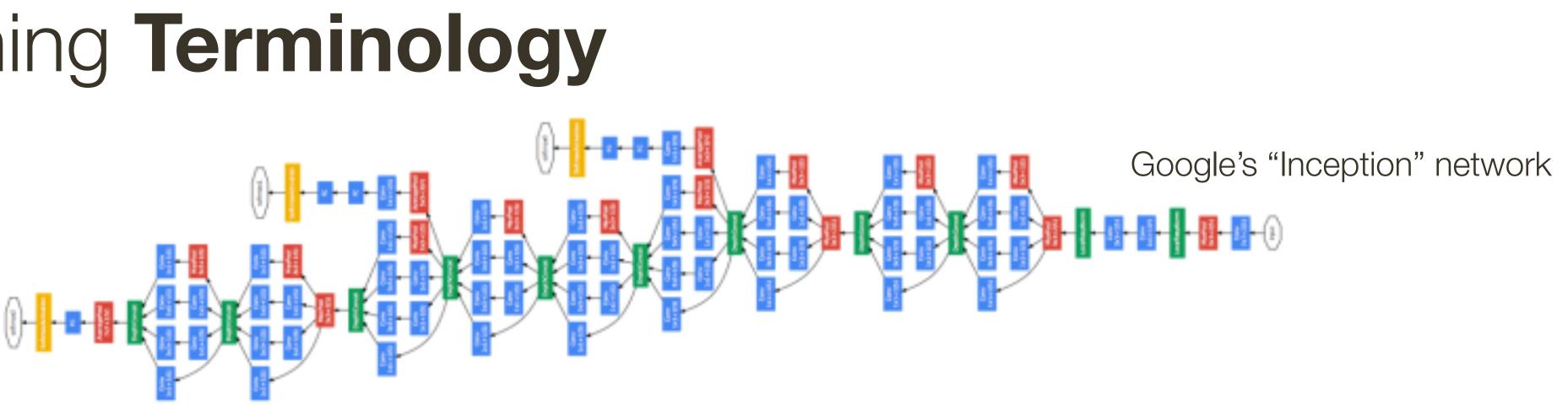


generally kept fixed, requires some knowledge of the problem and NN to sensibly set

• **Network structure:** number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

deeper = better

• Loss function: objective function being optimized (softmax, cross entropy, etc.)



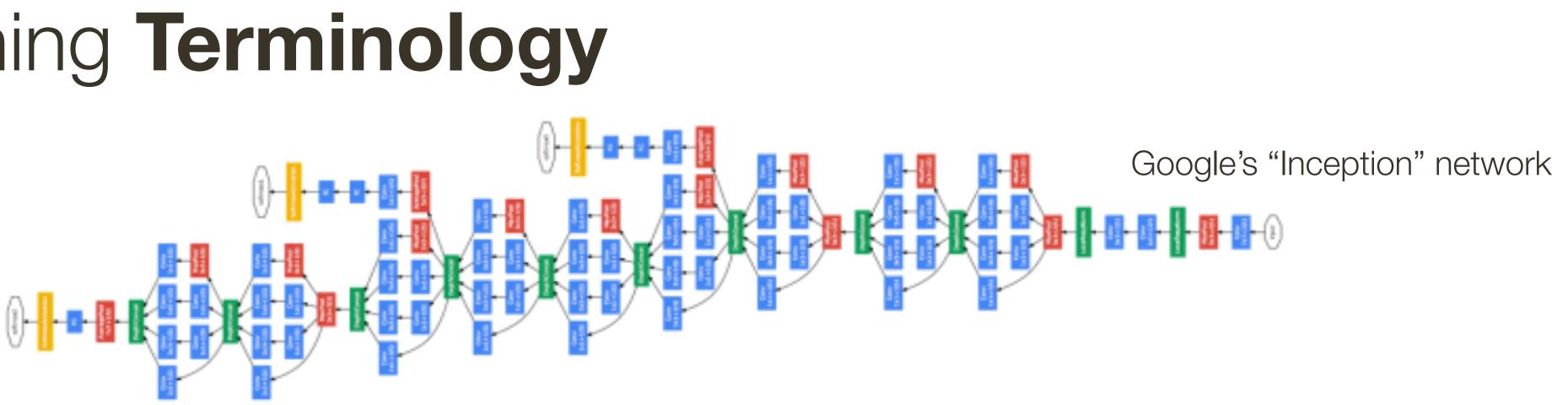
generally kept fixed, requires some knowledge of the problem and NN to sensibly set

requires knowledge of the nature of the problem

• **Network structure:** number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

deeper = better

• Loss function: objective function being optimized (softmax, cross entropy, etc.)



generally kept fixed, requires some knowledge of the problem and NN to sensibly set

requires knowledge of the nature of the problem

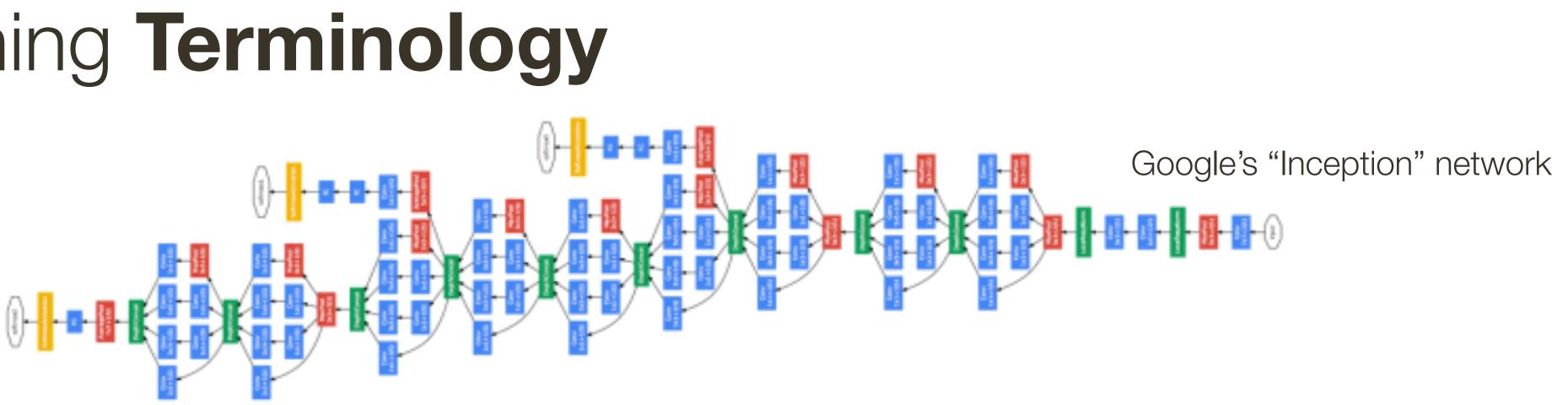
linear/fc layers, parameters of the activation functions, etc.

• **Network structure:** number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

deeper = better

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

• **Parameters:** trainable parameters of the network, including weights/biases of



generally kept fixed, requires some knowledge of the problem and NN to sensibly set

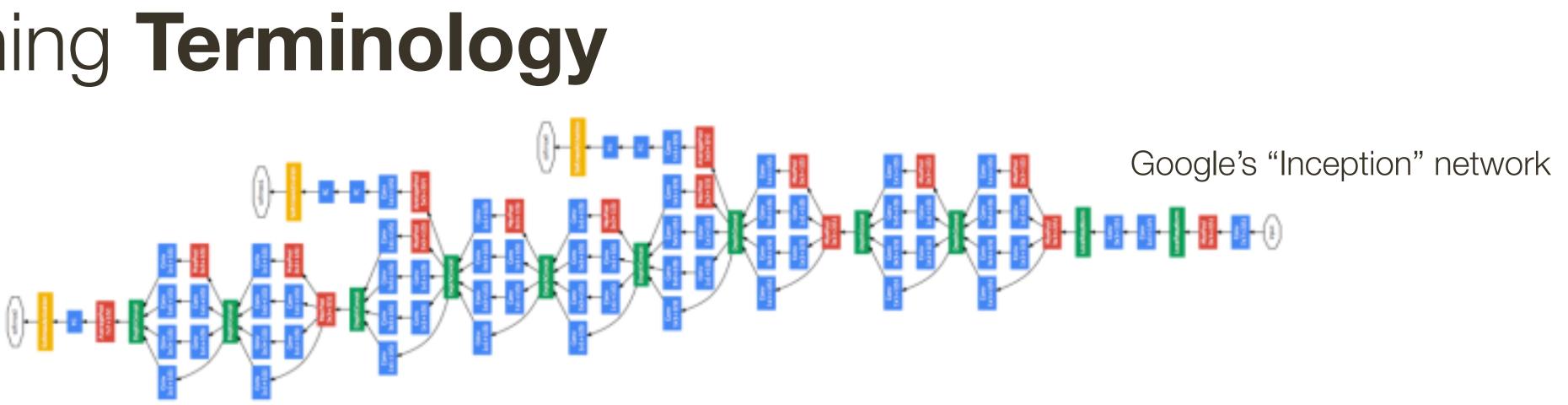
requires knowledge of the nature of the problem

• **Network structure:** number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

deeper = better

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

• Parameters: trainable parameters of the network, including weights/biases of linear/fc layers, parameters of the activation functions, etc. optimized using SGD or variants



generally kept fixed, requires some knowledge of the problem and NN to sensibly set

requires knowledge of the nature of the problem

- directly as part of training (e.g., learning rate, batch size, drop-out rate)

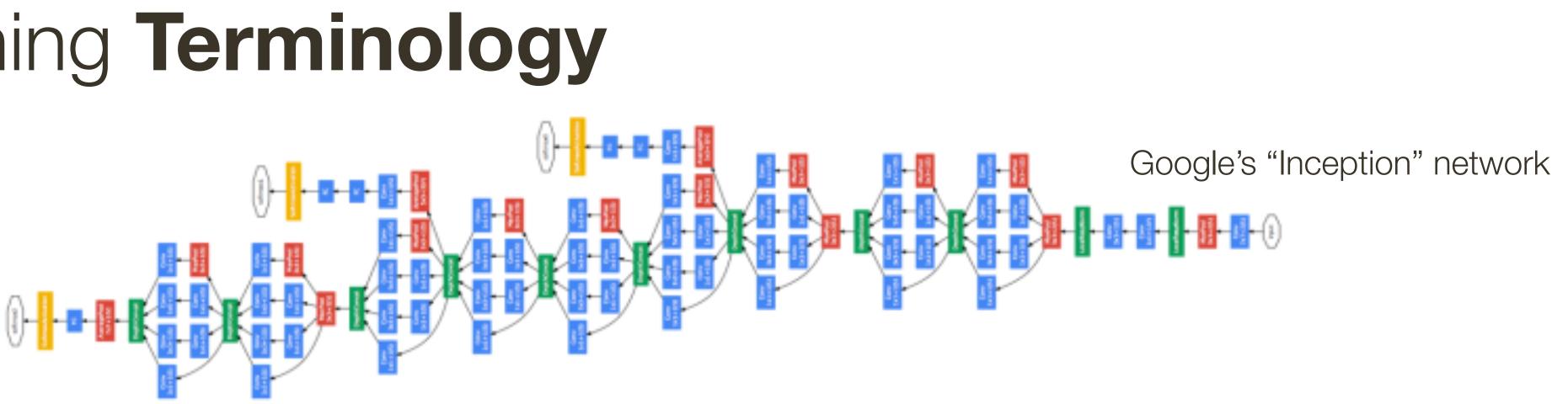
• **Network structure:** number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

deeper = better

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

• Parameters: trainable parameters of the network, including weights/biases of linear/fc layers, parameters of the activation functions, etc. optimized using SGD or variants

• Hyper-parameters: parameters, including for optimization, that are not optimized



generally kept fixed, requires some knowledge of the problem and NN to sensibly set

requires knowledge of the nature of the problem

• **Network structure:** number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

deeper = better

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

• Parameters: trainable parameters of the network, including weights/biases of linear/fc layers, parameters of the activation functions, etc. optimized using SGD or variants

• Hyper-parameters: parameters, including for optimization, that are not optimized

directly as part of training (e.g., learning rate, batch size, drop-out rate) grid search

Input:

Value of all stocks at closing of NASDAQ today (3,300 stocks)

Output:

Value of Microsoft, Google, Apple stock at opening tomorrow

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

Value of all stocks at closing of NASDAQ today (3,300 stocks)

Output: output vector $\mathbf{y} \in \mathbb{R}^m$

Value of Microsoft, Google, Apple stock at opening tomorrow

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **sigmoid** activations: $\mathbf{0} \leq f(\mathbf{x}; \Theta) \leq \mathbf{1}$ with **Tanh** activations: $-1 \le f(\mathbf{x}; \Theta) \le 1$ with **ReLU** activations: $\mathbf{0} \leq f(\mathbf{x}; \Theta)$

Output: output vector $\mathbf{y} \in \mathbb{R}^m$

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}^k$

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **sigmoid** activations: $\mathbf{0} \leq f(\mathbf{x}; \Theta) \leq \mathbf{1}$ with **Tanh** activations: $-\mathbf{1} \leq f(\mathbf{x}; \Theta) \leq \mathbf{1}$ with **ReLU** activations: $\mathbf{0} < f(\mathbf{x}; \Theta)$

Neural Network (output): linear layer

 $\hat{\mathbf{y}} = g(\mathbf{x}; \mathbf{W}, \mathbf{b}) = \mathbf{W}f(\mathbf{x}; \Theta) + \mathbf{b} : \mathbb{R}^k \to \mathbb{R}^m$

Output: output vector $\mathbf{y} \in \mathbb{R}^m$

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}^k$

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **sigmoid** activations: $\mathbf{0} \leq f(\mathbf{x}; \Theta) \leq \mathbf{1}$ with **Tanh** activations: $-\mathbf{1} \leq f(\mathbf{x}; \Theta) \leq \mathbf{1}$ with **ReLU** activations: $\mathbf{0} < f(\mathbf{x}; \Theta)$

Neural Network (output): linear layer

Output: output vector $\mathbf{y} \in \mathbb{R}^m$

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}^k$

 - $\hat{\mathbf{y}} = g(\mathbf{x}; \mathbf{W}, \mathbf{b}) = \mathbf{W}f(\mathbf{x}; \Theta) + \mathbf{b} : \mathbb{R}^k \to \mathbb{R}^m$
 - $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = ||\mathbf{y} \hat{\mathbf{y}}||^2$

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **sigmoid** activations: $\mathbf{0} \leq f(\mathbf{x}; \Theta) \leq \mathbf{1}$

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}$

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **sigmoid** activations: $\mathbf{0} \leq f(\mathbf{x}; \Theta) \leq \mathbf{1}$

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}$
- **Neural Network** (output): threshold hidden output (which is a sigmoid) $\hat{y} = 1[f(\mathbf{x}; \Theta) > 0.5]$

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **sigmoid** activations: $\mathbf{0} \leq f(\mathbf{x}; \Theta) \leq \mathbf{1}$

Problem: Not differentiable, probabilistic interpretation maybe desirable

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}$
- **Neural Network** (output): threshold hidden output (which is a sigmoid) $\hat{y} = 1[f(\mathbf{x}; \Theta) > 0.5]$

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **sigmoid** activations: $\mathbf{0} \leq f(\mathbf{x}; \Theta) \leq \mathbf{1}$

Neural Network (output): interpret sigmoid output as probability

can interpret the score as the log-odds of y = 1 (a.k.a. the logits)

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}$

 - $p(y = 1) = f(\mathbf{x}; \Theta)$

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **sigmoid** activations: $\mathbf{0} \leq f(\mathbf{x}; \Theta) \leq \mathbf{1}$

Neural Network (output): interpret sigmoid output as probability

can interpret the score as the log-odds of y = 1 (a.k.a. the logits)

Loss: similarity between two distributions

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}$

 - $p(y = 1) = f(\mathbf{x}; \Theta)$

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **sigmoid** activations: $\mathbf{0} \leq f(\mathbf{x}; \Theta) \leq \mathbf{1}$

Neural Network (output): interpret sigmoid output as probability

Loss:

can interpret the score as the log-odds of y = 1 (a.k.a. the logits)

$$\mathcal{L}(y, \hat{y}) = -y \log[f(\mathbf{x}; \Theta)] - (1 - y) \log[1 - f(\mathbf{x}; \Theta)]$$

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}$

 - $p(y = 1) = f(\mathbf{x}; \Theta)$

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **sigmoid** activations: $\mathbf{0} \leq f(\mathbf{x}; \Theta) \leq \mathbf{1}$

Neural Network (output): interpret sigmoid output as probability

can interpret the score as the log-odds of y = 1 (a.k.a. the logits)

$$\mathcal{L}(y, \hat{y}) = \begin{cases} -log[1 - f(\mathbf{x}; \Theta)] & y = 0\\ -log[f(\mathbf{x}; \Theta)] & y = 1 \end{cases}$$

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}$

 - $p(y = 1) = f(\mathbf{x}; \Theta)$

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **sigmoid** activations: $\mathbf{0} \leq f(\mathbf{x}; \Theta) \leq \mathbf{1}$

Neural Network (output): interpret sigmoid output as probability

Minimizing this loss is the same as maximizing log likelihood of data

$$\mathcal{L}(y, \hat{y}) = \begin{cases} -log[1 - f(\mathbf{x}; \Theta)] & y = 0\\ -log[f(\mathbf{x}; \Theta)] & y = 1 \end{cases}$$

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}$

 - $p(y = 1) = f(\mathbf{x}; \Theta)$

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **ReLU** activations:

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}^k$
 - $\mathbf{0} \leq f(\mathbf{x}; \Theta)$

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **ReLU** activations:

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}^k$
 - $\mathbf{0} \leq f(\mathbf{x}; \Theta)$
- **Neural Network** (output): linear layer with one neuron and sigmoid activation

Multiclass Classification (e.g, ImageNet)

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

Multiclass Classification (e.g, ImageNet)

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **ReLU** activations:

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}^m$
 - $\mathbf{0} \leq f(\mathbf{x}; \Theta)$

Multiclass Classification (e.g., ImageNet)

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **ReLU** activations:

$$p(\mathbf{y}_k = 1) = \frac{\mathbf{f}_{j}}{\sum_{j=1}^{C}}$$

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}^m$
 - $\mathbf{0} \leq f(\mathbf{x}; \Theta)$
- Neural Network (output): softmax function, where probability of class k is:
 - $\frac{\exp\left[f(\mathbf{x};\Theta)_{i}\right]}{\sum_{i=1}^{C}\exp\left[f(\mathbf{x};\Theta)_{j}\right]}$

Multiclass Classification (e.g., ImageNet)

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

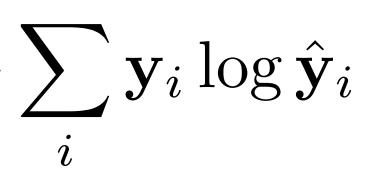
with **ReLU** activations:

Loss:

$$p(\mathbf{y}_k = 1) = \frac{1}{\sum_{j=1}^{C}}$$

 $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = H(\mathbf{y}, \hat{\mathbf{y}}) = -\sum \mathbf{y}_i \log \hat{\mathbf{y}}_i$

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}^m$
 - $\mathbf{0} \leq f(\mathbf{x}; \Theta)$
- **Neural Network** (output): **softmax** function, where probability of class k is:
 - $\frac{\exp\left[f(\mathbf{x};\Theta)_{i}\right]}{C} = 1 \exp\left[f(\mathbf{x};\Theta)_{j}\right]$



Multiclass Classification (e.g., ImageNet)

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

with **ReLU** activations:

Loss:

$$p(\mathbf{y}_k = 1) = \frac{1}{\sum_{j=1}^{C}}$$

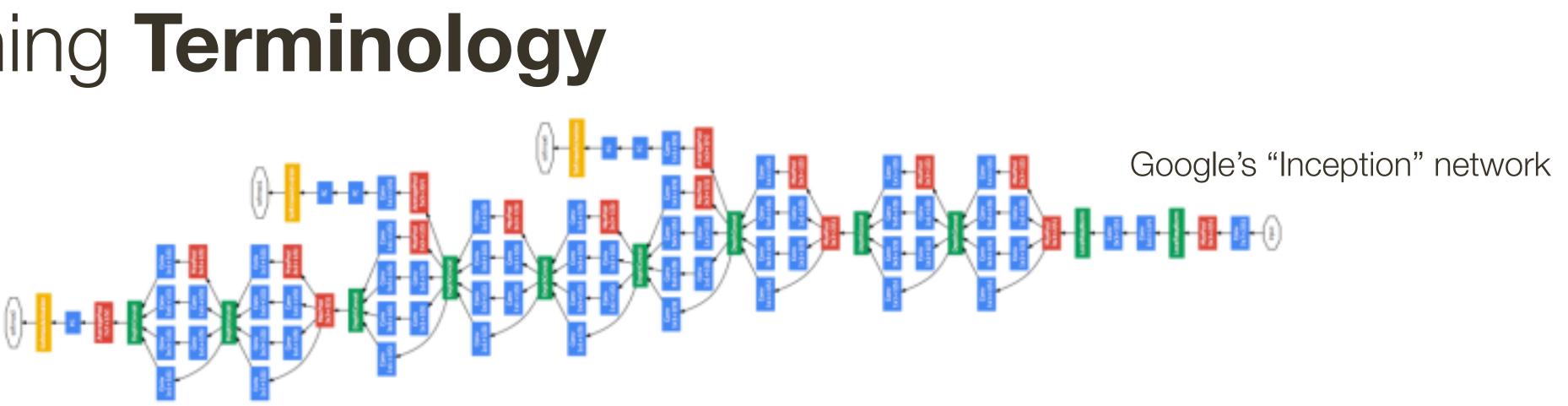
 $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = H(\mathbf{y}, \hat{\mathbf{y}}) = -$

Output: muticlass label $\mathbf{y} \in \{0, 1\}^m$ (**one-hot** encoding)

- **Neural Network** (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}^m$
 - $\mathbf{0} \leq f(\mathbf{x}; \Theta)$
- **Neural Network** (output): **softmax** function, where probability of class k is:
 - $\frac{\exp\left[f(\mathbf{x};\Theta)_{i}\right]}{C} \exp\left[f(\mathbf{x};\Theta)_{j}\right]$

$$\sum_{i} \mathbf{y}_{i} \log \hat{\mathbf{y}}_{i} = -\log \hat{\mathbf{y}}_{i}$$

se for multi-class single label



generally kept fixed, requires some knowledge of the problem and NN to sensibly set

requires knowledge of the nature of the problem

Specification of neural architecture will define a computational graph.

• **Network structure:** number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

deeper = better

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

Training

Initialize parameters of all layers

For a fixed number of iterations or until convergence

- Form mini-batch of examples (randomly chosen from a training dataset)
- computational graph)
- Update parameters of all layers, by taking a step in the negative average gradient direction (computed over all examples in the mini-batch)

Compute forward pass to make predictions for every example and

compute the loss (this involves recursively calling forward() for each intermediate layer along

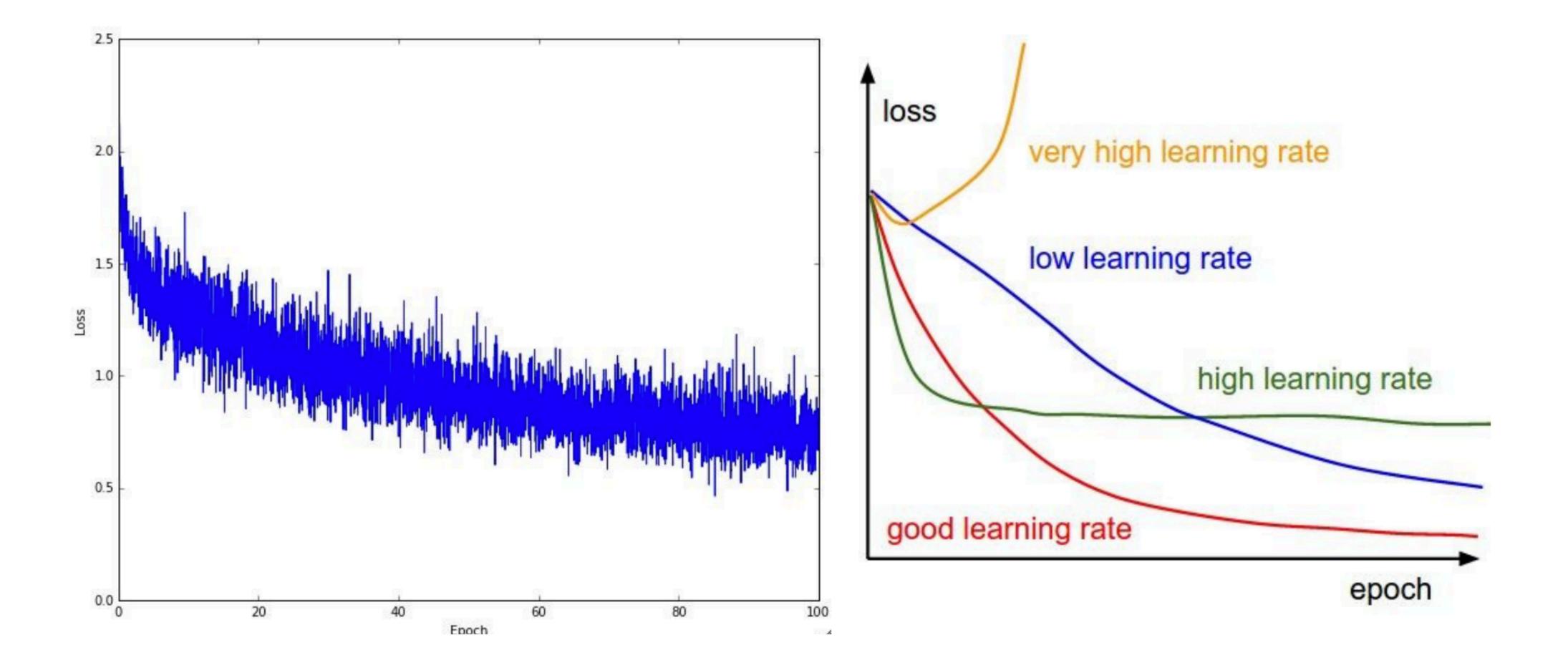
Compute backwards pass to compute the gradient of the loss with

respect to each parameter for each example (involves traversing computational graph in reverse order calling backward() on intermediate nodes and composing intermediate gradients — chain rule)

Inference / Prediction

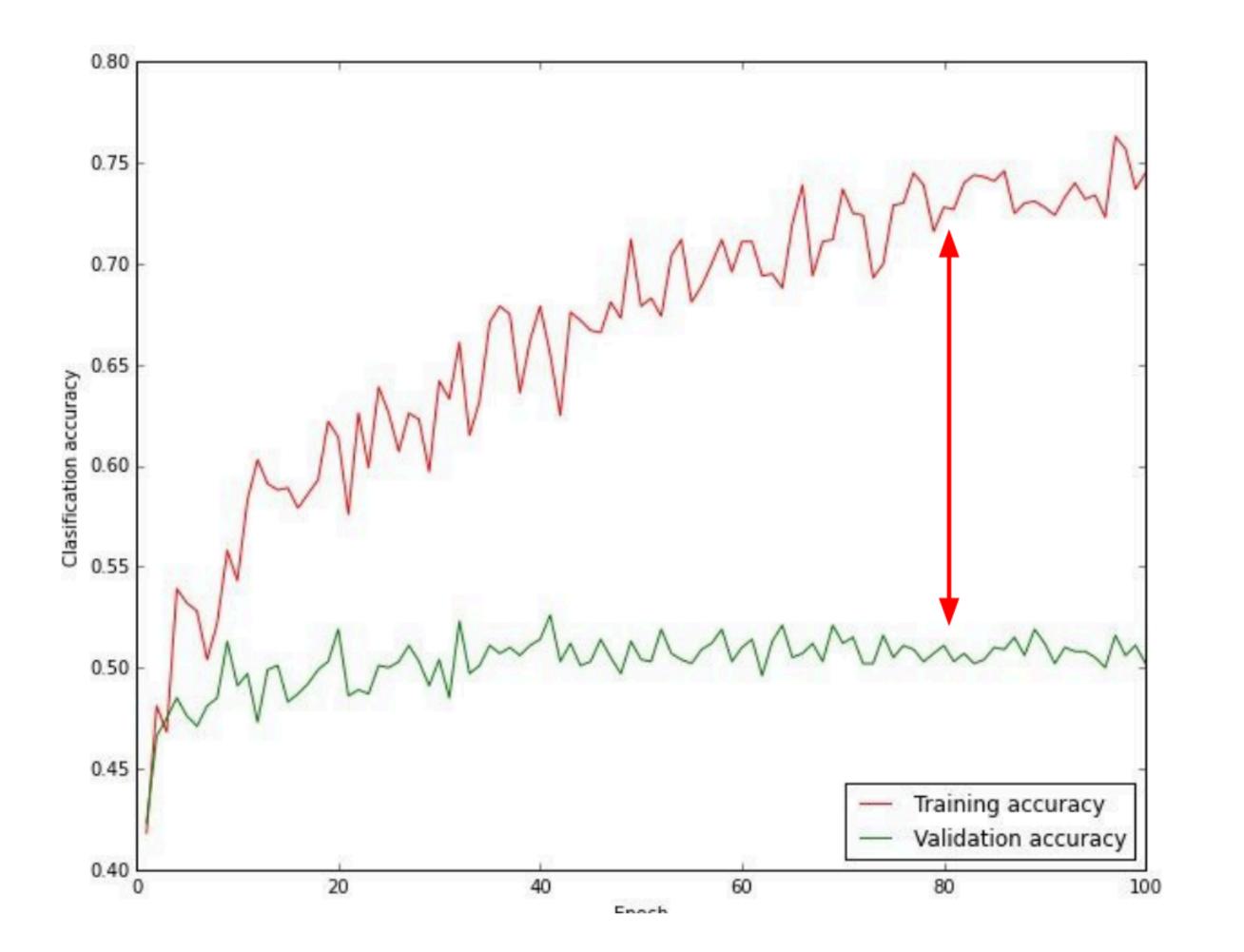
Compute forward pass with optimized parameters on test examples

Monitoring Learning: Visualizing the (training) loss



* slide from Li, Karpathy, Johnson's CS231n at Stanford

Monitoring Learning: Visualizing the (training) loss



Big gap = overfitting

Solution: increase regularization

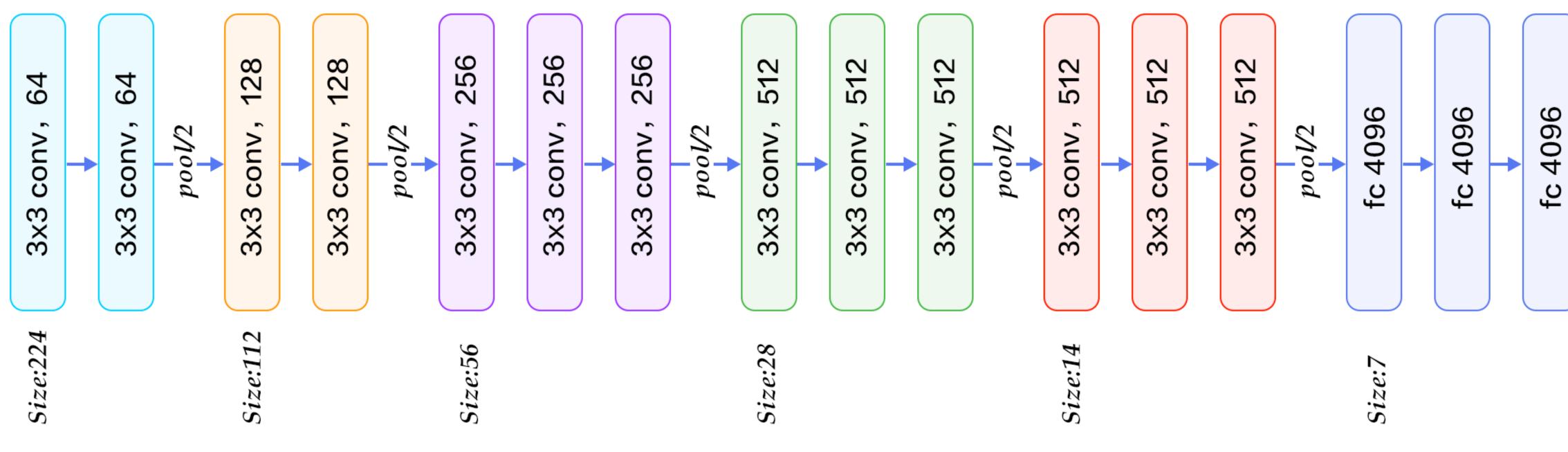
No gap = undercutting

Solution: increase model capacity

Small gap = ideal

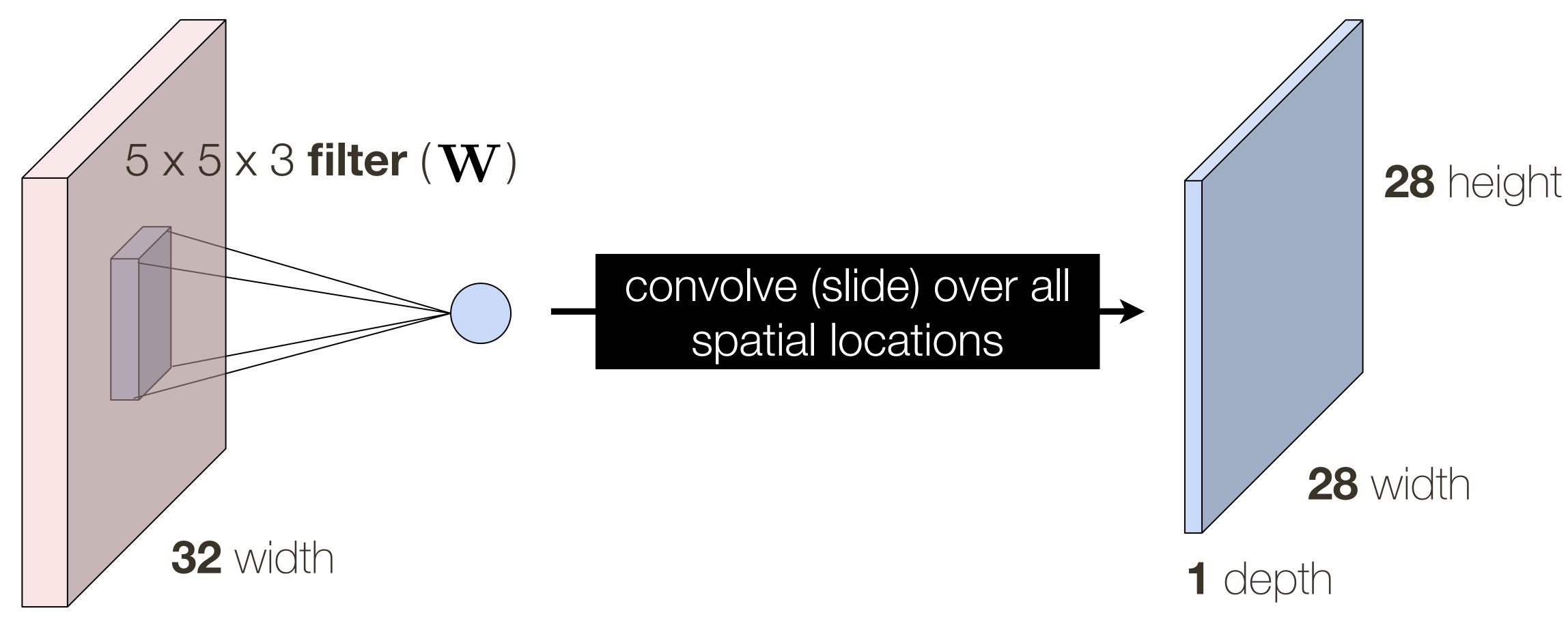
* slide from Li, Karpathy, Johnson's CS231n at Stanford

DN



Convolutional Layer: Closer Look at Spatial Dimensions

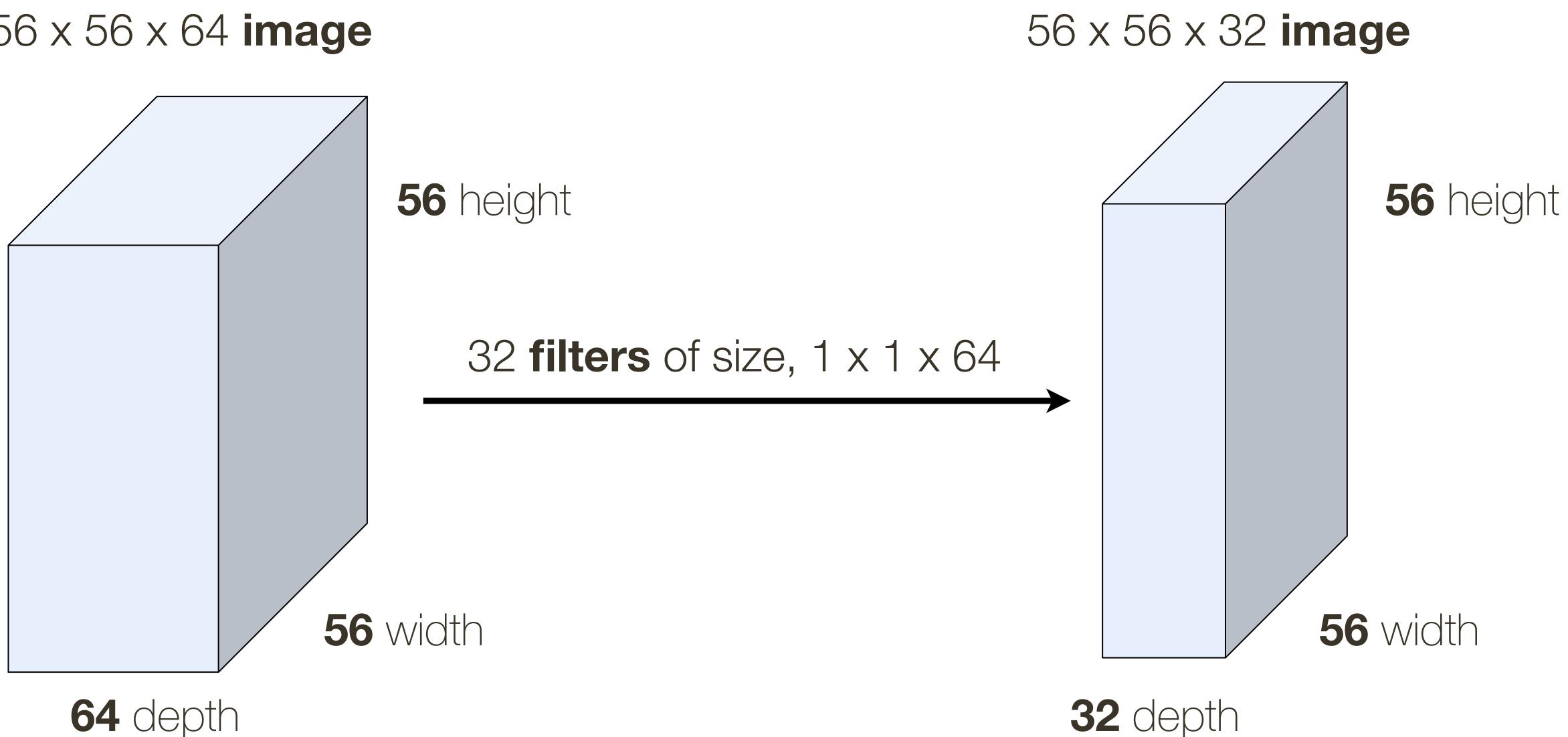
32 x 32 x 3 **image**



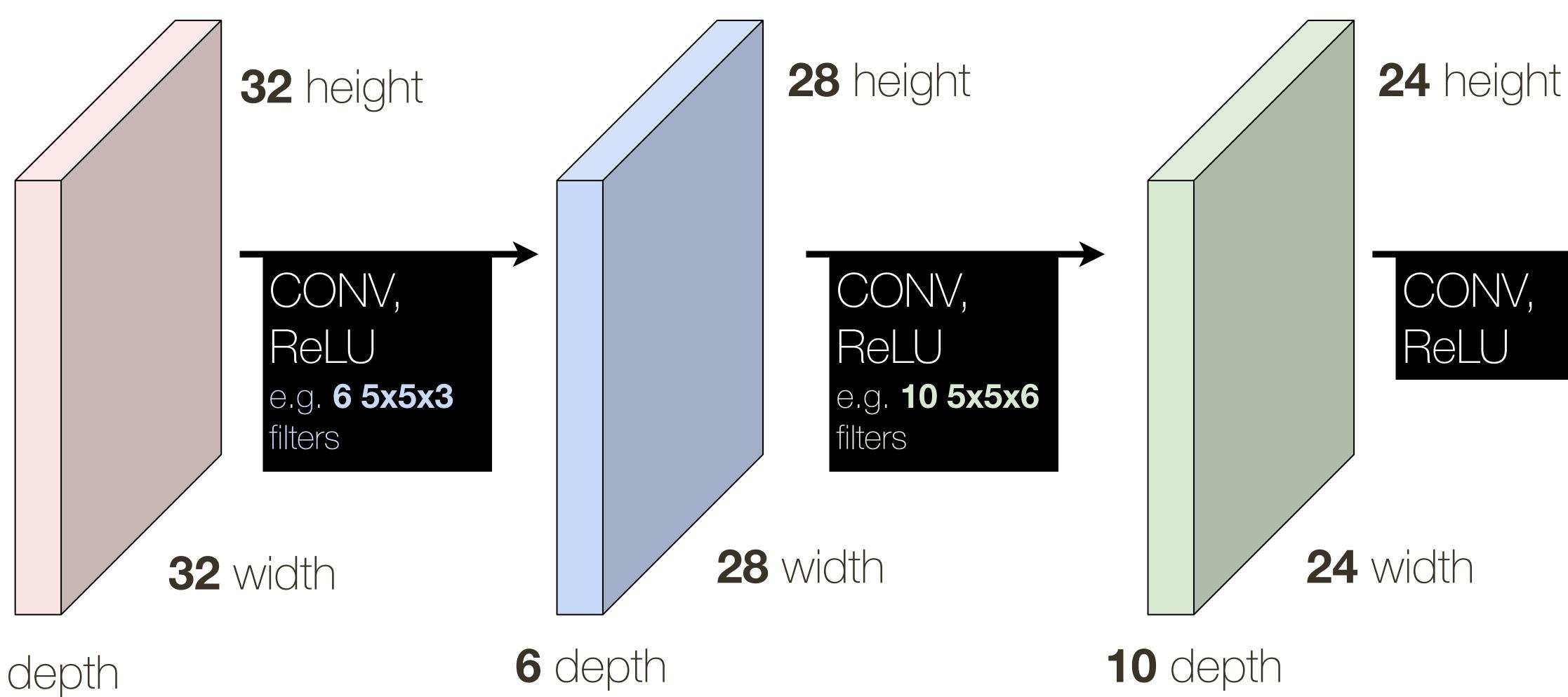
activation map

Convolutional Layer: 1x1 convolutions

56 x 56 x 64 **image**



Convolutional Neural Network (ConvNet)



Accepts a volume of size: $W_i \times H_i \times D_i$

Accepts a volume of size: $W_i \times H_i \times D_i$ (for mini-batch $N \times W_i \times H_i \times D_i$)

- Accepts a volume of size: $W_i \times H_i \times D_i$ (for mini-batch $N \times W_i \times H_i \times D_i$) Requires hyperparameters:

 - Number of filters: K (for typical networks $K \in \{32, 64, 128, 256, 512\}$) - Spatial extent of filters: F (for a typical networks $F \in \{1, 3, 5, ...\}$) - Stride of application: S (for a typical network $S \in \{1, 2\}$) - Zero padding: P (for a typical network $P \in \{0, 1, 2\}$)

- Accepts a volume of size: $W_i \times H_i \times D_i$ (for mini-batch $N \times W_i \times H_i \times D_i$) Requires hyperparameters:

 - Number of filters: K (for typical networks $K \in \{32, 64, 128, 256, 512\}$) - Spatial extent of filters: F (for a typical networks $F \in \{1, 3, 5, ...\}$) - Stride of application: S (for a typical network $S \in \{1, 2\}$)

 - Zero padding: P (for a typical network $P \in \{0, 1, 2\}$)
- Produces a volume of size: $W_o \times H_o \times D_o$ (for mini-batch $N \times W_o \times H_o \times D_o$)

- Accepts a volume of size: $W_i \times H_i \times D_i$ (for mini-batch $N \times W_i \times H_i \times D_i$) Requires hyperparameters:

 - Number of filters: K (for typical networks $K \in \{32, 64, 128, 256, 512\}$) - Spatial extent of filters: F (for a typical networks $F \in \{1, 3, 5, ...\}$)
 - Stride of application: S (for a typical network $S \in \{1, 2\}$)
 - Zero padding: P (for a typical network $P \in \{0, 1, 2\}$)
- Produces a volume of size: $W_o \times H_o \times D_o$ (for mini-batch $N \times W_o \times H_o \times D_o$) $W_o = (W_i - F + 2P)/S + 1$ $H_o = (H_i - F + 2P)/S + 1$ $D_{o} = K$

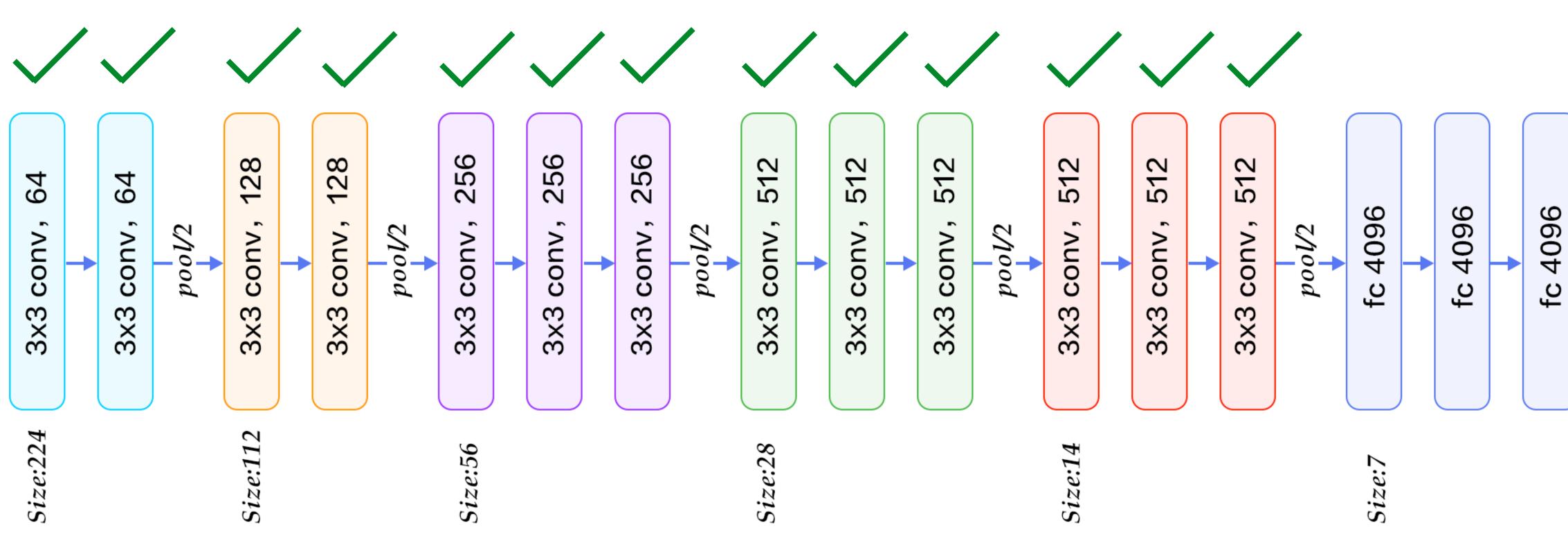
- Accepts a volume of size: $W_i \times H_i \times D_i$ (for mini-batch $N \times W_i \times H_i \times D_i$) Requires hyperparameters:

 - Number of filters: K (for typical networks $K \in \{32, 64, 128, 256, 512\}$) - Spatial extent of filters: F (for a typical networks $F \in \{1, 3, 5, ...\}$) - Stride of application: S (for a typical network $S \in \{1, 2\}$)

 - Zero padding: P (for a typical network $P \in \{0, 1, 2\}$)
- Produces a volume of size: $W_o \times H_o \times D_o$ (for mini-batch $N \times W_o \times H_o \times D_o$) $D_{o} = K$ $H_{o} = (H_{i} - F + 2P)/S + 1$

$$W_o = (W_i - F + 2P)/S + 1$$

Number of total learnable parameters: $(F \times F \times D_i) \times K + K$

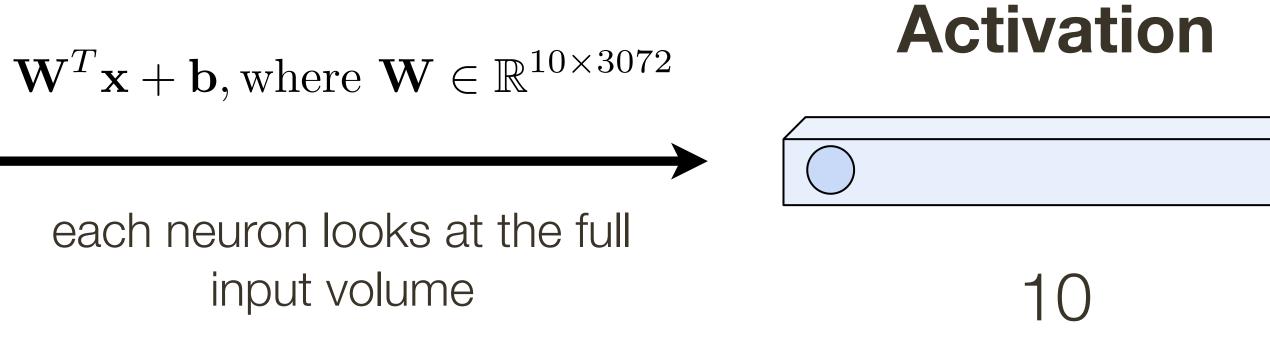


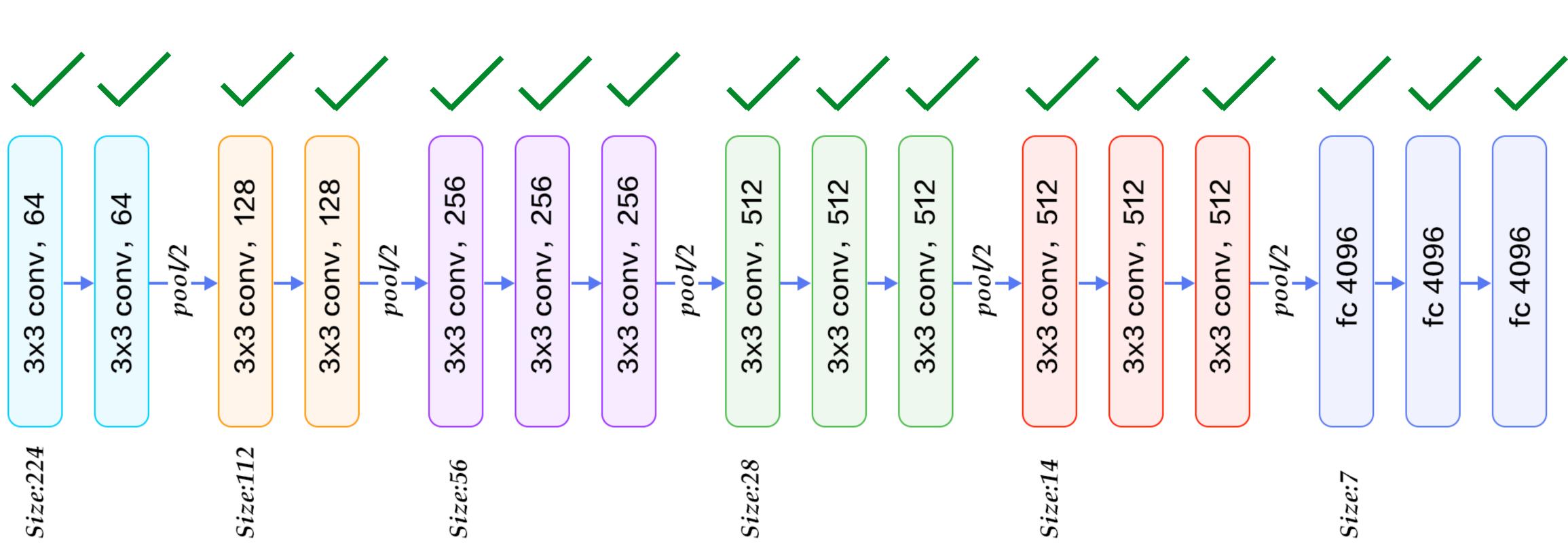
CNNs: Reminder Fully Connected Layers

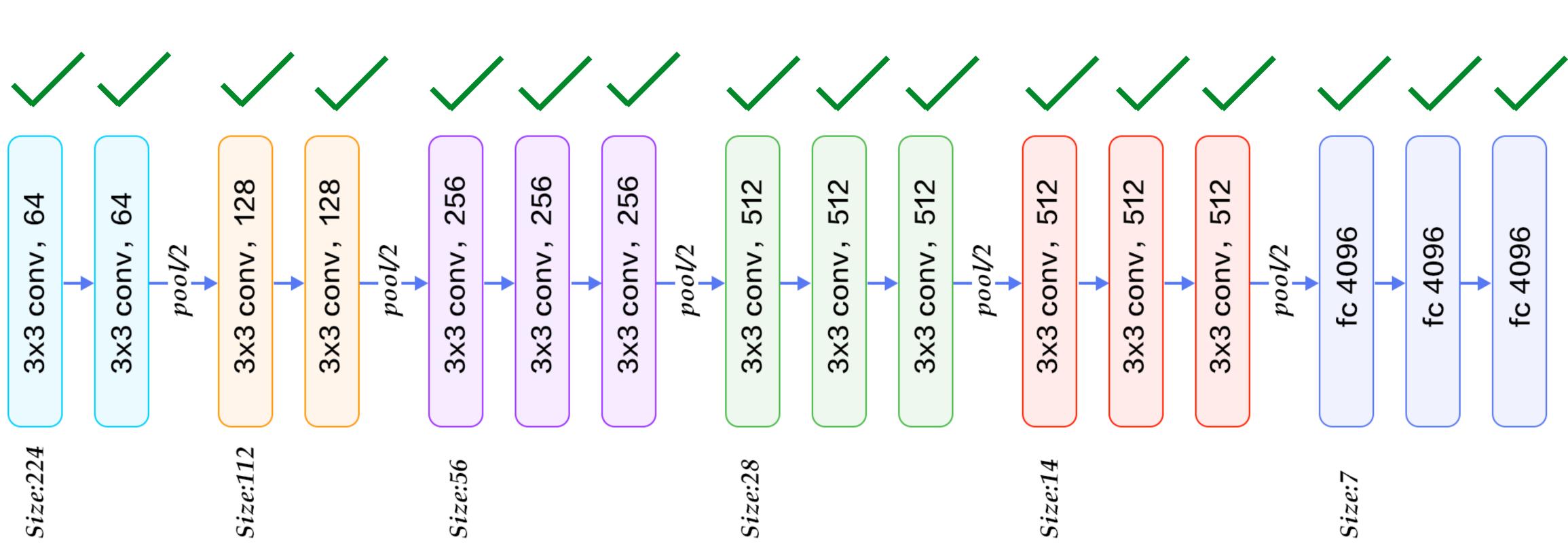
Input

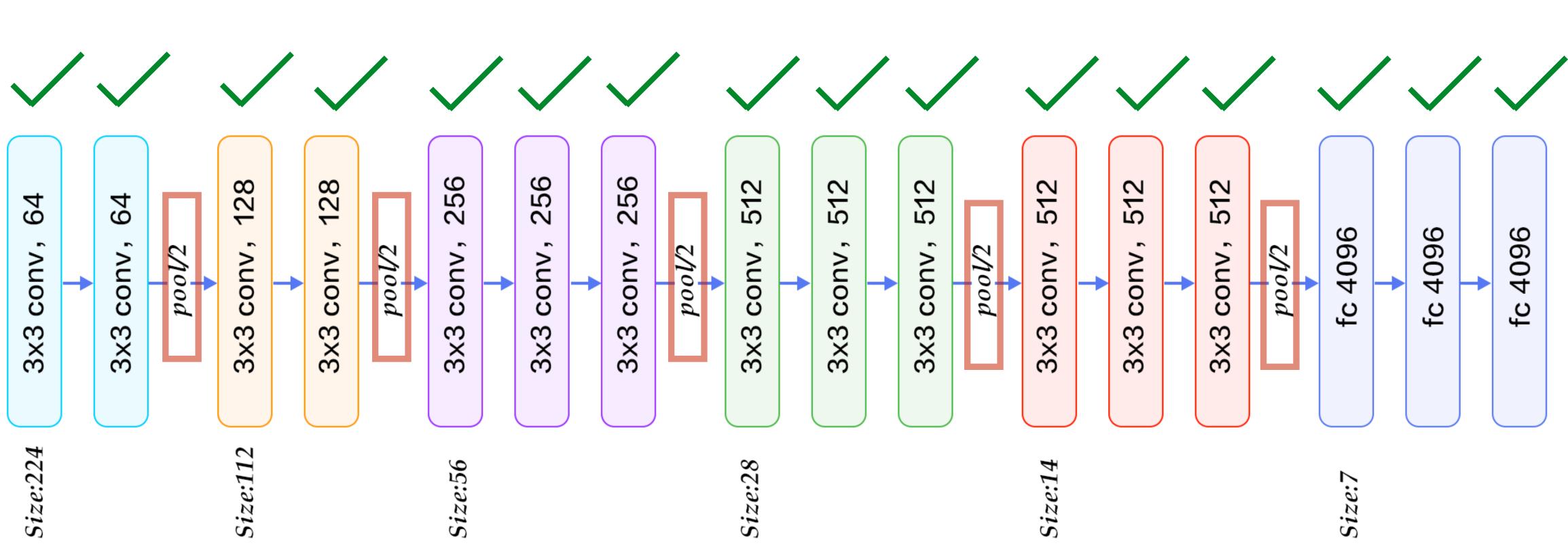
3072

(32 x 32 x 3 image -> stretches to 3072 x 1)



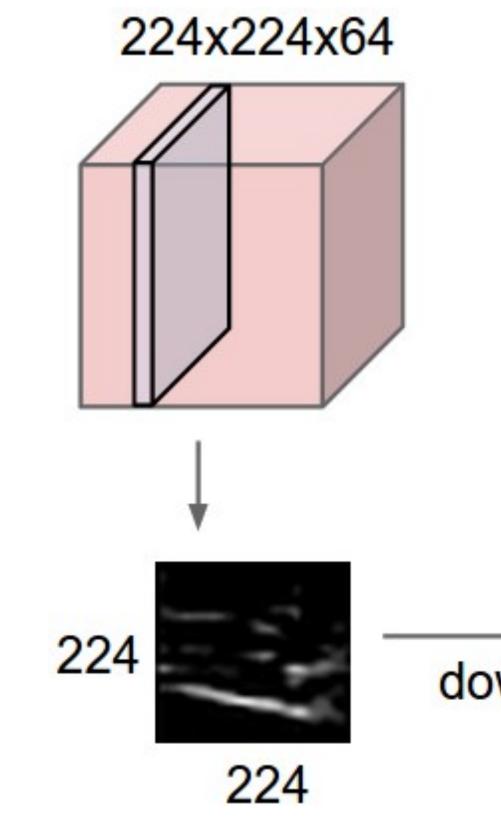




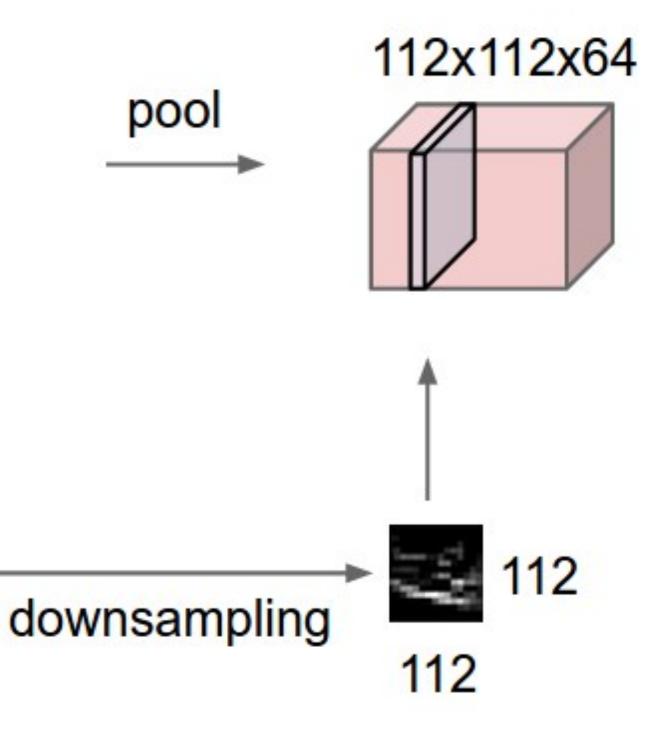


Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

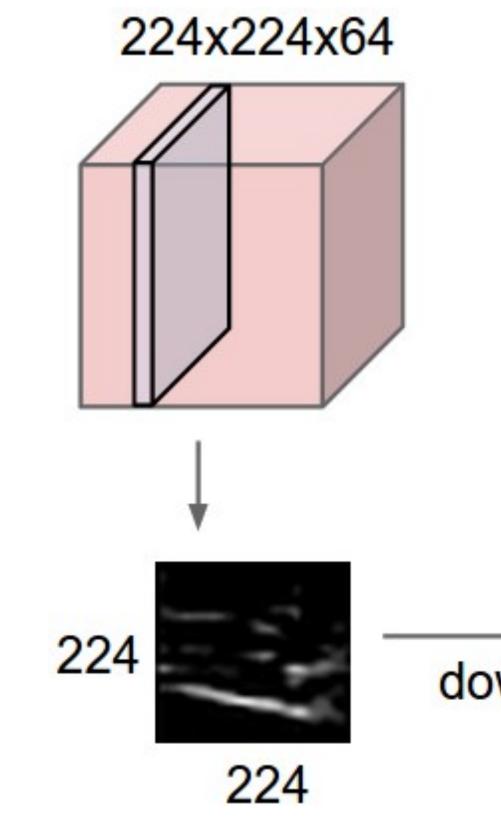


e manageable and spatially invariant independently

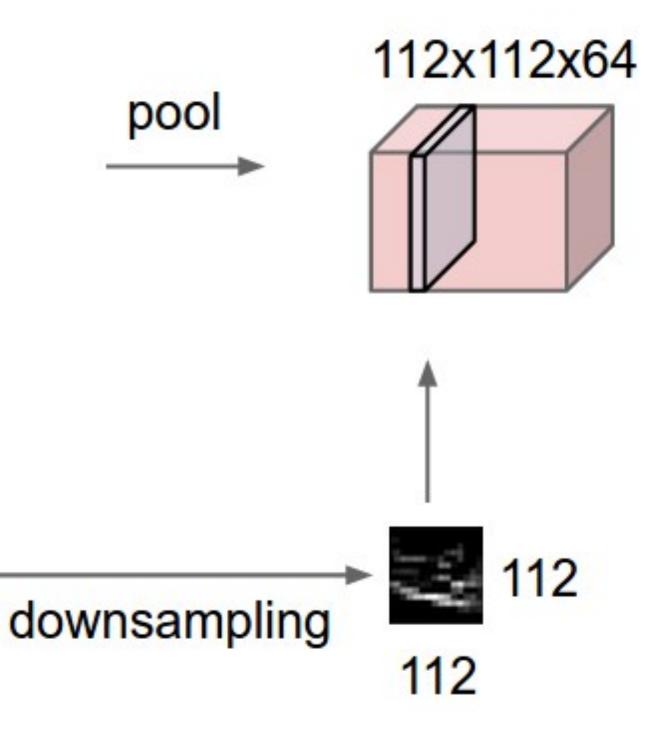


Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently



e manageable and spatially invariant independently

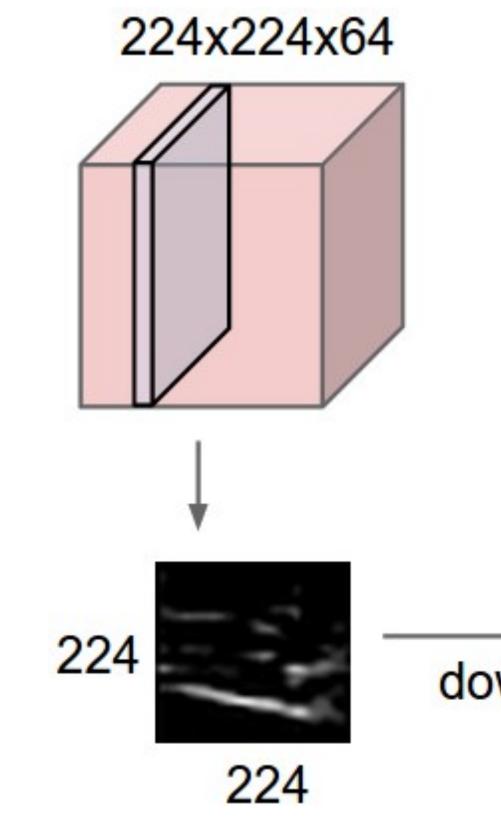


* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

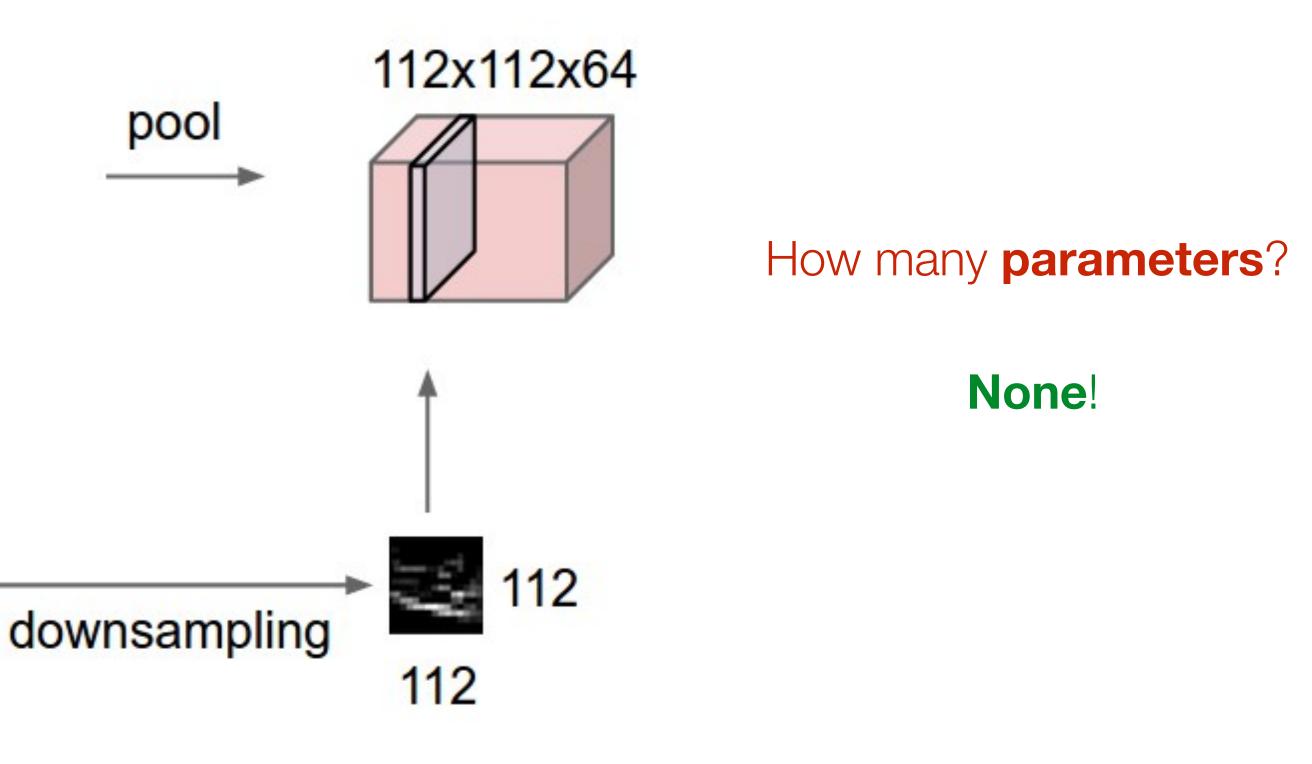
How many **parameters**?

Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

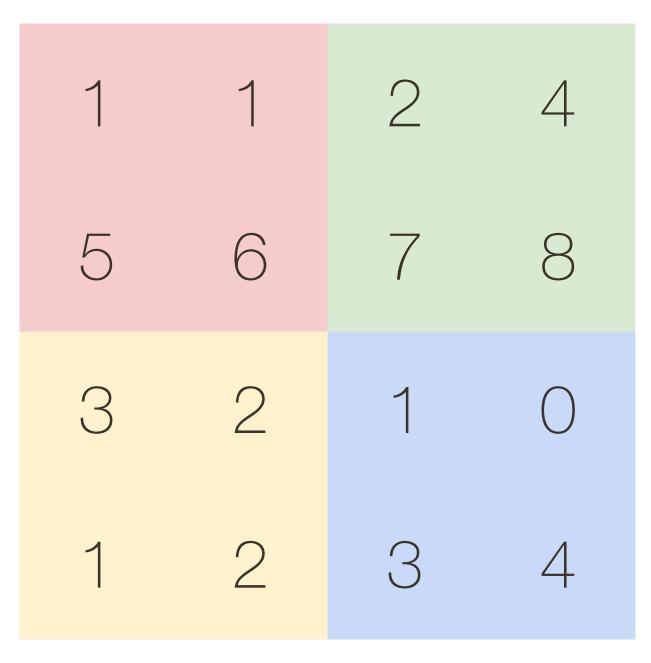


e manageable and spatially invariant independently



Max **Pooling**

activation map

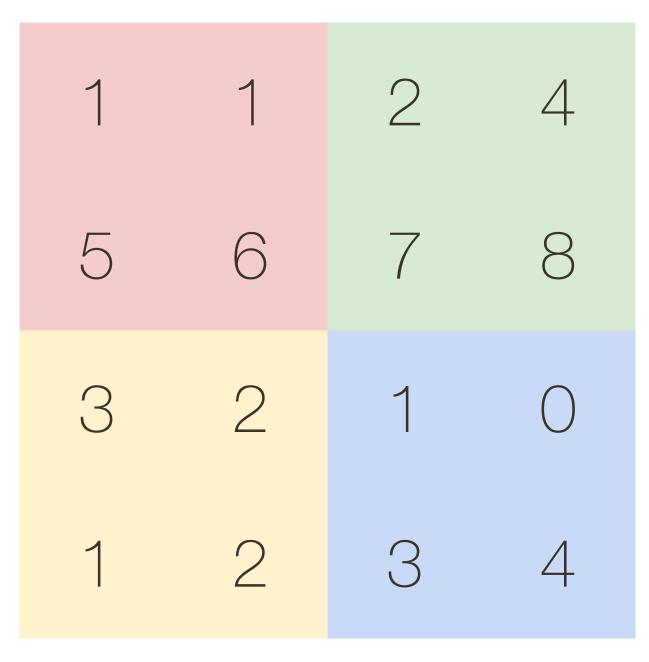


max pool with 2 x 2 filter and stride of 2

6 8 3 4

Average **Pooling**

activation map

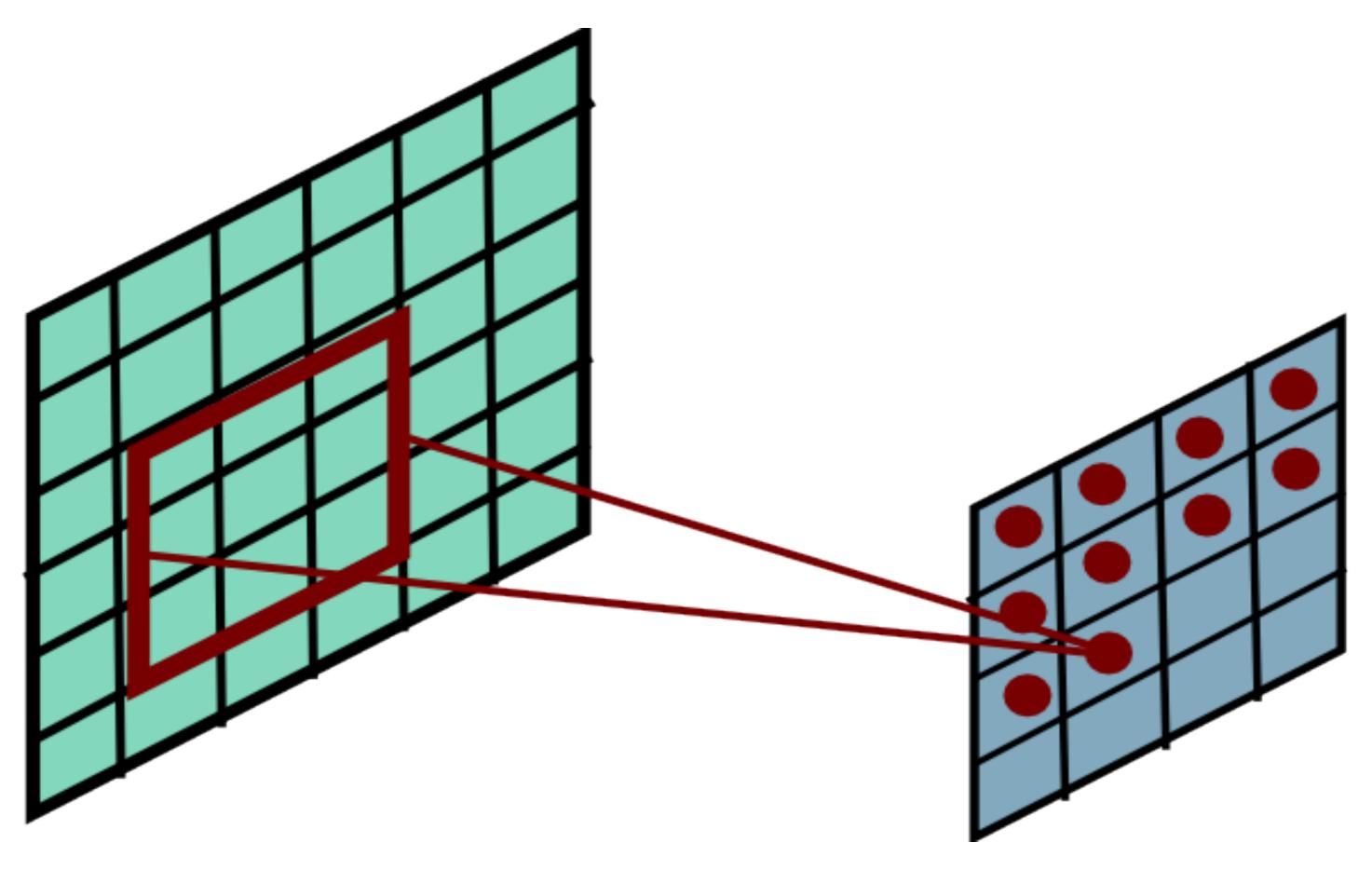


avg pool with 2 x 2 filter and stride of 2

3.25 5.25 2 2

Pooling Layer Receptive Field

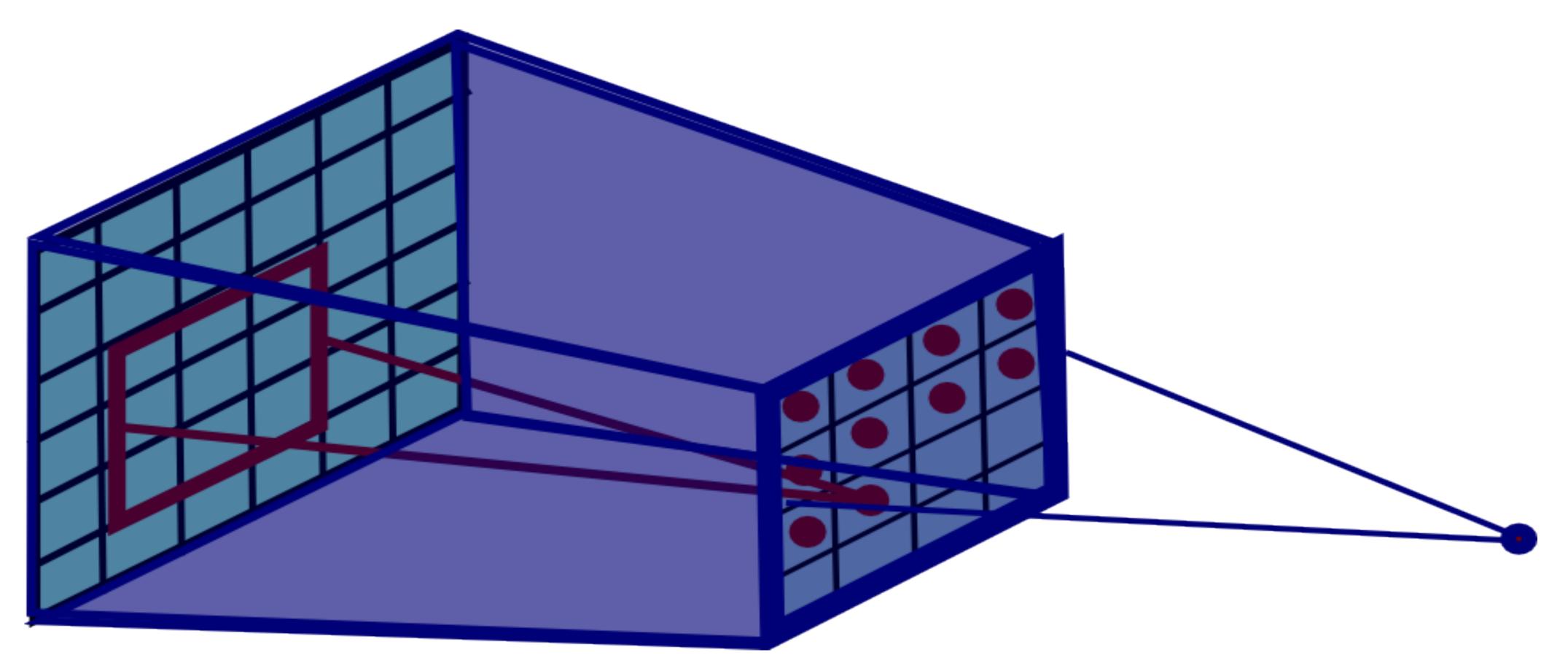
If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size: **(P+K-1)x(P+K-1)**



* slide from Marc'Aurelio Renzato

Pooling Layer Receptive Field

If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size: (P+K-1)x(P+K-1)



* slide from Marc'Aurelio Renzato

Pooling Layer Summary

Accepts a volume of size: $W_i \times H_i \times D_i$ Requires hyperparameters: - Spatial extent of filters: K- Stride of application: FProduces a volume of size: $W_o \times H_o \times D_o$ $W_o = (W_i - F)/S + 1$ $H_o = (H_i - F)/S + 1$

Number of total learnable parameters: 0

$D_o = D_i$

