

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 30: Neural Networks

Menu for Today (November 23, 2020)

Topics:

- Backpropagation
- Convolutional Layers

Redings:

- Today's Lecture: N/A
- **Next** Lecture: N/A

Reminders:

- Assignment 6: Deep Learning due Wednsday, November 2nd

Pooling Layer

Please fill out **Student Evaluations** (on Canvas)

— The basic unit of computation in a neural network is a neuron.

- A neuron accepts some number of input signals, computes their weighted sum, and applies an activation function (or non-linearity) to the sum.

- Common activation functions include sigmoid and rectified linear unit (ReLU)

Lecture 29: Re-cap

A neural network comprises neurons connected in an acyclic graph The outputs of neurons can become inputs to other neurons Neural networks typically contain multiple layers of neurons

Neural Network

hidden layer

Figure credit: Fei-Fei and Karpathy

Example of a neural network with three inputs, a single hidden layer of four neurons, and an output layer of two neurons

Lecture 29: Re-cap

Note: each neuron will have its own vector of weights and a bias, its easier to think of all neurons in a layer as a single entity with a matrix of weights (size = number of inputs x number of neurons) and a vector of biases (size = number of neurons)

Neural Network

Figure credit: Fei-Fei and Karpathy

6

Lecture 29: Re-cap

Note: each neuron will have its own vector of weights and a bias, its easier to think of all neurons in a layer as a single entity with a matrix of weights (size = number of inputs x number of neurons) and a vector of biases (size = number of neurons)

 $\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) =$

Neural Network

Figure credit: Fei-Fei and Karpathy

$$= \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss: $L_i = -$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

$$\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss: $L_i = -$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector \mathbf{x}_i and predicts scores for 3 classes, with true class being class 3:

$$\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss: $L_i = -$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector \mathbf{x}_i and predicts scores for 3 classes, with true class being class 3:

$$f$$

 $c_1 = -2.85$
 $c_2 = 0.86$
 $c_3 = 0.28$

$$\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss: $L_i = -$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector \mathbf{x}_i and predicts scores for 3 classes, with true class being class 3:

$$\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss: $L_i = -$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector \mathbf{x}_i and predicts scores for 3 classes, with true class being class 3:

$$\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

 Normalize to sum to 1
 0.016

 0.631
 0.353

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss: $L_i = -$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector \mathbf{x}_i and predicts scores for 3 classes, with true class being class 3:

$$\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

probability of a class

Normalize to sum to 1

 $0.016 \\ 0.631 \\ 0.353$

When training a neural network, the final output will be some loss (error) function

– e.g. cross-entropy loss: $L_i = -$

which defines loss for i-th training example with true class index y_i ; and f_i is the j-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector \mathbf{x}_i and predicts scores for 3 classes, with true class being class 3:

$$\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

softmax function multi-class classifier

probability of a class

Normalize to sum to 1

0.0160.6310.353

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss: $L_i = -$

which defines loss for i-th training example with true class index y_i ; and f_i is the j-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector \mathbf{x}_i and predicts scores for 3 classes, with true class being class 3:

$$\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

probability of a class

Normalize to sum to 1

0.016 $\longrightarrow 0.631$ $L_i = -\log(0.353) = 1.04$ 0.353

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss: $L_i = -$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

We want to compute the **gradient** of the loss with respect to the network parameters so that we can incrementally adjust the network parameters

$$\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

*slide adopted from V. Ordonex

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

*slide adopted from V. Ordonex

1. Start from random value of W_0, b_0

*slide adopted from V. Ordonex

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

 $\left.
abla \, \mathcal{L}(\mathbf{W},\mathbf{b})
ight|_{\mathbf{W}=\mathbf{W}_k,\mathbf{b}=\mathbf{b}_k}$

*slide adopted from V. Ordonex

. .

′∎

1. Start from random value of W_0, b_0

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

 $\nabla \mathcal{L}(\mathbf{W}, \mathbf{b})|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$

*slide adopted from V. Ordonex

. .

′∎

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

 $\left.
abla \, \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$

3. Re-estimate the parameters

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k}$$
$$\mathbf{b}_{k+1} = \mathbf{b}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k},$$

*slide adopted from V. Ordonex

 $\mathbf{V}_k, \mathbf{b} = \mathbf{b}_k$

 $k, \mathbf{b} = \mathbf{b}_k$

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

 $\nabla \mathcal{L}(\mathbf{W}, \mathbf{b})|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$

3. Re-estimate the parameters

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k}$$
$$\mathbf{b}_{k+1} = \mathbf{b}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{W}_k}$$

*slide adopted from V. Ordonex

 $r_k, \mathbf{b} = \mathbf{b}_k$

 $\mathbf{b} = \mathbf{b}_k$

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\nabla \mathcal{L}(\mathbf{W}, \mathbf{b})|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

3. Re-estimate the parameters

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k}$$
$$\mathbf{b}_{k+1} = \mathbf{b}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k},$$

*slide adopted from V. Ordonex

 $\mathbf{V}_k, \mathbf{b} = \mathbf{b}_k$

 $\mathbf{b} = \mathbf{b}_k$

 λ - is the learning rate

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

 $\left.
abla \, \mathcal{L}(\mathbf{W},\mathbf{b})
ight|_{\mathbf{W}=\mathbf{W}_k,\mathbf{b}=\mathbf{b}_k}$

3. Re-estimate the parameters

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \underline{\lambda} \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k}$$
$$\mathbf{b}_{k+1} = \mathbf{b}_k - \underline{\lambda} \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k},$$

*slide adopted from V. Ordonex

 $V_k, \mathbf{b} = \mathbf{b}_k$

 $\mathbf{b} = \mathbf{b}_k$

Loss:

 $\mathbf{\hat{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) =$

$\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = ||\mathbf{y} - \hat{\mathbf{y}}|| = ||\mathbf{y} - f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2)||$

Figure credit: Fei-Fei and Karpathy

$$= \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$$

18

Loss:

Gradient Descent

$$\mathbf{W}_{1,i,j} = \mathbf{W}_{1,i,j} - \lambda \frac{\partial \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})}{\partial \mathbf{W}_{1,i,j}}$$

$$\mathbf{b}_{1,i} = \mathbf{b}_{1,i} - \lambda \frac{\partial \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})}{\partial \mathbf{b}_{1,i}}$$

input layer

 $\mathbf{\hat{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) =$

$\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = ||\mathbf{y} - \hat{\mathbf{y}}|| = ||\mathbf{y} - f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2)||$

hidden layer

Figure credit: Fei-Fei and Karpathy

$$= \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$$

19

Problem: For large datasets computing sum is expensive

Problem: For large datasets computing sum is expensive

Solution: Compute approximate gradient with mini-batches of much smaller size (as little as 1-example sometimes)

$$\mathbf{gmoid}\left(\mathbf{W}^T\mathbf{x}^{(d)} + \mathbf{b}\right) - \mathbf{y}^{(d)}\right)^2$$

Problem: For large datasets computing sum is expensive

Solution: Compute approximate gradient with mini-batches of much smaller size (as little as 1-example sometimes)

Problem: How do we compute the actual gradient?

$$\operatorname{gmoid}\left(\mathbf{W}^T\mathbf{x}^{(d)} + \mathbf{b}\right) - \mathbf{y}^{(d)}\right)^2$$

We can approximate the gradient numerically, using:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \lim_{h \to 0}$$

 $\mathbf{1}_i$ - Vector of all zeros, except for one 1 in i-th location

 $\frac{f(\mathbf{x} + h\mathbf{1}_i) - f(\mathbf{x})}{h}$

We can approximate the gradient numerically, using:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{1}_i) - f(\mathbf{x})}{h}$$

Even better, we can use central differencing:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{1}_i) - f(\mathbf{x} - h\mathbf{1}_i)}{2h}$$

 $\mathbf{1}_i$ - Vector of all zeros, except for one 1 in i-th location

We can approximate the gradient numerically, using:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{1}_i) - f(\mathbf{x})}{h}$$

Even better, we can use central differencing:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{1}_i) - f(\mathbf{x} - h\mathbf{1}_i)}{2h}$$

However, both of theses suffer from rounding errors and are not good enough for learning (they are very good tools for checking the correctness of implementation though, e.g., use h = 0.000001).

 $\mathbf{1}_i$ - Vector of all zeros, except for one 1 in i-th location

We can approximate the gradient numerically, using:

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ij}} \approx \lim_{h \to 0} \frac{\mathcal{L}(\mathbf{W} + h\mathbf{1}_{ij}, \mathbf{b}) - \mathcal{L}(\mathbf{W}, \mathbf{b})}{h}$$

Even better, we can use central differencing:

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial w_{ij}} \approx \lim_{h \to 0} \frac{\mathcal{L}(\mathbf{W} + h\mathbf{1}_{ij}, \mathbf{b}) - \mathcal{L}(\mathbf{W} + h\mathbf{1}_{ij}, \mathbf{b})}{2h} \qquad \qquad \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial b_j} \approx \lim_{h \to 0} \frac{\mathcal{L}(\mathbf{W}, \mathbf{b} + h\mathbf{1}_j) - \mathcal{L}(\mathbf{W}, \mathbf{b} + h\mathbf{1}_j)}{2h}$$

However, both of theses suffer from rounding errors and are not good enough for learning (they are very good tools for checking the correctness of implementation though, e.g., use h = 0.000001).

 $\mathbf{1}_i$ - Vector of all zeros, except for one 1 in i-th location $\mathbf{1}_{ij}$ - Matrix of all zeros, except for one 1 in (i,j)-th location

$$\frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial b_j} \approx \lim_{h \to 0} \frac{\mathcal{L}(\mathbf{W}, \mathbf{b} + h\mathbf{1}_j) - \mathcal{L}(\mathbf{W}, \mathbf{b})}{h}$$

Symbolic Differentiation

Input function is represented as **computational graph** (a symbolic tree)

Implements differentiation rules for composite functions:

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - sin(x_2)$$

Symbolic Differentiation

Input function is represented as **computational graph** (a symbolic tree)

Implements differentiation rules for composite functions:

Problem: For complex functions, expressions can be exponentially large; also difficult to deal with piece-wise functions (creates many symbolic cases)

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$

$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - sin(x_2)$ **Automatic** Differentiation (AutoDiff)

Intuition: Interleave symbolic differentiation and simplification

Key Idea: apply symbolic differentiation at the elementary operation level, evaluate and keep intermediate results

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$ **Automatic** Differentiation (AutoDiff)

Intuition: Interleave symbolic differentiation and simplification

Key Idea: apply symbolic differentiation at the elementary operation level, evaluate and keep intermediate results

Success of **deep learning** owes A LOT to success of AutoDiff algorithms (also to advances in parallel architectures, and large datasets, ...)

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

The parameters of a neural network are learned using **backpropagation**, calculus

which computes gradients via recursive application of the chain rule from

The parameters of a neural network are learned using **backpropagation**, which computes gradients via recursive application of the chain rule from calculus

Suppose f(x, y) = xy. What is the partial derivative of f with respect to x? What is the partial derivative of f with respect to y?

The parameters of a neural network are learned using **backpropagation**, which computes gradients via recursive application of the chain rule from calculus

is the partial derivative of f with respect to y?

$$\frac{\partial f}{\partial x} = y$$

Suppose f(x, y) = xy. What is the partial derivative of f with respect to x? What

$$\frac{\partial f}{\partial y} = x$$

What is the partial derivative of f with respect to y?

Suppose f(x, y) = x + y. What is the partial derivative of f with respect to x?

Suppose f(x, y) = x + y. What is the partial derivative of f with respect to x? What is the partial derivative of f with respect to y?

$$\frac{\partial f}{\partial x} = 1$$

$$\frac{\partial f}{\partial y} = 1$$

A trickier example: $f(x, y) = \max(x, y)$

A trickier example: $f(x, y) = \max(x, y)$

$$\frac{\partial f}{\partial x} = \mathbf{1}(x \ge y)$$

That is, the (sub)gradient is 1 on the input that is larger, and 0 on the other input

- For example, say x = 4, y = 2. Increasing y by a tiny amount does not change the value of f (f will still be 4), hence the gradient on y is zero.

$$\frac{\partial f}{\partial y} = \mathbf{1}(y \ge x)$$

applying the **chain rule** from calculus

We can compose more complicated functions and compute their gradients by

We can compose more complicated functions and compute their gradients by applying the **chain rule** from calculus

to x? y? z?

Suppose f(x, y, z) = (x + y)z. What are the partial derivatives of f with respect

We can compose more complicated functions and compute their gradients by applying the **chain rule** from calculus

Suppose f(x, y, z) = (x + y)z. What to x? y? z?

For illustration we break this expression into q = x + y and f = qz. This is a sum and a product, and we have just seen how to compute partial derivatives for these.

Suppose f(x, y, z) = (x + y)z. What are the partial derivatives of f with respect

We can compose more complicated functions and compute their gradients by applying the **chain rule** from calculus

Suppose f(x, y, z) = (x + y)z. What to x? y? z?

For illustration we break this expression into q = x + y and f = qz. This is a sum and a product, and we have just seen how to compute partial derivatives for these.

By the chain rule

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = z \cdot 1 = z$$

Suppose f(x, y, z) = (x + y)z. What are the partial derivatives of f with respect

We can compose more complicated functions and compute their gradients by applying the **chain rule** from calculus

to x? y? z?

For illustration we break this expression into q = x + y and f = qz. This is a sum and a product, and we have just seen how to compute partial derivatives for these.

By the chain rule

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = z \cdot 1 = z$$

Suppose f(x, y, z) = (x + y)z. What are the partial derivatives of f with respect

 $\frac{\dot{z}}{\partial y} = \frac{\partial y}{\partial q} \frac{\partial y}{\partial y} = z \cdot 1 = z$ $\frac{J}{\partial z} = q$

f(x, y, z) = (x + y)z

Computational graph (a DAG) with variable ordering from topological sort, where each **node** is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from topological sort, where each **node** is an input, intermediate, or output variable

Suppose the network input is: (x, y, y)

Then:
$$q = x + y = 3$$
 $f = qz =$

$$z) = (-2, 5, -4)$$

-12(forward pass)

Suppose the network input is: (x, y, z) = (-2, 5, -4)

Then: q = x + y = 3 f = qz = -12

 $\frac{\partial f}{\partial a} = z = -4$ ∇q

f(x, y, z) = (x + y)z

(forward pass)

(**backward** pass)

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = \frac{\partial f}{\partial q} \cdot 1$$

Suppose the network input is: (x, y, z) = (-2, 5, -4)

Then:
$$q = x + y = 3$$
 $f = qz =$

$$\frac{\partial f}{\partial q} = z = -4$$

f(x, y, z) = (x + y)z

-12(forward pass)

(**backward** pass)

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = \frac{\partial f}{\partial q} \cdot 1$$

Suppose the network input is: (x, y, z) = (-2, 5, -4)

Then:
$$q = x + y = 3$$
 $f = qz =$

$$\frac{\partial f}{\partial q} = z = -4 \qquad \qquad \frac{\partial f}{\partial x} = -4$$

f(x, y, z) = (x + y)z

-12(forward pass)

(**backward** pass)

Back

propagation

$$f(x, y, z) = (x + y)z$$

$$y$$

$$f(x, y, z) = (x + y)z$$

$$y$$

$$y$$

$$z$$

$$f(x, y, z) = (x + y)z$$

$$y$$

$$y$$

$$z$$

$$f(x, y, z) = (x + y)z$$

$$y$$

$$f(z, y, z) = (x + y)z$$

Suppose the network input is: (x, y, z) = (-2, 5, -4)

Then:
$$q = x + y = 3$$
 $f = qz =$

$$\frac{\partial f}{\partial q} = z = -4 \qquad \qquad \frac{\partial f}{\partial x} = -4$$

-12(forward pass)

$$\frac{\partial f}{\partial y} = -4$$
 $\frac{\partial f}{\partial z} = 3$ (backward p

Lets create a neural network that will be able to differentiate (classify) these patterns of simple 3x3 pixel images

We will need some labeled data

Lets create a neural network that will be able to differentiate (classify) these patterns of simple 3x3 pixel images

First, lets re-formulate the problem

What do we need to do?

Lets create a neural network that will be able to differentiate (classify) these patterns of simple 3x3 pixel images

First, lets re-formulate the problem

What do we need to do?

Lets create a neural network that will be able to differentiate (classify) these patterns of simple 3x3 pixel images

How many inputs should the network have? How neuron outputs?

Now, lets build a **network**!

Lets create a neural network that will be able to differentiate (classify) these patterns of simple 3x3 pixel images

What else is missing for us to train it?

Lets create a neural network that will be able to differentiate (classify) these patterns of simple 3x3 pixel images

Output Layer

Loss

 $L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$

Lets create a neural network that will be able to differentiate (classify) these patterns of simple 3x3 pixel images

Output Layer

Loss

 $L_{1} = -log\left(\frac{e^{\sum_{i=1}^{9}\sigma(w_{1,i}x_{i}+b_{1})}}{\sum_{i=1}^{3}e^{\sum_{i=1}^{9}\sigma(w_{1,i}x_{i}+b_{1})}}\right)$

Fully Connected Layer

Example: 200 x 200 image (small) x 40K hidden units

* slide from Marc'Aurelio Renzato

Fully Connected Layer

Example: 200 x 200 image (small) x 40K hidden units

= ~ 2 Billion parameters (for one layer!)

* slide from Marc'Aurelio Renzato

Fully Connected Layer

Example: 200 x 200 image (small) x 40K hidden units

= ~ 2 Billion parameters (for one layer!)

Spatial correlations are generally local

Waste of resources + we don't have enough data to train networks this large

* slide from Marc'Aurelio Renzato

Locally Connected Layer

Example: 200 x 200 image (small) x 40K hidden units

Filter size: 10 x 10

= ~ 4 Million parameters

Locally Connected Layer

Example: 200 x 200 image (small) x 40K hidden units

Filter size: 10 x 10

= ~ 4 Million parameters

Stationarity — statistics is similar at different locations

Example: 200 x 200 image (small) x 40K hidden units

Filter size: 10×10

= ~ 4 Million parameters

Share the same parameters across the locations (assuming input is stationary)

* slide adopted from Marc'Aurelio Renzato

Example: 200 x 200 image (small) x 40K hidden units

Filter size: 10×10

= ~ 4 Million parameters

= 100 parameters

Share the same parameters across the locations (assuming input is stationary)

* slide adopted from Marc'Aurelio Renzato

— \star

Example: 200 x 200 image (small) x 40K hidden units

Filter size: 10 x 10

of filters: 20

Learn multiple filters

* slide from Marc'Aurelio Renzato

†*1*

Example: 200 x 200 image (small) x 40K hidden units

Filter size: 10 x 10

of filters: 20

= 2000 parameters

Learn multiple filters

* slide from Marc'Aurelio Renzato

†*1*

32 x 32 x 3 image (note the image preserves spatial structure)

3 depth

32 x 32 x 3 **image**

$5 \times 5 \times 3$ filter

Convolve the filter with the image (i.e., "slide over the image spatially, computing dot products")

Filters always extend the full depth of the input volume

5 x 5 x 3 filter

Convolve the filter with the image (i.e., "slide over the image spatially, computing dot products"

32 x 32 x 3 **image**

1 number: the result of taking a dot product between the filter and a small 5 x 5 x 3 part of the image

$$\mathbf{W}^T \mathbf{x} + b$$
, where $\mathbf{W}, \mathbf{x} \in \mathbb{R}^{75}$

32 x 32 x 3 **image**

1 number: the result of taking a dot product between the filter and a small 5 x 5 x 3 part of the image

$$\mathbf{W}^T \mathbf{x} + b$$
, where $\mathbf{W}, \mathbf{x} \in \mathbb{R}^{75}$

How many **parameters** does the layer have?

32 x 32 x 3 **image**

1 number: the result of taking a dot product between the filter and a small 5 x 5 x 3 part of the image

$$\mathbf{W}^T \mathbf{x} + b$$
, where $\mathbf{W}, \mathbf{x} \in \mathbb{R}^{75}$

How many **parameters** does the layer have? **76**

32 x 32 x 3 **image**

activation map

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

t

32 x 32 x 3 **image**

activation map

this results in the "new image" of size 28 x 28 x 6!

- also affected by zero-padding
- input layer
- **Stride:** Controls spatial density. How far apart are depth columns?

The number of neurons in a layer is determined by depth and stride parameter

Depth: Controls number of neurons that connect to the same region of the

— a set of neurons connected to the same region is called a **depth column**

Convolutional Layer: Closer Look at Spatial Dimensions

32 x 32 x 3 **image**

activation map

Convolutional Neural Network (ConvNet)

3 depth

3 depth

28 height

3 depth

28 width

3 depth

3 depth

With padding we can achieve no shrinking (32 -> 28 -> 24); shrinking quickly (which happens with larger filters) doesn't work well in practice

As we go deeper in the network, filters learn and respond to increasingly specialized structures - The first layers may contain simple orientation filters, middle layers may respond to common substructures, and final layers may respond to entire objects

- **Convolutional neural networks** can be seen as learning a hierarchy of filters.

What filters do networks learn?

Layer 1

[Zeiler and Fergus, 2013]

What filters do networks learn?

[Zeiler and Fergus, 2013]

Let us assume the filter is an "eye" detector

How can we make detection spatially invariant (insensitive to position of the eye in the image)

* slide from Marc'Aurelio Renzato

Let us assume the filter is an "eye" detector

How can we make detection spatially invariant (insensitive to position of the eye in the image)

> By "pooling" (e.g., taking a max) response over a spatial locations we gain robustness to position variations

* slide from Marc'Aurelio Renzato

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

e manageable and spatially invariant independently

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

e manageable and spatially invariant independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many **parameters**?

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

e manageable and spatially invariant independently

Max **Pooling**

activation map

max pool with 2 x 2 filter and stride of 2

6 8 3 4

Average **Pooling**

activation map

avg pool with 2 x 2 filter and stride of 2

3.25 5.25 2 2