
Lecture 30: Neural Networks

CPSC 425: Computer Vision

!1

Menu for Today (November 23, 2020)
Topics:

— Backpropagation
— Convolutional Layers

Redings:
— Today’s Lecture: N/A

— Next Lecture: N/A

Reminders:
— Assignment 6: Deep Learning due Wednsday, November 2nd

— Pooling Layer

Please fill out
Student Evaluations

(on Canvas)
!3

!4

Lecture 29: Re-cap

— The basic unit of computation in a neural network is a neuron.

— A neuron accepts some number of input signals, computes their weighted
sum, and applies an activation function (or non-linearity) to the sum.

— Common activation functions include sigmoid and rectified linear unit (ReLU)

inputs

weights

output

sum activation function

+b

y = f

NX

i=1

wixi + b

!

!4

A Neuron

Neural Network

!5

Example of a neural network with three inputs, a single hidden layer of four
neurons, and an output layer of two neurons

A neural network comprises neurons connected in an acyclic graph
The outputs of neurons can become inputs to other neurons
Neural networks typically contain multiple layers of neurons

Figure credit: Fei-Fei and Karpathy

Lecture 29: Re-cap

Neural Network

!6

Figure credit: Fei-Fei and Karpathy

Lecture 29: Re-cap
Note: each neuron will have its own vector of weights and a bias, its easier to think
of all neurons in a layer as a single entity with a matrix of weights (size = number of
inputs x number of neurons) and a vector of biases (size = number of neurons)

Neural Network

!7

Figure credit: Fei-Fei and Karpathy

Lecture 29: Re-cap
Note: each neuron will have its own vector of weights and a bias, its easier to think
of all neurons in a layer as a single entity with a matrix of weights (size = number of
inputs x number of neurons) and a vector of biases (size = number of neurons)

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

!8

yi fj

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

!9

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

!10

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

!11

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

Li = � log

efyi

P
j e

fyj

!

Backpropagation

!12

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

Li = � log

efyi

P
j e

fyj

!

Backpropagation

!13

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

probability of a class

When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

Li = � log

efyi

P
j e

fyj

!

Backpropagation

!14

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

probability of a class

softmax function
multi-class classifier

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

!15

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

Li = � log(0.353) = 1.04

probability of a class

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

!16

yi fj

We want to compute the gradient of the loss with respect to the network
parameters so that we can incrementally adjust the network parameters

Gradient Descent

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

For to max number of iterationsk = 0

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

For to max number of iterationsk = 0

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

3. Re-estimate the parameters

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

For to max number of iterationsk = 0

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

3. Re-estimate the parameters

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

For to max number of iterationsk = 0

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

3. Re-estimate the parameters

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

For to max number of iterationsk = 0

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

3. Re-estimate the parameters

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

For to max number of iterationsk = 0

*slide adopted from V. Ordonex

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

- is the learning rate

!18

Figure credit: Fei-Fei and Karpathy

L(y, ŷ) = ||y � ŷ|| = ||y � f(x,W1,W2,b1,b2)||

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘

Loss:

Gradient Descent

!19

Figure credit: Fei-Fei and Karpathy

L(y, ŷ) = ||y � ŷ|| = ||y � f(x,W1,W2,b1,b2)||

W1,i,j = W1,i,j � �
@L(y, ŷ)
@W1,i,j

b1,i = b1,i � �
@L(y, ŷ)
@b1,i

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘

Gradient Descent

Loss:

Gradient Descent

Stochastic Gradient Descent

@L(W,b)

@wji
=

@

@wji

|Dtrain|X

d=1

⇣
sigmoid

⇣
W

T
x

(d) + b

⌘
� y

(d)
⌘2

Stochastic Gradient Descent

Problem: For large datasets computing sum is expensive

@L(W,b)

@wji
=

@

@wji

|Dtrain|X

d=1

⇣
sigmoid

⇣
W

T
x

(d) + b

⌘
� y

(d)
⌘2

Stochastic Gradient Descent

Problem: For large datasets computing sum is expensive

@L(W,b)

@wji
=

@

@wji

|Dtrain|X

d=1

⇣
sigmoid

⇣
W

T
x

(d) + b

⌘
� y

(d)
⌘2

Solution: Compute approximate gradient with mini-batches of
much smaller size (as little as 1-example sometimes)

Stochastic Gradient Descent

Problem: For large datasets computing sum is expensive

@L(W,b)

@wji
=

@

@wji

|Dtrain|X

d=1

⇣
sigmoid

⇣
W

T
x

(d) + b

⌘
� y

(d)
⌘2

Solution: Compute approximate gradient with mini-batches of
much smaller size (as little as 1-example sometimes)

Problem: How do we compute the actual gradient?

Numerical Differentiation

We can approximate the gradient numerically, using:

Even better, we can use central differencing:

However, both of theses suffer from rounding errors and are not good enough
for learning (they are very good tools for checking the correctness of
implementation though, e.g., use).

@f(x)

@xi
⇡= lim

h!0

f(x+ h1i)� f(x)

h

@f(x)

@xi
⇡= lim

h!0

f(x+ h1i)� f(x� h1i)

2h

h = 0.000001

1i - Vector of all zeros, except for one 1 in i-th location

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Numerical Differentiation

We can approximate the gradient numerically, using:

Even better, we can use central differencing:

However, both of theses suffer from rounding errors and are not good enough
for learning (they are very good tools for checking the correctness of
implementation though, e.g., use).

@f(x)

@xi
⇡= lim

h!0

f(x+ h1i)� f(x)

h

@f(x)

@xi
⇡= lim

h!0

f(x+ h1i)� f(x� h1i)

2h

h = 0.000001

1i - Vector of all zeros, except for one 1 in i-th location

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Numerical Differentiation

We can approximate the gradient numerically, using:

Even better, we can use central differencing:

However, both of theses suffer from rounding errors and are not good enough
for learning (they are very good tools for checking the correctness of
implementation though, e.g., use).

@f(x)

@xi
⇡= lim

h!0

f(x+ h1i)� f(x)

h

@f(x)

@xi
⇡= lim

h!0

f(x+ h1i)� f(x� h1i)

2h

h = 0.000001

1i - Vector of all zeros, except for one 1 in i-th location

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

We can approximate the gradient numerically, using:

Even better, we can use central differencing:

However, both of theses suffer from rounding errors and are not good enough
for learning (they are very good tools for checking the correctness of
implementation though, e.g., use).

Numerical Differentiation

h = 0.000001

1i - Vector of all zeros, except for one 1 in i-th location

@L(W,b)

@wij
⇡ lim

h!0

L(W + h1ij ,b)� L(W,b)

h

@L(W,b)

@wij
⇡ lim

h!0

L(W + h1ij ,b)� L(W + h1ij ,b)

2h

@L(W,b)

@bj
⇡ lim

h!0

L(W,b+ h1j)� L(W,b+ h1j)

2h

@L(W,b)

@bj
⇡ lim

h!0

L(W,b+ h1j)� L(W,b)

h

1ij - Matrix of all zeros, except for one 1 in (i,j)-th location

Input function is represented as computational graph (a symbolic tree)

Implements differentiation rules for composite functions:

Problem: For complex functions, expressions can be exponentially large; also
difficult to deal with piece-wise functions (creates many symbolic cases)

Symbolic Differentiation

d (f(x) + g(x))

dx
=

df(x)

dx
+

dg(x)

dx

d (f(x) · g(x))
dx

=
df(x)

dx
g(x) + f(x)

dg(x)

dx

d(f(g(x)))

dx
=

df(g(x))

dx
· dg(x)

dx

Sum Rule Product Rule Chain Rule

ln
x1

x2
+

sin

+

�
y

v2

v4

v3
v5

+

sin

+

�

lnv0

v1

v2

v4

v5

v3

v6

x1

x2 y

y = f(x1, x2) = ln(x1) + x1x2 � sin(x2)

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Input function is represented as computational graph (a symbolic tree)

Implements differentiation rules for composite functions:

Problem: For complex functions, expressions can be exponentially large; also
difficult to deal with piece-wise functions (creates many symbolic cases)

Symbolic Differentiation

d (f(x) + g(x))

dx
=

df(x)

dx
+

dg(x)

dx

d (f(x) · g(x))
dx

=
df(x)

dx
g(x) + f(x)

dg(x)

dx

d(f(g(x)))

dx
=

df(g(x))

dx
· dg(x)

dx

Sum Rule Product Rule Chain Rule

ln
x1

x2
+

sin

+

�
y

v2

v4

v3
v5

+

sin

+

�

lnv0

v1

v2

v4

v5

v3

v6

x1

x2 y

y = f(x1, x2) = ln(x1) + x1x2 � sin(x2)

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff)

Intuition: Interleave symbolic differentiation and simplification

Key Idea: apply symbolic differentiation at the elementary operation level,
evaluate and keep intermediate results

y = f(x1, x2) = ln(x1) + x1x2 � sin(x2)

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff)

Intuition: Interleave symbolic differentiation and simplification

Key Idea: apply symbolic differentiation at the elementary operation level,
evaluate and keep intermediate results

y = f(x1, x2) = ln(x1) + x1x2 � sin(x2)

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Success of deep learning owes A LOT to success of AutoDiff algorithms
(also to advances in parallel architectures, and large datasets, …)

Backpropagation

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

!26

Backpropagation

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

Suppose . What is the partial derivative of with respect to ? What
is the partial derivative of with respect to ?

!27

f(x, y) = xy

f
x

f y

Backpropagation

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

Suppose . What is the partial derivative of with respect to ? What
is the partial derivative of with respect to ?

!28

f(x, y) = xy

f
x

f y

@f

@x

= y

@f

@y

= x

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

Suppose . . What is the partial derivative of with respect to ?
What is the partial derivative of with respect to ?

f(x, y) = x+ y

Backpropagation

!29

f
x

f y

@f

@y
= 1

@f

@x

= 1

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

Suppose . . What is the partial derivative of with respect to ?
What is the partial derivative of with respect to ?

f(x, y) = x+ y

Backpropagation

!30

f
x

f y

A trickier example:

Backpropagation

!31

f(x, y) = max(x, y)

That is, the (sub)gradient is 1 on the input that is larger, and 0 on the other input

— For example, say x = 4, y = 2. Increasing y by a tiny amount does not
change the value of f (f will still be 4), hence the gradient on y is zero.

A trickier example:

Backpropagation

!32

@f

@x

= 1(x � y)
@f

@y

= 1(y � x)

f(x, y) = max(x, y)

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Backpropagation

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Suppose . What are the partial derivatives of with respect
to ? ? ?

f(x, y, z) = (x+ y)z f
x

y z

Backpropagation

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Suppose . What are the partial derivatives of with respect
to ? ? ?

For illustration we break this expression into and . This is a
sum and a product, and we have just seen how to compute partial derivatives
for these.

!35

f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

Backpropagation

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Suppose . What are the partial derivatives of with respect
to ? ? ?

For illustration we break this expression into and . This is a
sum and a product, and we have just seen how to compute partial derivatives
for these.

By the chain rule

!36

f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

@f

@x

=
@f

@q

@q

@x

= z · 1 = z

Backpropagation

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Suppose . What are the partial derivatives of with respect
to ? ? ?

For illustration we break this expression into and . This is a
sum and a product, and we have just seen how to compute partial derivatives
for these.

By the chain rule

!37

f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

@f

@x

=
@f

@q

@q

@x

= z · 1 = z

@f

@y
=

@f

@q

@q

@y
= z · 1 = z

@f

@z
= q

Backpropagation

!38

Backpropagation
f(x, y, z) = (x+ y)z

!39

Backpropagation
f(x, y, z) = (x+ y)z

+

x

y

Computational graph (a DAG) with variable ordering from topological sort,
where each node is an input, intermediate, or output variable

q

z

⇥

!40

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

f(x, y, z) = (x+ y)z

Computational graph (a DAG) with variable ordering from topological sort,
where each node is an input, intermediate, or output variable

+

x

y

q

z

⇥

!41

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@q
= z = �4 (backward pass)

+

x

y

q

z

⇥

!42

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1

@f

@q
= z = �4 (backward pass)

+

x

y

q

z

⇥

!43

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1

@f

@q
= z = �4

@f

@x

= �4 (backward pass)

+

x

y

q

z

⇥

!44

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@q
= z = �4

@f

@x

= �4
@f

@y
= �4

@f

@z
= 3

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1 @f

@y
=

@f

@q

@q

@y
=

@f

@q
· 1 @f

@z
= q

(backward pass)

+

x

y

q

z

⇥

Example: Let’s Build (world smallest) Neural Network

!45

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Example: Let’s Build (world smallest) Neural Network

!46

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

We will need some labeled data

Example: Let’s Build (world smallest) Neural Network

!47

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Neural Network Class 1

Example: Let’s Build (world smallest) Neural Network

!48

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Neural Network Class 2

Example: Let’s Build (world smallest) Neural Network

!49

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Neural Network Class 3

Example: Let’s Build (world smallest) Neural Network

!50

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Neural Network Class 3

What do we need to do?

First, lets re-formulate the problem

Example: Let’s Build (world smallest) Neural Network

!51

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Neural Network
p(Class 1)
p(Class 2)
p(Class 3)

What do we need to do?

First, lets re-formulate the problem

Example: Let’s Build (world smallest) Neural Network

!52

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Neural Network
p(Class 1)
p(Class 2)
p(Class 3)

Now, lets build a network!

How many inputs should the network have? How neuron outputs?

Example: Let’s Build (world smallest) Neural Network

!53

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Input Layer Output Layer

What else is
missing for us to
train it?

Example: Let’s Build (world smallest) Neural Network

!54

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Input Layer Output Layer Loss

Li = � log

efyi

P
j e

fyj

!

Example: Let’s Build (world smallest) Neural Network

!55

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Input Layer Output Layer Loss

L1 = �log

e

P9
i=1 �(w1,ixi+b1)

P3
j=1 e

P9
i=1 �(w1,ixi+b1)

!

Fully Connected Layer

* slide from Marc’Aurelio Renzato

Example: 200 x 200 image (small)
x 40K hidden units

Fully Connected Layer

* slide from Marc’Aurelio Renzato

Example: 200 x 200 image (small)
x 40K hidden units

= ~ 2 Billion parameters (for one layer!)

Fully Connected Layer

* slide from Marc’Aurelio Renzato

Example: 200 x 200 image (small)
x 40K hidden units

Spatial correlations are generally local

Waste of resources + we don’t have
enough data to train networks this large

= ~ 2 Billion parameters (for one layer!)

Locally Connected Layer

Filter size: 10 x 10

Example: 200 x 200 image (small)
x 40K hidden units

= ~ 4 Million parameters

* slide from Marc’Aurelio Renzato

Locally Connected Layer

Filter size: 10 x 10

Example: 200 x 200 image (small)
x 40K hidden units

= ~ 4 Million parameters

Stationarity — statistics is similar at
different locations

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide adopted from Marc’Aurelio Renzato

Filter size: 10 x 10

Example: 200 x 200 image (small)
x 40K hidden units

= ~ 4 Million parameters

Share the same parameters across the
locations (assuming input is stationary)

Convolutional Layer

* slide adopted from Marc’Aurelio Renzato

Filter size: 10 x 10

Example: 200 x 200 image (small)
x 40K hidden units

= ~ 4 Million parameters

Share the same parameters across the
locations (assuming input is stationary)

= 100 parameters

X

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolutional Layer

* slide from Marc’Aurelio Renzato

Convolution Layer

?

2

4
�1 0 1
�1 0 1
�1 0 1

3

5

Convolution Layer

?

2

4
0.11 0.11 0.11
0.11 0.11 0.11
0.11 0.11 0.11

3

5

Convolutional Layer

* slide from Marc’Aurelio Renzato

Filter size: 10 x 10

Example: 200 x 200 image (small)
x 40K hidden units

Learn multiple filters

of filters: 20

Convolutional Layer

* slide from Marc’Aurelio Renzato

Filter size: 10 x 10

Example: 200 x 200 image (small)
x 40K hidden units

Learn multiple filters

= 2000 parameters

of filters: 20

Convolutional Layer

32 height

32 width

3 depth

32 x 32 x 3 image (note the image preserves spatial structure)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

5 x 5 x 3 filter

Convolutional Layer

32 height

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Convolve the filter with the image
(i.e., “slide over the image spatially,
computing dot products”)

Convolutional Layer

32 height

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

5 x 5 x 3 filter

Convolve the filter with the image
(i.e., “slide over the image spatially,
computing dot products”

Filters always extend the full depth of the input volume

Convolutional Layer

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

1 number: the result of taking a dot product
between the filter and a small 5 x 5 x 3 part
of the image

W

T
x+ b,where W,x 2 R75

5 x 5 x 3 filter ()
W

T
x+ b,where W,x 2 R75

Convolutional Layer

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

1 number: the result of taking a dot product
between the filter and a small 5 x 5 x 3 part
of the image

W

T
x+ b,where W,x 2 R75

5 x 5 x 3 filter ()
W

T
x+ b,where W,x 2 R75

How many parameters does the layer have?

Convolutional Layer

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

1 number: the result of taking a dot product
between the filter and a small 5 x 5 x 3 part
of the image

W

T
x+ b,where W,x 2 R75

5 x 5 x 3 filter ()
W

T
x+ b,where W,x 2 R75

How many parameters does the layer have? 76

Convolutional Layer

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all
spatial locations

5 x 5 x 3 filter ()
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map

Convolutional Layer

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all
spatial locations

5 x 5 x 3 filter ()
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map

consider another green filter

Convolutional Layer

32 width

3 depth
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolutional
layer

28 width

6 depth

28 height

activation mapIf we have 6 5x5 filter, we’ll get 6 separate activation maps:

32 height

this results in the “new image” of size 28 x 28 x 6!

The number of neurons in a layer is determined by depth and stride parameter
— also affected by zero-padding

Depth: Controls number of neurons that connect to the same region of the
input layer
— a set of neurons connected to the same region is called a depth column

Stride: Controls spatial density. How far apart are depth columns?

!86

Convolutional Layer

Convolutional Layer: Closer Look at Spatial Dimensions

32 width

3 depth

32 x 32 x 3 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all
spatial locations

5 x 5 x 3 filter ()
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

CONV,
ReLU
e.g. 10 5x5x6
filters

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,
ReLU
e.g. 10 5x5x6
filters

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,
ReLU
e.g. 10 5x5x6
filters

CONV,
ReLU

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CONV,
ReLU
e.g. 6 5x5x3
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV,
ReLU
e.g. 10 5x5x6
filters

CONV,
ReLU

With padding we can achieve no shrinking (32 -> 28 -> 24); shrinking quickly
(which happens with larger filters) doesn’t work well in practice

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Convolutional neural networks can be seen as learning a hierarchy of filters.

As we go deeper in the network, filters learn and respond to increasingly
specialized structures  
— The first layers may contain simple orientation filters, middle layers may
respond to common substructures, and final layers may respond to entire
objects

!89

Convolutional Neural Network (ConvNet)

What filters do networks learn?

[Zeiler and Fergus, 2013]

What filters do networks learn?

[Zeiler and Fergus, 2013]

Pooling Layer
Let us assume the filter is an “eye” detector

How can we make detection spatially invariant
(insensitive to position of the eye in the image)

* slide from Marc’Aurelio Renzato

Pooling Layer
Let us assume the filter is an “eye” detector

How can we make detection spatially invariant
(insensitive to position of the eye in the image)

By “pooling” (e.g., taking a max) response
over a spatial locations we gain robustness
to position variations

* slide from Marc’Aurelio Renzato

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?

Pooling Layer
• Makes representation smaller, more manageable and spatially invariant
• Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?

None!

Max Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4
max pool with 2 x 2 filter

and stride of 2

activation map

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Average Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

3.25 5.25

2 2
avg pool with 2 x 2 filter

and stride of 2

activation map

