
Lecture 29: Object Detection

CPSC 425: Computer Vision

!1

Topics:

— Neuron
— Neural Networks

Redings:
— Today’s Lecture: N/A

— Next Lecture: N/A

— Layers and activation functions
— Backpropagation

Menu for Today (November 20th, 2020)

!3

"CV Dazzle, a project focused on finding fashionable ways to thwart facial-
recognition technology"

Just for fun:

Figure source: Wired, 2015

Today’s “fun” Example: Fooling Face Detection

!4

Today’s “fun” Example: Fooling Face Detection

Fools Viola-Jones detector

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!5

Image credit: KITTI Vision Benchmark

Lecture 28: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!6

Image credit: KITTI Vision Benchmark

Lecture 28: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!7

Image credit: KITTI Vision Benchmark

Lecture 28: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!8

Image credit: KITTI Vision Benchmark

Lecture 28: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!9

Image credit: KITTI Vision Benchmark

Lecture 28: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!10

Image credit: KITTI Vision Benchmark

Lecture 28: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!11

Image credit: KITTI Vision Benchmark

Lecture 28: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!12

Image credit: KITTI Vision Benchmark

Lecture 28: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

This is a search over location  
— We have to search over scale as well  
— We may also have to search over aspect ratios

!13

Image credit: KITTI Vision Benchmark

Lecture 28: Re-cap — Sliding Window

The Viola-Jones face detector is a classic sliding window detector that learns
both efficient features and a classifier

A key strategy is to use features that are fast to evaluate to reject most
windows early

The Viola-Jones detector computes ‘rectangular’ features within each window

!14

Lecture 28: Re-cap — Viola-Jones Face Detection

A ‘rectangular’ feature is computed by summing up pixel values within
rectangular regions and then differencing those region sums

!15

Figure credit: P. Viola and M. Jones, 2001

a.k.a. Harr Wavelets

Lecture 28: Re-cap — Viola-Jones Face Detection

!16 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Select best filter/threshold combination

2. Re-weight examples

Lecture 28: Re-cap — Viola-Jones Face Detection

!17 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

3. The final strong classifier is

The final strong classifier is a weighted linear combination of the T weak
classifiers where the weights are inversely proportional to the training errors

Lecture 28: Re-cap — Viola-Jones Face Detection

!18
Figure credit: K. Grauman

Main Issue: Efficiency

Lecture 28: Re-cap — Viola-Jones Face Detection

Cascading Classifiers

To make detection faster, features can be reordered by increasing complexity
of evaluation and the thresholds adjusted so that the early (simpler) tests have
few or no false negatives

Any window that is rejected by early tests can be discarded quickly without
computing the other features

This is referred to as a cascade architecture
!19

Figure credit: P. Viola

Hard Negative Mining

!20
Image From: Jamie Kang

Viola-Jones in Action

!21

https://vimeo.com/12774628

Viola-Jones in Action

!21

https://vimeo.com/12774628

Recall: Sliding Window
Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!22

Image credit: KITTI Vision Benchmark

Recall: Sliding Window
Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!23

Image credit: KITTI Vision Benchmark

This is a lot of possible windows! And most will not contain the object we are
looking for.

Object Proposals

Object proposal algorithms generate a short list of regions that have generic
object-like properties
— These regions are likely to contain some kind of foreground object instead of
background texture

The object detector then considers these candidate regions only, instead of
exhaustive sliding window search

!24

!25

First introduced by Alexe et al., who asked ‘what is an object?’ and defined an
‘objectness’ score based on several visual cues

Object Proposals

Figure credit: Alexe et al., 2012

!26

First introduced by Alexe et al., who asked ‘what is an object?’ and defined an
‘objectness’ score based on several visual cues

Object Proposals

Figure credit: Alexe et al., 2012
This work argued that objects typically
— are unique within the image and stand out as salient
— have a contrasting appearance from surroundings and/or
— have a well-defined closed boundary in space

!27

Multiscale Saliency
— Favors regions with a unique appearance within the image

High scale Low scale

Failure Case

Successful Case

Object Proposals

Figure credit: Alexe et al., 2012

!28

Colour Contrast
— Favors regions with a contrasting colour appearance from immediate
surroundings

Failure CaseSuccessful Cases

Figure credit: Alexe et al., 2012

Object Proposals

!29 Figure credit: Alexe et al., 2012

Superpixels Straddling
— Favors regions with a well-defined closed boundary
— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

Object Proposals

!30

Object Proposals

Figure credit: Alexe et al., 2012

Superpixels Straddling
— Favors regions with a well-defined closed boundary
— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

Failure CaseSuccessful Cases

!31

Speeding up [11] HOG pedestrian detector [18] Deformable part model detector
[33] Bag of words detector

Table credit: Alexe et al., 2012

Object Proposals

Summary

Detection scores in the deformable part model are based on both appearance
and location

The deformable part model is trained iteratively by alternating the steps
	 1. Assume components and part locations given; compute appearance and

offset models
	 2. Assume appearance and offset models given; compute components and

part locations

An object proposal algorithm generates a short list of regions with generic
object-like properties that can be evaluated by an object detector in place of an
exhaustive sliding window search

!32

Lecture 22: Neural Networks

CPSC 425: Computer Vision

!33

Warning:

Our intro to Neural Networks will be very light weight …

… if you want to know more, take my CPSC 532S

!34

A Neuron

— The basic unit of computation in a neural network is a neuron.

— A neuron accepts some number of input signals, computes their weighted
sum, and applies an activation function (or non-linearity) to the sum.

— Common activation functions include sigmoid and rectified linear unit (ReLU)
!35

inputs

weights

output

sum activation function

+b

A Neuron

— The basic unit of computation in a neural network is a neuron.

— A neuron accepts some number of input signals, computes their weighted
sum, and applies an activation function (or non-linearity) to the sum.

— Common activation functions include sigmoid and rectified linear unit (ReLU)
!36

inputs

weights

output

sum activation function

+b

y = f

NX

i=1

wixi + b

!

image features

weights

Recall: Linear Classifier

!37

f(xi,W,b) = Wxi + b

Defines a score function:

bias vector
(parameters)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

!38

Recall: Linear Classifier

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Aside: Inspiration from Biology

!39

Neural nets/perceptrons are loosely inspired by biology.
But they certainly are not a model of how the brain works, or even how neurons

work.

Figure credit: Fei-Fei and Karpathy

Activation Function: Sigmoid

Common in many early neural networks
Biological analogy to saturated firing rate of neurons
Maps the input to the range [0,1]

!40

Figure credit: Fei-Fei and Karpathy

Found to accelerate convergence during learning
Used in the most recent neural networks

!41

Activation Function: ReLU (Rectified Linear Unit)

Figure credit: Fei-Fei and Karpathy

inputs

weights

output

sum

+b

A Neuron

!42

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

A Neuron … another way to draw it …

!43

inputs

weights

output

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1

A Neuron … another way to draw it …

!44

(1) Combine the sum and activation function

inputs

weights

output

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1

A Neuron … another way to draw it …

!45

(1) Combine the sum and activation function

(2) suppress the bias term (less clutter)

inputs

weights

output

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1 = 1

wN+1 = b

xN+1

A Neuron … another way to draw it …

!46

(1) Combine the sum and activation function

(2) suppress the bias term (less clutter)

inputs

weights

output

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1 = 1

wN+1 = b

Neural Network

!47

Connect a bunch of neurons together — a collection of connected neurons

‘one neuron’

Neural Network

!48

Connect a bunch of neurons together — a collection of connected neurons

‘two neurons’

Neural Network

!49

Connect a bunch of neurons together — a collection of connected neurons

‘three neurons’

Neural Network

!50

Connect a bunch of neurons together — a collection of connected neurons

‘four neurons’

Neural Network

!51

Connect a bunch of neurons together — a collection of connected neurons

‘five neurons’

Neural Network

!52

Connect a bunch of neurons together — a collection of connected neurons

‘six neurons’

Neural Network

!53

This network is also called a Multi-layer Perceptron (MLP)

Neural Network: Terminology

!54

‘input’ layer

Neural Network: Terminology

!55

‘hidden’ layer
‘input’ layer

Neural Network: Terminology

!56

‘output’ layer
‘hidden’ layer

‘input’ layer

Neural Network: Terminology

!57

this layer is a
‘fully connected layer’

Neural Network: Terminology

!58

so is this

Neural Network

!59

Example of a neural network with three inputs, a single hidden layer of four
neurons, and an output layer of two neurons

A neural network comprises neurons connected in an acyclic graph
The outputs of neurons can become inputs to other neurons
Neural networks typically contain multiple layers of neurons

Figure credit: Fei-Fei and Karpathy

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?
Answer: 1) More layers = more complex functional mapping

 2) More efficient due to distributed representation
* slide from Marc’Aurelio Renzato

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?
Answer: 1) More layers = more complex functional mapping

 2) More efficient due to distributed representation
* slide from Marc’Aurelio Renzato

!62

Example of a neural network with three inputs, a single hidden layer of four
neurons, and an output layer of two neurons

A neural network comprises neurons connected in an acyclic graph
The outputs of neurons can become inputs to other neurons
Neural networks typically contain multiple layers of neurons

Figure credit: Fei-Fei and Karpathy

Neural Network

!63

Figure credit: Fei-Fei and Karpathy

Note: each neuron will have its own vector of weights and a bias, its easier to think
of all neurons in a layer as a single entity with a matrix of weights (size = number of
inputs x number of neurons) and a vector of biases (size = number of neurons)

Neural Network

!64

Figure credit: Fei-Fei and Karpathy

Note: each neuron will have its own vector of weights and a bias, its easier to think
of all neurons in a layer as a single entity with a matrix of weights (size = number of
inputs x number of neurons) and a vector of biases (size = number of neurons)

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘

Neural Network

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?
Answer: 1) More layers = more complex functional mapping

 2) More efficient due to distributed representation
* slide from Marc’Aurelio Renzato

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?
Answer: 1) More layers = more complex functional mapping

 2) More efficient due to distributed representation
* slide from Marc’Aurelio Renzato

Activation Function

!67

Why can’t we have linear activation functions? Why have non-linear activations?

!68

Figure credit: Fei-Fei and Karpathy

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘

Activation Function

!69

Figure credit: Fei-Fei and Karpathy

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘

Activation Function

= W

(2⇥4)
2

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

= W

(2⇥4)
2 W

(4⇥3)
1 x+W

(2⇥4)
2 b

(4)
1 + b

(2)
2

!70

Figure credit: Fei-Fei and Karpathy

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘

Activation Function

= W

(2⇥4)
2

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

= W

(2⇥4)
2 W

(4⇥3)
1 x+W

(2⇥4)
2 b

(4)
1 + b

(2)
2

= W

(2⇥4)
2

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

= W

(2⇥4)
2 W

(4⇥3)
1 x+W

(2⇥4)
2 b

(4)
1 + b

(2)
2

!71

Figure credit: Fei-Fei and Karpathy

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘

Activation Function

= W

(2⇥4)
2

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

= W

(2⇥4)
2 W

(4⇥3)
1 x+W

(2⇥4)
2 b

(4)
1 + b

(2)
2

= W

(2⇥4)
2

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

= W

(2⇥4)
2 W

(4⇥3)
1 x+W

(2⇥4)
2 b

(4)
1 + b

(2)
2W(2⇥3)
⇤

b(2)W(2⇥3)
⇤

b(2)

Number of linear segments for
large input dimension:

Activation Function

!72

Non-linear activation is required to provably make the Neural Net a universal
function approximator

Intuition: with ReLU activation, we
effectively get a linear spline approximation
to any function.

Optimization of neural net parameters =
finding slops and transitions of linear
pieces

The quality of approximation depends on
the number of linear segments ⌦(2

2
3Ln)

Universal Approximation Theorem: Single hidden layer can approximate any
continuous function with compact support to arbitrary accuracy, when the
width goes to infinity.

Universal Approximation Theorem (revised): A network of infinite depth
with a hidden layer of size neurons, where is the dimension of the input
space, can approximate any continuous function.

Universal Approximation Theorem (further revised): ResNet with a single
hidden unit and infinite depth can approximate any continuous function.

[Hornik et al., 1989]

Light Theory: Neural Network as Universal Approximator

[Lin and Jegelka, NIPS 2018]

[Lu et al., NIPS 2017]

d+ 1 d

Activation Function

!74

Why can’t we have linear activation functions? Why have non-linear activations?

Neural Network

!75

How many neurons?

!76

How many neurons? 4+2 = 6

Neural Network

!77

How many neurons? 4+2 = 6 How many weights?

Neural Network

!78

How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

Neural Network

!79

How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

How many learnable parameters?

Neural Network

!80

How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

How many learnable parameters?
20 + 4 + 2 = 26

bias terms

Neural Network

Modern convolutional neural networks contain 10-20 layers and on the
order of 100 million parameters

Training a neural network requires estimating a large number of parameters

!81

Neural Networks

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

!82

yi fj

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

!83

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

!84

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

!85

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

Li = � log

efyi

P
j e

fyj

!

Backpropagation

!86

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

Li = � log

efyi

P
j e

fyj

!

Backpropagation

!87

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

probability of a class

When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

Li = � log

efyi

P
j e

fyj

!

Backpropagation

!88

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

probability of a class

softmax function
multi-class classifier

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

!89

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

Li = � log(0.353) = 1.04

probability of a class

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

!90

yi fj

We want to compute the gradient of the loss with respect to the network
parameters so that we can incrementally adjust the network parameters

Gradient Descent

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

For to max number of iterationsk = 0

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

For to max number of iterationsk = 0

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

3. Re-estimate the parameters

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

For to max number of iterationsk = 0

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

3. Re-estimate the parameters

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

For to max number of iterationsk = 0

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

3. Re-estimate the parameters

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

For to max number of iterationsk = 0

*slide adopted from V. Ordonex

Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

3. Re-estimate the parameters

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

For to max number of iterationsk = 0

*slide adopted from V. Ordonex

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

- is the learning rate

!92

Figure credit: Fei-Fei and Karpathy

L(y, ŷ) = ||y � ŷ|| = ||y � f(x,W1,W2,b1,b2)||

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘

Loss:

Gradient Descent

!93

Figure credit: Fei-Fei and Karpathy

L(y, ŷ) = ||y � ŷ|| = ||y � f(x,W1,W2,b1,b2)||

W1,i,j = W1,i,j � �
@L(y, ŷ)
@W1,i,j

b1,i = b1,i � �
@L(y, ŷ)
@b1,i

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘

Gradient Descent

Loss:

Gradient Descent

Backpropagation

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

!94

Backpropagation

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

Suppose . What is the partial derivative of with respect to ? What
is the partial derivative of with respect to ?

!95

f(x, y) = xy

f
x

f y

Backpropagation

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

Suppose . What is the partial derivative of with respect to ? What
is the partial derivative of with respect to ?

!96

f(x, y) = xy

f
x

f y

@f

@x

= y

@f

@y

= x

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

Suppose . . What is the partial derivative of with respect to ?
What is the partial derivative of with respect to ?

f(x, y) = x+ y

Backpropagation

!97

f
x

f y

@f

@y
= 1

@f

@x

= 1

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

Suppose . . What is the partial derivative of with respect to ?
What is the partial derivative of with respect to ?

f(x, y) = x+ y

Backpropagation

!98

f
x

f y

A trickier example:

Backpropagation

!99

f(x, y) = max(x, y)

That is, the (sub)gradient is 1 on the input that is larger, and 0 on the other input

— For example, say x = 4, y = 2. Increasing y by a tiny amount does not
change the value of f (f will still be 4), hence the gradient on y is zero.

A trickier example:

Backpropagation

!100

@f

@x

= 1(x � y)
@f

@y

= 1(y � x)

f(x, y) = max(x, y)

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Backpropagation

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Suppose . What are the partial derivatives of with respect
to ? ? ?

f(x, y, z) = (x+ y)z f
x

y z

Backpropagation

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Suppose . What are the partial derivatives of with respect
to ? ? ?

For illustration we break this expression into and . This is a
sum and a product, and we have just seen how to compute partial derivatives
for these.

!103

f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

Backpropagation

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Suppose . What are the partial derivatives of with respect
to ? ? ?

For illustration we break this expression into and . This is a
sum and a product, and we have just seen how to compute partial derivatives
for these.

By the chain rule

!104

f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

@f

@x

=
@f

@q

@q

@x

= z · 1 = z

Backpropagation

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Suppose . What are the partial derivatives of with respect
to ? ? ?

For illustration we break this expression into and . This is a
sum and a product, and we have just seen how to compute partial derivatives
for these.

By the chain rule

!105

f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

@f

@x

=
@f

@q

@q

@x

= z · 1 = z

@f

@y
=

@f

@q

@q

@y
= z · 1 = z

@f

@z
= q

Backpropagation

!106

Backpropagation
f(x, y, z) = (x+ y)z

!107

Backpropagation
f(x, y, z) = (x+ y)z

+

x

y

Computational graph (a DAG) with variable ordering from topological sort,
where each node is an input, intermediate, or output variable

q

z

⇥

!108

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

f(x, y, z) = (x+ y)z

Computational graph (a DAG) with variable ordering from topological sort,
where each node is an input, intermediate, or output variable

+

x

y

q

z

⇥

!109

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@q
= z = �4 (backward pass)

+

x

y

q

z

⇥

!110

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1

@f

@q
= z = �4 (backward pass)

+

x

y

q

z

⇥

!111

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1

@f

@q
= z = �4

@f

@x

= �4 (backward pass)

+

x

y

q

z

⇥

!112

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@q
= z = �4

@f

@x

= �4
@f

@y
= �4

@f

@z
= 3

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1 @f

@y
=

@f

@q

@q

@y
=

@f

@q
· 1 @f

@z
= q

(backward pass)

+

x

y

q

z

⇥

Example: Let’s Build (world smallest) Neural Network

!113

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Example: Let’s Build (world smallest) Neural Network

!114

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

We will need some labeled data

Example: Let’s Build (world smallest) Neural Network

!115

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Neural Network Class 1

Example: Let’s Build (world smallest) Neural Network

!116

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Neural Network Class 2

Example: Let’s Build (world smallest) Neural Network

!117

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Neural Network Class 3

Example: Let’s Build (world smallest) Neural Network

!118

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Neural Network Class 3

What do we need to do?

First, lets re-formulate the problem

Example: Let’s Build (world smallest) Neural Network

!119

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Neural Network
p(Class 1)
p(Class 2)
p(Class 3)

What do we need to do?

First, lets re-formulate the problem

Example: Let’s Build (world smallest) Neural Network

!120

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Neural Network
p(Class 1)
p(Class 2)
p(Class 3)

Now, lets build a network!

How many inputs should the network have? How neuron outputs?

Example: Let’s Build (world smallest) Neural Network

!121

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Input Layer Output Layer

What else is
missing for us to
train it?

Example: Let’s Build (world smallest) Neural Network

!122

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Input Layer Output Layer Loss

Li = � log

efyi

P
j e

fyj

!

Example: Let’s Build (world smallest) Neural Network

!123

Lets create a neural network that will be able to differentiate (classify) these patterns
of simple 3x3 pixel images

Input Layer Output Layer Loss

L1 = �log

e

P9
i=1 �(w1,ixi+b1)

P3
j=1 e

P9
i=1 �(w1,ixi+b1)

!

