
Lecture 29: Object Detection

CPSC 425: Computer Vision 
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Topics: 

— Neuron  
— Neural Networks  

Redings: 
— Today’s Lecture:  N/A                         

— Next Lecture:       N/A

— Layers and activation functions  
— Backpropagation  

Menu for Today (November 20th, 2020)
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"CV Dazzle, a project focused on finding fashionable ways to thwart facial-
recognition technology"

Just for fun:

Figure source: Wired, 2015

Today’s “fun” Example: Fooling Face Detection
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Today’s “fun” Example: Fooling Face Detection

Fools Viola-Jones detector



Train an image classifier as described previously. ‘Slide’ a fixed-sized 
detection window across the image and evaluate the classifier on each 
window.  
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Image credit: KITTI Vision Benchmark 

Lecture 28: Re-cap — Sliding Window

Is there a car?
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Image credit: KITTI Vision Benchmark 
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Image credit: KITTI Vision Benchmark 
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Image credit: KITTI Vision Benchmark 
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Image credit: KITTI Vision Benchmark 

Lecture 28: Re-cap — Sliding Window

Is there a car?



Train an image classifier as described previously. ‘Slide’ a fixed-sized 
detection window across the image and evaluate the classifier on each 
window.  

This is a search over location  
— We have to search over scale as well  
— We may also have to search over aspect ratios 
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Image credit: KITTI Vision Benchmark 

Lecture 28: Re-cap — Sliding Window



The Viola-Jones face detector is a classic sliding window detector that learns 
both efficient features and a classifier  

A key strategy is to use features that are fast to evaluate to reject most 
windows early  

The Viola-Jones detector computes ‘rectangular’ features within each window  
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Lecture 28: Re-cap — Viola-Jones Face Detection



A ‘rectangular’ feature is computed by summing up pixel values within 
rectangular regions and then differencing those region sums 
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Figure credit: P. Viola and M. Jones, 2001

a.k.a. Harr Wavelets 

Lecture 28: Re-cap — Viola-Jones Face Detection



!16 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Select best filter/threshold combination 

2. Re-weight examples

Lecture 28: Re-cap — Viola-Jones Face Detection



!17 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

3. The final strong classifier is

The final strong classifier is a weighted linear combination of the T weak 
classifiers where the weights are inversely proportional to the training errors 

Lecture 28: Re-cap — Viola-Jones Face Detection
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Figure credit: K. Grauman

Main Issue: Efficiency 

Lecture 28: Re-cap — Viola-Jones Face Detection



Cascading Classifiers

To make detection faster, features can be reordered by increasing complexity 
of evaluation and the thresholds adjusted so that the early (simpler) tests have 
few or no false negatives  

Any window that is rejected by early tests can be discarded quickly without 
computing the other features  

This is referred to as a cascade architecture 
!19

Figure credit: P. Viola 



Hard Negative Mining 
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Image From: Jamie Kang



Viola-Jones in Action
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https://vimeo.com/12774628



Viola-Jones in Action
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https://vimeo.com/12774628



Recall: Sliding Window
Train an image classifier as described previously. ‘Slide’ a fixed-sized 
detection window across the image and evaluate the classifier on each 
window.  
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Image credit: KITTI Vision Benchmark 



Recall: Sliding Window
Train an image classifier as described previously. ‘Slide’ a fixed-sized 
detection window across the image and evaluate the classifier on each 
window.  
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Image credit: KITTI Vision Benchmark 

This is a lot of possible windows! And most will not contain the object we are 
looking for.



Object Proposals

Object proposal algorithms generate a short list of regions that have generic 
object-like properties  
— These regions are likely to contain some kind of foreground object instead of 
background texture  

The object detector then considers these candidate regions only, instead of 
exhaustive sliding window search  

!24
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First introduced by Alexe et al., who asked ‘what is an object?’ and defined an 
‘objectness’ score based on several visual cues 

Object Proposals

Figure credit: Alexe et al., 2012



!26

First introduced by Alexe et al., who asked ‘what is an object?’ and defined an 
‘objectness’ score based on several visual cues 

Object Proposals

Figure credit: Alexe et al., 2012
This work argued that objects typically 
— are unique within the image and stand out as salient  
— have a contrasting appearance from surroundings and/or 
— have a well-defined closed boundary in space
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Multiscale Saliency 
— Favors regions with a unique appearance within the image 

High scale Low scale

Failure Case

Successful Case

Object Proposals

Figure credit: Alexe et al., 2012
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Colour Contrast 
— Favors regions with a contrasting colour appearance from immediate 
surroundings

Failure CaseSuccessful Cases

Figure credit: Alexe et al., 2012

Object Proposals



!29 Figure credit: Alexe et al., 2012

Superpixels Straddling 
— Favors regions with a well-defined closed boundary 
— Measures the extent to which superpixels (obtained by image segmentation) 
contain pixels both inside and outside of the window

Object Proposals
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Object Proposals

Figure credit: Alexe et al., 2012

Superpixels Straddling 
— Favors regions with a well-defined closed boundary 
— Measures the extent to which superpixels (obtained by image segmentation) 
contain pixels both inside and outside of the window

Failure CaseSuccessful Cases
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Speeding up [11] HOG pedestrian detector [18] Deformable part model detector 
[33] Bag of words detector

Table credit: Alexe et al., 2012

Object Proposals



Summary

Detection scores in the deformable part model are based on both appearance 
and location  

The deformable part model is trained iteratively by alternating the steps  
	  1.  Assume components and part locations given; compute appearance and 

offset models  
	  2.  Assume appearance and offset models given; compute components and 

part locations  

An object proposal algorithm generates a short list of regions with generic 
object-like properties that can be evaluated by an object detector in place of an 
exhaustive sliding window search 
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Lecture 22: Neural Networks

CPSC 425: Computer Vision 
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Warning:

Our intro to Neural Networks will be very light weight …  

… if you want to know more, take my CPSC 532S 
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A Neuron

— The basic unit of computation in a neural network is a neuron. 

— A neuron accepts some number of input signals, computes their weighted 
sum, and applies an activation function (or non-linearity) to the sum. 

— Common activation functions include sigmoid and rectified linear unit (ReLU) 
!35

inputs

weights

output

sum activation function

+b



A Neuron
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NX

i=1

wixi + b

!



image features

weights

Recall: Linear Classifier
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f(xi,W,b) = Wxi + b

Defines a score function: 

bias vector
(parameters)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Recall: Linear Classifier

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Inspiration from Biology
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Neural nets/perceptrons are loosely inspired by biology. 
But they certainly are not a model of how  the brain works, or even how neurons 

work.

Figure credit: Fei-Fei and Karpathy



Activation Function: Sigmoid 

Common in many early neural networks 
Biological analogy to saturated firing rate of neurons  
Maps the input to the range [0,1] 
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Figure credit: Fei-Fei and Karpathy



Found to accelerate convergence during learning  
Used in the most recent neural networks 
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Activation Function: ReLU (Rectified Linear Unit) 

Figure credit: Fei-Fei and Karpathy



inputs

weights

output

sum

+b

A Neuron
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Activation function 
(e.g., Sigmoid or ReLU function of weighted sum)



A Neuron … another way to draw it … 
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inputs

weights

output

Activation function 
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1



A Neuron … another way to draw it … 
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(1) Combine the sum and activation function 

inputs

weights

output

Activation function 
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1



A Neuron … another way to draw it … 
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(1) Combine the sum and activation function 

(2) suppress the bias term (less clutter)

inputs

weights

output

Activation function 
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1 = 1

wN+1 = b

xN+1



A Neuron … another way to draw it … 
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(1) Combine the sum and activation function 

(2) suppress the bias term (less clutter)

inputs

weights

output

Activation function 
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1 = 1

wN+1 = b



Neural Network
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Connect a bunch of neurons together — a collection of connected neurons

‘one neuron’



Neural Network
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Connect a bunch of neurons together — a collection of connected neurons

‘two neurons’



Neural Network

!49

Connect a bunch of neurons together — a collection of connected neurons

‘three neurons’



Neural Network
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Connect a bunch of neurons together — a collection of connected neurons

‘four neurons’



Neural Network
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Connect a bunch of neurons together — a collection of connected neurons

‘five neurons’



Neural Network
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Connect a bunch of neurons together — a collection of connected neurons

‘six neurons’



Neural Network
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This network is also called a Multi-layer Perceptron (MLP)



Neural Network: Terminology
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‘input’ layer



Neural Network: Terminology
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‘hidden’ layer
‘input’ layer



Neural Network: Terminology
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‘output’ layer
‘hidden’ layer

‘input’ layer



Neural Network: Terminology
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this layer is a 
‘fully connected layer’



Neural Network: Terminology

!58

so is this



Neural Network
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Example of a neural network with three inputs, a single hidden layer of four 
neurons, and an output layer of two neurons

A neural network comprises neurons connected in an acyclic graph 
The outputs of neurons can become inputs to other neurons  
Neural networks typically contain multiple layers of neurons 

Figure credit: Fei-Fei and Karpathy



Neural Network Intuition
Question: What is a Neural Network? 
Answer: Complex mapping from an input (vector) to an output (vector) 

Question: What class of functions should be considered for this mapping? 
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more 
about what specific functions next … 

Question: What does a hidden unit do? 
Answer: It can be thought of as classifier or a feature.  

Question: Why have many layers? 
Answer: 1) More layers = more complex functional mapping  

                  2) More efficient due to distributed representation
* slide from Marc’Aurelio Renzato 
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Example of a neural network with three inputs, a single hidden layer of four 
neurons, and an output layer of two neurons

A neural network comprises neurons connected in an acyclic graph 
The outputs of neurons can become inputs to other neurons  
Neural networks typically contain multiple layers of neurons 

Figure credit: Fei-Fei and Karpathy

Neural Network



!63

Figure credit: Fei-Fei and Karpathy

Note: each neuron will have its own vector of weights and a bias, its easier to think 
of all neurons in a layer as a single entity with a matrix of weights (size = number of 
inputs x number of neurons) and a vector of biases (size = number of neurons)

Neural Network
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Figure credit: Fei-Fei and Karpathy

Note: each neuron will have its own vector of weights and a bias, its easier to think 
of all neurons in a layer as a single entity with a matrix of weights (size = number of 
inputs x number of neurons) and a vector of biases (size = number of neurons)
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Neural Network
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Activation Function
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Why can’t we have linear activation functions? Why have non-linear activations?
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Figure credit: Fei-Fei and Karpathy
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Figure credit: Fei-Fei and Karpathy
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Figure credit: Fei-Fei and Karpathy
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Figure credit: Fei-Fei and Karpathy
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Number of linear segments for 
large input dimension:

Activation Function
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Non-linear activation is required to provably make the Neural Net a universal 
function approximator

Intuition: with ReLU activation, we 
effectively get a linear spline approximation 
to any function. 

Optimization of neural net parameters = 
finding slops and transitions of linear 
pieces  

The quality of approximation depends on 
the number of linear segments  ⌦(2

2
3Ln)



Universal Approximation Theorem: Single hidden layer can approximate any 
continuous function with compact support to arbitrary accuracy, when the 
width goes to infinity. 

Universal Approximation Theorem (revised): A network of infinite depth 
with a hidden layer of size          neurons, where    is the dimension of the input 
space, can approximate any continuous function.   

Universal Approximation Theorem (further revised): ResNet with a single 
hidden unit and infinite depth can approximate any continuous function.  

[ Hornik et al., 1989 ] 

Light Theory: Neural Network as Universal Approximator

[ Lin and Jegelka, NIPS 2018 ] 

[ Lu et al., NIPS 2017 ] 

d+ 1 d



Activation Function
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Why can’t we have linear activation functions? Why have non-linear activations?



Neural Network
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How many neurons?
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How many neurons? 4+2 = 6

Neural Network
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How many neurons? 4+2 = 6 How many weights?

Neural Network
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How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

Neural Network
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How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

How many learnable parameters?

Neural Network



!80

How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

How many learnable parameters?
20 + 4 + 2 = 26

bias terms

Neural Network



Modern convolutional neural networks contain 10-20 layers and on the 
order of 100 million parameters  

Training a neural network requires estimating a large number of parameters  

!81

Neural Networks
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Backpropagation
When training a neural network, the final output will be some loss (error) 
function  
— e.g. cross-entropy loss: 
 
which defines loss for i-th training example with true class index    ; and  
is the j-th element of the vector of class scores coming from neural net.  
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yi fj
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yi fj

Consider neural net which takes input vector      and predicts scores for 3 
classes, with true class being class 3:     

xi
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yi fj

Consider neural net which takes input vector      and predicts scores for 3 
classes, with true class being class 3:     

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f
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Consider neural net which takes input vector      and predicts scores for 3 
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yi fj

Consider neural net which takes input vector      and predicts scores for 3 
classes, with true class being class 3:     

xi

c1 = �2.85
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f

0.058
2.36
1.32
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Normalize to 
sum to 1 0.016

0.631
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When training a neural network, the final output will be some loss (error) 
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yi fj

Consider neural net which takes input vector      and predicts scores for 3 
classes, with true class being class 3:     

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28
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0.058
2.36
1.32

exp

Normalize to 
sum to 1 0.016
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probability of a class



When training a neural network, the final output will be some loss (error) 
function  
— e.g. cross-entropy loss: 
 
which defines loss for i-th training example with true class index    ; and  
is the j-th element of the vector of class scores coming from neural net.  
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yi fj

Consider neural net which takes input vector      and predicts scores for 3 
classes, with true class being class 3:     

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to 
sum to 1 0.016

0.631
0.353

probability of a class

softmax function 
multi-class classifier
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Backpropagation
When training a neural network, the final output will be some loss (error) 
function  
— e.g. cross-entropy loss: 
 
which defines loss for i-th training example with true class index    ; and  
is the j-th element of the vector of class scores coming from neural net.  

!89

yi fj

Consider neural net which takes input vector      and predicts scores for 3 
classes, with true class being class 3:     

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to 
sum to 1 0.016

0.631
0.353

Li = � log(0.353) = 1.04

probability of a class
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Backpropagation
When training a neural network, the final output will be some loss (error) 
function  
— e.g. cross-entropy loss: 
 
which defines loss for i-th training example with true class index    ; and  
is the j-th element of the vector of class scores coming from neural net.  
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yi fj

We want to compute the gradient of the loss with respect to the network 
parameters so that we can incrementally adjust the network parameters



Gradient Descent

*slide adopted from V. Ordonex 
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Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with  
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

For           to max number of iterationsk = 0

*slide adopted from V. Ordonex 
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Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with  
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

3. Re-estimate the parameters
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- is the learning rate
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Figure credit: Fei-Fei and Karpathy

L(y, ŷ) = ||y � ŷ|| = ||y � f(x,W1,W2,b1,b2)||

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘

Loss:

Gradient Descent
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Figure credit: Fei-Fei and Karpathy

L(y, ŷ) = ||y � ŷ|| = ||y � f(x,W1,W2,b1,b2)||

W1,i,j = W1,i,j � �
@L(y, ŷ)
@W1,i,j

b1,i = b1,i � �
@L(y, ŷ)
@b1,i

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘

Gradient Descent 

Loss:

Gradient Descent



Backpropagation

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus 
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Backpropagation

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus  

Suppose                    . What is the partial derivative of   with respect to   ? What 
is the partial derivative of   with respect to   ? 
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f(x, y) = xy

f
x

f y



Backpropagation

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus  

Suppose                    . What is the partial derivative of   with respect to   ? What 
is the partial derivative of   with respect to   ?  
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f(x, y) = xy

f
x

f y

@f

@x

= y

@f

@y

= x



The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus  

Suppose                    .   . What is the partial derivative of   with respect to   ? 
What is the partial derivative of   with respect to   ? 

f(x, y) = x+ y

Backpropagation
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f
x

f y



@f

@y
= 1

@f

@x

= 1

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus  

Suppose                    .   . What is the partial derivative of   with respect to   ? 
What is the partial derivative of   with respect to   ? 

f(x, y) = x+ y

Backpropagation
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f
x

f y



A trickier example:

Backpropagation
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f(x, y) = max(x, y)



That is, the (sub)gradient is 1 on the input that is larger, and 0 on the other input 

— For example, say x = 4, y = 2. Increasing y by a tiny amount does not 
change the value of f (f will still be 4), hence the gradient on y is zero.

A trickier example:

Backpropagation
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@f

@x

= 1(x � y)
@f

@y

= 1(y � x)

f(x, y) = max(x, y)



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus 

Backpropagation



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus  

Suppose                                . What are the partial derivatives of   with respect 
to   ?   ?  ?  

f(x, y, z) = (x+ y)z f
x

y z

Backpropagation



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus  

Suppose                                . What are the partial derivatives of   with respect 
to   ?   ?  ?  

For illustration we break this expression into                 and           . This is a 
sum and a product, and we have just seen how to compute partial derivatives 
for these.  
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f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

Backpropagation



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus  

Suppose                                . What are the partial derivatives of   with respect 
to   ?   ?  ?  

For illustration we break this expression into                 and           . This is a 
sum and a product, and we have just seen how to compute partial derivatives 
for these.  

By the chain rule  
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f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

@f

@x

=
@f

@q

@q

@x

= z · 1 = z

Backpropagation



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus  

Suppose                                . What are the partial derivatives of   with respect 
to   ?   ?  ?  

For illustration we break this expression into                 and           . This is a 
sum and a product, and we have just seen how to compute partial derivatives 
for these.  

By the chain rule  
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f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

@f

@x

=
@f

@q

@q

@x

= z · 1 = z

@f

@y
=

@f

@q

@q

@y
= z · 1 = z

@f

@z
= q

Backpropagation
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Backpropagation
f(x, y, z) = (x+ y)z
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Backpropagation
f(x, y, z) = (x+ y)z

+

x

y

Computational graph (a DAG) with variable ordering from topological sort, 
where each node is an input, intermediate, or output variable

q

z

⇥
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Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

f(x, y, z) = (x+ y)z

Computational graph (a DAG) with variable ordering from topological sort, 
where each node is an input, intermediate, or output variable

+

x

y

q

z

⇥
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f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@q
= z = �4 (backward pass)

+

x

y

q

z

⇥
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f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1

@f

@q
= z = �4 (backward pass)

+

x

y

q

z

⇥
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f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1

@f

@q
= z = �4

@f

@x

= �4 (backward pass)

+

x

y

q

z

⇥
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f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@q
= z = �4

@f

@x

= �4
@f

@y
= �4

@f

@z
= 3

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1 @f

@y
=

@f

@q

@q

@y
=

@f

@q
· 1 @f

@z
= q

(backward pass)

+

x

y

q

z

⇥



Example: Let’s Build (world smallest) Neural Network 
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Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images



Example: Let’s Build (world smallest) Neural Network 
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Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

We will need some labeled data 



Example: Let’s Build (world smallest) Neural Network 
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Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Neural Network Class 1



Example: Let’s Build (world smallest) Neural Network 
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Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Neural Network Class 2



Example: Let’s Build (world smallest) Neural Network 
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Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Neural Network Class 3



Example: Let’s Build (world smallest) Neural Network 
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Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Neural Network Class 3

What do we need to do? 

First, lets re-formulate the problem



Example: Let’s Build (world smallest) Neural Network 
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Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Neural Network
p(Class 1) 
p(Class 2) 
p(Class 3)

What do we need to do? 

First, lets re-formulate the problem



Example: Let’s Build (world smallest) Neural Network 
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Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Neural Network
p(Class 1) 
p(Class 2) 
p(Class 3)

Now, lets build a network!

How many inputs should the network have? How neuron outputs?



Example: Let’s Build (world smallest) Neural Network 
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Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Input Layer Output Layer

What else is  
missing for us to  
train it?



Example: Let’s Build (world smallest) Neural Network 
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Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Input Layer Output Layer Loss

Li = � log
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P
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Example: Let’s Build (world smallest) Neural Network 
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Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Input Layer Output Layer Loss

L1 = �log

 
e

P9
i=1 �(w1,ixi+b1)

P3
j=1 e

P9
i=1 �(w1,ixi+b1)
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