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Menu for Today (November 18, 2020)

Topics:
— Boosting — Face detection with Viola & Jones
— Sliding Window Object Detection — Object Proposals

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9
— Next Lecture: Forsyth & Ponce (2nd ed.) 17.1-17.2

Reminders:

— Assignment 5. Scene Recognition with Bag of Words due November 20

— Friendly Assignment 5 competition

— Quiz 5 will be due end-of-day on Friday



Today’s “fun” Example:

Wait for it ... :)



Lecture 27: Re-cap Decision [rees

A random forest is an ensemble of decision trees.

Randomness is incorporated via training set sampling and/or generation of the
candidate binary tests

The prediction of the random forest is obtained by averaging over all decision trees.

(I,x%) (I,x)

tree 1 tree T’

‘ Pr(c)
I P, (c) ! ILIL

Forsyth & Ponce (2nd ed.) Figure 14.19. Original credit: J. Shotton et al., 2011
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Lecture 27: Re-cap Kinect

5 Figure credit: J. Shotton et al., 2011



Lecture 27: Re-cap Kinect
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5 Figure credit: J. Shotton et al., 2011
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Lecture 27: Re-cap Kinect
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Lecture 27: Re-cap Kinect
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Lecture 27: Re-cap Kinect
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Combining Classifiers

One common strategy to obtain a better classifier is to combine multiple
classifiers.

A simple approach Is to train an ensemble of independent classifiers, and
average their predictions.

Boosting is another approach.
— [rain an ensemble of classitiers sequentially.

— Bias subsequent classifiers to correctly predict training examples that
porevious classifiers got wrong.

— The final boosted classifier is a weighted combination of the individual
classifiers.
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Combining Classifiers: Boosting

Weak

Classifier1 \‘

Figure credit: Paul Viola
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Combining Classifiers: Boosting

Weights
Increased

Figure credit: Paul Viola
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Combining Classifiers: Boosting
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Figure credit: Paul Viola
15



Combining Classifiers: Boosting
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Figure credit: Paul Viola
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Combining Classifiers: Boosting

Weak
Classifier3

Figure credit: Paul Viola
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Combining Classifiers: Boosting

Final classifieris
a combination of weak
classifiers

Figure credit: Paul Viola
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THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 28: Object Detection
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Object Detection: Introduction

We have been discussing image classification, where we pass a whole
image into a classifier and obtain a class label as output

We assumed the image contained a single, central object

The task of object detection is t0 detect and localize all instances of a target

object class in an image
— Localization typically means putting a tight bounding box around the object
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Sliding Window

Train an image classifier as described previously. ‘Slide” a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

21



Sliding Window

Train an image classifier as described previously. ‘Slide” a fixed-sized
detection window across the image and evaluate the classifier on each
Wl ﬂdOW. Is there a car?

Image credit: KITTI Vision Benchmark
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Sliding Window
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Sliding Window

Train an image classifier as described previously. ‘Slide” a fixed-sized
detection window across the image and evaluate the classifier on each
Wl ﬂdOW. Is there a car?

Image credit: KITTI Vision Benchmark
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Sliding Window

Train an image classifier as described previously. ‘Slide” a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

This Is a search over location
— We have to search over scale as well
— We may also have to search over aspect ratios
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What data we train a classifier on”?

Image Classifiers

Image classifiers can be applied
to regions/windows, but do not
work so well in practice ...
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What data we train a classifier on”?

Image Classifiers
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What data we train a classifier on”?

Image Classifiers Object Classifiers
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What data we train a classifier on”?
Object Classifiers

Object classifiers work a lot
petter ... but require expensive
obounding box annotations ...
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Today’s “fun” Example: Detection with No Data

Expensive — do this for few classes (e.q., 20)

Classifiers Detectors |

*

VW CLASSIFY EaiS
"dog - -

- -

-VV.CLASSIFY :"*

apple ~ ~

B o 22
4 /A —

Cheap — do this for many classes (e.g., 80 or 20,000)

LSDA: Large Scale Detection through Adaptation (Hoffman et al, 2014)

35



Today’s “fun” Example: Detection with No Data

Our UniT: Unified Knowledge Transfer

Method AP 50 AP S AP M AP L
LSDA [27] 4.6 1.2 5.1 7.8
LSDA+Semantic [5”] 4.7 1.1 5.1 8.0
LSDA+MIL [23] 5.9 1.5 8.3 10.7
DOCK [26] 14.4 2.0 12.8 24.9
UniT (Ours) 16.7 3.2 16.6 27.3

Full Supervision [26] 25.2 5.8 26.0 41.6
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Today’s “fun” Example: Detection with No Data

Our UniT: Unified Knowledge Transfer

77271 .

p—

(=Y

ho!

Note, above result is obtained without human ever annotating bounding boxes
or pixel-level segments for any of these objects
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| et’s assume we have object labeled data ...
Object Classifiers

Object classifiers work a lot
petter ... but require expensive
obounding box annotations ...
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Example: Face Detection

The Viola-Jones face detector Is a classic sliding window detector that learns
both efficient features and a classifier

A Key strategy Is to use features that are fast to evaluate to reject most
windows early

The Viola-dones detector computes ‘rectangular’ tfeatures within each window
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Example: Face Detection

A ‘rectangular’ feature is computed by summing up pixel values within
rectangular regions and then differencing those region sums

a.k.a. Harr Wavelets

Figure credit: P. Viola and M. Jones, 2001
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Example: Face Detection

A ‘rectangular’ feature is computed by summing up pixel values within
rectangular regions and then differencing those region sums

a.k.a. Harr Wavelets

Figure credit: P. Viola and M. Jones, 2001
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Intergral Image

original image integral image

40 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Intergral Image

What is the sum of the bottom right 2x2 square?

I(z,y)

original image

43
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Image Credit: loannis (Yannis) Gkioulekas (CMU)



Intergral Image

What is the sum of the bottom right 2x2 square?

I(z,y)

original image

44

A(z,y)
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integral image

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Intergral Image

What is the sum of the bottom right 2x2 square?

A(z,y)
(1) 6

e
(8) 15 (19)

original image integral image
A(1,1,3,3) = A(3,3) — A(1,3) — A(3,1) + A(1,1)

= 19 - 8 - 5 + 1

= 7

15 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Intergral Image

3
(5) 15 (19
original image integral image

Can find the sum of any block using 3 operations

A($17y17$27y2) — A($27y2) o A(xlayZ) o A(:E?ayl) T A(xlayl)

46 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

Given an integral image, the sum within a rectangular region in I can be
computed with just 3 additions/subtractions

Sum=A-B-C+D

Figure credit: P. Viola

Constant time: does not depend on the size of the region. We can avoid
scaling images - just scale features directly (rememlber template matching!)
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Integral Image Layer for Deep Neural Networks

In a classical paper [1] from 2001, Viola and Jones popularized the use of large rectangular image filters in order to obtain
features for image recognition. The use of very large filters allowed Viola and Jones to compute features over very large
receptive fields without blowing up the computation cost. For the next 10+ years, such features remained the staple of fast
computer vision (e.g. [2]). The advent of deep learning made the use of integral-image features far less popular. Currently,
state-of-the-art architectures invariably relying on very deep architectures. In these architectures sufficiently large
receptive fields are obtained via the use of downsampling with subsequent upsampling [3] or via dilated convolutions [4].
All such tricks however have their downsides and usually necessitate the use of very deep networks.

The goal of this project is to implement an integral image-based filtering as a layer for deep architectures in Torch deep
learning package, and to evaluate it for the task of learning very fast object detectors (as an alternative to e.g. [5]) and
semantic segmentation systems (as an alternative to e.g. [3,4]). The hope is to obtain much shallower architectures, which
at least for simple classes (e.g. roadsigns or upright pedestrians) will approach the performance of much deeper ones.

The project is supervised by Victor Lempitsky at Skoltech, Moscow, Russia.

https://qgithub.com/shrublb/integral-layer
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https://github.com/shrubb/integral-layer

Deep Neural Networks for Object Detection

Christian Szegedy Alexander Toshev Dumitru Erhan
Google, Inc.
{szegedy, toshev, dumitru}@google.com

Abstract

Deep Neural Networks (DNNs) have recently shown outstanding performance on
image classification tasks [14]. In this paper we go one step further and address
the problem of object detection using DNNSs, that 1s not only classifying but also
precisely localizing objects of various classes. We present a simple and yet pow-
erful formulation of object detection as a regression problem to object bounding
box masks. We define a multi-scale inference procedure which is able to pro-
duce high-resolution object detections at a low cost by a few network applications.
State-of-the-art performance of the approach is shown on Pascal VOC.
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Example: Face Detection

(x,,1) (x,,1) (x;,0)  (x,,0)  (x5,0)  (x,0)

Training Dataset: . e (x,
ouess: [ |14 WG W XE B e

Faces Not-faces

50 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

Evaluate a Harr Wavelet filter on each training example

(x,,1) (x,,1) (x;,0)  (x,,0)  (x5,0)  (x,0)

Faces Not-faces

m—

51 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

Evaluate a Harr Wavelet filter on each training example

D) (x,) (65,0) 0 (x,,0)  (x,0)  (x,0)

A NEEN
i 15 b - _ ses e o (x119y11)
3 0.7 0.2 0.3 0.8 0.1

0.

e

We can build a simple classifier by just selecting a threshold on the filter response
(e.g. Harr filter response > 0.6 = face; Harr filter response <= 0.6 = not face)

Note: it is easy to find an optimal threshold. Just

requires linear search over training example responses.

50 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

Evaluate a Harr Wavelet filter on each training example

(x,,1) (x,,1) (x;,0)  (x,,0)  (x5,0)  (x,0)

. | " r ...
B4 PO XL
0.7 0.2 0.3 0.8 0.1

0.8

s

I 1t f.(x)>0, —

Weak classifier h]. (x) — .
0 otherwise threshold

53 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

Evaluate a Harr Wavelet filter on each training example

(x,,1) (x,,1) (x;,0)  (x,,0)  (x5,0)  (x,0)

Faces Not-faces

54 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

Evaluate a Harr Wavelet filter on each training example

(x,1) (x,,1) (%3,0)  (x,,0) (x5,0) (x4,0)

' PR R

Faces Not-faces

Note: we can easily compare different Harr Wavelet features under their individual

best thresholds to see which is the most informative (has highest classification)

55 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

—

o LI

il

Many possible rectangular features (180,000+ were used in the original paper)

-

Figure credit: B. Freeman
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Example: Face Detection

Evaluate a Harr Wavelet filter on each training example

() (o) (5,00 (x,,0) (3%5,0) (6, 0)

' PR R

Faces Not-faces

Note: we can easily compare different Harr Wavelet features under their individual

best thresholds to see which is the most informative (has highest classification)

However, No one feature Is likely to be good enough

57 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

Use boosting to both select the informative features and form the classifier.
Each round chooses a weak classifier that simply compares a single rectangular
feature against a threshold

Figure credit: P. Viola and M. Jones, 2001
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Example: Face Detection

1. Select best filter/threshold combination

W, .
.1

a. Normalize the weights | “ " W 1 if £.(x)> 6.

j=1""tJ hj(x):<

\O otherwise

b. For each feature, j £ :Ziw,. hj(x,.)—y,-

c. Choose the classifier, h, with the lowest error .

[

2. Re-weight examples
t+lz IBt G :Bt: gt

59 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

1. Select best filter/threshold combination

w

a. Normalize the weights

t,i

D>

Wt,i
n
W

j:] tsj

We start with all sample weights = 1

o0

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

1. Select best filter/threshold combination

W, .

.1 (
Z}:] tsj

Wt,i
n
W

a. Normalize the weights 1 if £.(x)> 6.

\O otherwise

h(x) =+

b. For each feature, j £ =Ziwi hj(xl-)—y,-

weighed sum of miss-classified

training examples

Note: the second term is O/1
— O predicted label and true label are same
— 1 predicted label and true label are different (error)

81 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

1. Select best filter/threshold combination

W, .
.1

a. Normalize the weights | * T 1 if £,(x)>0,
B h(x)=- ’ ’

\O otherwise

b. For each feature, j £ :Ziw,. hj(x,.)—y,-

c. Choose the classifier, h, with the lowest error .

[

80 Image Credit: loannis (Yannis) Gkioulekas (CMU)
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Example: Face Detection

Case 1: Classification for the sample i is correct
Wit14 — Wi o7

Case 2: Classification for the sample i is incorrect

Witl: — Wt

2. Re-weight examples
t+lz IBt e P, = o

84 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

Case 1: Classification for the sample i is correct
Wit14 — Wi o7

Case 2: Classification for the sample i is incorrect

Witl: — Wt

Note: the Beta Is < 1

2. Re-weight examples

\h (x;)—i] g,

t+l )1

65 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

1. Select best filter/threshold combination
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Example: Face Detection

Viola & Jones algorithm

3. I'he final strong classifier Is

| T | T |
1 a,h,(x)2 EZ _a,| o ,=log—

h(x) = p

0 otherwise

The final strong classifier is a weighted linear combination of the T weak
classifiers where the weights are inversely proportional to the training errors

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection Summary

Train cascade of
classifiers with

AdaBoost

Selected features,
thresholds, and weights

Non-faces

Figure credit: K. Grauman
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Example: Face Detection Summary

Train cascade of
classifiers with

AdaBoost

Main Issue: Efficiency

Selected features,
thresholds, and weights

Non-faces

Figure credit: K. Grauman
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Example: Face Detection

Observations:

— On average only 0.01% of all sub-windows are positive (faces)

— Equal computation time is spent on all sulb-window

— Shouldn’t we spend most time only on potentially positive sub-windows"?
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Example: Face Detection

Observations:

— On average only 0.01% of all sub-windows are positive (faces)

— Equal computation time is spent on all sub-window

— Shouldn’t we spend most time only on potentially positive sub-windows?

A simple 2-feature classifier can achieve almost 100% detection

rate (0% false negatives) with 50% false positive rate

[a



Example: Face Detection

Observations:

— On average only 0.01% of all sub-windows are positive (faces)

— Equal computation time is spent on all sub-window

— Shouldn’t we spend most time only on potentially positive sub-windows?

A simple 2-feature classifier can achieve almost 100% detection

rate (0% false negatives) with 50% false positive rate

Solution:

— A simple 2-feature classifier can act as a 1st layer of a series to filter out
most negative (clearly non-face) windows

— 2nd layer with 10 features can tackle “harder” negative-windows which
survived the 1st layer, and so on...

(2



Cascading Classifiers

T I T
IMAGE . ,
SUB-WINDOW @ * FACE
lp lF F

NON-FACE NON-FACE NON-FACE Figure credit: P. Viola

To make detection faster, features can be reordered by increasing complexity

of evaluation and the thresholds adjusted so that the early (simpler) tests have
few or no false negatives

Any window that Is rejected by early tests can be discarded quickly without
computing the other features

This Is referred to as a cascade architecture
/3



Cascading Classifiers

50% 20% 2%
IMAGE » - »| 20 Features - FACE
SUB-WINDOW

¥ N N

NON-FACE NON-FACE NON-FACE

Figure credit: P. Viola

A classifier in the cascade Is not necessarily restricted to a single feature
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Example: Face Detection

Viola & Jones algorithm

3. I'he final strong classifier Is

| T | T |
1 a,h,(x)2 EZ _a,| o ,=log—

h(x) = p

0 otherwise

The final strong classifier is a weighted linear combination of the T weak
classifiers where the weights are inversely proportional to the training errors

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection Summary

Train cascade of
classifiers with

AdaBoost

Selected features,
thresholds, and weights

Non-faces

Figure credit: K. Grauman
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Hard Negative Mining

Randomly Select M; (K M™) A MINIBATCH

draw M~ samples with , N
samples highest f* scores ! |
Pool of
Negative
Samples
| Training
CNN

Pool of

Positive
Samples

Randomly
draw Mt
samples

Image From: Jamie Kang
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Example: Face Detection

Just for fun:

Compared against OpenCV using 4 Maar Cascades (dofault, alt, alt2, and ait_troe) © Adam Harvey / ahprojects com / ' \

"CV Dazzle, a project focused on finding fashionable ways to thwart facial-

recognition technology"”

Figure source: Wired, 2015
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Recall: Sliding Window

Train an image classifier as described previously. ‘Slide” a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark
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Recall: Sliding Window

Train an image classifier as described previously. ‘Slide” a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

This is a lot of possible windows! And most will not contain the object we are
looking for.

30



Object Proposals

Object proposal algorithms generate a short list of regions that have generic
object-like properties

— Ihese regions are likely to contain some kind of foreground object instead of
background texture

The object detector then considers these candidate regions only, instead of
exhaustive sliding window search
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Object Proposals

First introduced by Alexe et al., who asked ‘what is an object”?’ and defined an
‘Objectness’ score based on several visual cues

Figure credit: Alexe et al., 2012
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Object Proposals

First introduced by Alexe et al., who asked ‘what is an object”?’ and defined an
‘Objectness’ score based on several visual cues

Figure credit: Alexe et al., 2012
This work argued that objects typically

— are unigque within the image and stand out as salient
— have a contrasting appearance from surroundings and/or

— have a well-defined closed boundary in space
383



Object Proposals

Multiscale Saliency
— Favors regions with a unique appearance within the image

High scale Low scale

Successful Case

Failure Case

84 Figure credit: Alexe et al., 2012



Object Proposals

Colour Contrast

— Favors regions with a contrasting colour appearance from immediate
surroundings

Successful Cases Failure Case

85 Figure credit: Alexe et al., 2012



Object Proposals

Superpixels Straddling

— Favors regions with a well-defined closed boundary

— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

86 Figure credit: Alexe et al., 2012



Object Proposals

Superpixels Straddling

— Favors regions with a well-defined closed boundary

— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

Successful Cases Failure Case

87 Figure credit: Alexe et al., 2012



Object Proposals

TABLE 2: For each detector [11. 18, 33| we report 1ts performance
(left column) and that of our algorithm 1 using the same window
scoring function (right column). We show the average number of
windows evaluated per image #win and the detection performance
as the mean average precision (mAP) over all 20 classes.

[11] OBJ-[11] [ 18] OBJ- [I8] | ESS-BOW|[33] OBJ-BOW
mAP | 0.186 0.162 | 0.268 0.225 0.127 0.125
#win | 79945 = 1349 | 18562 —m 1358 183501 —% 2997

Table credit: Alexe et al., 2012

Speeding up [11] HOG pedestrian detector [18] Deformable part model detector
[33] Bag of words detector

33



Summary

Detection scores in the deformable part model are based on both appearance
and location

The deformable part model Is trained iteratively by alternating the steps

1. Assume components and part locations given; compute appearance and
offset models

2. Assume appearance and offset models given; compute components and
part locations

An object proposal algorithm generates a short list of regions with generic
object-like properties that can be evaluated by an object detector In place of an
exhaustive sliding window search

89



