
Lecture 28: Image Classification (final)

CPSC 425: Computer Vision

!1

Menu for Today (November 18, 2020)
Topics:

— Boosting
— Sliding Window Object Detection

Redings:
— Today’s Lecture: Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9

— Next Lecture: Forsyth & Ponce (2nd ed.) 17.1–17.2

Reminders:

— Assignment 5: Scene Recognition with Bag of Words due November 20

— Friendly Assignment 5 competition
— Quiz 5 will be due end-of-day on Friday

— Face detection with Viola & Jones
— Object Proposals

!3

Today’s “fun” Example:

Wait for it … :)

A random forest is an ensemble of decision trees.

Randomness is incorporated via training set sampling and/or generation of the
candidate binary tests

The prediction of the random forest is obtained by averaging over all decision trees.

!4
Forsyth & Ponce (2nd ed.) Figure 14.19. Original credit: J. Shotton et al., 2011

Lecture 27: Re-cap Decision Trees

!5 Figure credit: J. Shotton et al., 2011

Lecture 27: Re-cap Kinect

!6 Figure credit: J. Shotton et al., 2011

Lecture 27: Re-cap Kinect

!7

f✓(I,x) > ⇥j

Lecture 27: Re-cap Kinect

!8

f✓(I,x) > ⇥j

f✓(I,x) > ⇥j

0.5

0.4

-0.2

0.7

-0.7

0.45

…… …

…… …

Lecture 27: Re-cap Kinect

!9

f✓(I,x) > ⇥j

f✓(I,x) > ⇥j information gain

0.5

0.4

-0.2

0.7

-0.7

0.45

0.3

0.4

0.7

0.2

0.8

0.1

… …… …

… …… …

Lecture 27: Re-cap Kinect

!10

f✓(I,x) > ⇥j

f✓(I,x) > ⇥j information gain

0.5

0.4

-0.2

0.7

-0.7

0.45

0.3

0.4

0.7

0.2

0.8

0.1

… …… …

… …… …

Lecture 27: Re-cap Kinect

!11

f✓(I,x) > ⇥j information gain

0.5

0.4

-0.2

0.7

0.45

0.3

0.4

0.7

0.2

0.1

… …… …

… …… …

dI(x+)� dI(x+) > �0.7 dI(x+)� dI(x+) < �0.7

-0.7 0.8

Lecture 27: Re-cap Kinect

Combining Classifiers

One common strategy to obtain a better classifier is to combine multiple
classifiers.

A simple approach is to train an ensemble of independent classifiers, and
average their predictions.

Boosting is another approach.
— Train an ensemble of classifiers sequentially.
— Bias subsequent classifiers to correctly predict training examples that
previous classifiers got wrong.
— The final boosted classifier is a weighted combination of the individual
classifiers.

!12

!13
Figure credit: Paul Viola

Combining Classifiers: Boosting

!14

Combining Classifiers: Boosting

Figure credit: Paul Viola

!15

Combining Classifiers: Boosting

Figure credit: Paul Viola

!16

Combining Classifiers: Boosting

Figure credit: Paul Viola

!17

Combining Classifiers: Boosting

Figure credit: Paul Viola

!18

Combining Classifiers: Boosting

Figure credit: Paul Viola

Lecture 28: Object Detection

CPSC 425: Computer Vision

!19

Object Detection: Introduction

We have been discussing image classification, where we pass a whole
image into a classifier and obtain a class label as output

We assumed the image contained a single, central object

The task of object detection is to detect and localize all instances of a target
object class in an image 
— Localization typically means putting a tight bounding box around the object

!20

Sliding Window
Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!21

Image credit: KITTI Vision Benchmark

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!22

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!23

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!24

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!25

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!26

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!27

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!28

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!29

Image credit: KITTI Vision Benchmark

Is there a car?

Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

This is a search over location  
— We have to search over scale as well  
— We may also have to search over aspect ratios

!30

Image credit: KITTI Vision Benchmark

Sliding Window

What data we train a classifier on?

!31

Image Classifiers

Image classifiers can be applied
to regions/windows, but do not
work so well in practice …

What data we train a classifier on?

!32

Image Classifiers

What data we train a classifier on?

!33

Image Classifiers Object Classifiers

What data we train a classifier on?

!34

Object Classifiers

Object classifiers work a lot
better … but require expensive
bounding box annotations …

!35

Today’s “fun” Example: Detection with No Data

LSDA: Large Scale Detection through Adaptation (Hoffman et al, 2014)

Cheap — do this for many classes (e.g., 80 or 20,000)

Expensive — do this for few classes (e.g., 20)

!36

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

CVPR
#4174

CVPR
#4174

CVPR 2021 Submission #4174. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ing hyperparameter. In fine-tuning, we refine the model only
using Lrcnn. Fine-tuning only effects last term of Eq.(3),
(4), and (5), while everything else is optimized using base
training objective. Further implementation details are in
Section B of the supplementary. We will make all code and
pre-trained models publicly available.

5. Experiments
We evaluate our approach against related methods in the

semi-supervised and few-shot domain. Comparison against
work in the weakly-supervised object detection literature is
provided in supplementary Section E.

5.1. Semi-supervised Object Detection
Datasets. We evaluate the performance of our framework on
MSCOCO [31] 2015 and 2017 datasets. Similar to [17, 26],
we divide the 80 object categories into 20 base and 60 novel
classes, where the base classes are identical to the 20 VOC
[14] categories. For our model and the baselines, we assume
image-level supervision for all 80 classes, whereas instance-
level supervision is only available for 20 base classes. For
few-shot experiments (k > 0) we additionally assume k
instance-level annotations for the novel classes.
Semi-supervised zero-shot (k=0). Table 1 compares the
performance of our proposed approach against the most
relevant semi-supervised zero-shot (k = 0) methods [22, 23,
26, 52] on novel classes. As an upper-bound, we also show
the performance of a fully-supervised model. To ensure
fair comparison, we follow the experimental setting in the
strongest baseline DOCK [26], and borrow the performance
for [22, 23, 52] from their paper. All models are trained using
the same backbone: VGG-CNN-F [6] which is pretrained
on the ImageNet classification dataset [11]. Also, similar to
[26], we use the MCG [36] proposals instead of training the
RPN. The models are evaluated using mAP at IoU threshold
0.5 denoted as AP50.

UniT beats the closest baseline, DOCK [26], by a sig-
nificant margin (⇠16% on AP50), despite DOCK using
more sophisticated similarity measures for knowledge trans-
fer, which require additional data from VOC [14], Visual
Genome [25], and SUN [62] datasets. As DOCK only trans-
fers knowledge from base class classifiers, this difference
in performance can be attributed to UniT additionally ef-
fectively transferring knowledge from base class regressors
onto novel class regressors (Eq. 4). It can also be noted that
our work can be considered complimentary to DOCK, as we
can easily integrate their richer similarity measures into our
framework by modifying S(z) (Sec. 4.2).
Semi-supervised few-shot (k > 0). Table 2 compares the
performance of our method with NOTE-RCNN [17], which
is the only relevant baseline under this setting, on novel
classes. We follow the experimental setting described in
[17], and our model is trained using the same backbone
as NOTE-RCNN: Inception-Resnet-V2 [49] pretrained on

Method AP50 AP
S

AP
M

AP
L

LSDA [22] 4.6 1.2 5.1 7.8
LSDA+Semantic [52] 4.7 1.1 5.1 8.0
LSDA+MIL [23] 5.9 1.5 8.3 10.7
DOCK [26] 14.4 2.0 12.8 24.9

UniT (Ours) 16.7 3.2 16.6 27.3
Full Supervision [26] 25.2 5.8 26.0 41.6

Table 1: Comparison to semi-supervised zero-shot. All
models are trained on VGG-CNN-F [6] backbone.

Method / Shots (k) 12 33 55 76 96

NOTE-RCNN [17] 14.1 14.2 17.1 19.8 19.9
UniT (Ours) 14.7 17.4 19.3 20.9 22.1

Table 2: Comparison to semi-supervised few-shot. All
models are trained on Inception-ResNet-v2 [49] backbone.
Mean Average Precision (mAP) on novel classes averaged
over IoU thresholds in [0.5 : 0.05 : 0.95] is reported.

the ImageNet classification dataset [11], where the RPN is
learned from the instance-level base data. Similar to [17],
we assume k instance-level annotations for the novel classes,
where k 2 {12, 33, 55, 76, 96}. To ensure fair comparison,
the performance of NOTE-RCNN [17] is taken from their
published work4. We report mAP on novel classes averaged
over IoU thresholds in [0.5 : 0.05 : 0.95].

UniT outperforms NOTE-RCNN [17] on all values of
k, providing an improvement of up to ⇠23%. Contrary to
NOTE-RCNN that only trains novel regressors on the k shots,
UniT benefits from effectively mapping information from
base regressors to novel regressors. In addition, UniT also
has the advantage of allowing end-to-end training while si-
multaneously being simple and interpretable. NOTE-RCNN,
on the other hand, employs a complex multi-step bounding
box mining framework that takes longer to train on novel
classes. Note that, in principle, one could incorporate the
box mining mechanism into our framework as well.

5.2. Few-shot Object Detection and Segmentation
Datasets. We evaluate our models on VOC 2007 [14], VOC
2012 [13], and MSCOCO [31] as used in the previous few-
shot object detection and segmentation works [24, 58, 59,
63]. For both detection and segmentation, we consistently
follow the data splits introduced and used in [24, 63]. In case
of VOC, we use VOC 07 test set (5k images) for evaluation
and VOC 07+12 trainval sets (16.5k images) for training.
The 20 object classes are divided into 15 base and 5 novel
classes with 3 different sets of class splits. For novel classes,
we use images made available by Kang et al. [24] for k-shot
fine-tuning. We report mean Average Precision (mAP) on
novel classes and use a standard IoU threshold of 0.5 [14].
Similarly, for the MSCOCO [31] dataset, consistent with

4[17] visualize their numbers as a plot instead of listing the raw values.
As the authors were unreachable, Table 2 lists our best interpretation of the
numbers shown in the plot.

6

Today’s “fun” Example: Detection with No Data

Our UniT: Unified Knowledge Transfer

!37

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVPR
#4174

CVPR
#4174

CVPR 2021 Submission #4174. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3: Qualitative Visualizations. Semi-supervised zero-shot (k = 0) detection (top) and instance segmentation (bottom)
performance on novel classes in MS-COCO (color = object category). Additional visualizations in Section J of supplementary.

we conceptually impose an annotation budget that limits the
number of novel class image-level annotations our approach
can use. For object detection on VOC [13], we assume 7

image-level annotations can be generated in the same time as
1 instance-level annotation. The 7 conversion factor between
object instance labels and weakly-supervised image-level
labels is motivated by the timings reported in [4] and is a
conservative estimate (additional details in supplementary
Section F)5. Therefore, for each value of k in a few-shot
setup, we train a variant of UniT that assumes only 7 ⇥ k
image-level annotations for novel classes, which is referred
to as UniT

budget=k

. We then compare the zero-shot perfor-
mance of UniT

budget=k

against the corresponding k-shot
generalized object detection benchmarks6 reported in [58].
This setting allows for an apples-to-apples comparison with
the baselines, while simultaneously enabling the analysis
of the relative importance of image-level annotations when
compared to instance-level annotations.

Please refer to Section 5.2 for details on the dataset and
setup. Table 6 summarizes the results on VOC for three
different novel class splits with different k-shot settings. For
accurate results, on each split and k-shot, we perform 10
repeated runs of UniT

budget=k

, selecting a random set of
7 ⇥ k weakly-labelled novel class images each time. Fol-
lowing [58], we assume ResNet-101 [21] as the backbone.
In table 7, for novel split 1, we further analyse the relative
importance of image-level to instance-level annotations. For
a fixed budget equivalent to 10 instance-level annotations,
we experiment with using different proportions of image and
instance-level annotations, and report mean AP50 on novel
classes computed across 10 repeated runs.

Even under the constraint of equal budget, UniT
budget=k

outperforms the state-of-the-art [58] on multiple splits. This
highlights three key observations: i) weak image-level su-
pervision, which is cheaper to obtain [4], provides a greater
‘bang-for-the-buck’ when compared to instance-level super-
vision, ii) our structured transfer from base classes is ef-

5This factor is expected to be higher in practice, as we don’t consider
situations where boxes/masks are rejected and need to be redrawn [33].

6These benchmarks use multiple random splits as opposed to curated
splits used in [24] and Table 3. As per [58], this helps reduce variance.

#Shots Method Split 1 Split 2 Split 3

1
Kang et al. [24] 14.2± 1.7 12.3± 1.9 12.5± 1.6
Wang et al. [58] 25.3± 2.2 18.3± 2.4 17.9± 2.0

UniT
budget=1 (Ours) 28.3± 2.0 17.0± 1.9 26.2± 2.5

5
Kang et al. [24] 36.5± 1.4 31.4± 1.5 33.8± 1.4
Wang et al. [58] 47.9± 1.2 34.1± 1.4 40.8± 1.4

UniT
budget=5 (Ours) 50.9± 1.4 36.2± 1.7 47.4± 1.2

10 Wang et al. [58] 52.8± 1.0 39.5± 1.1 45.6± 1.1
UniT

budget=10 (Ours) 59.0± 1.5 40.8± 1.3 52.9± 1.1

Table 6: Limited annotation budget. Averaged AP50 for
10 random runs with 95% confidence interval estimate [58].

Method Weak
Anno.(%)

Instance
Anno.(%) AP50

Wang et al. [58] + 10-Shots 0 100 52.8± 1.0
UniT

budget=1 + 9-Shots 10 90 49.2± 0.6
UniT

budget=5 + 5-Shots 50 50 54.0± 0.8
UniT

budget=10 + 0-Shots 100 0 59.0± 1.5

Table 7: Using different annotation proportions. For the
same budget, we vary the amount of image/instance level an-
notation. Averaged AP50 for 10 random runs with 95% con-
fidence interval estimate of the mean values [58] is shown.

fective even when the amount of novel class supervision is
limited, and iii) from Table 7, in a low-shot and fixed budget
setting, it is more beneficial to just use weak supervision
(instead of some combination of both). Furthermore, as
our approach is agnostic to the type of weak detector used,
employing better weak detectors like [50, 2] could further
improve the performance of UniT

budget=k

.

6. Discussion and Conclusion
We propose an intuitive semi-supervised model that is

applicable to a range of supervision: from zero to a few
instance-level samples per novel class. For base classes, our
model learns a mapping from weakly-supervised to fully-
supervised detectors/segmentors. By leveraging similarities
between the novel and base classes, we transfer those map-
pings to obtain detectors/segmentors for novel classes; re-
fining them with a few novel class instance-level annotated
samples, if available. This versatile paradigm works signifi-
cantly better than traditional semi supervised and few-shot
detection and segmentation methods.

8

Today’s “fun” Example: Detection with No Data

Our UniT: Unified Knowledge Transfer

(Note, above result is obtained without human ever annotating bounding boxes
or pixel-level segments for any of these objects)

Let’s assume we have object labeled data …

!38

Object Classifiers

Object classifiers work a lot
better … but require expensive
bounding box annotations …

Example: Face Detection

The Viola-Jones face detector is a classic sliding window detector that learns
both efficient features and a classifier

A key strategy is to use features that are fast to evaluate to reject most
windows early

The Viola-Jones detector computes ‘rectangular’ features within each window

!39

A ‘rectangular’ feature is computed by summing up pixel values within
rectangular regions and then differencing those region sums

!40

Figure credit: P. Viola and M. Jones, 2001

a.k.a. Harr Wavelets

Example: Face Detection

A ‘rectangular’ feature is computed by summing up pixel values within
rectangular regions and then differencing those region sums

!41

Figure credit: P. Viola and M. Jones, 2001

a.k.a. Harr Wavelets

Example: Face Detection

1 -1 0
1

-1
0

-1

0

11

-1

-1

0

1

1

Intergral Image

!42

1 5 2

2 4 1

2 1 1

1 6 8

3 12 15

5 15 19

original image integral image

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intergral Image

!43

1 5 2

2 4 1

2 1 1

1 6 8

3 12 15

5 15 19

What is the sum of the bottom right 2x2 square?

original image integral image

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intergral Image

!44

1 5 2

2 4 1

2 1 1

1 6 8

3 12 15

5 15 19

What is the sum of the bottom right 2x2 square?

original image integral image

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intergral Image

!45

1 5 2

2 4 1

2 1 1

1 6 8

3 12 15

5 15 19

original image integral image

What is the sum of the bottom right 2x2 square?

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intergral Image

!46

1 5 2

2 4 1

2 1 1

1 6 8

3 12 15

5 15 19

Can find the sum of any block using 3 operations

original image integral image

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Given an integral image, the sum within a rectangular region in I can be
computed with just 3 additions/subtractions

Sum = A - B - C + D

Constant time: does not depend on the size of the region. We can avoid
scaling images - just scale features directly (remember template matching!)

!47

Example: Face Detection

Figure credit: P. Viola

!48

https://github.com/shrubb/integral-layer

https://github.com/shrubb/integral-layer

!49

!50

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Training Dataset:

Faces Not-faces

!51

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Evaluate a Harr Wavelet filter on each training example

Faces Not-faces

!52

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Evaluate a Harr Wavelet filter on each training example

We can build a simple classifier by just selecting a threshold on the filter response
(e.g. Harr filter response > 0.6 = face; Harr filter response <= 0.6 = not face)

Note: it is easy to find an optimal threshold. Just
requires linear search over training example responses.

!53

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Evaluate a Harr Wavelet filter on each training example

!54

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Evaluate a Harr Wavelet filter on each training example

Faces Not-faces

!55

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Evaluate a Harr Wavelet filter on each training example

Faces Not-faces

Note: we can easily compare different Harr Wavelet features under their individual
best thresholds to see which is the most informative (has highest classification)

!56

Many possible rectangular features (180,000+ were used in the original paper)
Figure credit: B. Freeman

Example: Face Detection

!57

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Evaluate a Harr Wavelet filter on each training example

Faces Not-faces

However, no one feature is likely to be good enough

Note: we can easily compare different Harr Wavelet features under their individual
best thresholds to see which is the most informative (has highest classification)

!58

Use boosting to both select the informative features and form the classifier.
Each round chooses a weak classifier that simply compares a single rectangular
feature against a threshold

Figure credit: P. Viola and M. Jones, 2001

Example: Face Detection

!59

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Select best filter/threshold combination

2. Re-weight examples

!60

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Select best filter/threshold combination

We start with all sample weights = 1

!61

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Select best filter/threshold combination

weighed sum of miss-classified
training examples

Note: the second term is 0/1
 — 0 predicted label and true label are same
 — 1 predicted label and true label are different (error)

!62

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Select best filter/threshold combination

!63

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Select best filter/threshold combination

2. Re-weight examples

!64

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

2. Re-weight examples

Case 1: Classification for the sample i is correct

Case 2: Classification for the sample i is incorrect

wt+1,i = wt,i �t

wt+1,i = wt,i �t

!65

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

2. Re-weight examples

Case 1: Classification for the sample i is correct

Case 2: Classification for the sample i is incorrect

wt+1,i = wt,i �t

wt+1,i = wt,i �t

Note: the Beta is < 1

!66

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Select best filter/threshold combination

2. Re-weight examples

!67 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Example: Face Detection

3. The final strong classifier is

The final strong classifier is a weighted linear combination of the T weak
classifiers where the weights are inversely proportional to the training errors

!68
Figure credit: K. Grauman

Example: Face Detection Summary

!69
Figure credit: K. Grauman

Example: Face Detection Summary

Main Issue: Efficiency

Observations:
— On average only 0.01% of all sub-windows are positive (faces)
— Equal computation time is spent on all sub-window
— Shouldn’t we spend most time only on potentially positive sub-windows?

!70

Example: Face Detection

Observations:
— On average only 0.01% of all sub-windows are positive (faces)
— Equal computation time is spent on all sub-window
— Shouldn’t we spend most time only on potentially positive sub-windows?

!71

Example: Face Detection

A simple 2-feature classifier can achieve almost 100% detection
rate (0% false negatives) with 50% false positive rate

Observations:
— On average only 0.01% of all sub-windows are positive (faces)
— Equal computation time is spent on all sub-window
— Shouldn’t we spend most time only on potentially positive sub-windows?

Solution:
— A simple 2-feature classifier can act as a 1st layer of a series to filter out
most negative (clearly non-face) windows
— 2nd layer with 10 features can tackle “harder” negative-windows which
survived the 1st layer, and so on…

!72

Example: Face Detection

A simple 2-feature classifier can achieve almost 100% detection
rate (0% false negatives) with 50% false positive rate

Cascading Classifiers

To make detection faster, features can be reordered by increasing complexity
of evaluation and the thresholds adjusted so that the early (simpler) tests have
few or no false negatives

Any window that is rejected by early tests can be discarded quickly without
computing the other features

This is referred to as a cascade architecture
!73

Figure credit: P. Viola

!74

Cascading Classifiers

A classifier in the cascade is not necessarily restricted to a single feature

Figure credit: P. Viola

!75 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Example: Face Detection

3. The final strong classifier is

The final strong classifier is a weighted linear combination of the T weak
classifiers where the weights are inversely proportional to the training errors

!76
Figure credit: K. Grauman

Example: Face Detection Summary

Hard Negative Mining

!77
Image From: Jamie Kang

!78

"CV Dazzle, a project focused on finding fashionable ways to thwart facial-
recognition technology"

Just for fun:

Figure source: Wired, 2015

Example: Face Detection

Recall: Sliding Window
Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!79

Image credit: KITTI Vision Benchmark

Recall: Sliding Window
Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!80

Image credit: KITTI Vision Benchmark

This is a lot of possible windows! And most will not contain the object we are
looking for.

Object Proposals

Object proposal algorithms generate a short list of regions that have generic
object-like properties
— These regions are likely to contain some kind of foreground object instead of
background texture

The object detector then considers these candidate regions only, instead of
exhaustive sliding window search

!81

!82

First introduced by Alexe et al., who asked ‘what is an object?’ and defined an
‘objectness’ score based on several visual cues

Object Proposals

Figure credit: Alexe et al., 2012

!83

First introduced by Alexe et al., who asked ‘what is an object?’ and defined an
‘objectness’ score based on several visual cues

Object Proposals

Figure credit: Alexe et al., 2012
This work argued that objects typically
— are unique within the image and stand out as salient
— have a contrasting appearance from surroundings and/or
— have a well-defined closed boundary in space

!84

Multiscale Saliency
— Favors regions with a unique appearance within the image

High scale Low scale

Failure Case

Successful Case

Object Proposals

Figure credit: Alexe et al., 2012

!85

Colour Contrast
— Favors regions with a contrasting colour appearance from immediate
surroundings

Failure CaseSuccessful Cases

Figure credit: Alexe et al., 2012

Object Proposals

!86 Figure credit: Alexe et al., 2012

Superpixels Straddling
— Favors regions with a well-defined closed boundary
— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

Object Proposals

!87

Object Proposals

Figure credit: Alexe et al., 2012

Superpixels Straddling
— Favors regions with a well-defined closed boundary
— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

Failure CaseSuccessful Cases

!88

Speeding up [11] HOG pedestrian detector [18] Deformable part model detector
[33] Bag of words detector

Table credit: Alexe et al., 2012

Object Proposals

Summary

Detection scores in the deformable part model are based on both appearance
and location

The deformable part model is trained iteratively by alternating the steps
	 1. Assume components and part locations given; compute appearance and

offset models
	 2. Assume appearance and offset models given; compute components and

part locations

An object proposal algorithm generates a short list of regions with generic
object-like properties that can be evaluated by an object detector in place of an
exhaustive sliding window search

!89

