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Lecture 26: Classification




Menu for Today (November 13, 2020)

Topics:
— Classification (cont) — Bag of Words Representation
— kNN, SVMs — Scene Classification

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 15
— Next Lecture: Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9

Reminders:

— Assignment 5. Scene Recognition with Bag of Words is out



Today’s “fun” Example: Scene Graph Prediction
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Today’s “fun” Example: Scene Graph Prediction
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Today’s “fun” Example: Scene Graph Prediction
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Lecture 25: Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}
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Lecture 25: Classification
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Lecture 25: Bayes Classifier

Let ¢ be the class label and let x be the measurement (i.e., evidence)

prior probability

unconditional probabillity
(a.k.a. marginal likelihood)




Lecture 25: Forms of Classifiers

Classification strategies fall under two broad types: parametric and non-
parametric.



Lecture 25: Forms of Classifiers

Classification strategies fall under two broad types: parametric and non-
parametric.

Parametric classifiers are model driven. The parameters of the model are

learned from training examples. New data points are classified by the learned
Model.

— fast, compact
— flexibility and accuracy depend on model assumptions
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Lecture 25: Forms of Classifiers

Classification strategies fall under two broad types: parametric and non-
parametric.

Parametric classifiers are model driven. The parameters of the model are

learned from training examples. New data points are classified by the learned
Model.

— fast, compact
— flexibility and accuracy depend on model assumptions

Non-parametric classifiers are data driven. New data points are classified by
comparing to the training examples directly. " he data is the model”.
— slow

— highly flexible decision boundaries
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Nearest Neighbor Classifier

Given a new data point, assign the label of nearest training example in feature
space.
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19 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Nearest Neighbor Classifier

Given a new data point, assign the label of nearest training example in feature
space.
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K-Nearest Neighbor (kNN) Classifier

We can gain some robustness to noise by voting over multiple neighbours.

Given a new data point, find the k nearest training examples. Assign the label
oy majority vote.

Simple method that works well if the distance measure correctly weights the
various dimensions

For large data sets, as k increases kNN approaches optimality in terms of
MiNiMizing probability of error

14



K-Nearest Neighbor (kNN) Classifier

15-Nearest Neighbor Classifier

1-Nearest Neighbor Classifier

KNN decision boundaries respond to local clusters where one class dominates

Figure credit: Hastie, Tibshirani & Friedman (2nd ed.)
15



Classifier Strategies

Classification strategies fall under two broad types: parametric and non-
parametric.

Parametric classifiers are model driven. The parameters of the model are

learned from training examples. New data points are classified by the learned
Model.

— fast, compact
— flexibility and accuracy depend on model assumptions

Non-parametric classifiers are data driven. New data points are classified by
comparing to the training examples directly. " he data is the model”.
— slow

— highly flexible decision boundaries
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Support Vector Machines (SVM)

Idea: Iry to obtain the decision boundary directly

The decision boundary Is parameterized as a separating hyperplane In
feature space.
— e.g. a separating line in 2D

We choose the hyperplane that is as far as possible from each class - that
Maximizes the distance to the closest point from either class.

17



Linear Classifier

Defines a score function:

image features

18 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

input image

19
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Support Vector Machines (SVM)

o o | earn the decision boundary

20 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?
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Support Vector Machines (SVM)

What’s the best w ?
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Support Vector Machines (SVM)

What’s the best w ?
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Support Vector Machines (SVM)

What’s the best w ?

o4 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?

o5 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?

Intuitively, the line that Is the farthest
from all interior points

26 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?

‘/“ support vectors

Want a hyperplane that is far away from ‘inner points’

07 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

Find hyperplane w such that ...

2
the gap between parallel hyperplanes Tw] 1S Maximized

08 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

Forsyth & Ponce (2nd ed.) Figure 15.6
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Example: Pedestrian Detection with SVM

Figure credit: Papageorgiou, Oren, and Poggio, 1998



Summary

A classifier accepts as input a set of features and outputs (predicts) a class label

Classifiers need to take into account “loss" associated with each kind of
classification error

A Receiver Operating Characteristic (ROC) curve plots the trade-off between false
negatives and false positives

Parametric classifiers are model driven. The parameters of the model are learned
from training examples

— e.9. support vector machine, decision tree

Non-parametric classifiers are data driven. New data points are classified by
comparing to the training examples directly

— e.9. k-nearest neighbour
31



THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 25: Image Classification
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Image Classification

We next discuss image classification, where we pass a whole image into a
classifier and obtain a class label as output.

33



What Makes Image Classification Hard"

Intra-class variation, viewpoint, illumination, clutter, and occlusion (among others!)

34 Figure source: Jianxiong Xiao. Original credit: 7



Image Classification

In addition to iImages containing single objects, the same techniques can be
applied to classify natural scenes (e.g. beach, forest, harbour, library).

Why might classifying scenes be useful”

35



Image Classification

In addition to iImages containing single objects, the same techniques can be
applied to classify natural scenes (e.g. beach, forest, harbour, library).

Why might classifying scenes be useful”

Visual perception is influenced by expectation. Our expectations are often
conditioned on the context.

36



What is This Object?

37 Figure source: Jianxiong Xiao



What is This Object?

33 Figure source: Jianxiong Xiao



What is This Object?

39 Figure source: Jianxiong Xiao



What is This Object?

40 Figure source: Jianxiong Xiao



What is This Object?

41 Figure source: Jianxiong Xiao



What is This Object”

S
N

Walkman Look-Alikes by Joan Steiner
40 Figure source: Jianxiong Xiao



Visual Words

Many algorithms for image classification accumulate evidence on the basis of
visual words.

To classity a text document (e.g. as an article on sports, entertainment,
business, politics) we might find patterns in the occurrences of certain words.
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Vector Space Model

G. Salton. ‘Mathematics and Information Retrieval’ Journal of Documentation, 1979
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Vector Space Model

A document (datapoint) is a vector of counts over each word (feature

— W1,d

What is the similarity between two documents”?
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Visual Words

INn Images, the equivalent of a word Is a local image patch. The local image
patch is described using a descriptor such as SIFT.

We construct a vocabulary or codebook of local descriptors, containing
representative local descriptors.
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What Objects do These Parts Belong To”

48 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Some local feature are
very Informative -

a collection of local features
(loag-of-features)

e deals well with occlusion
e gcale Invariant
e rotation invariant

49 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



(not so) Crazy Assumption

spatial information of local features
can be ignored for object recognition (i.e., verification)

50 Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Visual Words

INn Images, the equivalent of a word Is a local image patch. The local image
patch is described using a descriptor such as SIFT.

We construct a vocabulary or codebook of local descriptors, containing
representative local descriptors.

Question: How might we construct such a codebook? Given a large sample of
SIFT descriptors, say 1 million, how can we choose a small number of
‘representative’ SIFT codewords, say 10007

52



Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each iImage

Classify:
Train and test data using BOWs

53 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Dictionary Learning: Learn Visual Words using Clustering

1. extract features (e.g., SIFT) from images

54 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Dictionary Learning: Learn Visual Words using Clustering

2. Learn visual dictionary (e.g., K-means clustering)

55 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What Features Should We Extract?

— Regular grid
Vogel & Schiele, 2003
Fel-Fel & Perona, 2005

— Interest point detector

Csurka et al. 2004
Fel-Fel & Perona, 2005
Sivic et al. 2005

— Other methods

Random sampling (Vidal-Naguet & Uliman,
2002)

Segmentation-based patches (Barnard et
al. 2003)

56 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Extracting SIFT Patches

Compute SIFT  Normalize patch
descriptor

ILowe’ 99|

Detect patches
Mikojaczyk and Schmid '02]
Mata, Chum, Urban & Pajdla, '02]
Sivic & Zisserman, 03]

57 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Extracting SIFT Patches

N | |

58 Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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K-means clustering
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K-means Clustering

K-means is a clustering technique that iterates between

1. Assume the cluster centers are known. Assign each point to the
closest cluster center.

2. Assume the assignment of points to clusters is known. Compute
the best cluster center for each cluster (as the mean).

K-means clustering is initialization dependent and converges to a local minimum

03



Example Visual Dictionary

™ e ™ e ™
"ma NAFRLE T o .8
a THdaP ] IWE 1™
d Idl BR™ s ™ =NmY
® I=NATFP ACsr L
RN~ A S
PLO"AL, _FAu= B
ARIIEIE FEZIE "
=K = EEIITWilE.
EE_C=I=diiE =F=
| == HIH 0

1] R =N SR
wa VR T ER

64 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example Visual Dictionary
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Example Visual Dictionary
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Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
_earn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each image

Classify:
Train and test data using BOWs

67 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

T

1. Quantization: image features gets associated
to a visual word (nearest cluster center)

M
\

68 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

2. Histogram: count the number of visual word occurrences

.
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o T
L
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69 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

frequency

TLUNENL, e

codewords

70 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each Image

Classify:
Train and test data using BOWs

71 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



3. Classify: Train and text classifier using BOWSs

Support
K nearest Vector
neighbors Machine

70 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Bag-of-Words Representation

Algorithm:

Initialize an empty K -bin histogram, where K Is the number of codewords
Extract local descriptors (e.g. SIFT) from the image
For each local descriptor x

Map (Quantize) x to its closest codeword — ¢(x)
Increment the histogram bin for ¢(x)
Return histogram

We can then classity the histogram using a trained classifier, e.g. a support
vector machine or k-Nearest Neighbor classifier

73



Spatial Pyramid

The bag of words representation does not preserve any spatial information

The spatial pyramid is one way to incorporate spatial information into the
image descriptor.

A spatial pyramid partitions the image and counts codewords within each grid
box; this Is performed at multiple levels

74



Spatial Pyramid
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VLAD (Vector of Locally Aggregated Descriptors)

There are more advanced ways to ‘count’ visual words than incrementing its
histogram bin

For example, it might be useful to describe how local descriptors are quantized
to thelr visual words

In the VLAD representation, instead of incrementing the histogram bin by one,
we increment it by the residual vector x — ¢(x)

/0



Example: VLAD
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Example: VLAD
Bag of Word

/3



Example: VLAD
Bag of Word
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Example: VLAD

Bag of Word

VLAD

30



Example: VLAD

Bag of Word
‘ i 6. 3. O]
VLAD

/7 N\
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VLAD (Vector of Locally Aggregated Descriptors)

The dimensionality of a VLAD descriptor is Kd
— K : number of codewords
— d : dimensionality of the local descriptor

VLAD characterizes the distribution of local descriptors with respect to the
codewords
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Summary

Factors that make image classification hard
— Intra-class variation, viewpoint, illumination, clutter, occlusion...

A codebook of visual words contains representative local patch descriptors

— can be constructed by clustering local descriptors (e.g. SIFT) in training
images

The bag of words model accumulates a histogram of occurrences of each
visual word

The spatial pyramid partitions the image and counts visual words within each
grid box; this Is repeated at multiple levels
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