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Lecture 25: Classification




Menu for Today (November 9, 2020)

Topics:
— Classification — Bag of Words Representation
— kNN, SVMs — Scene Classification

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 15
— Next Lecture: Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9

Reminders:

— Assignment 5: Scene Recognition with Bag of Words is out

— Quiz 4 is out and due at the end of day today

— No class on Wednsday



Today’s “fun” Example:

Audio-Visual Scene Analysis with
Selt-Supervised Multisensory Features

Andrew Owens Alexel A. Efros
UC Berkeley

. BAIR

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH
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Classification

Problem:
AssIgn new observations into one of a fixed set of categories (classes)

Key Idea(s):

Build a model of data in a given category based on observations of
instances In that category



Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

E— cat
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Classification

A classifier is a procedure that accepts as input a set of features and outputs a
class label (probability over class labels)

Classifiers can be binary (face vs. not-face) or multi-class (cat, dog, horse, ...).

We build a classifier using a training set of labelled examples {(x;, ;) }, where
each x; IS a feature vector and each vy; IS a class label.

Given a previously unseen observation, we use the classifier to predict its class
label.

Binary: |0]/[1] Multi-class: [1,0,0,0,...| (one-hot)



Classification

— Collect a database of images with labels
— Use ML to train an image classifier
— Evaluate the classitier on test images

Example training set

Label hat
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Example 1: A Classification Problem

Categorize images of fish
— “Atlantic salmon” vs “Pacific salmon’

Use features such as length, width, lightness,
fin shape & number, mouth position, etc.

Given a previously unobserved image of a
salmon, use the learned classifier to guess
whether it Is an Atlantic or Pacific salmon

Figure credit: Duda & Hart



Example 2: Real Classification Problem

SUN Dataset
- 131K Images

- 908 scene categories

10

outdoor
natural

outdoor
man-made

workplace
(office building, factory, lab, etc.)

home or hotel

transportation
(vehicle interiors, stations, etc.)

sports and leisure

cultural (art, education, religion,
millitary, law, politics, etc.)

auto showroom

0\ bakery kitchen
e ' 44 bakery shop

| bank indoor

bank vault

banquet hall




Example 3: Real Classification Problem

ImageNet Dataset

14 Million iImages

21K object categories
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Closed-world problem

Issue: Classification assumes that incoming image belongs to one of k classes.
However, In practice it iIs iImpossible to enumerate all relevant classes In the
world, nor would doing so be useful. SO how do we deal with images which
don’t belong”

Solution: Create an “unknown” or “irrelevant” class.
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Bayes Rule (Review and Definitions)

Let ¢ be the class label and let x be the measurement (i.e., evidence)

P(clx) =

posterior probabillity

14



Bayes Rule (Review and Definitions)

Let ¢ be the class label and let x be the measurement (i.e., evidence)

prior probability

unconditional probabillity
(a.k.a. marginal likelihood)

15



Bayes Rule (Review and Definitions)
L et ¢ be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification; i.e., ¢ € {1,2}
— features are 1D; i.e., x € R

P(c|lx) =

10



Bayes Rule (Review and Definitions)
L et ¢ be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification; i.e., ¢ € {1,2}
— features are 1D; i.e., x € R

P(c|x) =

Classify x as

1 if p(1lx) > p(2|x) 2 if p(1]x) < p(2|x)
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Bayes Rule (Review and Definitions)
L et ¢ be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification; i.e., ¢ € {1,2}
— features are 1D; i.e., x € R

P(c|lx) =

General case:
— multi-class; i.e., ¢ € {1,...,1000}
— features are high-dimensional; i.e., x € R*%%9+

18



Example: Discrete Bayes Classifier

Assume we have two classes: c1 = male co = female

We have a person who’s gender we don’t know, who’s name is drew

19 Example from: Eamonn Keogh
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We have a person who’s gender we don’t know, who’s name is drew

Drew Carey Drew Barrymore

0 Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

Assume we have two classes: c1 = male co = female

We have a person who’s gender we don’t know, who’s name is drew

Classifying drew as being male or female is equivalent to asking is it more
probable that drew is male or female, i.e. which is greater p(male|drew)

p(female|drew)

| VA
Drew Carey Drew Barrymore

5 Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

Assume we have two classes: c1 = male co = female

We have a person who’s gender we don’t know, who’s name is drew

Classifying drew as being male or female is equivalent to asking is it more
probable that drew is male or female, i.e. which is greater p(male|drew)

p(female|drew)

1 |
p(male|drew) — p(drew|male)p(male)

p(drew)

55 Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

p(drew|male)p(male)

le|d =
p(male|drew) o(drew)

o3 Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

p(male) =

p(drew|male) =

p(drew) =

p(drew|male)p(male)

le|d =
p(male|drew) o(drew)

o4 Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

3
p(male) — é

p(drew|male) =

p(drew) =

p(drew|male)p(male)

le|d =
p(male|drew) o(drew)

o5 Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

3
le) = —
p(male) = o
1
p(drew|male) = —
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Example: Discrete Bayes Classifier

3
le) = —
p(male) = o
1
p(drew|male) = —
p(drew) = g
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p(male|drew) o(drew)
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Example: Discrete Bayes Classifier

3
le) = =
p(male) = o
1
p(drew|male) = —
pldrewy= 2

d 1 1
p(male|drew) = pldrew|male)p(male) = 0.125

_pldre)”

o8 Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

D
3 _°
p(male) - p(female) = ?

1 2

p(drew|male) = p(drew|female) = -

d 1 1
p(male|drew) = pldrew|male)p(male) = 0.125

_pldre)”
p(drew|female)p(female)

p(female|drew) = M = (0.25

e Example from: Eamonn Keogh




Example: 2D Bayes Classifier

O 17 samples

O 15 samples -
O
o O o, 00
O O O
O O
o o
O O
O O
O © o &
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O o O O
O

30 O Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: 2D Bayes Classifier

O 17 samples These could be (g,b) pixel value of an image patch with grass

O 15 samples 0O
O
o O © 00
O O O

Given a (g,b) pixel value from a O O
new patch is it more likely to be o© o
be grass or sky? o % O

O O O 8

'® O
O 0 0O O
These could be (g,b) pixel value of an image patch with sky O

31 @) Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: 2D Bayes Classifier

O 17 samples
O 15 samples

17
bl —
plblue) = T+
( - 15
p green — 17 15

o
0
s O O
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O O

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: 2D Bayes Classifier

O 17 samples
O 15 samples
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Example: 2D Bayes Classifier
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Bayes Rule (Review and Definitions)
L et ¢ be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification; i.e., ¢ € {1,2}
— features are 1D; i.e., x € R

P(c|lx) =

General case:
— multi-class; i.e., ¢ € {1,...,1000}
— features are high-dimensional; i.e., x € R*%%9+
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Bayes' Risk

Some errors may be inevitable: the minimum risk (shaded area) is called the
Bayes’ risk

Decision Boundary Decision Boundary

p(1]x) p(2|x) p(1]x)

X |X
Forsyth & Ponce (2nd ed.) Figure 15.1
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Discriminative vs. Generative

FINnding a decision boundary is not the same as modeling a conditional density
— while a normal density here is a poor fit to P(1|x), the quality of the classifier
depends only on how well the boundary is positioned

P(2[x)
P(1|x)

/

|
X

Forsyth & Ponce (2nd ed.) Figure 15.5
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Discriminative vs. Generative

FINnding a decision boundary is not the same as modeling a conditional density
— while a normal density here is a poor fit to P(1|x), the quality of the classifier
depends only on how well the boundary is positioned

P(2[x)

DI

Forsyth & Ponce (2nd ed.) Figure 15.5
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Bayes' Risk

Some errors may be inevitable: the minimum risk (shaded area) is called the
Bayes’ risk

Decision Boundary Decision Boundary

p(1]x) p(2|x) p(1]x)

X |X
Forsyth & Ponce (2nd ed.) Figure 15.1
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Loss Functions and Classifiers

Loss

— SOMme errors may be more expensive than others

Example: A fatal disease that is easily cured by a cheap medicine with no
side-effects. Here, false positives In diagnosis are better than false negatives

— We discuss two class classification:
L(1 — 2) Is the loss caused by calling 1 a 2

Total risk of using classifier s Is

R(s) = Pr{1 = 2 |using s} L(1 = 2) + Pr{2 = 1 | using s} L(2 — 1)

40



Two Class Classification

Generally, we should classifty as 1 if the expected loss of classifying as 1 is less
than for 2

Classify x as
1 if p(1]x) L(1 = 2) > p(2x) L2 — 1)
2 if p(1lx) LA = 2) < p(2lx) L2 — 1)

Decision boundary: points where the loss Is the same for either class.

41



Training Error, Testing Error, and Overfitting

Training error is the error a classifier makes on the training set

We want to minimize the testing error — the error the classifier makes on an
unseen testing set

Classifiers that have small training error may not necessarily have small testing
error

The phenomenon that causes testing error to be worse than training error Is
called overfitting

42



Training Error, Testing Error, and Overfitting

Underfitting:. model is too simple to represent all the relevant class
characteristics

43



Training Error, Testing Error, and Overfitting

Underfitting:. model is too simple to represent all the relevant class
characteristics

Overfitting: model is too complex and fits irrelevant characteristics (noise) in
the data
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Training Error, Testing Error, and Overfitting

Underfitting:. model is too simple to represent all the relevant class
characteristics

Overfitting: model is too complex and fits irrelevant characteristics (noise) in
the data
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Cross-Validation

We cannot reliably estimate the error rate of the classifier using the training set

An alternative Is to split some training data to form a validation set, then train
the classifier on the rest of the data and evaluate on the validation set

Try out what hyperparameters work best on test set.

|

train data test data

46



Cross-Validation

We cannot reliably estimate the error rate of the classifier using the training set

An alternative Is to split some training data to form a validation set, then train
the classifier on the rest of the data and evaluate on the validation set

Trying out what hyperparameters work best on test set:
Very bad idea. The test set is a proxy for the generalization performance!
Use only VERY SPARINGLY, at the end.

\J

train data test data
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Cross-Validation

We cannot reliably estimate the error rate of the classifier using the training set

An alternative Is to split some training data to form a validation set, then train
the classifier on the rest of the data and evaluate on the validation set

train data test data

'
fold 1 fold 2 fold 3 fold 4 fold 5 test data

|

use to tune hyperparameters
evaluate on test set ONCE at the end

48



Cross-Validation

Cross-validation involves performing multiple splits and averaging the error
over all splits

train data test data

v
fold 1 fold 2 fold 3 fold 4 fold 5 test data

\x\ Cr;s-valiiiation

cycle through the choice of which fold
Is the validation fold, average results.

49



Confusion Matrix

When evaluating a multi-class classifier, it may be usetful to know how often
certain classes are often misclassified as others.

A confusion matrix is a table whose (i,])th entry is the frequency (or
proportion) an item of true class | was labelled as | by the classitier.

Algorithm B confusion matrix with train=15 per class

X
Q

Forsyth & Ponce (2nd ed.) Figure 15.3. Original credit: H. Zhang et al., 20060.
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Receiver Operating Characteristics (ROC)

ROC curves on test set shawing effect of increased bin size
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0 005 o 0.15 0.2 0.25 0.3 0.35 04
Probability of false detection

Forsyth & Ponce (2nd ed.) Figure 15.4

Figure from M. J. Jones and J. Rehg, “Statistical color models with application to skin detection,” Proc. CVPR, 1999, |[EEE
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Receiver Operating Characteristics (ROC)

ROC curves on test sel showing effect of increased bin size
T T T T T T T

What is a ROC curve for a

perfect classifier?
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Figure from M. J. Jones and J. Rehg, “Statistical color models with application to skin detection,” Proc. CVPR, 1999, |[EEE
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Receiver Operating Characteristics (ROC)

ROC curves on test sel showing effect of increased bin size

What is a ROC curve for a —

perfect classifier?
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Figure from M. J. Jones and J. Rehg, “Statistical color models with application to skin detection,” Proc. CVPR, 1999, |[EEE
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Classifier Strategies

Classification strategies fall under two broad types: parametric and non-
parametric.

o4



Classifier Strategies

Classification strategies fall under two broad types: parametric and non-
parametric.

Parametric classifiers are model driven. The parameters of the model are

learned from training examples. New data points are classified by the learned
Model.

— fast, compact
— flexibility and accuracy depend on model assumptions

0O



Classifier Strategies

Classification strategies fall under two broad types: parametric and non-
parametric.

Parametric classifiers are model driven. The parameters of the model are

learned from training examples. New data points are classified by the learned
Model.

— fast, compact
— flexibility and accuracy depend on model assumptions

Non-parametric classifiers are data driven. New data points are classified by
comparing to the training examples directly. " he data is the model”.
— slow

— highly flexible decision boundaries
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Nearest Neighbor Classifier

Given a new data point, assign the label of nearest training example in feature
space.
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57 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Nearest Neighbor Classifier

Given a new data point, assign the label of nearest training example in feature
space.
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58 Image Credit: loannis (Yannis) Gkioulekas (CMU)



K-Nearest Neighbor (kNN) Classifier

We can gain some robustness to noise by voting over multiple neighbours.

Given a new data point, find the k nearest training examples. Assign the label
oy majority vote.

Simple method that works well if the distance measure correctly weights the
various dimensions

For large data sets, as k increases kNN approaches optimality in terms of
MiNiMizing probability of error
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K-Nearest Neighbor (kNN) Classifier

15-Nearest Neighbor Classifier

1-Nearest Neighbor Classifier

KNN decision boundaries respond to local clusters where one class dominates

Figure credit: Hastie, Tibshirani & Friedman (2nd ed.)
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