
Lecture 24: Optical Flow

CPSC 425: Computer Vision 
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Menu for Today (November 6, 2020)
Topics: 

— Optical Flow 
— Optical Flow Constraint

Reminders: 

— Assignment 4: Local Invariant Features and RANSAC due Today

— Lucas-Kanade 
— Horn-Schunck

Redings: 
— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 15.1, 15.2                            

— Next Lecture:       Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9



!3

Today’s “fun” Example: Visual Microphone

Follow-up work to previous lecture’s example of Eulerian video magnification
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Today’s “fun” Example: Visual Microphone

Follow-up work to previous lecture’s example of Eulerian video magnification



Optical Flow

Problem:  
Determine how objects (and/or the camera itself) move in the 3D world  

Key Idea(s):  
Images acquired as a (continuous) function of time provide additional 
constraint. Formulate motion analysis as finding (dense) point correspondences 
over time. 
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Optical Flow and 2D Motion
Optical flow is the apparent motion of brightness patterns in the image 

Applications 
— image and video stabilization in digital cameras, camcorders  
— motion-compensated video compression schemes such as MPEG 
— image registration for medical imaging, remote sensing 
— action recognition  
— motion segmentation
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Motion is geometric  

Optical flow is radiometric  

Usually we assume that optical flow and 2-D motion coincide ... but this is not 
always the case!  
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Optical Flow and 2D Motion



Optical flow but no motion . . . 
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Optical Flow and 2D Motion



Optical flow but no motion . . . 
. . . moving light source(s), lights going on/off, inter-reflection, shadows  
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Optical flow but no motion . . . 
. . . moving light source(s), lights going on/off, inter-reflection, shadows  

Motion but no optical flow . . .  
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Optical Flow and 2D Motion



Optical flow but no motion . . . 
. . . moving light source(s), lights going on/off, inter-reflection, shadows  

Motion but no optical flow . . .  

. . . spinning sphere.  
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Optical Flow and 2D Motion



Here’s a video example of a very skilled Japanese contact juggler working with 
a clear acrylic ball  

A key element to the illusion is motion without corresponding optical flow 
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Source: http://youtu.be/CtztrcGkCBw?t=1m20s

Optical Flow and 2D Motion

http://youtu.be/CtztrcGkCBw?t=1m20s
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Example 1: Rotating Ellipse 
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Example 1: Three “Percepts”

1. Veridical: 
— a 2-D rigid, flat, rotating ellipse  

2. Amoeboid: 
— a 2-D, non-rigid “gelatinous” smoothly deforming shape  

3. Stereokinetic: 
— a circular, rigid disk rolling in 3-D  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A narrow ellipse oscillating rigidly about its center appears rigid

Example 1: Rotating Ellipse 
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A narrow ellipse oscillating rigidly about its center appears rigid

Example 1: Rotating Ellipse 



!15

However, a fat ellipse undergoing the same motion appears nonrigid

Video credits: Yair Weiss

Example 1: Rotating Ellipse 
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However, a fat ellipse undergoing the same motion appears nonrigid

Video credits: Yair Weiss

Example 1: Rotating Ellipse 
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The apparent nonrigidity of a fat ellipse is not really a "visual illusion". A rotating 
ellipse or a nonrigid pulsating ellipse can cause the exact same stimulation on 
our retinas. In this sequence the ellipse contour is always doing the same thing, 
only the markers' motion changes.

Video credits: Yair Weiss

Example 1: Rotating Ellipse 
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The apparent nonrigidity of a fat ellipse is not really a "visual illusion". A rotating 
ellipse or a nonrigid pulsating ellipse can cause the exact same stimulation on 
our retinas. In this sequence the ellipse contour is always doing the same thing, 
only the markers' motion changes.

Video credits: Yair Weiss

Example 1: Rotating Ellipse 
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Video credits: Yair Weiss

The ellipse's motion can be influenced by features not physically connected to 
the ellipse. In this sequence the ellipse is always doing the same thing, only the 
dots' motion changes.

Example 1: Rotating Ellipse 
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Video credits: Yair Weiss

The ellipse's motion can be influenced by features not physically connected to 
the ellipse. In this sequence the ellipse is always doing the same thing, only the 
dots' motion changes.

Example 1: Rotating Ellipse 



Example: Flying Insects and Birds

Bees have very limited stereo perception. How do they fly safely through narrow 
passages?  
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Example: Flying Insects and Birds
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Bees have very limited stereo perception. How do they fly safely through narrow 
passages?  

A simple strategy would be to balance the speeds of motion of the images of 
the two walls. If wall A is moving faster than wall B, what should you (as a bee) 
do? 



!20

Example: Flying Insects and Birds

Figure credit: M. Srinivasan

Bee strategy: Balance the optical flow experienced by the two eyes



How do bees land safely on surfaces?  

During their approach, bees continually adjust their speed to hold constant the 
optical flow in the vicinity of the target  

— approach speed decreases as the target is approached and reduces to zero 
at the point of touchdown  

— no need to estimate the distance to the target at any time  
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Example: Flying Insects and Birds
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Bees approach the surface more slowly if the spiral is rotated to augment the rate of 
expansion, and more quickly if the spiral is rotated in the opposite direction

Figure credit: M. Srinivasan

Example: Flying Insects and Birds



!23
Figure credit: M. Srinivasan

Example: Flying Insects and Birds



Aperture Problem
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In which direction is the line moving?

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aperture Problem

!25

In which direction is the line moving?

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aperture Problem
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Aperture Problem
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Aperture Problem

— Without distinct features to track, the true visual motion is ambiguous  

— Locally, one can compute only the component of the visual motion in the 
direction perpendicular to the contour 
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Aperture Problem

— Without distinct features to track, the true visual motion is ambiguous  

— Locally, one can compute only the component of the visual motion in the 
direction perpendicular to the contour 
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Visual Motion

Visual motion is determined when there are distinct features to track, provided:  
— the features can be detected and localized accurately; and  
— the features can be correctly matched over time  
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Motion as Matching
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Consider image intensity also to be a function of time,  . We write  

Optical Flow Constraint Equation
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I(x, y, t)
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Consider image intensity also to be a function of time,  . We write  

Applying the chain rule for differentiation, we obtain 

where subscripts denote partial differentiation

Optical Flow Constraint Equation
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Consider image intensity also to be a function of time,  . We write  
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Scene point moving through image sequence

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Consider image intensity also to be a function of time,  . We write  
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constant

Brightness Constancy Assumption: Brightness of the point remains the same

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
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For small space-time step, brightness of a point is the same

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Aside: Derivation of Optical Flow Constraint
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For small space-time step, brightness of a point is the same

Insight: 
If the time step is really small,  

we can linearize the intensity function 
(and motion is really-small … think less than a pixel)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
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Multivariable Taylor Series Expansion 
(First order approximation, two variables)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
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Multivariable Taylor Series Expansion 
(First order approximation, two variables)

assuming small motion

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
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Multivariable Taylor Series Expansion 
(First order approximation, two variables)

assuming small motion
fixed point

partial derivative

cancel terms

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
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Multivariable Taylor Series Expansion 
(First order approximation, two variables)

assuming small motion

cancel terms

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
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Multivariable Taylor Series Expansion 
(First order approximation, two variables)

assuming small motion

divide by 
take limit 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
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Multivariable Taylor Series Expansion 
(First order approximation, two variables)

assuming small motion

divide by 
take limit 

Brightness Constancy 
Equation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How do we compute … 
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How do we compute … 
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spatial derivative

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How do we compute … 
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spatial derivative

Forward difference 
Sobel filter 
Scharr filter 

…

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How do we compute … 
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spatial derivative

Forward difference 
Sobel filter 
Scharr filter 

…

temporal derivative

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How do we compute … 
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spatial derivative

Forward difference 
Sobel filter 
Scharr filter 

…

temporal derivative

Frame differencing

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Frame Differencing: Example
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1 1 1 1 1
1 1 1 1 1
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- =

(example of a forward temporal difference)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How do we compute … 
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spatial derivative optical flow

Forward difference 
Sobel filter 
Scharr filter 

…

temporal derivative

Frame differencingHow do you compute this?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How do we compute … 
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spatial derivative optical flow

Forward difference 
Sobel filter 
Scharr filter 

…

temporal derivative

Frame differencingWe need to solve for this! 
(this is the unknown in the 

optical flow problem)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How do we compute … 
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spatial derivative optical flow

Forward difference 
Sobel filter 
Scharr filter 

…

temporal derivative

Frame differencing
Solution lies on a line

Cannot be found uniquely 
with a single constraint 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Equation determines a straight line in velocity space

many combinations of u and v will satisfy the equality

Optical Flow Constraint Equation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aperture Problem
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In which direction is the line moving?

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Lucas-Kanade

Observations:  
1. The 2-D motion,        , at a given point,        , has two degrees-of-freedom  
2. The partial derivatives,              , provide one constraint  
3. The 2-D motion,        , cannot be determined locally from              alone  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Obtain additional local constraint by computing the partial derivatives,             , 
in a window centered at the given  
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Lucas-Kanade

Observations:  
1. The 2-D motion,        , at a given point,        , has two degrees-of-freedom  
2. The partial derivatives,              , provide one constraint  
3. The 2-D motion,        , cannot be determined locally from              alone  

Lucas–Kanade Idea:  
Obtain additional local constraint by computing the partial derivatives,             , 
in a window centered at the given  

Constant Flow Assumption: nearby pixels will likely have same optical flow
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Suppose                         is the (original) center point in the window. Let            
be any other point in the window. This gives us two equations that we can write  

and that can be solved locally for    and    as 

provided that    and    are the same in both equations and provided that the 
required matrix inverse exists. 
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[x1, y1] = [x, y] [x2, y2]
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= 0Optical Flow Constraint Equation:



Considering all n points in the window, one obtains  

which can be written as the matrix equation  

where                   ,                                 and
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The standard least squares solution,   , to is  

again provided that    and    are the same in all equations and provided that the 
rank of          is 2 (so that the required inverse exists)  
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Note that we can explicitly write down an expression for          as  

which is identical to the matrix     that we saw in the context of Harris corner 
detection  
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Note that we can explicitly write down an expression for          as  

which is identical to the matrix     that we saw in the context of Harris corner 
detection  
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What does that mean? 



A dense method to compute motion,        , at every location in an image  

Key Assumptions:  

1. Motion is slow enough and smooth enough that differential methods apply 
(i.e., that the partial derivatives,             , are well-defined)  

2. The optical flow constraint equation holds (i.e.,                        ) 

3. A window size is chosen so that motion,        , is constant in the window  

4. A window size is chosen so that the rank of           is 2 for the window  

!72

Lucas-Kanade Summary
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Aside: Optical Flow Smoothness Constraint

Many methods trade off a ‘departure from the optical flow constraint’ cost with 
a ‘departure from smoothness’ cost.  

The optimization objective to minimize becomes  

where    is a weighing parameter.  
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smoothness brightness constancy

weight

Horn-Schunck Optical Flow

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Horn-Schunck Optical Flow
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Brightness constancy

Smoothness

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is, 
given a scene point located at             in an image acquired at time    , what is 
its position,            , in an image acquired at time    ?  

Assuming image intensity does not change as a consequence of motion, we 
obtain the (classic) optical flow constraint equation  

 
where        , is the 2-D motion at a given point,        , and              are the partial 
derivatives of intensity with respect to   ,   , and  

Lucas–Kanade is a dense method to compute the motion,        , at every 
location in an image 
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