THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 24: Optical Flow



Menu for Today (November 6, 2020)

Topics:
— Optical Flow — Lucas-Kanade
— Optical Flow Constraint — Horn-Schunck

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 15.1, 15.2
— Next Lecture: Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9

Reminders:

— Assignment 4: Local Invariant Features and RANSAC due Today



Today’s “fun” Example: Visual Microphone

The Visual Microphone:
Passive Recovery of Sound from Video

Abe Davis
Michael Rubinstein
Neal Wadhwa
Gautham J. Mysore
Fredo Durand
William T. Freeman

Follow-up work to previous lecture’s example of Eulerian video magnification
3
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Optical Flow

Problem:
Determine how objects (and/or the camera itself) move in the 3D world

Key ldea(s):
lmages acquired as a (continuous) function of time provide additional
constraint. Formulate motion analysis as finding (dense) point correspondences

over time.



Optical Flow and 2D Motion

Optical flow is the apparent motion of brightness patterns in the image

Applications
— Image and video stabilization in digital cameras, camcorders

— motion-compensated video compression schemes such as MPEG
— Image registration for medical iImaging, remote sensing

— action recognition

— motion segmentation
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Optical Flow and 2D Motion

Motion is geometric

Optical flow is radiometric

Usually we assume that optical flow and 2-D motion coincide ... but this is not
always the case!



Optical Flow and 2D Motion

Optical flow but no motion . . .
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Optical Flow and 2D Motion

Optical flow but no motion . . .
... moving light source(s), lights going on/off, inter-reflection, shadows

Motion but no optical flow . . .

. .. SpiNning sphere.
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Optical Flow and 2D Motion

Here’s a video example of a very skilled Japanese contact juggler working with
a clear acrylic ball
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Source: http://youtu.be/CtztrcGKCBw?t=1m20s
A key element to the illusion is motion without corresponding optical flow
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Example 1: Rotating tEllipse

a
_
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Example 1: Three "Percepts”

1. Veridical:
— a 2-D rigid, flat, rotating ellipse

2. Amoeboid:
— a 2-D, non-rigid “gelatinous”™ smoothly deforming shape

3. Stereokinetic:
— a circular, rigid disk rolling in 3-D
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Example 1: Rotating Ellipse

A narrow ellipse oscillating rigidly about its center appears rigid

Wass and Addson (A RVD 95)
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Example 1: Rotating Ellipse

However, a fat ellipse undergoing the same motion appears nonrigid

Wass and Addson (ARVD 95)

Video credits: Yair Welss
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Example 1: Rotating Ellipse

The apparent nonrigidity of a fat ellipse is not really a "visual illusion”. A rotating
ellipse or a nonrigid pulsating ellipse can cause the exact same stimulation on

our retinas. In this sequence the ellipse contour Is always doing the same thing,
only the markers' motion changes.

Wass and Addson (A RVD 95)

Video credits: Yair Welss
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Example 1: Rotating Ellipse

The ellipse’'s motion can be influenced by features not physically connected to
the ellipse. In this sequence the ellipse Is always doing the same thing, only the
dots’ motion changes.

Video credits: Yair Welss
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Example 1: Rotating Ellipse

The ellipse’'s motion can be influenced by features not physically connected to
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Example: Flying Insects and Birds

Bees have very limited stereo perception. How do they fly safely through narrow
passages”
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Example: Flying Insects and Birds

Bees have very limited stereo perception. How do they fly safely through narrow
passages”

A simple strategy would be to balance the speeds of motion of the images of

the two walls. If wall A is moving faster than wall B, what should you (as a bee)
do”
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Example: Flying Insects and Birds

Bee strategy: Balance the optical flow experienced by the two eyes

Figure credit: M. Srinivasan
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Example: Flying Insects and Birds

How do bees land safely on surfaces”

During their approach, bees continually adjust their speed to hold constant the
optical flow In the vicinity of the target

— approach speed decreases as the target is approached and reduces to zero
at the point of touchdown

— NO need to estimate the distance to the target at any time
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Example: Flying Insects and Birds

y

Bees approach the surface more slowly it the spiral is rotated to augment the rate of
expansion, and more quickly if the spiral is rotated in the opposite direction

55 Figure credit: M. Srinivasan



Example: Flying Insects and Birds
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Figure credit: M. Srinivasan
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Aperture Problem

In which direction is the line moving”

o4 Image Credit: loannis (Yannis) Gkioulekas (CMU)
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Aperture Problem
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Aperture Problem

— Without distinct features to track, the true visual motion iIs ambiguous

— Locally, one can compute only the component of the visual motion In the
direction perpendicular to the contour
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Aperture Problem

Detected
direction

\

\

Receptive \ Motion
field < direction
(aperture) g

— Without distinct features to track, the true visual motion iIs ambiguous

— Locally, one can compute only the component of the visual motion In the
direction perpendicular to the contour
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Visual Motion

Visual motion is determined when there are distinct features to track, provided:
— the features can be detected and localized accurately; and
— the features can be correctly matched over time
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Vlotion as Matching

Representation Result is. ..
Point/feature based (very) sparse
Contour based (relatively) sparse
(Differential) gradient based dense
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Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(x,y,t)
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Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(x,y,t)
Applying the chain rule for differentiation, we obtain

dl(x,y,t) _ g dr I dy
dat  Cdt Vdt

where subscripts denote partial differentiation

I
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Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(z,y,1)
Applying the chain rule for differentiation, we obtain
dl(x,y,t) dx dy

= - -
dt dat " Vdr
where subscripts denote partial differentiation
d
Define u = d—f and v = d_?Z . Then [u,v| is the 2-D motion and the space of all

such v and v Is the 2-D velocity space
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Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(x,y,t)
Applying the chain rule for differentiation, we obtain
dl(x,y,t) dx dy

gt teg Tlvge T
where subscripts denote partial differentiation
Define u = Cfi—f and v = % . Then [u,v| is the 2-D motion and the space of all
such v and v Is the 2-D velocity space
Suppose (Z’ty’ t) _ 0 - Then we obtain the (classic) optical flow constraint

equation Lou+ Lo+ I, =0
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Optical Flow Constraint Equation

What does this mean, and why is it reasonable?

dI(x,y,t)
dt

Suppose — 0 - T'hen we obtain the (classic) optical flow constraint

equation Lou+ Lo+ I, =0
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Optical Flow Constraint Equation

Scene point moving through image sequence

(z(k), y(k))
(x(2),y(2))
(z(1),y(1))

What does this mean, and why is it reasonable?

dI(x,y,t)

y — 0 - Then we obtain the (classic) optical flow constraint
v

Suppose
equation

lyu+ Lyo+ 1 =0

40 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Optical Flow Constraint Equation

Scene point moving through image sequence

............................................................................................ R
g 5(2). 5(2))
(z(1),y(1))
I(z,y,1) I(z,y,2) [(z,y,k)
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dI(x,y,t)

y — 0 - Then we obtain the (classic) optical flow constraint
v
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Optical Flow Constraint Equation

Brightness Constancy Assumption: Brightness of the point remains the same

............................................................................ B
g N
(z(1),y(1))
I(z,y,1) I(z,y,2) T
I(x(t),y(t),t) =C
constant

What does this mean, and why is it reasonable?

dI(x,y,t)

y — 0 - Then we obtain the (classic) optical flow constraint
v

Suppose
equation

lyu+ Lyo+ 1 =0
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Aside: Derivation of Optical Flow Constraint
I(x 4+ udt,y + vot,t + 6t) = I(x,y,t)

For small space-time step, brightness of a point Is the same

1 (xHuot,y+vor)

(x, ) (x,y)
timet timet + 0t

43 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(x + udt,y + vot,t + ot) = I(x,y,t)

For small space-time step, brightness of a point Is the same

Insight:
f the time step Is really small,
we can linearize the intensity function
(and motion is really-small ... think less than a pixel)

A4 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(x + udt,y + vot,t + 0t) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(a:,y) o f(a'a b) T fa:(a'a b)(.’E o a’) o fy(aa b)(y T b)

- J
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g J

01 01 01
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Aside: Derivation of Optical Flow Constraint
I(x + udt,y + vot,t + ot) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(zc,y) ~ f(a’a b) + fa:(a'a b)(.’E o a) o fy(aa b)(y T b)

g J

partial derivative

01 o1 o1
I(zc,y,t) | 83';5:6 | 6y5y | 8t5t=1($,y,t) assuming small motion

fixed point

cancel terms

17 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(x + udt,y + vot,t + ot) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(a:,y) ~ f(a’a b) + fa:(aa b)(.’L‘ o a) o fy(aa b)(y T b)

\_ J

ol ol ol
[(z,y,t) ox t5t = I(x,y,t) assuming small motion
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- Or 0
ol ol ol
—dx 4 Sy - 3 = cancel terms
ox v oy y ot .
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Aside: Derivation of Optical Flow Constraint
I(x 4+ udt,y + vot,t + 6t) = I(x,y,t)

f(z,y) = f(a,b) + fz(a,b)(z — a) — fy(a,b)(y — b)

ol ol ol
[(z,y,t) 0x 0Y ; ot = I(x,y,t) assuming small motion

- Ox oy o,
)4 ol ol divide by 4t
07 1 | -
oz . oy oy ot 0t =0 take limit 6t — 0

~

0l dx , 01 dy , o _ o Brightness Constancy
Ox dt Oy dt Ot Equation

50 Slide Credit: loannis (Yannis) Gkioulekas (CMU)




How do we compute ...

Iwu—l—ly’v—l—ft = ()

51 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

Ia,’u,—l—fy’v—l—ft =0

.

Iy =

spatial derivative

- 01
~ By

_J

52

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

Ia;’U,-FIy’U-I-It =0

ol ol
IL=— I,=—
or 7 Oy

spatial derivative

Forward difference
Sobel filter
Scharr filter

53 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

Ia;’U,-FIy’U-I-It = ()

ol ol ol

I.’:C —_— Iy — < It —_—

0x oy Ot
spatial derivative temporal derivative

Forward difference
Sobel filter
Scharr filter

54 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

lyu+L,v+1; =0

- 2 - 2
I — o1 I — ol I ol
xr 8_.’13 y 8y t — a
spatial derivative temporal derivative
. y . y
Forward difference Frame differencing
Sobel filter

Scharr filter

55 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Frame Differencing: =xample

t+ 1

1

1

10
10

10
10

10
10

10 10 10

OO O O O O O

(example of a forward temporal difference)

50
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t+ 1

o O O

o O O

o O O
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0
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91010 |0
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-
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Slide Credit": loannis (Yannis) Gkioulekas (CMU)
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How do we compute ...

Iwu—l—ly’v—l—ft =0

- 2 - 2
I — ol I — o1 I ol
= 9. YT O U = 7 t = 9t
\ spatial derivative optical flow temporal derivative
y . y
Forward difference How do you compute this? Frame differencing
Sobel filter

Scharr filter

58 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

Ia,’u,—l—fy’v—l—ft = ()

(- ) éa )
) ;oI
T — A Yy~ Q.. U — — t — A,
oz oy At ot
spatial derivative optical flow temporal derivative
g J . J
Forward difference We need to solve for this! Frame differencing
Sobel filter (this is the unknown in the
Scharr filter optical flow problem)

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

Ia,’u,—l—fy’v—l—ft = ()

- 2 - 2
I — ol I — ol I ol
T = 5y YT Oy U = a7 t = 5t
\ spatial derivative ) optical flow temporal derivative
. y

Forward difference Frame differencing

Sobel filter Solution lies on a line

Scharr filter
Cannot be found uniquely

with a single constraint
80 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Optical Flow Constraint Equation

Iwu—FIyU-I-It:O

many combinations of u and v will satisfy the equality u

Equation determines a straight line in velocity space

6 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aperture Problem

In which direction is the line moving”

80 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Lucas-Kanade

Observations:

1. The 2-D motion, |u, v|, at a given point, |z, y], has two degrees-of-freedom
2. The partial derivatives, I, I,,, I;, provide one constraint

3. The 2-D motion, [u, v], cannot be determined locally from I, I, I; alone
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2. The partial derivatives, I, I,,, I;, provide one constraint
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Lucas-Kanade

Observations:

1. The 2-D motion, |u, v|, at a given point, |z, y], has two degrees-of-freedom
2. The partial derivatives, I, I,,, I;, provide one constraint

3. The 2-D motion, [u, v], cannot be determined locally from I, I, I; alone

Lucas—-Kanade Idea:

Obtain additional local constraint by computing the partial derivatives, I, 1,,, I,
in a window centered at the given |z, ¥/

Constant Flow Assumption: nearby pixels will likely have same optical flow
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Lucas-Kanade Optical Flow Constraint Equation: [,u + [, v 4+ [ = 0

Suppose [z1,y1] = [z, y] is the (original) center point in the window. Let [x2, yo]
be any other point in the window. This gives us two equations that we can write

Lp,u+ 1,0 =—1
lp,u+ 1,0 = —1,

and that can be solved locally for v and v as

I, I,
Ly, I

U
U

1

Ly

2

orovided that u and v are the same In both equations and provided that the
required matrix inverse exists.
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Lucas-Kanade Optical Flow Constraint Equation: [,u + [, v 4+ [ = 0

Considering all n points in the window, one obtains

[pu+ 1, v=—1
lp,u+ 1,,v=—1,

I, u+1, v=—1

which can be written as the matrix equation

Av=DL
IfL‘l Iyl | ]t1
IfL‘2 I?JQ Itz
where v=[u,v]", A=| . . |and b=—|
]xn Iyn B ‘[tn

o/



Lucas-Kanade

The standard least squares solution, v, to Is

v=(A"A)"'A'Db

again provided that u and v are the same In all equations and provided that the
rank of A1 A is 2 (so that the required inverse exists)

03



Lucas-Kanade

1 r
— &\ e I.’L‘l Iyl
~ ~ ~ ng ‘[y2
— &\ e : :
The standard least squares solution, v, to is <~ 8 I. I.
| | L CUn yn

v=(A"A)"'A'Db

again provided that u and v are the same In all equations and provided that the
rank of A1 A is 2 (so that the required inverse exists)
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Lucas-Kanade

Note that we can explicitly write down an expression for A* A as

N2 S ILI
ATA: Z T LY
_ > 1.1, Iy2

which 1s identical to the matrix C that we saw In the context of Harris corner
detection
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Lucas-Kanade

Note that we can explicitly write down an expression for A* A as

N2 S ILI
ATA: Z T LY
_ > 1.1, Iy2

which 1s identical to the matrix C that we saw In the context of Harris corner
detection

What does that mean®?

[a



| ucas-Kanade Summary

A dense method to compute motion, [y, v] at every location in an image
Key Assumptions:

1. Motion Is slow enough and smooth enough that differential methods apply
(.e., that the partial derivatives, I, I,,, I;, are well-defined)

dl(x,y,t
2. The optical flow constraint equation holds (i.e., (Z ty ) =0)

3. A window size is chosen so that motion, |u, v, is constant in the window

4. A window size is chosen so that the rank of AY A is 2 for the window

(2



Aside: Optical Flow Smoothness Constraint

Many methods trade off a ‘departure from the optical flow constraint” cost with
a ‘departure from smoothness’ cost.

The optimization objective to minimize becomes
E= [ [+ Lo+ TP 4 20 9wl + )| 7 o)

where A IS a weighing parameter.
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Horn-Schunck Optical Flow

smoothness brightness constancy

t weight

74 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Horn-Schunck Optical Flow

Brightness constancy Eq(i,7) = | Ipuij + Lyvi; + I

Smoothness
Es(i,7) = i (wi5 — Uir1,5)* + (Uig — vijr1)” + (Vij — vig,;)° + (vij — vijp1)°
z',j'—i—l i i+ 1 i,j?—l—l i i+ 1
(wij = wit1,5) (wij — wij+1) (Vij = Vit1,5) (Vij = ij+1)
et R TR e Y T
i, 7 — 1 ij—1 t,J —1 8,7 — 1

75 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is,

given a scene point located at (xg, yo) in an image acquired at time to, what is
its position, (z1,y1), in an image acquired at time ¢17?

Assuming image intensity does not change as a conseqguence of motion, we
obtain the (classic) optical flow constraint equation

lyu+ 1Lyo+ 1 =0

where |u, v}, is the 2-D motion at a given point, |z, y|, and I, 1., I; are the partial
derivatives of intensity with respect to x, y, and ¢

Lucas-Kanade is a dense method to compute the motion, |u, v|, at every
location In an Image

/0



