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Lecture 23: Stereo (cont)



Menu for [ogay (November 4, 2020)

Topics:
— Stereo Vision — Structured Light
— More Than 2 Cameras — Optical Flow

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 10.6, 6.2.2, 9.3.1, 9.3.3, 9.4.2
— Next Lecture: None

Reminders:

— Assignment 4: RANSAC and Panoramas due November 6th

— Quiz next Monday, November 9th



Lecture 22: Re-cap Stereo Vision

With two eyes, we acquire images of the world from slightly different viewpoints

We perceive depth based on differences In the relative position of points
N the left Image and in the right image



Lecture 22: Re-cap Stereo Vision

Task: Compute depth from two images acquired from (slightly) different
viewpoints

Approach: “Match” locations in one image to those in another

Sub-tasks:

— (Calibrate cameras and camera positions

— Find all corresponding points (the hardest part)
— Compute depth and surfaces



Lecture 22: Re-cap Stereo Vision

Triangulate on two Images of the same point

A f | baseline \ -

Right

Match correlation windows
across scan lines

Image credit: Point Grey Research
Slide credit: Trevor Darrell




The Epipolar Constraint

epipolar line epipolar line

Matching points lie along corresponding epipolar lines
Reduces correspondence problem to 1D search along conjugate epipolar lines

Greatly reduces cost and ambiguity of matching

Slide credit; Steve Seitz
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The Epipolar Constraint

epipolar line epipolar line

. epipolar plane ‘

Matching points lie along corresponding epipolar lines
Reduces correspondence problem to 1D search along conjugate epipolar lines

Greatly reduces cost and ambiguity of matching

Slide credit; Steve Seitz
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Simplest Case: Rectified Images

Image planes of cameras are parallel

Focal points are at same height

Focal lengths same

Then, epipolar lines fall along the horizontal scan lines of the images

We assume images have been rectified so that epipolar lines correspond to
scan lines

— Simplifies algorithms
— Improves efficiency
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Rectified Stereo Pair
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Rectified Stereo Pair

Reproject image planes onto
a common plane parallel to

the line between camera \
centers 2
Need two homographies

(Bx3 transform), one for each
INput Image reprojection

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision.Computer Vision and Pattern Recognition, 1999.

113 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Example

Before Rectification

After Rectification

14 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X 3D point
image plane
O O’
camera center camera center

15 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X 3D point

Left camera axis Right camérg/ axis

. Image plane
O s g 5_04
camera center camera center

16 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

image plane

17 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

18 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

(baseline)
b

19 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

N| <
| 8

(baseline)
b

20 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate
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b

01 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

N >
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(baseline) X —b
b

29 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X =z X—-b 7
X b o
Z 7 f
(baseline) X —b
b

03 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X z X—-b 7
zZ f 7 f
X b

7 7 f

(baseline) X —b /

h T

x b
f 7 — 7 (Substitute)

o4 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X =z X—-b 7
X b a
Z 7 f
baseli _

(asbeme) X —b , b_:z:_’

f z
r—a b
f 7

o5 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X z X—-b 7
z f Z f
X b 2
Z Z f
(basbelme) X —b , ’ .
fz f
Disparity

(wrt to camera origin of image plane)  J — . _ r—a b
bf fZ

A

26 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X

(baseline)
b

Disparity

(wrt to camera origin of image plane) d—=r_ o inversely proportional to depth

R

07 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



(simple) Stereo Algorithm

1.Recti1fy 1mages
(make epipolar lines horizontal)
2.For each pixel
a.Find epipolar line
b.Scan line for best match
- . . bt
c.Compute depth from disparity Zfzwg—

08 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



(simple) Stereo Algorithm

1.Rec

T HON. ABRAIAM LINCOLN, President of United States
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2.For each pixel
a.fFind epipolar line
b.Scan line for best match

c.Compute depth
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Correspondence: \What should we match?

Objects”?
Edges”?
Pixels?

Collections of pixels?
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Random Dot Stereograms

Julesz (1960) showed that recognition is not needed for stereo

"“When viewed monocularly, the images appear completely random. But when
viewed stereoscopically, the image pair gives the impression of a square
markedly in front of (or behind) the surround.”
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Method: Pixel Matching

g+ ———

b“—*—_

T HON. ABRAILAM LINCOLN, President of United States. =~

For each epipolar line
For each pixel in the left Image
— compare with every pixel on same epipolar line in right image
— pick pixel with minimum match cost

This leaves too much ambiguity!

Slide credit: Steve Seitz
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Sum of Squared (Pixel) Differences

Left Right

Cari: Tty o [

(X, (x, =d. v )

WL and wg are corresponding m x m Windows of pixels
Define the window function, W, (x, y), by

VA

™ T ™ (g’
W (z,y) = { (u Su<z+o,y-o <v<y+ o
(@, y) =) [z -5 Suset Sy Svsyt S

SSD measures intensity difference as a function of disparity:
CR(xayvd) — Z []L(U,U) _[R(u_d7 v)]Q

(u,v) EW 1, (2,y)
33



Image Normalization

_ 1
I = I (u,v -
W, (2, ) Z (4, v) Average Pixel

1| |w,, (.y) = > [I(u,v))? Window Magnitude

I(z,y) = [(z,y) — 1 Normalized Pixel: subtract the
| = Il|w,, () mean, normalize to unit length
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Image Metrics

(Normalized) Sum of Squared Differences

wgr(d)
WL

(Normalized) Correlation
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Image Metrics

Assume WL and wg(d) are normalized to unit length (Normalized)

Sum of Squared Differences:

Cssp(d) = Z I1,(u,v) = Ig(u—d,v)
(u,0) EW o (2,y) _

= |[lwr — wr(d)|

(Normalized) Correlation:

Cno(d) = Z fL(u,v)fR(u—d,v)
(u,v) EW r, (2,y)

=Wy, - Wgr(d) = cos @
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Image Metrics

Let d* be the value of d that minimizes Csgp
Then d* also is the value of d that maximizesCnc

That Is,

d* = a,rgmgn lwr, — wgr(d)||]? = argméinwL - Wg(d)
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Method: Correlation

Left Right

SSD error &

RN,

>

disparity
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Similarity Measure Formula

Sum of Absolute Differences (SAD) (i;W 1) = Lty +))

. LG - L& +iy+))
Sum of Squared Differences (SSD) (i;u,( 1 ’ n)
7 SAD Z \L(i,)) = L(i,)) = L(x+ i,y +))+ L{x+iy+j)|

ero-mean (i) EW
e I (i) . .
Locally scaled SAD .;;Wlll("’ S ATTEEE e e
Zapew 1 ). L(x + 1,y + )

Normalized Cross Correlation (NCC) z\/Z(mewff GND-Zjpew Ex+ i,y + )

Ground truth

39 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Method: =dges

Matching zero-crossings at a single scale

L) ~ /)
) & -

Matching zero-crossings at multiple scales

Scale «—~ 77
Width Match> ¢

! Offsct> &
/|

|| =t

Q Rematch

]

Scale T« i ﬁ'{_( 7 l{ 7
Width Mateh > 5 1 %’ i

Forsyth & Ponce (2nd ed.) Figure 7.12 (Top & Middle)
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Method: Edges (aside)

The Marr/Poggio (1979) multiscale stereo algorithm:

1. Convolve the two (rectified) images with V-G filters of INcreasing
01 < 09 < 03 < 04

2. Find zero crossings along horizontal scanlines of the filtered images

3. For each filter scale o, match zero crossings with the same parity and
roughly equal orientations in a [—-w., +w,] disparity range, with Wo = 2v/20

4. Use the disparities found at larger scales to control eye vergence and cause
unmatched regions at smaller scales to come Iinto correspondence
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Which Method is Better: Correlation or Edges®

Edges are more “meaningful” [Marr]. . . . .. but hard to find!
Edges tend to fail in dense texture (outdoors)

Correlation tends to fail in smooth, featureless regions

Note: Correlation-based methods are “dense.” Edge-based methods are
‘relatively sparse”
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Fffect of Window Size

W =20
Smaller window Larger window
+ More detall + Smoother disparity maps
- More noise - Less detall

- Falls near boundaries

43 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fffect of Window Size

Note: Some approaches use an adaptive window size
— try multiple sizes and select best match
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Ordering Constraints

Ordering constraint ... .... and a failure case

Forsyth & Ponce (2nd ed.) Figure 7.13
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Block Matching lechnigues: Result

A6 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Block Matching lechnigues: Result

Too many discontinuities.
We expect disparity values to
change slowly.

Let’s make an assumption:
depth should change smoothly

17 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Stereo Matching as Energy Minimization

energy function
(for one pixel)

E(d) = Eq(d) + AEs(d)
— N

data term smoothness term
/ \
Want each pixel to find a good match in Adjacent pixels should (usually) move
the other image about the same amount
(olock matching result) (smoothness function)

48 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Stereo Matching as Energy Minimization

g: set of neighboring pixels

49 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Stereo Matching as Energy Minimization

Es(d) = Z V(dpvdq)

smoothness term (p,q)€E

V(dpadq> — ‘dp _ dq‘ \/
L, distance

0 itd,=d
V(dp>d(J){ g !

1 if d, # d, -_‘ |-
“Potts model”

50 Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Stereo Matching as Energy Minimization: Solution

E(d) = Eq(d) + AE,(d)

Can minimize this independently per scanline
using dynamic programming (DP)

51 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Stereo Matching as Energy Minimization

Match & smoothness (via graph cut)

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)


http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

ldea: Use More Cameras

Adding a third camera reduces ambiguity In stereo matching

AQ oD

Forsyth & Ponce (2nd ed.) Figure 7.17
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Point Grey Research Digiclops

Image credit: Point Grey Research

o4



Structured Light Imaging: Structured Light and One Camera

Projector acts like
“reverse” camera

55 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Microsoft Kinect

IR Emitter Color Sensor
IR Depth Sensor

Tilt Motor

i

—

—

Microphone Array
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Microsoft Kinect

IR Emitter Color Sensor

IR Depth Sensor

Tilt Motor

—d

Microphc;ne Array
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Summary

Stereo is formulated as a correspondence problem

— determine match between location of a scene point in one image and Its
location in another

f we assume calibrated cameras and image rectification, epipolar lines are
horizontal scan lines

What do we match?
— Individual pixels?
— Patches”

— Edges?
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