THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Lecture 22: Hough (cont)



Menu for Today (November 2, 2020)

Topics:

— Hough Transform for Object Detection — Stereo
— Hough Transform for Segmentation, Depth estimation

— Today’s & Next Lecture: Forsyth & Ponce (2nd ed.) 7.1.1, 7.2.1, 7.4, 7.0

Reminders:

— Assignment 4 is due on Friday

— Quiz next Monday



Today’s “fun” Example: Tse’s Volumetric lllusions

A. Kanizsa triangle

B. [se’s volumetric worm
C. |[desawa’s spiky sphere
D. [se’s "sea monster”

Figure credit: Steve Lehar



Today’s “fun” Example: Tse’s Volumetric lllusions

|

<

Figure credit: Steve Lehar



Today’s “fun” Example: FedkEx




Lecture 21: Re-cap Hough [ranstorm

The Hough transform is another technique for fitting data to a model
— a voting procedure

— possible model parameters define a guantized accumulator array
— data points “vote" for compatible entries in the accumulator array

A key Is to have each data point (token) constrain model parameters as tightly
as possible



Lecture 21: Re-cap Hough [ranstorm

Advantages:
— Can handle high percentage of outliers: each point votes separately
— (Can detect multiple instances of a model in a single pass

Disadvantages.

— Complexity of search time increases exponentially with the number of model
parameters

— (Can be tricky to pick a good bin size



Lecture 21: Re-cap Mechanics of Hough [ranstorm

1. Construct a quantized array to represent 6 and r
2. For each point, render curve (6, r) into this array adding one vote at each cell

Difficulties.
— How big should the cells be? (too big, and we merge quite different lines; too
small, and noise causes lines to be missed)

How many lines?
— Count the peaks in the Hough array
— [reat adjacent peaks as a single peak



Lecture 21: Re-cap Hough [ranstorm

Original Edges Parameter Hough Lines
space

9 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Generalized Hough Transform

What if we want to detect an arbitrary geometric shape?

10



Generalized Hough Transform

What if we want to detect an arbitrary geometric shape”?

Offline procedure:

At each boundary point,
compute displacement
vector: r =a - p;.

Model shape

Store these vectors in a
£ / table indexed by gradient
5 \ orientation 0.

Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980
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Example 1: Object Recognition — Implicit Shape Model

Combined object detection and segmentation using an implicit shape model.
Image patches cast weighted votes for the object centroid.

Original Image Interest Points Matched Codebook Probabilistic

\ - Entries

Voting Space
(continuous)

¢ r T ot |
‘ﬂ: | ‘ ;i'r;-‘ -— : /

Segmentation

™

Refined Hypothesis Backprojected Backprojection
(uniform sampling) Hypothesis of Maximum

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004
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Example 1: Object Recognition — Implicit Shape Model

Basic Idea:

— Find interest points/keypoints in an image (e.g., SIFT Keypoint detector or Corners)
— Match patch around each interest point to a training patch (e.g., SIFT Descriptor)
— Vote for object center given that training instances

— Find the patches that voted for the peaks (back-project)

13



Example 1: Object Recognition — Implicit Shape Model

y c ey Keypoint Keypoint Offset
Tralnlng |mag eS Of COWS Image Keypoint Detection Description to

Index Index (4D) (128D) Centroid
Image 1 1 X, V, S, Theta] [...] Xy A

14 * Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

y c ey Keypoint Keypoint Offset
Tralnlng |mag eS Of COWS Image Keypoint Detection Description to

Index Index (4D) (128D) Centroid

Image 1 1 X, V, S, Theta
Image 1 2 X, V, S, Theta
Image 1 265  [X,V, s, Theta] [...] X,V

15 * Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

y c ey Keypoint Keypoint Offset
Tralnlng |mag eS Of COWS Image Keypoint Detection Description to

Index Index (4D) (128D) Centroid

N Image 1 1 X, Y, s, Theta
\T Image 1 2 X, V, S, Theta
}}" P oEon R N "o .
e A mage 1 265  [x,y,s, Theta]  [...] £8Y%
I ;’ o o
DL O u«':i-'-';l;‘;;f; B Image 2 1 X, V, s, Theta L X,y
Image 2 2 X, V, S, Theta L X,y
Image 2 645  [x,V, s, Theta] [...] [X,Y]
Image K 1 X, V, S, Theta L X,y
Image K 2 X, VY, S, Theta L X,y
Image K 134  [x,, S, Theta] [...] X,V

16 * Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” Image

17 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image
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Vote for center of object

18 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image

training image of cow
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Vote for center of object

19 * Slide from Sanja Fidler



xample 1: Object Recognl

“Training” Images of cows
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tion — Implicit Shape Model
“Testing” image

training image of cow

LU LR ' e e

+ s— g

+ 4+ M+ ++4

Vote for center of object

20 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image

H4+F + oo bt o+

o
1

TS

I R

4- ++?_+ ++ +4 *

of course sometimes wrong votes are bound to happen

21 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of cows “Testing” image
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That's ok. We want only peaks in voting space.

22 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of cows “Testing” image
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Find patches that voted for the peaks (back-project

23 * Slide from Sanja Fidler



Example 1:

Object Recognition — Implicit Shape Model

Keypoint Keypoint Offset
Image Keypoint Detection Description to
Index Index (4D) (128D) Centroid
Image 1 1 X, V, S, Theta ) 8%
Image 1 2 X, V, S, Theta ) 8%
Image 1 265  [x,V, s, Theta] [...] X,Y]
Image 2 1 X, V, S, Theta ) 8%
Image 2 2 X, V, S, Theta X,y
Image 2 645  [x,, S, Theta] [...] X,V
Image K 1 X, V, S, Theta ) 8%
Image K 2 X, V, S, Theta ) 8%
Image K 134  [x, vy, s, Theta] [...] X,Y]
24

* Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

Keypoint
Image Keypoint Detection

Index Index

(4D)

Keypoint
Description
(128D)

Offset
to
Centroid

Image 1 2 X, v, S, Theta] [...] X,V]
Image 1 265  [x,V, s, Theta] [...] X,Y]
Image 2 X, v, s, Theta] X, Y]

W
_

Image K 1 X, Y, S
Image K 2 X, V, S

25

, Theta
, Theta

X,Y.
XY

* Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image

FVESET i

s ¢

box around patches = object

.
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FINnd objects based on the back projected patches

20 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image
Really easy ... but slow ... how do we make it fast”?

training image of cow

R et

+
+
a4
+
-
-
+
1

+4

sy
+

+
+%
+ J,?L*++ + 31+ -
Sl o Tl ke +F

We need to match a patch around each yellow keypoint to

all patches In all training images (slow
27 * Slide from Sanja Fidler




Visual \Words

@ Visual vocabulary (we saw this for retrieval)

@ Compare each patch to a small set of visual words (clusters)

Visual words (visual codebook)!

28 * Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

INndex displacements by “visual codeword”

visual codeword with
displacement vectors

training image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004
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Example 1: Object Recognition — Implicit Shape Model

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004

30



Inferring Other Information: Segmentation

Combined object detection and segmentation using an implicit shape model.
Image patches cast weighted votes for the object centroid.

Original Image Interest Points Matched Codebook Probabilistic

\ - Entries

Voting Space
(continuous)

¢ r T ot |
‘ﬂ: | ‘ ;i'r;-‘ -— : /

Segmentation

™

Refined Hypothesis Backprojected Backprojection
(uniform sampling) Hypothesis of Maximum

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004

31



Example 1: Object Recognition — Implicit Shape Model

» c ey Keypoint Keypoint Offset
Tralnlng mages Of COWS Image Keypoint Detection Description to Segment

Index Index (4D) (128D) Centroid

Image 1 1 X, V, S, Theta . X,y r
Image 1 2 X, V, S, Thetal . X,
Image 1 265 X, v, S, Theta] [...] X,Y]
Image 2 1 X, V, S, Thetal . X,
Image 2 2 X, V, S, Theta . X,y
Image 2 645 X, v, S, Theta] [...] X,Y]
Image K 1 X, V, S, Theta - ) 8Y
Image K 2 X, V, S, Thetal . X,
mage K 134  [x, vV, s, Theta] [...] [X,y]

32 * Slide from Sanja Fidler



Inferring Other Information: Segmentation

Idea: \When back-projecting, back-project labeled segmentations per training patch

e
o

(a) detections (b) p(figure) (c) segmentation (a) detections (b) p(figure) (c) segmentation

[Source: B. Leibe]

o * Slide from Sanja Fidler



Inferring Other Information: Segmentation

B
o

* Slide from Sanja Fidler

[Source: B. Leibe]



Inferring Other Information: Part Labels

Training

35 * Slide from Sanja Fidler



Inferring Other Information: Depth

Test image Ground truth

“Depth from a single image”

36 * Slide from Sanja Fidler



Example 2: Object Recognition — Boundary Fragments

Boundary fragments cast weighted votes for the object centroid. Also obtains
an estimate of the object’s contour.

All matched boundary
fragments

Original Image

Centroid Voting on a subset of the matched fragments

Segmentation / Detection Backprojected Maximum

Image credit: Opelt et al., 2006
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Example 2: Object Recognition — Boundary Fragments

Boundary fragments cast weighted votes for the object centroid. Also obtains
an estimate of the object’s contour.

Hough voting Backprojected Detection of

Original Matching boundary Segmentation

space for the codebook entries ;
Steps in Image Edge Image fragments centroid for 2 maximum the object
Detect. Alg. (1) (2) (3) (4)
| L‘.'é '.. " ﬂ
v '
-, .
e No maximum
- above threshold found
il A
. r, 4 , No maximum
R VIR above threshold found
B T o

Image credit: Opelt et al., 2006
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Example 3: Object Recognition — Poselets

Poselets are image patches that have distinctive appearance and can be used
to Infer some of the configuration of a parts-based object. Detected poselets
vote for the object configuration. |




Example 3: Object Recognition — Poselets

Poselets are image patches that have distinctive appearance and can be used
to Infer some of the configuration of a parts-based object. Detected poselets

vote for the object configuration.

1. g-scores. Different colors illustrate different 2. Q-scores (Section 4). Evidence from consistent 3. Clustering (Section 5). Activations are 4. Bounding boxes (Section 6) and segmen-
poselet detectors firing in the image. The blob poselet activations leads to a reranking based on merged in a greedy manner starting with the tations (Section 7). We predict the visible
size illustrates the score of the independent mutual activation (Q-scores). Weaker activations strongest activation. Merging is based on bounds and the contour of the person using the
poselet classifier. consistent with others gain importance, whereas pairwise consistency. poselets within the cluster.

inconsistent ones get damped.

Image credit. Bourdev and Malik, 2009
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Discussion of Hough [ransform

Advantages:
— Can handle high percentage of outliers: each point votes separately
— (Can detect multiple instances of a model in a single pass

Disadvantages.

— Complexity of search time increases exponentially with the number of model
parameters

— (Can be tricky to pick a good bin size

41



Summary of Hough Transform

The Hough transform is another technique for fitting data to a model
— a voting procedure

— possible model parameters define a guantized accumulator array
— data points “vote" for compatible entries in the accumulator array

A key Is to have each data point (token) constrain model parameters as tightly
as possible

42



THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Lecture 22: Stereo
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Stereo Vision

Problem Formulation:
Determine depth using two images acquired from (slightly) different viewpoints

Key Idea(s):

The 3D coordinates of each point imaged are constrained to lie along a ray. This
'S true also for a second image obtained from a (slightly) different viewpoint.
Rays for the same point in the world intersect at the actual 3D location of that
poINt

44



Stereo Vision

With two eyes, we acquire images of the world from slightly different viewpoints

We perceive depth based on differences In the relative position of points
N the left Image and in the right image

45



Binoculars

Binoculars enhance binocular depth perception In two distinct ways:
1. magnification

2. longer baseline (i.e., distance between entering light paths) compared to the
normal human inter-pupillary distance

/Eyepiece
] Porro
J [ / prisms
- N
A
Objective

Figure credit: http://en.wikipedia.org/wiki/Binoculars
46



Stereo Vision

Task: Compute depth from two images acquired from (slightly) different
viewpoints

Approach: “Match” locations in one image to those in another

Sub-tasks:

— (Calibrate cameras and camera positions

— Find all corresponding points (the hardest part)
— Compute depth and surfaces

47



Stereo Vision

debhth

baseline

Slide credit: Trevor Darrell
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Stereo Vision

Triangulate on two Images of the same point

' / | Dbaseline

Right

Match correlation windows
across scan lines

Image credit: Point Grey Research
Slide credit: Trevor Darrell
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Point Grey Research Digiclops

Image credit: Point Grey Research

50



Correspondence
N
. .’ .‘ "

Forsyth & Ponce (2nd ed.) Figure 7.2
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The Epipolar Constraint

epipolar line epipolar line

Matching points lie along corresponding epipolar lines
Reduces correspondence problem to 1D search along conjugate epipolar lines

Greatly reduces cost and ambiguity of matching

Slide credit; Steve Seitz
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Simplest Case: Rectified Images

Image planes of cameras are parallel

Focal points are at same height

Focal lengths same

Then, epipolar lines fall along the horizontal scan lines of the images

We assume images have been rectified so that epipolar lines correspond to
scan lines

— Simplifies algorithms
— Improves efficiency

53



Rectified Stereo Pair

o

.

\

/12
4




Rectified Stereo Pair

Reproject image planes onto
a common plane parallel to

the line between camera \
centers 2
Need two homographies

(Bx3 transform), one for each
INput Image reprojection

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision.Computer Vision and Pattern Recognition, 1999.

55 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Example

Before Rectification

After Rectification

56 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X 3D point
image plane
O O’
camera center camera center

57 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X 3D point

Left camera axis Right camérg/ axis

. Image plane
O s g 5_04
camera center camera center

58 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

image plane

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

80 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

(baseline)
b

6 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

N| <
| 8

(baseline)
b

62 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

N| <
| 8

(baseline) X —b
b

63 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

N >
||

| 8

(baseline) X —b
b

64 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X =z X—-b 7
X b 7
Z 7 f
(baseline) X —b
b

65 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X =z X—-b 7
X b o
Z 7 f
baseli _
(asbeme) X —b , b_:z:_’
[z f

66 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X =z X—-b 7
X b 7
Z 7 f
baseli _

(asbeme) X —b , b_:z:_’

f z
r—a b
f 7

67 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X z X—-b 7
z f Z f
X b 2
Z Z f
(basbelme) X —b , ’ .
fz f
Disparity

(wrt to camera origin of image plane)  J — . _ r—a b
bf fZ

A

68 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X

(baseline)
b

Disparity

(wrt to camera origin of image plane) d—=r_ o inversely proportional to depth

R

69 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



(simple) Stereo Algorithm

1.Recti1fy 1mages
(make epipolar lines horizontal)
2.For each pixel
a.Find epipolar line
b.Scan line for best match
- . . bt
c.Compute depth from disparity Zfzwg—

70 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



(simple) Stereo Algorithm

1.Rec

T HON. ABRAIAM LINCOLN, President of United States

C1

T — -

-~ o -

B

fy 1mages
(make epipolar lines horizontal)

2.For each pixel
a.fFind epipolar line
b.Scan line for best match

c.Compute depth

[a

TP,
- ~

»

i

.\

g

-

» "t

» "

from disparity Z = ’

bf

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Correspondence: \What should we match?

Objects”?
Edges”?
Pixels?

Collections of pixels?

(2



Random Dot Stereograms

Julesz (1960) showed that recognition is not needed for stereo

"“When viewed monocularly, the images appear completely random. But when
viewed stereoscopically, the image pair gives the impression of a square
markedly in front of (or behind) the surround.”

/3



Method: Pixel Matching

g+ ———

b“—*—_

T HON. ABRAILAM LINCOLN, President of United States. =~

For each epipolar line
For each pixel in the left Image
— compare with every pixel on same epipolar line in right image
— pick pixel with minimum match cost

This leaves too much ambiguity!

Slide credit: Steve Seitz
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Sum of Squared (Pixel) Differences

Left Right

Cari: Tty o [

(X, (x, =d. v )

WL and wg are corresponding m x m Windows of pixels
Define the window function, W, (x, y), by

VA

™ T ™ (g’
W (z,y) = { (u Su<z+o,y-o <v<y+ o
(@, y) =) [z -5 Suset Sy Svsyt S

SSD measures intensity difference as a function of disparity:
CR(xayvd) — Z []L(U,U) _[R(u_d7 v)]Q

(u,v) EW 1, (2,y)
75



Image Normalization

_ 1
I = I(u,v) -
W, (2, ) Z Average Pixel

1| |w,, (.y) = > [I(u,v))? Window Magnitude

I(z,y) = [(z,y) — 1 Normalized Pixel: subtract the
| = Il|w,, () mean, normalize to unit length

/0



Image Metrics

(Normalized) Sum of Squared Differences

wgr(d)
WL

(Normalized) Correlation

la4



Image Metrics

Assume WL and wg(d) are normalized to unit length (Normalized)

Sum of Squared Differences:

Cssp(d) = Z I1,(u,v) = Ig(u—d,v)
(u,0) EW o (2,y) _

= |[lwr — wr(d)|

(Normalized) Correlation:

Cno(d) = Z fL(u,v)fR(u—d,v)
(u,v) EW r, (2,y)

=Wy, - Wgr(d) = cos @

/3



Image Metrics

Let d* be the value of d that minimizes Csgp
Then d* also is the value of d that minimizes Cnce

That Is,

d* = a,rgmgn lwr, — wgr(d)||]? = argméinwL - Wg(d)

79



Method: Correlation

Left Right

SSD error &

RN,

>

disparity

30



Similarity Measure Formula

Sum of Absolute Differences (SAD) (i;W 1) = Lty +))

. LG - L& +iy+))
Sum of Squared Differences (SSD) (i;u,( 1 ’ n)
7 SAD Z \L(i,)) = L(i,)) = L(x+ i,y +))+ L{x+iy+j)|

ero-mean (i) EW
e I (i) . .
Locally scaled SAD .;;Wlll("’ S ATTEEE e e
Zapew 1 ). L(x + 1,y + )

Normalized Cross Correlation (NCC) z\/Z(mewff GND-Zjpew Ex+ i,y + )

Ground truth

9 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Method: =dges

Matching zero-crossings at a single scale

L) ~ /)
) & -

Matching zero-crossings at multiple scales

Scale «—~ 77
Width Match> ¢

! Offsct> &
/|

|| =t

Q Rematch

]

Scale T« i ﬁ'{_( 7 l{ 7
Width Mateh > 5 1 %’ i

Forsyth & Ponce (2nd ed.) Figure 7.12 (Top & Middle)
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Method: Edges (aside)

The Marr/Poggio (1979) multiscale stereo algorithm:

1. Convolve the two (rectified) images with V-G filters of INcreasing
01 < 09 < 03 < 04

2. Find zero crossings along horizontal scanlines of the filtered images

3. For each filter scale o, match zero crossings with the same parity and
roughly equal orientations in a [—-w., +w,] disparity range, with Wo = 2v/20

4. Use the disparities found at larger scales to control eye vergence and cause
unmatched regions at smaller scales to come Iinto correspondence

83



Which Method is Better: Correlation or Edges®

Edges are more “meaningful” [Marr]. . . . .. but hard to find!
Edges tend to fail in dense texture (outdoors)

Correlation tends to fail in smooth, featureless regions

Note: Correlation-based methods are “dense.” Edge-based methods are
‘relatively sparse”

84



Fffect of Window Size

W =20
Smaller window Larger window
+ More detall + Smoother disparity maps
- More noise - Less detall

- Falls near boundaries

85 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fffect of Window Size

Note: Some approaches use an adaptive window size
— try multiple sizes and select best match

380



Ordering Constraints

Ordering constraint ... .... and a failure case

Forsyth & Ponce (2nd ed.) Figure 7.13

87



Block Matching lechnigues: Result

a8 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Block Matching lechnigues: Result

Too many discontinuities.
We expect disparity values to
change slowly.

Let’s make an assumption:
depth should change smoothly

89 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Stereo Matching as Energy Minimization

energy function
(for one pixel)

E(d) = Eq(d) + AEs(d)
— N

data term smoothness term
/ \
Want each pixel to find a good match in Adjacent pixels should (usually) move
the other image about the same amount
(olock matching result) (smoothness function)

90 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Stereo Matching as Energy Minimization

g: set of neighboring pixels

O Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Stereo Matching as Energy Minimization

Es(d) = Z V(dpvdq)

smoothness term (p,q)€E

V(dpadq> — ‘dp _ dq‘ \/
L, distance

0 itd,=d
V(dp>d(J){ g !

1 if d, # d, -_‘ |-
“Potts model”

92 Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Stereo Matching as Energy Minimization: Solution

E(d) = Eq(d) + AE,(d)

Can minimize this independently per scanline
using dynamic programming (DP)

03 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Stereo Matching as Energy Minimization

Match & smoothness (via graph cut)

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001
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http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

ldea: Use More Cameras

Adding a third camera reduces ambiguity In stereo matching

AQ oD

Forsyth & Ponce (2nd ed.) Figure 7.17
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Point Grey Research Digiclops

Image credit: Point Grey Research
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Structured Light Imaging: Structured Light and One Camera

Projector acts like
“reverse” camera
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Microsoft Kinect

IR Emitter Color Sensor
IR Depth Sensor

Tilt Motor

i

—

—

Microphone Array
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Microsoft Kinect

IR Emitter Color Sensor

IR Depth Sensor

Tilt Motor

—d

Microphc;ne Array
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Summary

Stereo is formulated as a correspondence problem

— determine match between location of a scene point in one image and Its
location in another

f we assume calibrated cameras and image rectification, epipolar lines are
horizontal scan lines

What do we match?
— Individual pixels?
— Patches”

— Edges?
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