CPSC 425: Computer Vision

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 21: Hough
Menu for Today (October 30, 2020)

Topics:
- Hough Transform
- Hough Transform for Object Detection

Readings:
- Today’s & Next Lecture: Forsyth & Ponce (2nd ed.) 7.1.1, 7.2.1, 7.4, 7.6

Reminders:
- Midterms are graded (grades will be released immediately after lecture)
- Assignment 4: please start working on it!
- Final Exam date is set to December 16th @ noon.
Midterm Grades

Curve: 5 points (~8.3%) added to everyone’s score

Average (after curve): 71
Median (after curve): 73

Any **regrade** requests will be handled via private posts on Piazza

Any regrade request must specifically mention specific question and potential issue.
Today’s “fun” Example: Im2Calories

ICCV 2015 paper by **Kevin Murphy**
(UBC’s former faculty)

Coincidently Kevin is also author of one of the most prominent ML books

Figure 1: Calorie Estimation Flowchart
Today’s “fun” Example: Im2Calories

Im2Calories: towards an automated mobile vision food diary
Austin Myers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban Nathan Silberman, Sergio Guadarrama, George Papandreou, Jonathan Huang, Kevin Murphy amyers@umd.edu, (nickj, rathodv, kbanoop, gorban)@google.com (nsilberman, sguada, gpapan, jonathanhuang, kpmurphy)@google.com
Today’s “fun” Example: Im2Calories

Fun on-line demo: http://www.caloriemama.ai/api
Lecture 20: Re-cap RANSAC

RANSAC is a technique to fit data to a model
- divide data into inliers and outliers
- estimate model from minimal set of inliers
- improve model estimate using all inliers
- alternate fitting with re-classification as inlier/outlier

RANSAC is a general method suited for a wide range of model fitting problems
- easy to implement
- easy to estimate/control failure rate

RANSAC only handles a moderate percentage of outliers without cost blowing up
RANSAC: k Samples Chosen ($p = 0.99$)

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Proportion of outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>5%</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure Credit: Hartley & Zisserman
Discussion of RANSAC

Advantages:
— General method suited for a wide range of model fitting problems
— Easy to implement and easy to calculate its failure rate

Disadvantages:
— Only handles a moderate percentage of outliers without cost blowing up
— Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)
— Only finds one “best” solution

The Hough transform can handle high percentage of outliers and simultaneously find multiple solutions
Fitting a Model

Suppose we want to fit a **model** to a set of **tokens**

— e.g. A line fits well to a set of points. This is unlikely to be due to chance, so we represent the points as a line.

— e.g. A 3D model can be scaled, rotated and translated to closely fit a set of points or line segments. If it fits well, the object is recognized.
Fitting a Model is Difficult

Difficulties arise owing to:

Extraneous data: clutter or multiple models
 — We do not know what is part of the model
 — Can we fit models with a few parts when there is significant background clutter?

Missing data: only some parts of model are present Noise

Computational cost:
 — Not feasible to check all combinations of features by fitting a model to each possible subset
Hough Transform

Idea of Hough transform:
- For each token vote for all models to which the token could belong to
- Return models that get many votes

Example: For each point, vote for all lines that could pass through it; the true lines will pass through many points and so receive many votes
Lines: Slope intercept form

\[y = mx + b \]

slope \hspace{1cm} y\text{-intercept}

Slide Credit: Ioannis (Yannis) Gkioulkas (CMU)
Hough Transform: Image and Parameter Space

Variables

\[y = mx + b \]

Parameters

Image space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Image and Parameter Space

Variables:

\[y = mx + b \]

Parameters:

\[y - mx = b \]

Image space

Parameter space

A line becomes a point

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Image and Parameter Space

What would a point in image space become in parameter space?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Lines

Variables

\[y = mx + b \]

Parameters

\[y - mx = b \]

A point becomes a line

Image space

Parameter space

Slide Credit: Ioannis (Yannis) Gkioulkas (CMU)
Hough Transform: Lines

variables

\[y = mx + b \]
	parameters

variables

\[y - mx = b \]
	parameters

two points?

Image space

Parameter space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Lines

Image space

$$y = mx + b$$

variables

parameters

(3, 3)

(1, 1)

Parameter space

$$y - mx = b$$

variables

parameters

two points?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Lines

Variables:
\[y = mx + b \]

Parameters:

Variables:
\[y - mx = b \]

Parameters:

Image space

Parameter space

three points?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Lines

variables
\[y = mx + b \]

parameters

variables
\[y - mx = b \]

parameters

Image space

Parameter space

three points?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Lines

Variables:
\[y = mx + b \]

Parameters:
\[y - mx = b \]

Image space:
- Four points: (-2, -2), (1, 1), (3, 3), (1, -1)

Parameter space:
- Variables: \(b \)
- Parameters: \(m \)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Lines

variables

\[y = mx + b \]

parameters

variables

\[y - mx = b \]

parameters

Image space

Parameter space

four points?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
How would you find the best fitting line?
Hough Transform: Lines

Is this method robust to measurement noise? clutter?

Slide Credit: Ioannis (Yannis) Gkioulkekas (CMU)
Line Detection by Hough Transform

Algorithm:

1. Quantize Parameter Space \((m,c) \)

2. Create Accumulator Array \(A(m,c) \)

3. Set \(A(m,c) = 0 \) \(\forall m, c \)

4. For each image edge \((x_i, y_i)\)
 For each element in \(A(m,c) \)
 If \((m, c)\) lies on the line: \(c = -x_i m + y_i \)
 Increment \(A(m,c) = A(m,c) + 1 \)

5. Find local maxima in \(A(m,c) \)
Problems with **Parametrization**

How big does the accumulator need to be for the parameterization \((m, c)\)?

\[
A(m, c) = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 2 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]
Problems with **Parametrization**

How big does the accumulator need to be for the parameterization (m,c)?

The space of m is huge!

$$-\infty \leq m \leq \infty$$

The space of c is huge!

$$-\infty \leq c \leq \infty$$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Lines: Slope intercept form

\[y = mx + b \]

slope y-intercept

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Lines: Normal form

\[x \sin \theta + y \cos \theta = \rho \]

Book’s convention

\[x \sin \theta + y \cos \theta + r = 0 \]

- \(r \geq 0 \)
- \(0 \leq \theta \leq 2\pi \)
Hough Transform: Lines

\[y = mx + b \]

Image space

\[x \sin \theta + y \cos \theta = \rho \]

Parameter space

(a point becomes?)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Lines

Image space

Parameter space

variables

parameters

\[y = mx + b \]

parameters

variables

\[x \sin \theta + y \cos \theta = \rho \]

a point becomes a wave

\((1, 1)\)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Lines

Image space

\[y = mx + b \]

variables

parameters

(1, 1)

Parameter space

\[x \sin \theta + y \cos \theta = \rho \]

parameters

variables

a line becomes?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Lines

In the Image space:

- Variables: $y = mx + b$

In the Parameter space:

- Parameters: $x \sin \theta + y \cos \theta = \rho$

A line becomes a point.

Slide Credit: Ioannis (Yannis) Gkioulkas (CMU)
Hough Transform: Lines

variables

\[y = mx + b \]

parameters

(a line becomes?)

variables

\[x \sin \theta + y \cos \theta = \rho \]

parameters

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Lines

Variables:
\[y = mx + b \]

Parameters:
\[x \sin \theta + y \cos \theta = \rho \]

In Image space, a line becomes a point at (1, 1).

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Lines

\[y = mx + b \]

\[x \sin \theta + y \cos \theta = \rho \]

A line becomes a point

Image space

Parameter space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Lines

In the image space:

$$y = mx + b$$

In the parameter space:

$$x \sin \theta + y \cos \theta = \rho$$

Two points become?

Image space

Parameter space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Lines

Variables:
\[y = mx + b \]

Parameters:
\[x \sin \theta + y \cos \theta = \rho \]

Image space:
- (1, 1)
- (3, 3)
- (-2, -2)

Parameter space:

Three points become?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform: Lines

Variables

\[y = mx + b \]

Parameters

\[x \sin \theta + y \cos \theta = \rho \]

Image space

Parameter space

Four points become?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Hough Transform for Lines (switching to books notation)

Idea: Each point votes for the lines that pass through it

- A line is the set of points, \((x, y)\), such that

\[x \sin \theta + y \cos \theta + r = 0 \]

- Different choices of \(\theta, r\) give different lines
Hough Transform for Lines (switching to books notation)

Idea: Each point votes for the lines that pass through it

— A line is the set of points, \((x, y)\), such that

\[
x \sin \theta + y \cos \theta + r = 0
\]

— Different choices of \(\theta, r\) give different lines

— For any \((x, y)\) there is a one parameter family of lines through this point. Just let \((x, y)\) be constants and for each value of \(\theta\) the value of \(r\) will be determined

— Each point enters votes for each line in the family

— If there is a line that has lots of votes, that will be the line passing near the points that voted for it
Example: Hough Transform for Lines

\((-2, 3.3)\)

\((-5, 3)\)
Example: Hough Transform for Lines

\[-5 \sin(5^\circ) - 3 \cos(5^\circ) + r = 0 \Rightarrow r = 3.42\]
Example: Hough Transform for Lines

\[-5 \sin(5^\circ) - 3 \cos(5^\circ) + r = 0 \Rightarrow r = 3.42\]
Example: Hough Transform for Lines

\[-5 \sin(5^\circ) - 3 \cos(5^\circ) + r = 0 \Rightarrow r = 3.42\]

\[-5 \sin(15^\circ) - 3 \cos(15^\circ) + r = 0 \Rightarrow r = 4.18\]
Example: Hough Transform for Lines

\[-5 \sin(5^\circ) - 3 \cos(5^\circ) + r = 0 \Rightarrow r = 3.42\]

\[-5 \sin(15^\circ) - 3 \cos(15^\circ) + r = 0 \Rightarrow r = 4.18\]
Example: Hough Transform for Lines

\[-5 \sin(5^\circ) - 3 \cos(5^\circ) + r = 0 \implies r = 3.42\]
\[-5 \sin(15^\circ) - 3 \cos(15^\circ) + r = 0 \implies r = 4.18\]
\[-5 \sin(25^\circ) - 3 \cos(25^\circ) + r = 0 \implies r = 4.83\]
Example: Hough Transform for Lines

\[-5 \sin(5^\circ) - 3 \cos(5^\circ) + r = 0 \Rightarrow r = 3.42\]
\[-5 \sin(15^\circ) - 3 \cos(15^\circ) + r = 0 \Rightarrow r = 4.18\]
\[-5 \sin(25^\circ) - 3 \cos(25^\circ) + r = 0 \Rightarrow r = 4.83\]
Example: Hough Transform for Lines

\[-5 \sin(5^\circ) - 3 \cos(5^\circ) + r = 0 \Rightarrow r = 3.42\]

\[-5 \sin(15^\circ) - 3 \cos(15^\circ) + r = 0 \Rightarrow r = 4.18\]

\[-5 \sin(25^\circ) - 3 \cos(25^\circ) + r = 0 \Rightarrow r = 4.83\]

\[-2 \sin(5^\circ) - 3.3 \cos(5^\circ) + r = 0 \Rightarrow r = 3.46\]
Example: Hough Transform for Lines

\[-5 \sin(5^\circ) - 3 \cos(5^\circ) + r = 0 \implies r = 3.42\]
\[-5 \sin(15^\circ) - 3 \cos(15^\circ) + r = 0 \implies r = 4.18\]
\[-5 \sin(25^\circ) - 3 \cos(25^\circ) + r = 0 \implies r = 4.83\]

\[-2 \sin(5^\circ) - 3.3 \cos(5^\circ) + r = 0 \implies r = 3.46\]
Example: Hough Transform for Lines

\[-5 \sin(5^\circ) - 3 \cos(5^\circ) + r = 0 \Rightarrow r = 3.42\]

\[-5 \sin(15^\circ) - 3 \cos(15^\circ) + r = 0 \Rightarrow r = 4.18\]

\[-5 \sin(25^\circ) - 3 \cos(25^\circ) + r = 0 \Rightarrow r = 4.83\]

\[-2 \sin(5^\circ) - 3.3 \cos(5^\circ) + r = 0 \Rightarrow r = 3.46\]

\[-2 \sin(15^\circ) - 3.3 \cos(15^\circ) + r = 0 \Rightarrow r = 3.71\]
Example: Hough Transform for Lines

\[-5 \sin(5°) - 3 \cos(5°) + r = 0 \Rightarrow r = 3.42\]
\[-5 \sin(15°) - 3 \cos(15°) + r = 0 \Rightarrow r = 4.18\]
\[-5 \sin(25°) - 3 \cos(25°) + r = 0 \Rightarrow r = 4.83\]

\[-2 \sin(5°) - 3.3 \cos(5°) + r = 0 \Rightarrow r = 3.46\]
\[-2 \sin(15°) - 3.3 \cos(15°) + r = 0 \Rightarrow r = 3.71\]
Example: Hough Transform for Lines

\[-5 \sin(5^\circ) - 3 \cos(5^\circ) + r = 0 \Rightarrow r = 3.42\]
\[-5 \sin(15^\circ) - 3 \cos(15^\circ) + r = 0 \Rightarrow r = 4.18\]
\[-5 \sin(25^\circ) - 3 \cos(25^\circ) + r = 0 \Rightarrow r = 4.83\]

\[-2 \sin(5^\circ) - 3.3 \cos(5^\circ) + r = 0 \Rightarrow r = 3.46\]
\[-2 \sin(15^\circ) - 3.3 \cos(15^\circ) + r = 0 \Rightarrow r = 3.71\]
Example: Clean Data

Forsyth & Ponce (2nd ed.) Figure 10.1 (Top)
Example: Some Noise

Forsyth & Ponce (2nd ed.) Figure 10.1 (Bottom)
Example: Too Much Noise

Tokens

Votes
Horizontal axis is θ
Vertical Axis is r

Forsyth & Ponce (2nd ed.) Figure 10.2

57
Real World Example
Real World Example

Original Edges Parameter space Hough Lines

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Mechanics of Hough Transform

1. Construct a quantized array to represent θ and r

2. For each point, render curve (θ, r) into this array adding one vote at each cell

Difficulties:
— How big should the cells be? (too big, and we merge quite different lines; too small, and noise causes lines to be missed)

How many lines?
— Count the peaks in the Hough array
— Treat adjacent peaks as a single peak
Some **Practical Details** of Hough Transform

It is best to **vote** for the two closest bins in each dimension, as the locations of the bin boundaries are arbitrary

— This means that peaks are “blurred” and noise will not cause similar votes to fall into separate bins

Can use a **hash table** rather than an array to store the votes

— This means that no effort is wasted on initializing and checking empty bins

— It avoids the need to predict the maximum size of the array, which can be non-rectangular
Some **Practical Details** of Hough Transform

A key is to have each feature (token) determine as many parameters as possible
— Lines are detected more effectively from edge elements with
both position and orientation
— For object recognition, each token should predict **position**, **orientation**, and **scale**

The Hough transform can extract feature groupings from clutter in linear time
Hough Transform for Circles (of known size)
Generalized Hough Transform

What if we want to detect an arbitrary geometric shape?
Generalized Hough Transform

What if we want to detect an arbitrary geometric shape?

Offline procedure:
At each boundary point, compute displacement vector: \(\mathbf{r} = \mathbf{a} - \mathbf{p}_i \).

Store these vectors in a table indexed by gradient orientation \(\theta \).

Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980
Example 1: Object Recognition — Implicit Shape Model

Combined object detection and segmentation using an implicit shape model. Image patches cast weighted votes for the object centroid.

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004
Example 1: Object Recognition — Implicit Shape Model

Basic Idea:

— **Find** interest points/keypoints in an image (e.g., SIFT Keypoint detector or Corners)

— **Match patch** around each interest point to a training patch (e.g., SIFT Descriptor)

— **Vote** for object center given that training instances

— Find the patches that voted for the peaks (**back-project**)
Example 1: Object Recognition — Implicit Shape Model

“Training” images of cows

“Testing” image

* Slide from Sanja Fidler
Example 1: Object Recognition — Implicit Shape Model

“Training” images of cows

“Testing” image

Vote for center of object

* Slide from Sanja Fidler
Example 1: Object Recognition — Implicit Shape Model

“Training” images of cows

“Testing” image

Vote for center of object

* Slide from Sanja Fidler
Example 1: Object Recognition — Implicit Shape Model

"Training" images of cows

"Testing" image

Vote for center of object

* Slide from Sanja Fidler*
Example 1: Object Recognition — Implicit Shape Model

“Training” images of cows

“Testing” image

of course sometimes wrong votes are bound to happen

* Slide from Sanja Fidler
Example 1: Object Recognition — Implicit Shape Model

"Training" images of cows

That’s ok. We want only peaks in voting space.

"Testing" image

* Slide from Sanja Fidler
Example 1: Object Recognition — Implicit Shape Model

“Training” images of cows

“Testing” image

Find patches that voted for the peaks (back-project)

Slide from Sanja Fidler
Example 1: Object Recognition — Implicit Shape Model

“Training” images of cows

“Testing” image

box around patches = object

Find objects based on the back projected patches

* Slide from Sanja Fidler*
Example 1: Object Recognition — Implicit Shape Model

“Training” images of cows

“Testing” image

Really easy … but slow … how do we make it fast?

We need to match a patch around each yellow keypoint to all patches in all training images (slow)

* Slide from Sanja Fidler
Visual Words

- **Visual vocabulary** (we saw this for retrieval)
- Compare each patch to a small set of visual words (clusters)

Slide from Sanja Fidler
Example 1: Object Recognition — Implicit Shape Model

Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004
Example 1: Object Recognition — Implicit Shape Model

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004
Combined object detection and segmentation using an implicit shape model. Image patches cast weighted votes for the object centroid.

Inferring Other Information: **Segmentation**

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004
Inferring Other Information: **Segmentation**

(a) detections
(b) p(figure)
(c) segmentation

[Source: B. Leibe]

* Slide from Sanja Fidler*
Inferring Other Information: Segmentation

[Source: B. Leibe]
Inferring Other Information: **Part Labels**

* Slide from Sanja Fidler
Inferring Other Information: **Depth**

```
Test image  Ground truth  Result

“Depth from a single image”
```

* Slide from Sanja Fidler*
Example 2: Object Recognition — Boundary Fragments

Boundary fragments cast weighted votes for the object centroid. Also obtains an estimate of the object’s contour.

Image credit: Opelt et al., 2006
Example 2: Object Recognition — Boundary Fragments

Boundary fragments cast weighted votes for the object centroid. Also obtains an estimate of the object’s contour.

Image credit: Opelt et al., 2006
Example 3: Object Recognition — Poselets

Poselets are image patches that have distinctive appearance and can be used to infer some of the configuration of a parts-based object. Detected poselets vote for the object configuration.

Image credit: Bourdev and Malik, 2009
Example 3: Object Recognition — Poselets

Poselets are image patches that have distinctive appearance and can be used to infer some of the configuration of a parts-based object. Detected poselets vote for the object configuration.

1. q-scores. Different colors illustrate different poselet detectors firing in the image. The blob size illustrates the score of the independent poselet classifier.

2. Q-scores (Section 4). Evidence from consistent poselet activations leads to a reranking based on mutual activation (Q-scores). Weaker activations consistent with others gain importance, whereas inconsistent ones get damped.

3. Clustering (Section 5). Activations are merged in a greedy manner starting with the strongest activation. Merging is based on pairwise consistency.

4. Bounding boxes (Section 6) and segmentations (Section 7). We predict the visible bounds and the contour of the person using the poselets within the cluster.

Image credit: Bourdev and Malik, 2009
Discussion of Hough Transform

Advantages:

— Can handle high percentage of outliers: each point votes separately
— Can detect multiple instances of a model in a single pass

Disadvantages:

— Complexity of search time increases exponentially with the number of model parameters
— Can be tricky to pick a good bin size
The **Hough transform** is another technique for fitting data to a model
— a voting procedure
— possible model parameters define a quantized accumulator array
— data points “vote” for compatible entries in the accumulator array

A key is to have each data point (token) constrain model parameters as tightly as possible