THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Lecture 21: Hough



Menu for Today (october 30, 2020)

Topics:

— Hough Transform
— Hough Transform for Object Detection

— Today’s & Next Lecture: Forsyth & Ponce (2nd ed.) 7.1.1, 7.2.1, 7.4, 7.0

Reminders:

— Midterms are graded (grades will be released immediately after lecture)

— Assignment 4: please start working on it!

— Final Exam date is set to December 16th @ noon.



Midterm Grades

Curve: 5 points (~8.3%) added to everyone’s score

Average (aﬁer Curve): 71 Midterm Grade Sistribution (after curve)
Median (after curve): 73 40

Any regrade requests 3

will be handled via

private posts on Plazza 20

Any regrade request 10

must specifically mention :
specific question anad 0

A (80-100) B (68-79) C (55-67) D (50-54) (< 50)

potential iIssue.



Today’s “fun” Example: Im2Calories

|CCV 2015 paper by Kevin Murphy Top View Side View
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Figure 1: Calorie Estimation Flowchart



Today’s “fun” Example: Im2Calories

Im2Calories: towards an automated mobile vision food diary

Austin Myers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban Nathan Silberman, Sergio
Guadarrama, George Papandreou, Jonathan Huang, Kevin Murphy amyers@umd.edu, (nickj, rathodyv,
kbanoop, gorban)@google.com (nsilberman, sguada, gpapan, jonathanhuang, kpmurphy)@google.com



Today’s “fun” Example: Im2Calories

Fun on-line demo: http://www.caloriemama.ai/api



http://www.caloriemama.ai/api

Lecture 20: Re-cap RANSAC

RANSAC is a technigque to fit data to a model

— divide data into inliers and outliers

— estimate model from minimal set of inliers

— Improve model estimate using all inliers

— alternate fitting with re-classification as inlier/outlier

RANSAC is a general method suited for a wide range of model fitting problems
— easy to Implement
— easy to estimate/control failure rate

RANSAC only handles a moderate percentage of outliers without cost blowing
Up



RANSAC: kK Samples Chosen (p = 0.99)

Sample
s1ze

N 5% 10% 20% 25% 30% 40% S50%

Proportion of outliers

Figure Credit: Hartley & Zisserman
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Discussion of RANSAC

Advantages:
— General method suited for a wide range of model fitting problems

— Easy to iImplement and easy to calculate its failure rate

Disadvantages:
— Only handles a moderate percentage of outliers without cost blowing up

— Many real problems have high rate of outliers (but sometimes selective
choice of random subsets can help)

— Only finds one “best” solution

The Hough transform can handle high percentage of outliers and
simultaneously find multiple solutions



Fitting a Model

Suppose we want to fit a model to a set of tokens

— e.g. A line fits well to a set of points. This is unlikely to be due to chance, so
we represent the points as a line.

— e.9. A 3D model can be scaled, rotated and translated to closely fit a set of
points or line segments. If it fits well, the object is recognized.

10



Fitting a Model Is Difficult

Difficulties arise owing to:

Extraneous data: clutter or multiple models
— We do not know what is part of the model

— Can we fit models with a few parts when there is significant background
clutter?

Missing data: only some parts of model are present Noise

Computational cost:

— Not feasible to check all combinations of features by fitting a model to
each possible subset

11



Hough [ransform

|dea of Hough transform:
— For each token vote for all models to which the token could belong to
— Return models that get many votes

Example: For each point, vote for all lines that could pass through it; the true
ines will pass through many points and so receive many Votes

12



Lines: Slope intercept form

y=mx + b
P A

slope y-intercept

113 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough Transform: Image and Parameter Space

variables
J N
Yy =mx + b
N 7
parameters
y4A

Image space
14 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough Transform: Image and Parameter Space

variables variables
VAR J o\
=mx + b y—mx =2>b
N 7 N 7
parameters parameters
vl b |
a line .(1’ 1)
| becomes a o B R B RN SEES
' I poiNt T 7 7 1 11U 1 m
Image space Parameter space

15 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough Transform: Image and Parameter Space

variables

J o\
Yy =mx + b
N 7

parameters

vl

What would a point in image space
become In parameter space”’

Image space
16 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

a point
becomes a
ine

variables

VAR
Yy =mx + b
N 7
parameters

Y|
‘(171)
Image space

17

variables
J N
Yy —mx = b
N 7

parameters

b A
4--

Parameter space
Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

. variables
variables
J N J o\
y=mx + b y—mx =0b
N 7 N 7
parameters parameters
Y| b |
.(3,3)
1,1
o1 1) two
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18 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

. variables
variables
VAR J o\
y=mx+b y—mx =2>b
N 7 N 7
parameters parameters
vl b |
o(3;3)
1,1
o1 1) two
IRERD RS S A .’B points”?
Image space Parameter space

19 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

. variables
variables
VAR J o\
y=mx+b Y — 'rr/z\a: = b
N 7 N
parameters parameters
vl b |
o(3;3)
1,1
o1 1) three
IRERD RS S A .’B points”?
(_27_2)
o
Image space Parameter space

20 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

. variables
variables
VAR J o\
y=mx+b Y — 'rr/z\a: = b
N 7 N
parameters parameters
vl b |
o(3;3)
1,1
o1 1) three
IRERD RS S A .’B points”?
(_27_2)
o
Image space Parameter space

01 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

. variables
variables
VAR J o\
y=mx+b y—mx =2>b
N 7 N 7
parameters parameters
vl b |
o(3;3)
1,1
ol1; 1) four
IRERD RS S A .’B points”?
—2, =2 i
(=2,—2) 1,-1)
Image space Parameter space

29 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

. variables
variables
VAR J o\
y=mx+b y—mx =2>b
N 7 N 7
parameters parameters
vl b |
o(3;3)
1,1
ol1; 1) four
IRERD RS S A .’B points”?
—2, =2 i
(=2,—2) 1,-1)
Image space Parameter space

03 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

How would you find the best fitting line”?

vl
o(3:3)
‘(17 1)
AAAAAA —
_27 —2 L
(=2,—2) (1,-1)
Image space Parameter space

o4 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

IS this method robust to measurement noise? clutter?

vl
o(3:3)
‘(17 1)
AAAAAA —
_27 —2 L
(=2,—2) (1,-1)
Image space Parameter space

o5 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Line Detection by Hough [ransform

Algorithm:

l1.Quantize Parameter Space(m,c) “\\(mC0

X

2.Create Accumulator Array A(m,c) Parameter Space

3.5et A(m,c)=0 Vm,c A(m,c)

4. For each image edge(x,y,) 1 1
For each element 1in A(m,c) >

If (mc) lies on the line:c=-xm+y, 1] |1
Increment A(m,c)=A(m,c)+1 1 ;

5. Find local maxima 1in A(m,c)

26 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Problems with Parametrization

How big does the accumulator need to be for the parameterization (m,c)”

A(m,c)

1

1

27

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Problems with Parametrization

How big does the accumulator need to be for the parameterization (m,c)”

1 1

A(m,c) T
1 1
The space of m Is huge! The space of ¢ Is huge!
— V=M< — X< C <

08 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lines: Slope intercept form

y=mx + b
P A

slope y-intercept

29 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lines: Normal form

rsinf + ycosl = p

Book’s convention

rsinf + ycost +r =0

r >0

0<60 <27

30 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

variables parameters
/N /| \
y\/:ma:—l—b ISIHQ—I—yCOSH:p
parameters variables
Y| p
(D) g

a point
‘:33) becomes? 0

0.25n 0.5 0.75n 9

Image space Parameter space
3 Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Hough [ransform: Lines

variables parameters
S\ J \
y\/:ma:—l—b ISIHQ—I—yCOSH:p
parameters variables
Y| p

o a point s
vl becomes .
L|  awave

0.25n 0.5 0.75n 9

Image space Parameter space
39 Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Hough [ransform: Lines

variables parameters
J o\ g !
y = mx + b rsinf + ycosl = p
N7 N 77
parameters variables
| p

| .(1,1) | _—
a line
T :m’ becomes? °

0.25n 0.5 0.75n 9

Image space Parameter space
33 Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Hough [ransform: Lines

variables parameters
J o\ g !
y = mx + b rsinf + ycosl = p
N7 N 77
parameters variables
| p

i 2
. a line o
4 | lbecomes .
L| a3 point

0.25n 0.5 0.75n 9

Image space Parameter space
34 Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Hough [ransform: Lines

variables parameters
/N VAN \
y = mx + b rsinf + ycosl = p
N7 N 7
parameters variables
£
. s
a line
becomes? |° \
0.25n 0.5m 0.75n 9
Image space Parameter space

35 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

variables parameters
/N VAN \
y = mx + b rsinf + ycosl = p
N7 N 7
parameters variables
£
a line —
becomes .
a point _1
0.25n 0.5m 0.75n 9
Image space Parameter space

36 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

variables parameters
J o\ g !
y = mx + b rsinf + ycosl = p
N7 N 77
parameters variables
| p

< —~—® a line -
N ] becomes |,
A L|  apoint

0.25n 0.5 0.75n 9

Image space Parameter space
37 Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Hough [ransform: Lines

variables parameters
VAR g \
y = mx + b rsinf + ycosl = p
N4 N Ay
parameters variables
vl
o(3;3)
(L, 1)
two points
"y lbecome?
Image space Parameter space

38 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

variables parameters
/N g \
y = mx + b rsinf + ycosl = p
N4 N Ay
parameters variables
Y|
0(373) 3
.(17 1) | o
three points
"y lbecome? °
(_27 _2) -1
o 2\
Image space Parameter space

39 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Hough [ransform: Lines

variables parameters
S\ J \
y\/:ma:—l—b ISIHQ—I—yCOSH:p
parameters variables
Y|

four points
T become”?

2=y | |9 "
=272 1 @y A \

-4

0.25n 0.5 0.75n

Image space Parameter space
40 Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Hough [ransform for Lines (switching to books notation)

Idea: Each point votes for the lines that pass through it

— Alline is the set of points, (z, y), such that
rsinf + ycosf +r =20

— Different choices of 8, r give different lines



Hough [ransform for Lines (switching to books notation)

Idea: Each point votes for the lines that pass through it

— Alline is the set of points, (z, y), such that
rsinf + ycosf +r =20

— Different choices of 8, r give different lines

— For any (x, y) there is a one parameter family of lines through this point. Just
et (x,y) be constants and for each value of 8 the value of r will be determined

— Each point enters votes for each line In the family

— It there Is a line that has lots of votes, that will be the line passing near the
points that voted for it

42



Example: Hough ITranstorm for Lines

n 0 10 20 30 40 ..
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Example: Hough Transform for Lines
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Example: Hough Transform for Lines
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Example: Hough Transform for Lines
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Example: Hough Transform for Lines
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Example: Hough Transform for Lines
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Example: Hough Transform for Lines
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Example: Hough Transform for Lines

Pl 0 10 20 30 40 ...
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3.9
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o
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Example: Hough Transform for Lines
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Example: Hough Transform for Lines
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Example: Hough Transform for Lines
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Example: Clean Data

C o3 04 ol apo

Votes
Tokens Horizontal axis is 6

Vertical AXIS IS r
Forsyth & Ponce (2nd ed.) Figure 10.1 (Top)
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Example: Some Noise

s 0.6 Qo !

Votes
Tokens Horizontal axis is 6

Vertical AXIS IS r

Forsyth & Ponce (2nd ed.) Figure 10.1 (Bottom)
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Example: oo Much Noise

04

“0 0z OA 0e on

Votes
Tokens Horizontal axis is 6

Vertical AXIS IS r
Forsyth & Ponce (2nd ed.) Figure 10.2
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Real World Example

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Real World Example

Original Edges Parameter Hough Lines
space

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Mechanics of Hough [ransform

1. Construct a quantized array to represent 6 and r
2. For each point, render curve (6, r) into this array adding one vote at each cell

Difficulties.
— How big should the cells be? (too big, and we merge quite different lines; too
small, and noise causes lines to be missed)

How many lines?

— Count the peaks in the Hough array
— [reat adjacent peaks as a single peak

o0



Some Practical Details of Hough Transform

It IS best to vote for the two closest bins In each dimension, as the locations of
the bin boundaries are arbitrary

— [his means that peaks are “blurred” and noise will not cause similar votes to
fall Into separate bins

Can use a hash table rather than an array to store the votes
— This means that no effort Is wasted on initializing and checking empty bins

— |t avoids the need to predict the maximum size of the array, which can be
non-rectangular

o1



Some Practical Details of Hough Transform

A Key Is to have each feature (token) determine as many parameters as possible
— Lines are detected more effectively from edge elements with

both position and orientation
— For object recognition, each token should predict position,

orientation, and scale

The Hough transtorm can extract feature groupings from clutter in linear time

02



Hough Transform for Circles (of known size)




Generalized Hough Transform

What if we want to detect an arbitrary geometric shape?

o4



Generalized Hough Transform

What if we want to detect an arbitrary geometric shape”?

Offline procedure:

At each boundary point,
compute displacement
vector: r =a - p;.

Model shape

Store these vectors in a
£ / table indexed by gradient
5 \ orientation 0.

Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980

09



Example 1: Object Recognition — Implicit Shape Model

Combined object detection and segmentation using an implicit shape model.
Image patches cast weighted votes for the object centroid.

Original Image Interest Points Matched Codebook Probabilistic

\ - Entries

Voting Space
(continuous)

¢ r T ot |
‘ﬂ: | ‘ ;i'r;-‘ -— : /

Segmentation

™

Refined Hypothesis Backprojected Backprojection
(uniform sampling) Hypothesis of Maximum

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004
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Example 1: Object Recognition — Implicit Shape Model

Basic Idea:

— Find interest points/keypoints in an image (e.g., SIFT Keypoint detector or Corners)
— Match patch around each interest point to a training patch (e.g., SIFT Descriptor)
— Vote for object center given that training instances

— Find the patches that voted for the peaks (back-project)

o/



Example 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” Image

68 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image

+
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Vote for center of object

69 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image

training image of cow

ol

+ 3+ + 44+

+
+
a4
+
+
.{
+
e

-

Vote for center of object

70 * Slide from Sanja Fidler



xample 1: Object Recognl

“Training” Images of cows

+
-
ad
+
+
-4
+
¥

—

tion — Implicit Shape Model
“Testing” image

training image of cow

LU LR ' e -

~+ e

+ 4+ M+ ++4

Vote for center of object

71 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image

H4+F + oo bt o+

o
1

TS

I R

4- ++?_+ ++ +4 *

of course sometimes wrong votes are bound to happen

72 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image

+ty 4 +%+]¢

+
e
T
+ "'++ o + 3
++ 4 + ++

: . -
T4 Lt +ﬁy~

11
:

+. a4

+. 3+ M+ + 44+

H+E 4+

—

-+

That's ok. We want only peaks in voting space.

/3 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of cows “Testing” image
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Find patches that voted for the peaks (back-project

74 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image

FVESET i

s ¢

box around patches = object

.

+-—-‘-¢+. R

£ 4 H-F + 4+
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N
o 2 e

FINnd objects based on the back projected patches

/5 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image
Really easy ... but slow ... how do we make it fast”?

training image of cow

R et

+
+
a4
+
-
-
+
1

+4

sy
+

+
+%
+ J,?L*++ + 31+ -
Sl o Tl ke +F

We need to match a patch around each yellow keypoint to

all patches In all training images (slow
/0 * Slide from Sanja Fidler




Visual \Words

@ Visual vocabulary (we saw this for retrieval)

@ Compare each patch to a small set of visual words (clusters)

Visual words (visual codebook)!

77 * Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

INndex displacements by “visual codeword”

visual codeword with
displacement vectors

training image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004
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Example 1: Object Recognition — Implicit Shape Model

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004
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Inferring Other Information: Segmentation

Combined object detection and segmentation using an implicit shape model.
Image patches cast weighted votes for the object centroid.

Original Image Interest Points Matched Codebook Probabilistic

\ - Entries

Voting Space
(continuous)

¢ r T ot |
‘ﬂ: | ‘ ;i'r;-‘ -— : /

Segmentation

™

Refined Hypothesis Backprojected Backprojection
(uniform sampling) Hypothesis of Maximum

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004
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Inferring Other Information: Segmentation

e
o

(a) detections (b) p(figure) (c) segmentation (a) detections (b) p(figure) (c) segmentation

[Source: B. Leibe]

. * Slide from Sanja Fidler



Inferring Other Information: Segmentation

B
o

* Slide from Sanja Fidler

[Source: B. Leibe]



Inferring Other Information: Part Labels

Training

83 * Slide from Sanja Fidler



Inferring Other Information: Depth

Test image Ground truth

“Depth from a single image”

84 * Slide from Sanja Fidler



Example 2: Object Recognition — Boundary Fragments

Boundary fragments cast weighted votes for the object centroid. Also obtains
an estimate of the object’s contour.

All matched boundary
fragments

Original Image

Centroid Voting on a subset of the matched fragments

Segmentation / Detection Backprojected Maximum

Image credit: Opelt et al., 2006

89



Example 2: Object Recognition — Boundary Fragments

Boundary fragments cast weighted votes for the object centroid. Also obtains
an estimate of the object’s contour.

Hough voting Backprojected Detection of

Original Matching boundary Segmentation

space for the codebook entries ;
Steps in Image Edge Image fragments centroid for 2 maximum the object
Detect. Alg. (1) (2) (3) (4)
| L‘.'é '.. " ﬂ
v '
-, .
e No maximum
- above threshold found
il A
. r, 4 , No maximum
R VIR above threshold found
B T o

Image credit: Opelt et al., 2006
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Example 3: Object Recognition — Poselets

Poselets are image patches that have distinctive appearance and can be used
to Infer some of the configuration of a parts-based object. Detected poselets
vote for the object configuration. |




Example 3: Object Recognition — Poselets

Poselets are image patches that have distinctive appearance and can be used
to Infer some of the configuration of a parts-based object. Detected poselets

vote for the object configuration.

1. g-scores. Different colors illustrate different 2. Q-scores (Section 4). Evidence from consistent 3. Clustering (Section 5). Activations are 4. Bounding boxes (Section 6) and segmen-
poselet detectors firing in the image. The blob poselet activations leads to a reranking based on merged in a greedy manner starting with the tations (Section 7). We predict the visible
size illustrates the score of the independent mutual activation (Q-scores). Weaker activations strongest activation. Merging is based on bounds and the contour of the person using the
poselet classifier. consistent with others gain importance, whereas pairwise consistency. poselets within the cluster.

inconsistent ones get damped.

Image credit. Bourdev and Malik, 2009

33



Discussion of Hough [ransform

Advantages:
— Can handle high percentage of outliers: each point votes separately
— (Can detect multiple instances of a model in a single pass

Disadvantages.

— Complexity of search time increases exponentially with the number of model
parameters

— (Can be tricky to pick a good bin size

89



Summary of Hough Transform

The Hough transform is another technique for fitting data to a model
— a voting procedure

— possible model parameters define a guantized accumulator array
— data points “vote" for compatible entries in the accumulator array

A key Is to have each data point (token) constrain model parameters as tightly
as possible

90



