
Lecture 14: Object Recognition, RANSAC, Hough Transform

CPSC 425: Computer Vision 
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Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Menu for Today (October 28, 2020)
Topics: 

— Object Detection 
— Model Fitting

Readings: 
— Today’s & Next Lecture:  Forsyth & Ponce (2nd ed.) 10.1, 10.2

Reminders: 
— Midterm is still being graded (we lost grades due to Canvas mishap) 
— Assignment 4: please start working on it! 
— Final Exam date is set to December 16th @ noon. 

— RANSAC 
— Hough Transform 
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Today’s “fun” Example: Everybody Dance Now
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Today’s “fun” Example: Everybody Dance Now
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Today’s “fun” Example: Everybody Dance Now
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Lecture 19: Re-Cap

Locally non-distinct 

Locally distinct 
Keypoint is an image location at which a 
descriptor is computed 
— Locally distinct points 
— Easily localizable and identifiable 

The feature descriptor summarizes the local 
structure around the key point 
— Allows us to (hopefully) unique matching of 
keypoints in presence of object pose variations, 
image and photometric deformations 

Note, for repetitive structure this would still not 
give us unique matches. 



Lecture 19: Re-Cap

— We motivated SIFT for identifying locally distinct keypoints in an image 
(detection)  

— SIFT features (description) are invariant to translation, rotation, and scale; 
robust to 3D pose and illumination 
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1. Multi-scale extrema detection 
2. Keypoint localization 
3. Orientation assignment 
4. Keypoint descriptor



Four steps to SIFT feature generation:  

1. Scale-space representation and local extrema detection 
— use DoG pyramid 
— 3 scales/octave, down-sample by factor of 2 each octave  

	2. Keypoint localization 
— select stable keypoints (threshold on magnitude of extremum, ratio of   

principal curvatures)  
	3. Keypoint orientation assignment 

— based on histogram of local image gradient directions  
	4. Keypoint descriptor 

— histogram of local gradient directions — vector with 8 × (4 × 4) = 128 dim 
— vector normalized (to unit length) 
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Lecture 19: Re-Cap

Output: (x, y, s) for each keypoint

Output: Remove some (weak) keypoints

Output: Orientation for each keypoint

Output: 128D normalized vector  
characterizing the keypoint region



Pedestrian detection

64 pixels 
8 cells 

7 blocks

128 pixels 
16 cells 

15 blocks

15 x 7 x 4 x 9 = 
3780

1 cell step size visualization

Redundant representation due to overlapping blocks

Lecture 19: Histogram of Oriented Gradients (HOG)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



4 x 4 cell grid
Each cell is represented 

by 4 values: 

How big is the SURF descriptor?

5 x 5 
sample 
points

Haar wavelets filters
(Gaussian weighted from center)

Lecture 19: ‘Speeded’ Up Robust Features

64 dimensions

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Summary
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Keypoint Detection 
Algorithms Representation

Harris Corners (x,y,s)

LoG / Blobs (x,y,s)

SIFT (x,y,s,theta)

Keypoint Description 
Algorithms Representation

SIFT 128D

Histogram of Oriented 
Gradients 3780D

SURF 64D



I(X,Y )

What types of transformations can we do? 

changes domain of image function

Warping

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y )
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I(X,Y )

What types of transformations can we do? 

changes domain of image function

Warping
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I 0(X,Y )

!12

We will call this 
“Warping” a “Model”
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Note: The “model” / “warping” 
gives you a way to transform  
any pixel in the original image 
to the corresponding image
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Forms of the “Model”
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I(X,Y )

What types of transformations can we do? 

changes domain of image function
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We will call this 
“Warping” a “Model”
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Note: The “model” / “warping” 
gives you a way to transform  
any pixel in the original image 
to the corresponding image



Solution for Affine Parameters
Affine transform of          to 

Rewrite to solve for transformation parameters:
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Then,

Solution for Affine Parameters



Limitation of this …

We need to have exact matches 
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3D Object Recognition 

Extract outlines with background 
subtraction  
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Only 3 keypoints are needed for recognition, 
so extra keypoints provide robustness  

!20

3D Object Recognition 



Recognition Under Occlusion 
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Strategy: Solve for M for each object by leveraging SIFT matches of 
keypoints for that object, then apply M to the outline of that object 



Location Recognition 

!22

Strategy: Solve for M for each object 
by leveraging SIFT matches of 
keypoints for that object, then apply 
M to the bounding box of that object 



Stitching Panoramas 
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Strategy: Solve for M across two 
views by leveraging SIFT matches of 
keypoints, then apply M to the entire 
image for alignment … and then blend



SIFT Usage 
— Recognize charging station 
— Communicate with visual cards
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Example 1: Sony Aibo



Limitation of this …

We need to have exact matches 
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Limitation of this …

Despite all efforts this is very difficult … 
1. If we can find exact match 80% of  the time, we can find 3 matches correctly 
only about 50% of the time. 
2. Image noise, deformations, will make this worse (e.g., if finding exact match 
drops to 50%, the probability of  finding 3 exact matches will drop to 12.5%) 
3. Multiple object instances will make this impossible 
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Fitting a Model to Noisy Data 
Suppose we are fitting a line to a dataset that consists of 50% outliers  

We can fit a line using two points  
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If we draw pairs of points uniformly at random, what fraction of 
pairs will consist entirely of ‘good’ data points (inliers)? 



Fitting a Model to Noisy Data 
Suppose we are fitting a line to a dataset that consists of 50% outliers  

We can fit a line using two points  

— If we draw pairs of points uniformly at random, then about 1/4 of these pairs 
will consist entirely of ‘good’ data points (inliers)  

— We can identify these good pairs by noticing that a large collection of other 
points lie close to the line fitted to the pair  

— A better estimate of the line can be obtained by refitting the line to the points 
that lie close to the line 
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RANSAC (RANdom SAmple Consensus) 

1. Randomly choose minimal subset of data points necessary to fit model (a 
sample)  

2. Points within some distance threshold, t, of model are a consensus set. 
Size of consensus set is model’s support  

3. Repeat for N samples; model with biggest support is most robust fit  
— Points within distance t of best model are inliers  
— Fit final model to all inliers  

!29
Slide Credit: Christopher Rasmussen



RANSAC (RANdom SAmple Consensus) 

1. Randomly choose minimal subset of data points necessary to fit model (a 
sample)  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RANSAC is very useful for variety of applications
Slide Credit: Christopher Rasmussen



RANSAC (RANdom SAmple Consensus) 

1. Randomly choose minimal subset of data points necessary to fit model (a 
sample)  

2. Points within some distance threshold, t, of model are a consensus set. 
Size of consensus set is model’s support  

3. Repeat for N samples; model with biggest support is most robust fit  
— Points within distance t of best model are inliers  
— Fit final model to all inliers  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Fitting a Line: 2 points

Slide Credit: Christopher Rasmussen



Example 1: Fitting a Line
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Figure Credit: Hartley & Zisserman
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Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman
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Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman
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Algorithm 10.4
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RANSAC: Fitting Lines Using Random Sample Consensus

This was Algorithm 15.4 in Forsyth & Ponce (1st ed.)



RANSAC: How many samples?
Let     be the fraction of inliers (i.e., points on line) 

Let     be the number of points needed to define hypothesis  
       (          for a line in the plane) 

Suppose    samples are chosen 

The probability that a single sample of     points is correct (all inliers) is 
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RANSAC: How many samples?
Let     be the fraction of inliers (i.e., points on line) 

Let     be the number of points needed to define hypothesis  
       (          for a line in the plane) 

Suppose    samples are chosen 

The probability that a single sample of     points is correct (all inliers) is  
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RANSAC: How many samples?
Let     be the fraction of inliers (i.e., points on line) 

Let     be the number of points needed to define hypothesis  
       (          for a line in the plane) 

Suppose    samples are chosen 

The probability that a single sample of     points is correct (all inliers) is  

The probability that all    samples fail is  

Choose    large enough (to keep this below a target failure rate) 
!38
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RANSAC: k Samples Chosen (p = 0.99)
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Figure Credit: Hartley & Zisserman



After RANSAC

RANSAC divides data into inliers and outliers and yields estimate computed 
from minimal set of inliers  

Improve this initial estimate with estimation over all inliers (e.g., with standard 
least-squares minimization)  

But this may change inliers, so alternate fitting with re-classification as inlier/
outlier  
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Example 2: Fitting a Line

Figure Credit: Hartley & Zisserman

4 points
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Example 2: Fitting a Line

C D
B

A

Figure Credit: Hartley & Zisserman

10 points



Example 3: Automatic Matching of Images
— How to get correct correspondences without human intervention?  
— Can be used for image stitching or automatic determination of epipolar geometry

!43 Figure Credit: Hartley & Zisserman



Example 3: Feature Extraction
— Find features in pair of images using Harris corner detector  
— Assumes images are roughly the same scale  

!44 Figure Credit: Hartley & Zisserman

≈ 500 corner features found in each image



Example 3: Finding Feature Matches
Select best match over threshold within a square search window (here ±320 pixels) 
using SSD or (normalized) cross-correlation for small patch around the corner  

!45 Figure Credit: Hartley & Zisserman

≈ 500 corner features found in each image



Example 3: Initial Match Hypothesis

!46 Figure Credit: Hartley & Zisserman

268 matched features (over SSD threshold) superimposed on left image 
(pointing to locations of corresponding feature in right image)



Example 3: Outliers & Inliers after RANSAC
— n is 4 for this problem (a homography relating 2 images)  
— Assume up to 50% outliers 
— 43 samples used with t = 1.25 pixels 

!47 Figure Credit: Hartley & Zisserman

117 outliers 151 inliers



Example 3: Final Matches

!48 Figure Credit: Hartley & Zisserman
final set of 262 matches



Discussion of RANSAC

Advantages:  
— General method suited for a wide range of model fitting problems  
— Easy to implement and easy to calculate its failure rate  

Disadvantages:  
— Only handles a moderate percentage of outliers without cost blowing up  
— Many real problems have high rate of outliers (but sometimes selective 
choice of random subsets can help)  

The Hough transform can handle high percentage of outliers 
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Example: Photo Tourism

Takes as input unstructured collections of photographs and reconstructs each 
photo’s viewpoint and a sparse 3D model of the scene  

Uses both SIFT and RANSAC 
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Figure credit: Snavely et al. 2006



Example: Photo Tourism
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[ Agarwal, Furukawa, Snavely, Curless, Seitz, Szeliski, 2010 ]



Example: Photo Tourism
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[ Agarwal, Furukawa, Snavely, Curless, Seitz, Szeliski, 2010 ]


