

CPSC 425: Computer Vision

Lecture 2: Image Formation

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today (September 11, 2020)

Topics:

Image Formation

Projection

Cameras and Lenses

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 1.1.1 1.1.3
- Next Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5

Reminders:

- Complete Assignment 0 (ungraded) by Wednsday, September 16
- Google Colab tutorials next week
- TA and Office hours are posted and will start on Monday, September 14

Today's "fun" Example

Today's "fun" Example

Photo credit: reddit user Liammm

Today's "fun" Example: Eye Sink Illusion

Today's "fun" Example: Eye Sink Illusion

"Tried taking a picture of a sink draining, wound up with a picture of an eye instead"

Photo credit: reddit user Liammm

Lecture 1: Re-cap

Types of computer vision problems:

- Computing properties of the 3D world from visual data (measurement)
- Recognition of objects and scenes (perception and interpretation)
- Search and interact with visual data (search and organization)
- Manipulation or creation of image or video content (visual imagination)

Computer vision challenges:

- Fundamentally ill-posed
- Enormous computation and scale
- Lack of fundamental understanding of how human perception works

Lecture 1: Re-cap

Computer vision technologies have moved from research labs into commercial products and services. Examples cited include:

- broadcast television sports
- electronic games (Microsoft Kinect)
- biometrics
- image search
- visual special effects
- medical imaging
- robotics

... many others

Related Disciplines

Model

(it is sometimes useful to think about computer vision as inverse graphics)

Why Study Computer Vision?

It is one of the most exciting areas of research in computer science

Among the fastest growing technologies in the industry today

Wired's 100 Most Influential People in the World

63. Yann Lecun

Director of AI research, Facebook, Menlo Park

LeCun is a leading expert in deep learning and heads up what, for Facebook, could be a hugely significant source of revenue: understanding its user's intentions.

62. Richard Branson

Founder, Virgin Group, London

Branson saw his personal fortune grow £550 million when Alaska Air bought Virgin America for \$2.6 billion in April. He is pressing on with civilian space travel with Virgin Galactic.

61. Taylor Swift

Entertainer, Los Angeles

CVPR Attendance

Lecture 2: Goal

To understand how images are formed

(and develop relevant mathematical concepts and abstractions)

What is Computer Vision?

Compute vision, broadly speaking, is a research field aimed to enable computers to process and interpret visual data, as sighted humans can.

What is Computer Vision?

Compute vision, broadly speaking, is a research field aimed to enable computers to process and interpret visual data, as sighted humans can.

Overview: Image Formation, Cameras and Lenses

The image formation process that produces a particular image depends on

- Lightening condition
- Scene geometry
- Surface properties
- Camera optics and viewpoint

Sensor (or eye) captures amount of light reflected from the object

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF** $(\theta_i, \phi_i, \theta_v, \phi_v)$

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF** $(\theta_i, \phi_i, \theta_v, \phi_v)$

Surface reflection depends on both the viewing (θ_v, ϕ_v) and illumination (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF**($\theta_i, \phi_i, \theta_v, \phi_v$)

Lambertian surface:

$$\mathbf{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v) = \frac{\rho_d}{\pi}$$

Slide adopted from: Ioannis (Yannis) Gkioulekas (CMU)

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF** $(\theta_i, \phi_i, \theta_v, \phi_v)$

Mirror surface: all incident light reflected in one directions $(\theta_v, \phi_v) = (\theta_r, \phi_r)$

Slide adopted from: Ioannis (Yannis) Gkioulekas (CMU)

Cameras

Old school film camera

Cameras

Old school film camera

Let's say we have a sensor ...

Let's say we have a sensor ...

Let's say we have a sensor ...

Digital CCD/CMOS camera

digital sensor (CCD or CMOS)

... and the object we would like to photograph

What would an image taken like this look like?

digital sensor (CCD or CMOS)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

All scene points contribute to all sensor pixels

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

All scene points contribute to all sensor pixels

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

barrier (diaphragm)

digital sensor (CCD or CMOS)

What would an image taken like this look like?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Each scene point contributes to only one sensor pixel

Camera Obscura (latin for "dark chamber")

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January 24, 1544. He used this illustration in his book, "De Radio Astronomica et Geometrica," 1545. It is thought to be the first published illustration of a camera obscura.

Credit: John H., Hammond, "Th Camera Obscure, A Chronicle"

Camera Obscura (latin for "dark chamber")

Solis deliquium Anno (hrish 1544. Die 24: Januarg

principles behind the pinhole camera or camera obscura were first mentioned by Chinese philosopher Mozi (Mo-Ti) (470 to 390 BCE)

Sic nos exacte Anno . 1544 . Louanii eclipsim Solis observauimus, inuenimusq; deficere paulò plus q dex-

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January 24, 1544. He used this illustration in his book, "De Radio Astronomica et Geometrica," 1545. It is thought to be the first published illustration of a camera obscura.

Credit: John H., Hammond, "Th Camera Obscure, A Chronicle"

First Photograph on Record

La table servie

Credit: Nicéphore Niepce, 1822

A pinhole camera is a box with a small hall (aperture) in it

Forsyth & Ponce (2nd ed.) Figure 1.2

A pinhole camera is a box with a small hall (aperture) in it

Forsyth & Ponce (2nd ed.) Figure 1.2

Image Formation

Forsyth & Ponce (2nd ed.) Figure 1.1

Credit: US Navy, Basic Optics and Optical Instruments. Dover, 1969

Accidental Pinhole Camera

f' is the focal length of the camera

f' is the focal length of the camera

Note: In a pinhole camera we can adjust the focal length, all this will do is change the size of the resulting image

It is convenient to think of the image plane which is in from of the pinhole

It is convenient to think of the image plane which is in from of the pinhole

What happens if object moves towards the camera? Away from the camera?

Forsyth & Ponce (2nd ed.) Figure 1.3a

Far objects appear smaller than close ones

Forsyth & Ponce (2nd ed.) Figure 1.3a

Far objects appear smaller than close ones

Forsyth & Ponce (2nd ed.) Figure 1.3a

Far objects appear smaller than close ones

Forsyth & Ponce (2nd ed.) Figure 1.3a

Far objects appear smaller than close ones

Forsyth & Ponce (2nd ed.) Figure 1.3a

Size is **inversely** proportions to distance

Forsyth & Ponce (1st ed.) Figure 1.3b

Parallel lines meet at a point (vanishing point)

Forsyth & Ponce (1st ed.) Figure 1.3b

Each set of parallel lines meet at a different point

— the point is called vanishing point

Each set of parallel lines meet at a different point

the point is called vanishing point

Sets of parallel lines on the same plane lead to collinear vanishing points

— the line is called a **horizon** for that plane

Draw a horizon line.

Slide Credit: David Jacobs

Slide Credit: David Jacobs

Slide Credit: David Jacobs

Add windows and doors.

Slide Credit: David Jacobs

Each set of parallel lines meet at a different point

the point is called vanishing point

Sets of parallel lines one the same plane lead to collinear vanishing points

— the line is called a **horizon** for that plane

Good way to spot fake images

- scale and perspective do not work
- vanishing points behave badly

Perspective Aside

Perspective Aside

Properties of Projection

- Points project to points
- Lines project to lines
- Planes project to the whole or half image
- Angles are **not** preserved

Properties of Projection

- Points project to points
- Lines project to lines
- Planes project to the whole or half image
- Angles are **not** preserved

Degenerate cases

- Line through focal point projects to a point
- Plane through focal point projects to a line

Projection Illusion

Projection Illusion

Perspective Projection

3D object point

Forsyth & Ponce (1st ed.) Figure 1.4

$$P = \left[egin{array}{c} x \\ y \\ z \end{array}
ight]$$
 projects to 2D image point $P' = \left[egin{array}{c} x' \\ y' \end{array}
ight]$ where

$$x' = f' \frac{x}{z}$$

$$y' = f' \frac{y}{z}$$

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame

Perspective Projection: Proof

3D object point

Forsyth & Ponce (1st ed.) Figure 1.4

Forsyth & Ponce (1st ed.) Figure 1.4
$$P = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ projects to 2D image point } P' = \begin{bmatrix} x' \\ y' \end{bmatrix} \text{ where } x' = f' \frac{x}{z}$$
$$y' = f' \frac{y}{z}$$

$$x' = f' \frac{x}{z}$$

$$y' = f' \frac{y}{z}$$

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame

Camera Matrix

3D object point

Forsyth & Ponce (1st ed.) Figure 1.4

$$P = \left[\begin{array}{c} x \\ y \\ z \\ 1 \end{array}\right] \text{ projects to 2D image point } P' = \left[\begin{array}{c} x' \\ y' \\ 1 \end{array}\right] \text{ where } \boxed{P' = \mathbf{C}P}$$

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame

Camera Matrix

$$\mathbf{C} = \left[egin{array}{ccccc} f' & 0 & 0 & 0 \ 0 & f' & 0 & 0 \ 0 & 0 & 1 & 0 \ \end{array}
ight]$$

$$P = \left[\begin{array}{c} x \\ y \\ z \\ 1 \end{array} \right] \text{ projects to 2D image point } P' = \left[\begin{array}{c} x' \\ y' \\ 1 \end{array} \right] \text{ where } \boxed{P' = \mathbf{C}P}$$

Camera Matrix

$$x' = f' \frac{x}{z}$$
 $y' = f' \frac{y}{z}$

$$\mathbf{C} = \begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} f'x \\ f'y \\ z \end{bmatrix} = \begin{bmatrix} \frac{f'x}{z} \\ \frac{f'y}{z} \\ 1 \end{bmatrix}$$

$$P=egin{bmatrix} x \ y \ z \ 1 \ \end{bmatrix}$$

$$P = \left[egin{array}{c} x \\ y \\ z \end{array} \right]$$
 projects to 2D image point $P' = \left[egin{array}{c} x' \\ y' \\ 1 \end{array} \right]$ where $P' = \mathbf{C}P$

Camera Matrix

$$\mathbf{C} = \begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Pixels are squared / lens is perfectly symmetric

Sensor and pinhole perfectly aligned

Coordinate system centered at the pinhole

$$P = \left[\begin{array}{c} x \\ y \\ z \\ 1 \end{array}\right] \text{ projects to 2D image point } P' = \left[\begin{array}{c} x' \\ y' \\ 1 \end{array}\right] \text{ where } P' = \mathbf{C}P$$

Camera Matrix

$$\mathbf{C} = \left[egin{array}{cccccc} f_x' & 0 & 0 & 0 \ 0 & f_y' & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

Pixels are squared / lens is perfectly symmetric

Sensor and pinhole perfectly aligned

Coordinate system centered at the pinhole

$$P = \left[\begin{array}{c} x \\ y \\ z \\ 1 \end{array}\right] \text{ projects to 2D image point } P' = \left[\begin{array}{c} x' \\ y' \\ 1 \end{array}\right] \text{ where } P' = \mathbf{C}P$$

Camera Matrix

$$\mathbf{C} = \left[egin{array}{cccc} f_x' & 0 & 0 & c_x \ 0 & f_y' & 0 & c_y \ 0 & 0 & 1 & 0 \end{array}
ight]$$

Pixels are squared / lens is perfectly symmetric

Sensor and pinhole perfectly aligned

Coordinate system centered at the pinhole

$$P = \left[\begin{array}{c} x \\ y \\ z \\ 1 \end{array} \right] \text{ projects to 2D image point } P' = \left[\begin{array}{c} x' \\ y' \\ 1 \end{array} \right] \text{ where } \boxed{P' = \mathbf{C}P}$$

Camera Matrix

$$\mathbf{C} = \begin{bmatrix} f'_x & 0 & 0 & c_x \\ 0 & f'_y & 0 & c_y \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbb{R}_{4 \times 4}$$

Pixels are squared / lens is perfectly symmetric

Sensor and pinhole perfectly aligned

Coordinate system centered at the pinhole

$$P = \left[\begin{array}{c} x \\ y \\ z \\ 1 \end{array}\right] \text{ projects to 2D image point } P' = \left[\begin{array}{c} x' \\ y' \\ 1 \end{array}\right] \text{ where } P' = \mathbf{C}P$$

Camera Matrix

$$\mathbf{C} = \begin{bmatrix} f'_x & 0 & 0 & c_x \\ 0 & f'_y & 0 & c_y \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbb{R}_{4 \times 4}$$

Camera calibration is the process of estimating parameters of the camera matrix based on set of 3D-2D correspondences (usually requires a pattern whos structure and size is known)

$$P = \left[\begin{array}{c} x \\ y \\ z \\ 1 \end{array}\right] \text{ projects to 2D image point } P' = \left[\begin{array}{c} x' \\ y' \\ 1 \end{array}\right] \text{ where } P' = \mathbf{C}P$$

Weak Perspective

Forsyth & Ponce (1st ed.) Figure 1.5

3D object point
$$P=\left[egin{array}{c} x\\y\\z \end{array}\right]$$
 in Π_0 projects to 2D image point $P'=\left[\begin{array}{c} x'\\y' \end{array}\right]$ where $\left[\begin{array}{ccc} x'&=&mx\\y'&=&my \end{array}\right]$ and $m=\frac{f'}{z_0}$

Orthographic Projection

Forsyth & Ponce (1st ed.) Figure 1.6

3D object point
$$P=\left[\begin{array}{c} x\\y\\z\end{array}\right]$$
 projects to 2D image point $P'=\left[\begin{array}{c} x'\\y'\end{array}\right]$ where $\left[\begin{array}{c} x'\\y'\end{array}-x_y\right]$

Summary of Projection Equations

3D object point
$$P=\left[\begin{array}{c} x\\y\\z\end{array}\right]$$
 projects to 2D image point $P'=\left[\begin{array}{c} x'\\y'\end{array}\right]$ where

Weak Perspective
$$x' = mx$$
 $m = \frac{f'}{z_0}$

Orthographic
$$x' = x$$

 $y' = y$

Projection Models: Pros and Cons

Weak perspective (including orthographic) has simpler mathematics

- accurate when object is small and/or distant
- useful for recognition

Perspective is more accurate for real scenes

When **maximum accuracy** is required, it is necessary to model additional details of a particular camera

— use perspective projection with additional parameters (e.g., lens distortion)

Why Not a Pinhole Camera?

- If pinhole is **too big** then many directions are averaged, blurring the image
- If pinhole is **too small** then diffraction becomes a factor, also blurring the image
- Generally, pinhole cameras are **dark**, because only a very small set of rays from a particular scene point hits the image plane
- Pinhole cameras are **slow**, because only a very small amount of light from a particular scene point hits the image plane per unit time

Snell's Law

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

Snell's Law

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

Reason for Lenses

The role of a lens is to **capture more light** while preserving, as much as possible, the abstraction of an ideal pinhole camera.

Reminders

Readings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 1.1.1 1.1.3
- Next Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5

Reminders:

- Complete Assignment 0 (ungraded) by Wednsday, September 16
- WWW: http://www.cs.ubc.ca/~lsigal/teaching.html
- Piazza: piazza.com/ubc.ca/winterterm22020/cpsc425201/home