Lecture 2: Image Formation

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)
Menu for Today (September 11, 2020)

Topics:

- Image Formation
- Cameras and Lenses
- Projection

Readings:

- **Today’s** Lecture: Forsyth & Ponce (2nd ed.) 1.1.1 — 1.1.3
- **Next** Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5

Reminders:

- Complete Assignment 0 (ungraded) by Wednesday, September 16
- Google Colab tutorials next week
- TA and Office hours are posted and will start on Monday, September 14
Today’s “fun” Example
Today’s “fun” Example

Photo credit: reddit user Liammm
Today’s “fun” Example: **Eye Sink Illusion**

Photo credit: reddit user Liammm
Today’s “fun” Example: **Eye Sink Illusion**

“Tried taking a picture of a sink draining, wound up with a picture of an eye instead”

Photo credit: reddit user Liiammm
Lecture 1: Re-cap

Types of computer vision problems:

- Computing properties of the 3D world from visual data (measurement)
- Recognition of objects and scenes (perception and interpretation)
- Search and interact with visual data (search and organization)
- Manipulation or creation of image or video content (visual imagination)

Computer vision challenges:

- Fundamentally ill-posed
- Enormous computation and scale
- Lack of fundamental understanding of how human perception works
Computer vision technologies have moved from research labs into commercial products and services. Examples cited include:

- broadcast television sports
- electronic games (Microsoft Kinect)
- biometrics
- image search
- visual special effects
- medical imaging
- robotics

... many others
Related Disciplines

Artificial Intelligence (AI)

Computer Vision
Scope of CPSC 425

Image Processing
Geometric Reasoning
Recognition

Machine Learning
Deep Learning
Graphics
Computational Photography
Optics
Robotics
Human Computer Interaction
Medical Imaging
Neuroscience
Optics

Slide Credit: James Hays (GA Tech)
Related Disciplines: Vision and Graphics
Related Disciplines: Vision and Graphics

Model

Slide Credit: Kristen Grauman (UT Austin)
Related Disciplines: Vision and Graphics

Model

Graphics

Slide Credit: Kristen Grauman (UT Austin)
Related Disciplines: Vision and Graphics
Related Disciplines: Vision and Graphics

Images

Model

Vision

Graphics

Slide Credit: Kristen Grauman (UT Austin)
Related Disciplines: Vision and Graphics

Inverse problems: analysis and synthesis
Related Disciplines: Vision and Graphics

Inverse problems: analysis and synthesis

(it is sometimes useful to think about computer vision as inverse graphics)

Slide Credit: Kristen Grauman (UT Austin)
Why Study Computer Vision?

It is one of the most exciting areas of research in computer science.

Among the fastest growing technologies in the industry today.
Wired’s 100 Most Influential People in the World

63. Yann LeCun

Director of AI research, Facebook, Menlo Park

LeCun is a leading expert in deep learning and heads up what, for Facebook, could be a hugely significant source of revenue: understanding its user’s intentions.

62. Richard Branson

Founder, Virgin Group, London

Branson saw his personal fortune grow £580 million when Alaska Air bought Virgin America for $2.6 billion in April. He is pressing on with civilian space travel with Virgin Galactic.

61. Taylor Swift

Entertainer, Los Angeles
CVPR Attendance

![Attendance Graph](chart-image)
Lecture 2: Goal

To understand how images are formed

(and develop relevant mathematical concepts and abstractions)
What is **Computer Vision**?

Compute vision, broadly speaking, is a research field aimed to enable computers to **process and interpret visual data**, as sighted humans can.

![Diagram of the process of computer vision](https://www.flickr.com/photos/flamephoenix1991/8376271918)

1. **Image (or video)**
2. **Sensing Device**
3. **Interpreting Device**
4. **Interpretation**
 - blue sky, trees, fountains, UBC, …

What is **Computer Vision**?

Compute vision, broadly speaking, is a research field aimed to enable computers to **process and interpret visual data**, as sighted humans can.

Image Credit: https://www.flickr.com/photos/flamephoenix1991/3376271918

Image (or video)

Sensing Device

Interpreting Device

Interpretation

blue sky, trees, fountains, UBC, …
Overview: Image Formation, Cameras and Lenses

The **image formation process** that produces a particular image depends on

- **Lightening** condition
- **Scene** geometry
- **Surface** properties
- **Camera** optics and viewpoint

Sensor (or eye) captures *amount of light* reflected from the object
Graphics Review

source

normal

dashed arrow

dotted arrow

sensor

surface element
Surface reflection depends on both the **viewing** \((\theta_v, \phi_v)\) and **illumination** \((\theta_i, \phi_i)\) direction, with Bidirectional Reflection Distribution Function: \(\text{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v)\)

Slide adopted from: Ioannis (Yannis) Gkioulekas (CMU)
Surface reflection depends on both the viewing (θ_v, ϕ_v) and illumination (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: $\text{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v)$

Lambertian surface:

$$\text{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v) = \frac{\rho d}{\pi}$$

constant, called **albedo**
Surface reflection depends on both the **viewing** \((\theta_v, \phi_v)\) and **illumination** \((\theta_i, \phi_i)\) direction, with Bidirectional Reflection Distribution Function: \(\text{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v)\)

Lambertian surface:

\[
\text{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v) = \frac{\rho d}{\pi}
\]

\[
L = \frac{\rho d}{\pi} I(\vec{i} \cdot \vec{n})
\]

Slide adopted from: Ioannis (Yannis) Gkioulekas (CMU)
Surface reflection depends on both the viewing \((\theta_v, \phi_v)\) and illumination \((\theta_i, \phi_i)\) direction, with Bidirectional Reflection Distribution Function: \(\text{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v)\)

Lambertian surface:

\[
\text{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v) = \frac{\rho d}{\pi}
\]

Mirror surface: all incident light reflected in one directions \((\theta_v, \phi_v) = (\theta_r, \phi_r)\)
Cameras

Old school **film** camera

Digital **CCD/CMOS** camera
Cameras

Old school **film** camera

Digital **CCD/CMOS** camera
Let’s say we have a sensor ...

Digital CCD/CMOS camera
Let’s say we have a sensor ...

Digital CCD/CMOS camera
Let’s say we have a sensor …

Digital CCD/CMOS camera

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
... and the **object** we would like to photograph

What would an image taken like this look like?

real-world object

digital sensor (CCD or CMOS)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Bare-sensor imaging

real-world object

digital sensor (CCD or CMOS)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Bare-sensor imaging

real-world object

digital sensor (CCD or CMOS)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Bare-sensor imaging

real-world object

digital sensor (CCD or CMOS)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Bare-sensor imaging

All scene points contribute to all sensor pixels

Slide Credit: Ioannis (Yannis) Gkioulakis (CMU)
Bare-sensor imaging

All scene points contribute to all sensor pixels

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Pinhole Camera

What would an image taken like this look like?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Pinhole Camera

real-world object

digital sensor (CCD or CMOS)

most rays are blocked

one makes it through
Pinhole Camera

Each scene point contributes to only one sensor pixel

real-world object

digital sensor (CCD or CMOS)
Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January 24, 1544. He used this illustration in his book, “De Radio Astronomica et Geometrica,” 1545. It is thought to be the first published illustration of a camera obscura.

Credit: John H., Hammond, “Th Camera Obscure, A Chronicle”
Camera Obscura (Latin for “dark chamber”)

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January 24, 1544. He used this illustration in his book, “De Radio Astronomica et Geometrica,” 1545. It is thought to be the first published illustration of a camera obscura.

Credit: John H., Hammond, “Th Camera Obscure, A Chronicle”
First Photograph on Record

La table servie

Credit: Nicéphore Niepce, 1822
Pinhole Camera

A pinhole camera is a box with a small hall (aperture) in it.
A pinhole camera is a box with a small hall (aperture) in it.
Image Formation

Forsyth & Ponce (2nd ed.) Figure 1.1

Credit: US Navy, Basic Optics and Optical Instruments. Dover, 1969
Accidental Pinhole Camera

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
f’ is the **focal length** of the camera.
Pinhole Camera (Simplified)

f' is the **focal length** of the camera

Note: In a pinhole camera we can adjust the focal length, all this will do is change the **size** of the resulting image.
Pinhole Camera (Simplified)

It is convenient to think of the **image plane** which is in front of the pinhole.
Pinhole Camera (Simplified)

It is convenient to think of the **image plane** which is in front of the pinhole.

What happens if the object moves towards the camera? Away from the camera?
Perspective Effects

Forsyth & Ponce (2nd ed.) Figure 1.3a
Perspective Effects

Far objects appear smaller than close ones

Forsyth & Ponce (2nd ed.) Figure 1.3a
Perspective Effects

Far objects appear smaller than close ones

Forsyth & Ponce (2nd ed.) Figure 1.3a
Perspective Effects

Far objects appear **smaller** than close ones

Forsyth & Ponce (2nd ed.) Figure 1.3a
Perspective Effects

Far objects appear smaller than close ones

Size is inversely proportional to distance
Perspective Effects

Forsyth & Ponce (1st ed.) Figure 1.3b
Perspective Effects

Parallel lines meet at a point (vanishing point)

Forsyth & Ponce (1st ed.) Figure 1.3b
Vanishing Points

Each set of parallel lines meet at a different point
— the point is called **vanishing point**
Vanishing Points

Each set of parallel lines meet at a different point
— the point is called **vanishing point**

Sets of parallel lines on the same plane lead to **collinear** vanishing points
— the line is called a **horizon** for that plane
Vanishing Points

Draw a horizon line.
Vanishing Points

1. Draw a horizon line.
2. Make a vanishing point.

Slide Credit: David Jacobs
Vanishing Points

1. Draw a horizon line.
2. Make a vanishing point.
3. Draw a square or rectangle.
Vanishing Points

1. Draw a horizon line.
2. Make a vanishing point.
3. Draw a square or rectangle.
4. Draw orthogonals from shape corners to vanishing point.

Slide Credit: David Jacobs
Vanishing Points

1. Draw a horizon line.
2. Make a vanishing point.
3. Draw a square or rectangle.
4. Draw orthogonals from shape corners to vanishing point.

Draw a horizontal line to end your form.

Slide Credit: David Jacobs
Vanishing Points

1. Draw a horizon line.
2. Make a vanishing point.
3. Draw a square or rectangle.
4. Draw orthogonals from shape corners to vanishing point.
5. Draw a horizontal line to end your form.
6. Draw a vertical line to make the form's side.

Slide Credit: David Jacobs
Vanishing Points

1. Draw a horizon line.
2. Make a vanishing point.
3. Draw a square or rectangle.
4. Draw orthogonals from shape corners to vanishing point.
5. Draw a horizontal line to end your form.
6. Draw a vertical line to make the form's side.
7. Erase the orthogonals.

Slide Credit: David Jacobs
Vanishing Points

1. Draw a horizon line.
2. Make a vanishing point.
3. Draw a square or rectangle.
4. Draw orthogonal lines from shape corners to vanishing point.
5. Draw a horizontal line to end your form.
6. Draw a vertical line to make the form’s side.
7. Erase the orthogonal lines.
8. Draw another form!

Slide Credit: David Jacobs
Vanishing Points

Draw a horizon line.

Make a vanishing point.

Draw a square or rectangle.

Draw orthogonals from shape corners to vanishing point.

Draw a horizontal line to end your form.

Draw a vertical line to make the form’s side.

Erase the orthogonals.

Draw another form!

Add windows and doors.

Slide Credit: David Jacobs
Vanishing Points

Each set of parallel lines meet at a different point
— the point is called **vanishing point**

Sets of parallel lines one the same plane lead to **collinear** vanishing points
— the line is called a **horizon** for that plane

Good way to **spot fake images**
— scale and perspective do not work
— vanishing points behave badly
Vanishing Points

Slide Credit: Efros (Berkeley), photo from Criminisi
Vanishing Points

Slide Credit: Efros (Berkeley), photo from Criminisi
Vanishing Points

Slide Credit: Efros (Berkeley), photo from Criminisi
Vanishing Points

Vertical vanishing point (at infinity)

Vanishing point

Vanishing point

Slide Credit: Efros (Berkeley), photo from Criminisi
Vanishing Points

Two/three point perspective

Vertical vanishing point (at infinity)

Vanishing point

Slide Credit: Efros (Berkeley), photo from Criminisi
Vanishing Points

One point perspective

Vertical vanishing point (at infinity)

Two/three point perspective

Vanishing point

Slide Credit: Efros (Berkeley), photo from Criminisi
Perspective Aside

Image credit: http://www.martinacecilia.com/place-vanishing-points/
Perspective Aside

Image credit: http://www.martinacecilia.com/place-vanishing-points/
Properties of Projection

- **Points** project to **points**
- **Lines** project to **lines**
- **Planes** project to the **whole** or **half** image
- Angles are **not** preserved
Properties of Projection

- Points project to points
- Lines project to lines
- Planes project to the whole or half image
- Angles are not preserved

Degenerate cases
- Line through focal point projects to a point
- Plane through focal point projects to a line
Projection Illusion
Projection Illusion
Perspective Projection

3D object point

\[P = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \]

projects to 2D image point

\[P' = \begin{bmatrix} x' \\ y' \end{bmatrix} \]

where

\[x' = f' \frac{x}{z} \]
\[y' = f' \frac{y}{z} \]

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame.
Perspective Projection: Proof

Forsyth & Ponce (1st ed.) Figure 1.4

3D object point

\[
P = \begin{bmatrix} x \\ y \\ z \end{bmatrix}
\]

projects to 2D image point

\[
P' = \begin{bmatrix} x' \\ y' \end{bmatrix}
\]

where

\[
x' = f' \frac{x}{z}
\]

\[
y' = f' \frac{y}{z}
\]

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame.
Aside: Camera Matrix

Forsyth & Ponce (1st ed.) Figure 1.4

Camera Matrix

\[
C = \begin{bmatrix}
f' & 0 & 0 & 0 \\
0 & f' & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

3D object point

\[
P = \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

projects to 2D image point

\[
P' = \begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix}
\]

where

\[
P' = CP
\]

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame
Aside: Camera Matrix

Camera Matrix

\[\mathbf{C} = \begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

\[\begin{align*}
x' &= f' \frac{x}{z} \\
y' &= f' \frac{y}{z}
\end{align*} \]

\[P = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \quad \text{projects to 2D image point} \quad P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \quad \text{where} \quad P' = \mathbf{C}P \]
Aside: Camera Matrix

Camera Matrix

\[C = \begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

\[
\begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} f'x \\ f'y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{f'x}{z} \\ \frac{f'y}{z} \\ 1 \end{bmatrix}
\]

\[P = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \] projects to 2D image point \[P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \] where \[P' = CP \]
Aside: Camera Matrix

Camera Matrix

\[C = \begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

- Pixels are squared / lens is perfectly symmetric
- Sensor and pinhole perfectly aligned
- Coordinate system centered at the pinhole

\[P = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \]

projects to 2D image point \(P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \)

where \(P' = CP \)
Aside: Camera Matrix

Camera Matrix

\[
C = \begin{bmatrix}
 f_x' & 0 & 0 & 0 \\
 0 & f_y' & 0 & 0 \\
 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

- Pixels are squared / lens is perfectly symmetric
- Sensor and pinhole perfectly aligned
- Coordinate system centered at the pinhole

\[
P = \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

projects to 2D image point \(P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \)

where \(P' = CP \)
Aside: Camera Matrix

Camera Matrix

\[
\mathbf{C} = \begin{bmatrix}
 f_x' & 0 & 0 & c_x \\
 0 & f_y' & 0 & c_y \\
 0 & 0 & 1 & 0
\end{bmatrix}
\]

- Pixels are squared / lens is perfectly symmetric
- Sensor and pinhole perfectly aligned
- Coordinate system centered at the pinhole

\[
P = \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

projects to 2D image point

\[
P' = \begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix}
\]

where

\[
P' = \mathbf{C}P
\]
Aside: Camera Matrix

Camera Matrix

\[
C = \begin{bmatrix}
 f'_x & 0 & 0 & c_x \\
 0 & f'_y & 0 & c_y \\
 0 & 0 & 1 & 0
\end{bmatrix} \in \mathbb{R}^{4 \times 4}
\]

- Pixels are squared / lens is perfectly symmetric
- Sensor and pinhole perfectly aligned
- Coordinate system centered at the pinhole

\[
P = \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
projects to 2D image point \(P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \)

where \(P' = CP \)
Aside: Camera Matrix

Camera Matrix

\[C = \begin{bmatrix} f_x' & 0 & 0 & c_x \\ 0 & f_y' & 0 & c_y \\ 0 & 0 & 1 & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 4} \]

Camera calibration is the process of estimating parameters of the camera matrix based on set of 3D-2D correspondences (usually requires a pattern whose structure and size is known).

\[P = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \] projects to 2D image point \[P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \] where \[P' = CP \]
Weak Perspective

3D object point \(P = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \) in \(\Pi_0 \) projects to 2D image point \(P' = \begin{bmatrix} x' \\ y' \end{bmatrix} \)

where \(x' = mx \) and \(y' = my \)

and \(m = \frac{f'}{z_0} \)

Forsyth & Ponce (1st ed.) Figure 1.5
Orthographic Projection

Forsyth & Ponce (1st ed.) Figure 1.6

3D object point \(P = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \) projects to 2D image point \(P' = \begin{bmatrix} x' \\ y' \end{bmatrix} \)

where \(x' = x \) \\
\(y' = y \)
Summary of **Projection Equations**

3D object point \(P = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \) projects to 2D image point \(P' = \begin{bmatrix} x' \\ y' \end{bmatrix} \) where

<table>
<thead>
<tr>
<th>Type</th>
<th>Equations</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perspective</td>
<td>(x' = f' \frac{x}{z}, \quad y' = f' \frac{y}{z})</td>
<td>(m = \frac{f'}{z_0})</td>
</tr>
<tr>
<td>Weak Perspective</td>
<td>(x' = mx, \quad y' = my)</td>
<td></td>
</tr>
<tr>
<td>Orthographic</td>
<td>(x' = x, \quad y' = y)</td>
<td></td>
</tr>
</tbody>
</table>
Projection Models: Pros and Cons

Weak perspective (including orthographic) has simpler mathematics
- accurate when object is small and/or distant
- useful for recognition

Perspective is more accurate for real scenes

When **maximum accuracy** is required, it is necessary to model additional details of a particular camera
- use perspective projection with additional parameters (e.g., lens distortion)
Why **Not** a Pinhole Camera?

— If pinhole is **too big** then many directions are averaged, blurring the image

— If pinhole is **too small** then diffraction becomes a factor, also blurring the image

— Generally, pinhole cameras are **dark**, because only a very small set of rays from a particular scene point hits the image plane

— Pinhole cameras are **slow**, because only a very small amount of light from a particular scene point hits the image plane per unit time

Image Credit: Credit: E. Hecht. “Optics,” Addison-Wesley, 1987
Snell’s Law

\[n_1 \sin \alpha_1 = n_2 \sin \alpha_2 \]
Snell’s Law

\[n_1 \sin \alpha_1 = n_2 \sin \alpha_2 \]
Reason for **Lenses**

The role of a lens is to **capture more light** while preserving, as much as possible, the abstraction of an ideal pinhole camera.
Reminders

Readings:

- **Today’s** Lecture: Forsyth & Ponce (2nd ed.) 1.1.1 — 1.1.3
- **Next** Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5

Reminders:

- Complete **Assignment 0** (ungraded) by Wednesday, **September 16**
- **WWW**: http://www.cs.ubc.ca/~lsigal/teaching.html
- **Piazza**: piazza.com/ubc.ca/winterterm22020/cpsc425201/home