
Lecture 19: Scale Invariant Features (SIFT) cont.

CPSC 425: Computer Vision 
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Menu for Today (October 26, 2020)
Topics: 

Readings: 
— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 5.4 
                                 “Distinctive Image Features for Scale-Invariant Keypoints  

— Next Lecture:       Forsyth & Ponce (2nd ed.) 10.4.2, 10.1, 10.2
Reminders: 

— Assignment 3: Texture Synthesis is due today 

— Assignment 4  is out now  

— Scale Invariant Feature Transform (SIFT) 
— SIFT detector, descriptor



Sold in 2018 for $432,500 at British 
auction house 
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Today’s “fun” Example: AI Generated Portrait
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Today’s “fun” Example: Sunspring
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Today’s “fun” Example: Sunspring
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Today’s “fun” Example: DopeLearning

http://deepbeat.org



Lecture 18: Re-Cap

— We motivated SIFT for identifying locally distinct keypoints in an image 
(detection)  

— SIFT features (description) are invariant to translation, rotation, and scale; 
robust to 3D pose and illumination 
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1. Multi-scale extrema detection 
2. Keypoint localization 
3. Orientation assignment 
4. Keypoint descriptor



Keypoint is an image location at which a 
descriptor is computed 
— Locally distinct points 
— Easily localizable and identifiable 

The feature descriptor summarizes the local 
structure around the key point 
— Allows us to (hopefully) unique matching of 
keypoints in presence of object pose variations, 
image and photometric deformations 

Note, for repetitive structure this would still not 
give us unique matches. 
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1. Multi-scale Extrema Detection
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Selected if larger than 
all 26 neighbors
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1. Multi-scale Extrema Detection
Detect maxima and minima of Difference of Gaussian in scale space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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2. Keypoint Localization 

— After keypoints are detected, we remove those that have low contrast or 
are poorly localized along an edge  

How do we decide whether a keypoint is poorly localized, say along an edge, 
vs. well-localized?  
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3. Orientation Assignment

— Create histogram of local gradient 
directions computed at selected scale  

— Assign canonical orientation at peak 
of smoothed histogram  

— Each key specifies stable 2D 
coordinates (x , y , scale, orientation)  
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Scale Invariant Feature Transform (SIFT)
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SIFT describes both a detector and descriptor

1. Multi-scale extrema detection 
2. Keypoint localization 
3. Orientation assignment 
4. Keypoint descriptor

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



4. Keypoint Description

We have seen how to assign a location, scale, and orientation to each key point
— keypoint detection  

— The next step is to compute a keypoint descriptor: should be robust to 
local shape distortions, changes in illumination or 3D viewpoint  

— Keypoint detection is not the same as keypoint description, e.g. some 
applications skip keypoint detection and extract SIFT descriptors on a regularly 
spaced grid  
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— Thresholded image gradients are sampled over 16 × 16 array of locations in 
scale space (weighted by a Gaussian with sigma half the size of the window)  
— Create array of orientation histograms  
— 8 orientations × 4 × 4 histogram array 
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4. SIFT Descriptor



Demo
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How many dimensions are there in a SIFT descriptor?  

(Hint: This diagram shows a 2 x 2 histogram array but the actual descriptor 
uses a 4 x 4 histogram array) 
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4. SIFT Descriptor



Descriptor is normalized to unit length (i.e. magnitude of 1) to reduce the 
effects of illumination change  

— if brightness values are scaled (multiplied) by a constant, the gradients are 
scaled by the same constant, and the normalization cancels the change  

— if brightness values are increased/decreased by a constant, the gradients do 
not change  
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4. SIFT Descriptor



Feature Stability to Noise
Match features after random change in image scale & orientation, with differing 
levels of image noise  

Find nearest neighbour in database of 30,000 features 

!23



Feature Stability to Affine Change
Match features after random change in image scale & orientation, with differing 
levels of image noise  

Find nearest neighbour in database of 30,000 features 

!24



Distinctiveness of Features
Vary size of database of features, with 30 degree affine change, 2% image 
noise  

Measure % correct for single nearest neighbour match 
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Summary
Four steps to SIFT feature generation:  

1. Scale-space representation and local extrema detection 
— use DoG pyramid 
— 3 scales/octave, down-sample by factor of 2 each octave  

	2. Keypoint localization 
— select stable keypoints (threshold on magnitude of extremum, ratio of   

principal curvatures)  
	3. Keypoint orientation assignment 

— based on histogram of local image gradient directions  
	4. Keypoint descriptor 

— histogram of local gradient directions — vector with 8 × (4 × 4) = 128 dim 
— vector normalized (to unit length) 
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gradient magnitude histogram 
(one for each cell)

Block 
(2x2 cells)

Cell 
(8x8 pixels)

Single scale, no dominant orientation

histogram of 
‘unsigned’ 
gradients

soft binning

Concatenate and L-2 normalization

Histogram of Oriented Gradients (HOG) Features
Dalal, Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Pedestrian detection

64 pixels 
8 cells 

7 blocks

128 pixels 
16 cells 

15 blocks

15 x 7 x 4 x 9 = 
3780

1 cell step size visualization

Redundant representation due to overlapping blocks

Histogram of Oriented Gradients (HOG) Features

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



4 x 4 cell grid
Each cell is represented 

by 4 values: 

How big is the SURF descriptor?

5 x 5 
sample 
points

Haar wavelets filters
(Gaussian weighted from center)

‘Speeded’ Up Robust Features (SURF)

64 dimensions

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

‘Speeded’ Up Robust Features (SURF)



SIFT and Object Recognition 

Object recognition requires us to first match each keypoint independently to 
the database of keypoints  

Many features will not have any correct match in the database because they 
arise from background clutter  

It would be useful to have a way to discard features that do not have any 
good match  
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Probability of Correct Match
Compare ratio of distance of nearest neighbour to second nearest neighbour 
(from different object)  

Threshold of 0.8 provides excellent separation 
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closest

next closest



I(X,Y )

What types of transformations can we do? 

changes range of image function changes domain of image function

Filtering Warping

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I(X,Y )

I 0(X,Y )

I 0(X,Y )
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I(X,Y )

What types of transformations can we do? 

changes domain of image function

Warping

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y )
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I(X,Y )

What types of transformations can we do? 

changes domain of image function

Warping

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y )
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We will call this 
“Warping” a “Model”
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I(X,Y )

What types of transformations can we do? 

changes domain of image function

Warping

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y )
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We will call this 
“Warping” a “Model”
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Model Verification

1. Examine all clusters with at least 3 features  

2. Perform least-squares affine fit to model  

3. Discard outliers and perform top-down check for additional features  

4. Evaluate probability that match is correct  
— Use Bayesian model, with probability that features would arise by 
chance if object was not present (Lowe, CVPR 01)  
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Aside: Classification of 2D Transformations

!38 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Classification of 2D Transformations
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PP1

PP3

PP2

Which kind transformation is needed to 
warp projective plane 1 into projective 
plane 2?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Classification of 2D Transformations
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PP1

PP3

PP2

Which kind transformation is needed to 
warp projective plane 1 into projective 
plane 2?

— A projective transformation  
                             (a.k.a. a homography).

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Warping with Different Transformations
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Translation Affine
Projective 

(homography)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: We can use homographies when … 
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1.… the scene is planar; or

2.… the scene is very far 
or has small (relative) 
depth variation → scene 
is approximately planar

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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3.… the scene is captured under camera rotation only (no translation 
or pose change)

Aside: We can use homographies when … 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Solution for Affine Parameters
Affine transform of          to 

Rewrite to solve for transformation parameters:
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Solution for Affine Parameters



Limitation of this …

We need to have exact matches 
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Limitation of this …

Despite all efforts this is very difficult … 
1. If we can find exact match 80% of  the time, we can find 3 matches correctly 
only about 50% of the time. 
2. Image noise, deformations, will make this worse (e.g., if finding exact match 
drops to 50%, the probability of  finding 3 exact matches will drop to 12.5%) 
3. Multiple object instances will make this impossible 
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Fitting a Model to Noisy Data 
Suppose we are fitting a line to a dataset that consists of 50% outliers  

We can fit a line using two points  

!48

If we draw pairs of points uniformly at random, what fraction of 
pairs will consist entirely of ‘good’ data points (inliers)? 



Fitting a Model to Noisy Data 
Suppose we are fitting a line to a dataset that consists of 50% outliers  

We can fit a line using two points  

— If we draw pairs of points uniformly at random, then about 1/4 of these pairs 
will consist entirely of ‘good’ data points (inliers)  

— We can identify these good pairs by noticing that a large collection of other 
points lie close to the line fitted to the pair  

— A better estimate of the line can be obtained by refitting the line to the points 
that lie close to the line 
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RANSAC (RANdom SAmple Consensus) 

1. Randomly choose minimal subset of data points necessary to fit model (a 
sample)  

2. Points within some distance threshold, t, of model are a consensus set. 
Size of consensus set is model’s support  

3. Repeat for N samples; model with biggest support is most robust fit  
— Points within distance t of best model are inliers  
— Fit final model to all inliers  

!50
Slide Credit: Christopher Rasmussen
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RANSAC is very useful for variety of applications
Slide Credit: Christopher Rasmussen



RANSAC (RANdom SAmple Consensus) 

1. Randomly choose minimal subset of data points necessary to fit model (a 
sample)  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Fitting a Line: 2 points

Slide Credit: Christopher Rasmussen



Example 1: Fitting a Line
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Figure Credit: Hartley & Zisserman
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Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman
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Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman
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Algorithm 10.4
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RANSAC: Fitting Lines Using Random Sample Consensus

This was Algorithm 15.4 in Forsyth & Ponce (1st ed.)



RANSAC: How many samples?
Let     be the fraction of inliers (i.e., points on line) 

Let     be the number of points needed to define hypothesis  
       (          for a line in the plane) 

Suppose    samples are chosen 

The probability that a single sample of     points is correct (all inliers) is 
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RANSAC: How many samples?
Let     be the fraction of inliers (i.e., points on line) 
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The probability that a single sample of     points is correct (all inliers) is  
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RANSAC: How many samples?
Let     be the fraction of inliers (i.e., points on line) 

Let     be the number of points needed to define hypothesis  
       (          for a line in the plane) 

Suppose    samples are chosen 

The probability that a single sample of     points is correct (all inliers) is  

The probability that all    samples fail is  

Choose    large enough (to keep this below a target failure rate) 
!59
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RANSAC: k Samples Chosen (p = 0.99)
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Figure Credit: Hartley & Zisserman



After RANSAC

RANSAC divides data into inliers and outliers and yields estimate computed 
from minimal set of inliers  

Improve this initial estimate with estimation over all inliers (e.g., with standard 
least-squares minimization)  

But this may change inliers, so alternate fitting with re-classification as inlier/
outlier  
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Example 2: Fitting a Line

Figure Credit: Hartley & Zisserman

4 points
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Example 2: Fitting a Line

C D
B

A

Figure Credit: Hartley & Zisserman

10 points



Example 3: Automatic Matching of Images
— How to get correct correspondences without human intervention?  
— Can be used for image stitching or automatic determination of epipolar geometry

!64 Figure Credit: Hartley & Zisserman



Example 3: Feature Extraction
— Find features in pair of images using Harris corner detector  
— Assumes images are roughly the same scale  

!65 Figure Credit: Hartley & Zisserman

≈ 500 corner features found in each image



Example 3: Finding Feature Matches
Select best match over threshold within a square search window (here ±320 pixels) 
using SSD or (normalized) cross-correlation for small patch around the corner  

!66 Figure Credit: Hartley & Zisserman

≈ 500 corner features found in each image



Example 3: Initial Match Hypothesis

!67 Figure Credit: Hartley & Zisserman

268 matched features (over SSD threshold) superimposed on left image 
(pointing to locations of corresponding feature in right image)



Example 3: Outliers & Inliers after RANSAC
— n is 4 for this problem (a homography relating 2 images)  
— Assume up to 50% outliers 
— 43 samples used with t = 1.25 pixels 

!68 Figure Credit: Hartley & Zisserman

117 outliers 151 inliers



Example 3: Final Matches

!69 Figure Credit: Hartley & Zisserman
final set of 262 matches



Discussion of RANSAC

Advantages:  
— General method suited for a wide range of model fitting problems  
— Easy to implement and easy to calculate its failure rate  

Disadvantages:  
— Only handles a moderate percentage of outliers without cost blowing up  
— Many real problems have high rate of outliers (but sometimes selective 
choice of random subsets can help)  

The Hough transform can handle high percentage of outliers 
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