

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 19: Scale Invariant Features (SIFT) cont.

Menu for Today (October 26, 2020)

Topics:

- Scale Invariant Feature Transform (SIFT)
- SIFT detector, descriptor

Readings:

- **Today's** Lecture: Forsyth & Ponce (2nd ed.) 5.4
- **Next** Lecture:

Reminders:

- Assignment 3: Texture Synthesis is due today
- Assignment 4 is out now

"Distinctive Image Features for Scale-Invariant Keypoints Forsyth & Ponce (2nd ed.) 10.4.2, 10.1, 10.2

Today's "fun" Example: Al Generated Portrait

Sold in 2018 for \$432,500 at British auction house

Today's "fun" Example: Sunspring

Today's "fun" Example: Sunspring

Today's "fun" Example: DopeLearning

DopeLearning: A Computational Approach to Rap Lyrics Generation^{*}

Eric Malmi Aalto University and HIIT Espoo, Finland eric.malmi@aalto.fi Pyry Takala Aalto University Espoo, Finland pyry.takala@aalto.fi

Tapani Raiko Aalto University Espoo, Finland tapani.raiko@aalto.fi

http://deepbeat.org

)16

Hannu Toivonen University of Helsinki and HIIT Helsinki, Finland hannu.toivonen@cs.helsinki.fi

Aristides Gionis Aalto University and HIIT Espoo, Finland aristides.gionis@aalto.fi

- We motivated SIFT for identifying locally distinct keypoints in an image (detection)

robust to 3D pose and illumination

2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor

- SIFT features (**description**) are invariant to translation, rotation, and scale;

- 1. Multi-scale extrema detection

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable
- The feature **descriptor** summarizes the local structure around the key point
- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable
- The feature **descriptor** summarizes the local structure around the key point
- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.

Locally non-distinct

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable
- The feature **descriptor** summarizes the local structure around the key point
- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.

Locally distinct

Locally non-distinct

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable
- The feature **descriptor** summarizes the local structure around the key point
- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.

Locally distinct

Locally non-distinct

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable
- The feature **descriptor** summarizes the local structure around the key point
- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.

Locally non-distinct

Locally distinct

- We motivated SIFT for identifying locally distinct keypoints in an image (detection)

robust to 3D pose and illumination

2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor

- SIFT features (**description**) are invariant to translation, rotation, and scale;

- 1. Multi-scale extrema detection

1. Multi-scale Extrema Detection

Half the size

Difference of Gaussian (DoG)

1. Multi-scale Extrema Detection Detect maxima and minima of Difference of Gaussian in scale space

Selected if larger than all 26 neighbors

Difference of Gaussian (DoG)

2. Keypoint Localization

— After keypoints are detected, we read a poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge, vs. well-localized?

 $C = \begin{bmatrix} \sum_{p \in P} \\ \sum_{m \in P} \end{bmatrix}$

- After keypoints are detected, we remove those that have low contrast or

$$\left[egin{array}{ccc} I_x I_x & \sum\limits_{p \in P} I_x I_y \ P & p \in P \end{array}
ight] \left[egin{array}{ccc} I_y I_x & \sum\limits_{p \in P} I_y I_y \ P & p \in P \end{array}
ight]$$

3. Orientation Assignment

- Create **histogram** of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable 2D coordinates (x, y, scale, orientation)

Scale Invariant Feature Transform (SIFT)

- SIFT describes both a **detector** and **descriptor**
 - 1. Multi-scale extrema detection
 - 2. Keypoint localization
 - 3. Orientation assignment
 - 4. Keypoint descriptor

4. Keypoint Description

We have seen how to assign a location — **keypoint detection**

 The next step is to compute a keypoint descriptor: should be robust to local shape distortions, changes in illumination or 3D viewpoint

 Keypoint detection is not the same as keypoint description, e.g. some applications skip keypoint detection and extract SIFT descriptors on a regularly spaced grid

We have seen how to assign a location, scale, and orientation to each key point

-

4. SIFT Descriptor

- Thresholded image gradients are sampled over 16 \times 16 array of locations in scale space (weighted by a Gaussian with sigma half the size of the window) Create array of orientation histograms - 8 orientations \times 4 \times 4 histogram array

Demo

4. SIFT Descriptor

How many dimensions are there in a SIFT descriptor?

(**Hint**: This diagram shows a 2 x 2 histogram array but the actual descriptor uses a 4 x 4 histogram array)

4. SIFT Descriptor

Descriptor is **normalized** to unit length (i.e. magnitude of 1) to reduce the effects of illumination change

- if brightness values are scaled (multiplied) by a constant, the gradients are scaled by the same constant, and the normalization cancels the change

- if brightness values are increased/decreased by a constant, the gradients do not change

Feature Stability to **Noise**

levels of image noise

Find nearest neighbour in database of 30,000 features

Match features after random change in image scale & orientation, with differing

Feature Stability to Affine Change

Match features after random change in image scale & orientation, with differing levels of image noise

Find nearest neighbour in database of 30,000 features

Distinctiveness of Features

noise

Measure % correct for single nearest neighbour match

Vary size of database of features, with 30 degree affine change, 2% image

Summary

Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection

- use DoG pyramid
- 3 scales/octave, down-sample by factor of 2 each octave

2. Keypoint localization

- select stable keypoints (threshold on magnitude of extremum, ratio of principal curvatures)

3. Keypoint orientation assignment

- based on histogram of local image gradient directions

4. Keypoint descriptor

— histogram of local gradient directions — vector with $8 \times (4 \times 4) = 128$ dim

vector normalized (to unit length)

Histogram of Oriented Gradients (HOG) Features

Dalal, Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005

Single scale, no dominant orientation

Histogram of Oriented Gradients (HOG) Features

Pedestrian detection

128 pixels 16 cells 15 blocks

1 cell step size

64 pixels 8 cells 7 blocks

Redundant representation due to overlapping blocks

visualization

 $15 \times 7 \times 4 \times 9 =$ 3780

'Speeded' Up Robust Features (SURF)

4 x 4 cell grid

Each cell is represented by 4 values: $\left[\sum d_x, \sum d_y, \sum |d_x|, \sum |d_y|\right]$

Haar wavelets filters (Gaussian weighted from center)

How big is the SURF descriptor? 64 dimensions

'Speeded' Up Robust Features (SURF)

SIFT and **Object Recognition**

the database of keypoints

Many features will not have any correct match in the database because they arise from background clutter

good match

Object recognition requires us to first match each keypoint independently to

It would be useful to have a way to **discard features** that do not have any

Probability of **Correct** Match

(from different object)

Threshold of 0.8 provides excellent separation

Compare ratio of distance of **nearest** neighbour to **second** nearest neighbour

closest

next closest

What types of transformations can we do?

Filtering

changes range of image function

I(X, Y)

Warping

changes domain of image function

What types of transformations can we do?

Warping

changes domain of image function

What types of transformations can we do?

Warping

changes domain of image function

What types of **transformations** can we do?

Warping

Model Verification

- 1. Examine all clusters with at least 3 features
- 2. Perform least-squares affine fit to model
- 3. **Discard outliers** and perform top-down check for additional features
- 4. Evaluate probability that match is correct chance if object was not present (Lowe, CVPR 01)

Use Bayesian model, with probability that features would arise by

Aside: Classification of 2D Transformations

Name	Matrix	# D.O.F.	
translation	$igg[egin{array}{c c} I & t \end{array} igg]_{2 imes 3} \end{array}$	2	
rigid (Euclidean)	$igg[egin{array}{c c} m{R} & t \end{array} igg]_{2 imes 3} \end{array}$	3	
similarity	$\left[\left. s oldsymbol{R} \right t ight]_{2 imes 3}$	4	
affine	$igg[egin{array}{c} oldsymbol{A} \end{array} igg]_{2 imes 3}$	6	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	

Aside: Classification of 2D Transformations

Aside: Classification of 2D Transformations

Aside: Warping with Different Transformations Projective Translation Affine (homography)

Aside: We can use homographies when ...

1.... the scene is planar; or

2.... the scene is very far or has small (relative) depth variation \rightarrow scene is approximately planar

Aside: We can use homographies when ...

3.... the scene is captured under camera rotation only (no translation) or pose change)

Solution for **Affine** Parameters

Affine transform of [x, y] to [u, v]

$$\left[\begin{array}{c} u\\ v \end{array}\right] = \left[\begin{array}{c} m_1\\ m_3 \end{array}\right]$$

Rewrite to solve for **transformation** parameters:

$-x_1$	y_1	0	0
0	0	x_1	y_1
x_2	y_2	0	0
0	0	x_2	y_2
		• • •	• • •
		• • •	• • •

$$\begin{array}{c} m_2 \\ m_4 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] + \left[\begin{array}{c} t_x \\ t_y \end{array} \right]$$

1 0 m_1 u_1 $0 \quad 1$ m_2 v_1 $1 \quad 0$ m_3 u_2 =0 1 m_4 v_2 t_x • • • t_{η} • • •

(6 equations 6 unknowns)

Solution for Affine Parameters

Suppose we have $k \ge 3$ matches, $[x_i, y_i]$ to $[u_i, v_i]$, $i = 1, 2, \cdots, k$ Then,

x_1	y_1	0	0
0	0	x_1	y_1
x_2	y_2	0	0
0	0	x_2	y_2
		• • •	• • •
		• • •	• • •
x_k	y_k	0	0
0	0	x_k	y_k

45

Limitation of this ...

We need to have **<u>exact</u>** matches

Limitation of this ...

Despite all efforts this is **very** difficult ...

1. If we can find exact match 80% of the time, we can find 3 matches correctly only about **50%** of the time.

2. Image **noise**, **deformations**, will make this worse (e.g., if finding exact match drops to 50%, the probability of finding 3 exact matches will drop to 12.5%)

3. Multiple object instances will make this impossible

Fitting a Model to Noisy Data

We can fit a line using two points

Suppose we are **fitting a line** to a dataset that consists of 50% outliers

If we draw pairs of points uniformly at random, what fraction of pairs will consist entirely of 'good' data points (inliers)?

Fitting a Model to Noisy Data Suppose we are fitting a line to a dataset that consists of 50% outliers We can fit a line using two points

will consist entirely of 'good' data points (inliers)

points lie close to the line fitted to the pair

that lie close to the line

- If we draw pairs of points uniformly at random, then about 1/4 of these pairs
- We can identify these good pairs by noticing that a large collection of other
- A better estimate of the line can be obtained by refitting the line to the points

RANSAC (RANdom SAmple Consensus)

- sample)
- Size of consensus set is model's **support**
- 3. Repeat for N samples; model with biggest support is most robust fit
 - Points within distance t of best model are inliers
 - Fit final model to all inliers

1. Randomly choose minimal subset of data points necessary to fit model (a

2. Points within some distance threshold, t, of model are a **consensus set**.

Slide Credit: Christopher Rasmussen

RANSAC (**RAN**dom **SA**mple **C**onsensus)

- sample)
- Size of consensus set is model's support
- 3. Repeat for N samples; model with biggest support is most robust fit
 - Points within distance t of best model are inliers
 - Fit final model to all inliers

RANSAC is very useful for variety of applications

1. Randomly choose minimal subset of data points necessary to fit model (a

2. Points within some distance threshold, t, of model are a **consensus set**.

Slide Credit: Christopher Rasmussen

RANSAC (RANdom SAmple Consensus)

sample) Fitting a Line: 2 points

2. Points within some distance threshold, t, of model are a **consensus set**. Size of consensus set is model's **support**

3. Repeat for N samples; model with biggest support is most robust fit Points within distance t of best model are inliers

- Fit final model to all inliers

1. Randomly choose minimal subset of data points necessary to fit model (a

Slide Credit: Christopher Rasmussen

Example 1: Fitting a Line

\bigcirc

Example 1: Fitting a Line

Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman

55

Algorithm 10.4

This was Algorithm 15.4 in Forsyth & Ponce (1st ed.)

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

Determine:

n — the smallest number of points required k — the number of iterations required t — the threshold used to identify a point that fits well d — the number of nearby points required to assert a model fits well Until k iterations have occurred Draw a sample of n points from the data uniformly and at random Fit to that set of n points For each data point outside the sample Test the distance from the point to the line against t; if the distance from the point to the line is less than t, the point is close end If there are d or more points close to the line then there is a good fit. Refit the line using all these points. end Use the best fit from this collection, using the

fitting error as a criterion

RANSAC: Fitting Lines Using Random Sample Consensus

RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)

- Let n be the number of points needed to define hypothesis (n = 2 for a line in the plane)
- Suppose k samples are chosen
- The probability that a single sample of n points is correct (all inliers) is

RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)

- Let n be the number of points needed to define hypothesis (n = 2 for a line in the plane)
- Suppose k samples are chosen
- The probability that a single sample of n points is correct (all inliers) is

The probability that all k samples fail is

$$\omega^n$$

RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)

- Let n be the number of points needed to define hypothesis (n = 2 for a line in the plane)
- Suppose k samples are chosen
- The probability that a single sample of n points is correct (all inliers) is

The probability that all k samples fail is] Choose k large enough (to keep this below a target failure rate)

$$\omega^n$$

$$(-\omega^n)^k$$

RANSAC: *k* Samples Chosen (p = 0.99)

Sample size	Proportion of outliers						
n	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20 26	33	54	163	588
8	5	9	26	44	78	272	1177

After RANSAC

from minimal set of inliers

Improve this initial estimate with estimation over all inliers (e.g., with standard least-squares minimization)

But this may change inliers, so alternate fitting with re-classification as inlier/ outlier

RANSAC divides data into inliers and outliers and yields estimate computed

Example 2: Fitting a Line

Figure Credit: Hartley & Zisserman

62

Example 2: Fitting a Line

Example 3: Automatic Matching of Images

— How to get correct correspondences without human intervention? - Can be used for image stitching or automatic determination of epipolar geometry

Example 3: Feature Extraction

- Find features in pair of images using Harris corner detector Assumes images are roughly the same scale

\approx 500 corner features found in each image

65

Example 3: Finding Feature Matches

Select best match over threshold within a square search window (here ±320 pixels) using SSD or (normalized) cross-correlation for small patch around the corner

66

\approx 500 corner features found in each image

Example 3: Initial Match Hypothesis

268 matched features (over SSD threshold) superimposed on left image (pointing to locations of corresponding feature in right image)

Example 3: Outliers & Inliers after RANSAC -n is 4 for this problem (a homography relating 2 images)

- Assume up to 50% outliers
- -43 samples used with t = 1.25 pixels

117 outliers

151 inliers

Example 3: Final Matches

final set of 262 matches

69

Discussion of RANSAC

Advantages:

- General method suited for a wide range of model fitting problems
- Easy to implement and easy to calculate its failure rate

Disadvantages:

- Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)

The Hough transform can handle high percentage of outliers

- Only handles a moderate percentage of outliers without cost blowing up