CPSC 425: Computer Vision

Lecture 19: Scale Invariant Features (SIFT) cont.
Menu for Today (October 26, 2020)

Topics:
- Scale Invariant Feature Transform (SIFT)
- SIFT detector, descriptor

Readings:
- **Today’s** Lecture: Forsyth & Ponce (2nd ed.) 5.4
 “Distinctive Image Features for Scale-Invariant Keypoints"
- **Next** Lecture: Forsyth & Ponce (2nd ed.) 10.4.2, 10.1, 10.2

Reminders:
- **Assignment 3**: Texture Synthesis is due **today**
- **Assignment 4**: is **out** now
Today’s “fun” Example: AI Generated Portrait

Sold in 2018 for $432,500 at British auction house
Today’s “fun” Example: Sunspring
Today’s “fun” Example: Sunspring
Today’s “fun” Example: DopeLearning

DopeLearning: A Computational Approach to Rap Lyrics Generation

Eric Malmi
Aalto University and HIIT
Espoo, Finland
eric.malmi@aalto.fi

Pyry Takala
Aalto University
Espoo, Finland
pyry.takala@aalto.fi

Hannu Toivonen
University of Helsinki and HIIT
Helsinki, Finland
hannu.toivonen@cs.helsinki.fi

Tapani Raiko
Aalto University
Espoo, Finland
tapani.raiko@aalto.fi

Aristides Gionis
Aalto University and HIIT
Espoo, Finland
aristides.gionis@aalto.fi

http://deepbeat.org
Lecture 18: Re-Cap

— We motivated SIFT for identifying locally distinct keypoints in an image (detection)

— SIFT features (description) are invariant to translation, rotation, and scale; robust to 3D pose and illumination

1. Multi-scale extrema detection
2. Keypoint localization
3. Orientation assignment
4. Keypoint descriptor
Lecture 18: Re-Cap

Keypoint is an image location at which a descriptor is computed
- Locally distinct points
- Easily localizable and identifiable

The feature **descriptor** summarizes the local structure around the key point
- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.
Lecture 18: Re-Cap

Keypoint is an image location at which a descriptor is computed
- Locally distinct points
- Easily localizable and identifiable

The feature **descriptor** summarizes the local structure around the key point
- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.
Lecture 18: Re-Cap

Keypoint is an image location at which a descriptor is computed
 — Locally distinct points
 — Easily localizable and identifiable

The feature descriptor summarizes the local structure around the key point
 — Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.
Lecture 18: Re-Cap

Keypoint is an image location at which a descriptor is computed
- Locally distinct points
- Easily localizable and identifiable

The feature **descriptor** summarizes the local structure around the key point
- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.
Lecture 18: Re-Cap

Keypoint is an image location at which a descriptor is computed

— Locally distinct points
— Easily localizable and identifiable

The feature **descriptor** summarizes the local structure around the key point

— Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.
Lecture 18: Re-Cap

— We motivated SIFT for identifying locally distinct keypoints in an image (detection)

— SIFT features (description) are invariant to translation, rotation, and scale; robust to 3D pose and illumination

1. Multi-scale extrema detection
2. Keypoint localization
3. Orientation assignment
4. Keypoint descriptor
1. Multi-scale Extrema Detection

- First octave
 - Gaussian
 - Difference of Gaussian (DoG)

- Second octave
 - Gaussian
 - Difference of Gaussian (DoG)

Half the size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
1. Multi-scale Extrema Detection

Detect maxima and minima of Difference of Gaussian in scale space

\[\sigma = 2^{1/s} \]

Selected if larger than all 26 neighbors

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge, vs. well-localized?

\[
C = \begin{bmatrix}
\sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\
\sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y
\end{bmatrix}
\]
3. Orientation Assignment

- Create **histogram** of local gradient directions computed at selected scale

- Assign **canonical orientation** at peak of smoothed histogram

- Each key specifies stable 2D coordinates (x, y, scale, orientation)
Scale Invariant Feature Transform (SIFT)

SIFT describes both a detector and descriptor

1. Multi-scale extrema detection
2. Keypoint localization
3. Orientation assignment
4. Keypoint descriptor

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
4. Keypoint Description

We have seen how to assign a location, scale, and orientation to each key point — **keypoint detection**

— The next step is to compute a **keypoint descriptor**: should be robust to local shape distortions, changes in illumination or 3D viewpoint

— Keypoint detection is not the same as keypoint description, e.g. some applications skip keypoint detection and extract SIFT descriptors on a regularly spaced grid
4. SIFT Descriptor

— Thresholded image gradients are sampled over 16×16 array of locations in scale space (weighted by a Gaussian with sigma half the size of the window)
— Create array of orientation histograms
— 8 orientations $\times 4 \times 4$ histogram array
Demo
How many dimensions are there in a SIFT descriptor?

(Hint: This diagram shows a 2 x 2 histogram array but the actual descriptor uses a 4 x 4 histogram array)
Descriptor is **normalized** to unit length (i.e. magnitude of 1) to reduce the effects of illumination change

— if brightness values are scaled (multiplied) by a constant, the gradients are scaled by the same constant, and the normalization cancels the change

— if brightness values are increased/decreased by a constant, the gradients do not change
Feature Stability to **Noise**

Match features after random change in image scale & orientation, with differing levels of image noise

Find nearest neighbour in database of 30,000 features
Feature Stability to **Affine Change**

Match features after random change in image scale & orientation, with differing levels of image noise

Find nearest neighbour in database of 30,000 features
Distinctiveness of Features

Vary size of database of features, with 30 degree affine change, 2% image noise

Measure % correct for single nearest neighbour match
Summary

Four steps to SIFT feature generation:

1. **Scale-space representation and local extrema detection**
 - use DoG pyramid
 - 3 scales/octave, down-sample by factor of 2 each octave

2. **Keypoint localization**
 - select stable keypoints (threshold on magnitude of extremum, ratio of principal curvatures)

3. **Keypoint orientation assignment**
 - based on histogram of local image gradient directions

4. **Keypoint descriptor**
 - histogram of local gradient directions — vector with $8 \times (4 \times 4) = 128$ dim
 - vector normalized (to unit length)
Histogram of Oriented Gradients (HOG) Features

Dalal, Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005

- Cell (8x8 pixels)
- Block (2x2 cells)
- Histogram of ‘unsigned’ gradients
- Gradient magnitude histogram (one for each cell)
- Soft binning
- Concatenate and L-2 normalization
- Single scale, no dominant orientation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Histogram of Oriented Gradients (HOG) Features

Pedestrian detection

1 cell step size

128 pixels
16 cells
15 blocks

64 pixels
8 cells
7 blocks

15 x 7 x 4 x 9 = 3780

Redundant representation due to overlapping blocks

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
‘Speeded’ Up Robust Features (SURF)

Each cell is represented by 4 values:

\[\sum d_x, \sum d_y, \sum |d_x|, \sum |d_y| \]

Haar wavelets filters
(Gaussian weighted from center)

How big is the SURF descriptor?
64 dimensions

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
‘Speeded’ Up Robust Features (**SURF**)
Object recognition requires us to first match each keypoint independently to the database of keypoints.

Many features will not have any correct match in the database because they arise from background clutter.

It would be useful to have a way to discard features that do not have any good match.
Probability of **Correct** Match

Compare ratio of distance of **nearest** neighbour to **second** nearest neighbour (from different object)

Threshold of 0.8 provides excellent separation

![Graph showing PDF for correct and incorrect matches](image)
What types of transformations can we do?

Filtering

$I(X, Y) \rightarrow I'(X, Y)$

deletes some pixels
changes range of image function

Warping

$I(X, Y) \rightarrow I'(X, Y)$

changes domain of image function

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
What types of **transformations** can we do?

$I(X, Y) \rightarrow I'(X, Y)$

changes domain of image function
What types of transformations can we do?

We will call this “Warping” a “Model”

\[
\begin{bmatrix}
X' \\
Y'
\end{bmatrix} = M \begin{bmatrix}
X \\
Y
\end{bmatrix}
\]

\[
I'(X', Y') = I(X, Y)
\]
What types of transformations can we do?

We will call this “Warping” a “Model”

\[
\begin{bmatrix}
X' \\
Y' \\
1
\end{bmatrix} = M
\begin{bmatrix}
X \\
Y \\
1
\end{bmatrix}
\]

\[
I'(X', Y') = I(X, Y)
\]
Model Verification

1. Examine all clusters with at least 3 features

2. Perform least-squares affine fit to model

3. Discard outliers and perform top-down check for additional features

4. Evaluate probability that match is correct
 — Use Bayesian model, with probability that features would arise by chance if object was not present (Lowe, CVPR 01)
Aside: Classification of 2D Transformations

<table>
<thead>
<tr>
<th>Name</th>
<th>Matrix</th>
<th># D.O.F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>translation</td>
<td>$[I \ t]_{2\times3}$</td>
<td>2</td>
</tr>
<tr>
<td>rigid (Euclidean)</td>
<td>$[R \ t]_{2\times3}$</td>
<td>3</td>
</tr>
<tr>
<td>similarity</td>
<td>$[sR \ t]_{2\times3}$</td>
<td>4</td>
</tr>
<tr>
<td>affine</td>
<td>$[A]_{2\times3}$</td>
<td>6</td>
</tr>
<tr>
<td>projective</td>
<td>$[\tilde{H}]_{3\times3}$</td>
<td>8</td>
</tr>
</tbody>
</table>
Aside: Classification of 2D Transformations

Which kind \textit{transformation} is needed to warp projective plane 1 into projective plane 2?

\textit{Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)}
Aside: Classification of 2D Transformations

Which kind **transformation** is needed to warp projective plane 1 into projective plane 2?

- A **projective** transformation (a.k.a. a homography).

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Aside: Warping with Different Transformations

Translation Affine Projective (homography)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Aside: We can use homographies when …

1. … the scene is planar; or

2. … the scene is very far or has small (relative) depth variation → scene is approximately planar
Aside: We can use homographies when ...

3.... the scene is captured under camera rotation only (no translation or pose change)
Solution for **Affine** Parameters

Affine transform of \([x, y]\) to \([u, v]\)

\[
\begin{bmatrix}
 u \\
v
\end{bmatrix} = \begin{bmatrix}
m_1 & m_2 \\
m_3 & m_4
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix} + \begin{bmatrix}
t_x \\
t_y
\end{bmatrix}
\]

Rewrite to solve for **transformation** parameters:

\[
\begin{bmatrix}
x_1 & y_1 & 0 & 0 & 1 & 0 \\
0 & 0 & x_1 & y_1 & 0 & 1 \\
x_2 & y_2 & 0 & 0 & 1 & 0 \\
0 & 0 & x_2 & y_2 & 0 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{bmatrix} \begin{bmatrix}
m_1 \\
m_2 \\
m_3 \\
m_4 \\
t_x \\
t_y
\end{bmatrix} = \begin{bmatrix}
u_1 \\
u_2 \\
v_1 \\
v_2 \\
\vdots \\
\vdots
\end{bmatrix}
\]

(6 equations 6 unknowns)
Solution for **Affine** Parameters

Suppose we have $k \geq 3$ matches, $[x_i, y_i]$ to $[u_i, v_i]$, $i = 1, 2, \cdots, k$

Then,

\[
\begin{bmatrix}
 x_1 & y_1 & 0 & 0 & 1 & 0 \\
 0 & 0 & x_1 & y_1 & 0 & 1 \\
 x_2 & y_2 & 0 & 0 & 1 & 0 \\
 0 & 0 & x_2 & y_2 & 0 & 1 \\
 \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
 x_k & y_k & 0 & 0 & 1 & 0 \\
 0 & 0 & x_k & y_k & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 m_1 \\
 m_2 \\
 m_3 \\
 m_4 \\
 t_x \\
 t_y
\end{bmatrix}
= \begin{bmatrix}
 u_1 \\
 v_1 \\
 u_2 \\
 v_2 \\
 \cdots \\
 \cdots \\
 u_k \\
 v_k
\end{bmatrix}
\]
Limitation of this …

We need to have **exact** matches
Despite all efforts this is very difficult ...

1. If we can find exact match 80% of the time, we can find 3 matches correctly only about 50% of the time.

2. Image noise, deformations, will make this worse (e.g., if finding exact match drops to 50%, the probability of finding 3 exact matches will drop to 12.5%)

3. Multiple object instances will make this impossible
Fitting a Model to Noisy Data

Suppose we are fitting a line to a dataset that consists of 50% outliers.

We can fit a line using two points.

If we draw pairs of points uniformly at random, what fraction of pairs will consist entirely of ‘good’ data points (inliers)?
Fitting a Model to Noisy Data

Suppose we are fitting a line to a dataset that consists of 50% outliers.

We can fit a line using two points:

- If we draw pairs of points uniformly at random, then about 1/4 of these pairs will consist entirely of ‘good’ data points (inliers).
- We can identify these good pairs by noticing that a large collection of other points lie close to the line fitted to the pair.
- A better estimate of the line can be obtained by refitting the line to the points that lie close to the line.
RANSAC (RANdom SAMple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a sample)

2. Points within some distance threshold, \(t \), of model are a consensus set. Size of consensus set is model’s support

3. Repeat for \(N \) samples; model with biggest support is most robust fit
 - Points within distance \(t \) of best model are inliers
 - Fit final model to all inliers

Slide Credit: Christopher Rasmussen
RANSAC (RANDOM SAMPLE CONSENSUS)

1. Randomly choose minimal subset of data points necessary to fit model (a sample)

2. Points within some distance threshold, t, of model are a consensus set. Size of consensus set is model’s support

3. Repeat for N samples; model with biggest support is most robust fit
 - Points within distance t of best model are inliers
 - Fit final model to all inliers

RANSAC is very useful for variety of applications

Slide Credit: Christopher Rasmussen
RANSAC (Random Sample Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a sample)

2. Points within some distance threshold, t, of model are a consensus set.
 Size of consensus set is model’s support

3. Repeat for N samples; model with biggest support is most robust fit
 — Points within distance t of best model are inliers
 — Fit final model to all inliers
Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman
Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman
Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman
Algorithm 10.4

This was Algorithm 15.4 in Forsyth & Ponce (1st ed.)

<table>
<thead>
<tr>
<th>Algorithm 15.4: RANSAC. Fitting lines using random sample consensus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine: n — the smallest number of points required</td>
</tr>
<tr>
<td>k — the number of iterations required</td>
</tr>
<tr>
<td>t — the threshold used to identify a point that fits well</td>
</tr>
<tr>
<td>d — the number of nearby points required to assert a model fits well</td>
</tr>
<tr>
<td>Until k iterations have occurred</td>
</tr>
<tr>
<td>Draw a sample of n points from the data</td>
</tr>
<tr>
<td>uniformly and at random</td>
</tr>
<tr>
<td>Fit to that set of n points</td>
</tr>
<tr>
<td>For each data point outside the sample</td>
</tr>
<tr>
<td>Test the distance from the point to the line</td>
</tr>
<tr>
<td>against t; if the distance from the point to the line</td>
</tr>
<tr>
<td>is less than t, the point is close</td>
</tr>
<tr>
<td>end</td>
</tr>
<tr>
<td>If there are d or more points close to the line</td>
</tr>
<tr>
<td>then there is a good fit. Refit the line using all</td>
</tr>
<tr>
<td>these points.</td>
</tr>
<tr>
<td>end</td>
</tr>
<tr>
<td>Use the best fit from this collection, using the</td>
</tr>
<tr>
<td>fitting error as a criterion</td>
</tr>
</tbody>
</table>

RANSAC: Fitting Lines Using Random Sample Consensus
RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)

Let n be the number of points needed to define hypothesis

($n = 2$ for a line in the plane)

Suppose k samples are chosen

The probability that a single sample of n points is correct (all inliers) is
RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)

Let n be the number of points needed to define hypothesis

$(n = 2$ for a line in the plane$)$

Suppose k samples are chosen

The probability that a single sample of n points is correct (all inliers) is

$$\omega^n$$

The probability that all k samples fail is
RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)

Let n be the number of points needed to define hypothesis

$(n = 2$ for a line in the plane$)$

Suppose k samples are chosen

The probability that a single sample of n points is correct (all inliers) is

ω^n

The probability that all k samples fail is

$(1 - \omega^n)^k$

Choose k large enough (to keep this below a target failure rate)
RANSAC: k Samples Chosen ($p = 0.99$)

<table>
<thead>
<tr>
<th>Sample size</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>34</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>26</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>37</td>
<td>97</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>33</td>
<td>54</td>
<td>163</td>
<td>588</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>44</td>
<td>78</td>
<td>272</td>
<td>1177</td>
</tr>
</tbody>
</table>

Figure Credit: Hartley & Zisserman
After RANSAC

RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers

Improve this initial estimate with estimation over all inliers (e.g., with standard least-squares minimization)

But this may change inliers, so alternate fitting with re-classification as inlier/outlier
Example 2: Fitting a Line

Figure Credit: Hartley & Zisserman
Example 2: Fitting a Line

Figure Credit: Hartley & Zisserman
Example 3: Automatic Matching of Images

— How to get correct correspondences without human intervention?
— Can be used for image stitching or automatic determination of epipolar geometry

Figure Credit: Hartley & Zisserman
Example 3: Feature Extraction

- Find features in pair of images using Harris corner detector
- Assumes images are roughly the same scale

≈ 500 corner features found in each image

Figure Credit: Hartley & Zisserman
Example 3: Finding Feature Matches

Select best match over threshold within a square search window (here ±320 pixels) using SSD or (normalized) cross-correlation for small patch around the corner

≈ 500 corner features found in each image

Figure Credit: Hartley & Zisserman
Example 3: Initial Match Hypothesis

268 matched features (over SSD threshold) superimposed on left image (pointing to locations of corresponding feature in right image)

Figure Credit: Hartley & Zisserman
Example 3: Outliers & Inliers after RANSAC

- n is 4 for this problem (a homography relating 2 images)
- Assume up to 50% outliers
- 43 samples used with $t = 1.25$ pixels

Figure Credit: Hartley & Zisserman
Example 3: Final Matches

final set of 262 matches

Figure Credit: Hartley & Zisserman
Discussion of RANSAC

Advantages:
— General method suited for a wide range of model fitting problems
— Easy to implement and easy to calculate its failure rate

Disadvantages:
— Only handles a moderate percentage of outliers without cost blowing up
— Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)

The Hough transform can handle high percentage of outliers