
Lecture 18: Scale Invariant Features (SIFT)

CPSC 425: Computer Vision

!1

Menu for Today (October 23, 2020)
Topics:

Readings:
— Today’s Lecture: Forsyth & Ponce (2nd ed.) 5.4
 “Distinctive Image Features for Scale-Invariant Keypoints

— Next Lecture: Forsyth & Ponce (2nd ed.) 10.4.2, 10.1, 10.2
Reminders:

— Midterm: last class (we will start grading this weekend)
— Assignment 3: Texture Synthesis is due on October 26th @ 11:59pm

— Schedule for the course

— Scale Invariant Feature Transform (SIFT)
— SIFT detector, descriptor

!3

Today’s “fun” Example: Recognizing Panoramas

Figure Credit: Matthew Brown and David Lowe

!4

Today’s “fun” Example: Recognizing Panoramas

Figure Credit: Matthew Brown and David Lowe

!5

Today’s “fun” Example: Recognizing Panoramas

Figure Credit: Matthew Brown and David Lowe

!6

Today’s “fun” Example: Recognizing Panoramas

Figure Credit: Matthew Brown and David Lowe

!7

Today’s “fun” Example: Recognizing Panoramas

Figure Credit: Matthew Brown and David Lowe

!8

Today’s “fun” Example: Recognizing Panoramas

Figure Credit: Matthew Brown and David Lowe

!9

Today’s “fun” Example: Recognizing Panoramas

Figure Credit: Matthew Brown and David Lowe

!10

Today’s “fun” Example: Recognizing Panoramas

Figure Credit: Matthew Brown and David Lowe

!11

Today’s “fun” Example: Recognizing Panoramas

Figure Credit: Matthew Brown and David Lowe

Back to Good Local Features

!12

Where are the good features, and
how do we match them?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Photometric Transformations

!13 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Geometric Transformations

!14

objects will appear at different scales,
translation and rotation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lets assume for the moment we can figure out where the good features
(patches) are … how do we match them?

!15

Back to Good Local Features

!16 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

x
x x

x

x

x

x

xx

x
xx

x
x

xx

x

x

How do we know which corner goes with which?

Back to Good Local Features

!17 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

x x

x
x

x

x
x

x

How do we know which blob goes with which?

Back to Good Local Features

!18

Patch around the local feature is very informative

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intensity Image

!19

Just use the pixel values of the patch

Perfectly fine if geometry and appearance is unchanged
(a.k.a. template matching)

What are the problems?

()
1 2 3

4 5 6

7 8 9

1 2 3 4 5 6 7 8 9

vector of intensity values

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intensity Image

!20

Just use the pixel values of the patch

Perfectly fine if geometry and appearance is unchanged
(a.k.a. template matching)

What are the problems?

How can you be less sensitive to absolute intensity values?

()
1 2 3

4 5 6

7 8 9

1 2 3 4 5 6 7 8 9

vector of intensity values

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image Gradients / Edges

!21

Use pixel differences

()
1 2 3

4 5 6

7 8 9

- + + - - +

vector of x derivatives

Feature is invariant to absolute intensity values

What are the problems?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image Gradients / Edges

!22

Use pixel differences

()
1 2 3

4 5 6

7 8 9

- + + - - +

vector of x derivatives

Feature is invariant to absolute intensity values

What are the problems?

How can you be less sensitive to deformations?
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!23

Where does SIFT fit in?

/ “blob”

Object Recognition with Invariant Features

Task: Identify objects or scenes and determine their pose and model
parameters

Applications:
— Industrial automation and inspection
— Mobile robots, toys, user interfaces
— Location recognition
— Digital camera panoramas
— 3D scene modeling, augmented reality

!24

David Lowe’s Invariant Local Features
Image content is transformed into local feature coordinates that are invariant to
translation, rotation, scale, and other imaging parameters

!25

Advantages of Invariant Local Features

Locality: features are local, so robust to occlusion and clutter (no prior
segmentation)

Distinctiveness: individual features can be matched to a large database of
objects

Quantity: many features can be generated for even small objects

Efficiency: close to real-time performance

!26

Scale Invariant Feature Transform (SIFT)

!27

SIFT describes both a detector and descriptor

1. Multi-scale extrema detection
2. Keypoint localization
3. Orientation assignment
4. Keypoint descriptor

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Multi-scale Extrema Detection

!28

Fir
st

 o
ct

av
e

Se
co

nd
 o

ct
av

e

Gaussian Difference of Gaussian (DoG)

Half the size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Recall: Template matching

!29

Image Pyramid (s) Template

. . .

Level

0

1

L

Template Pyramid
(1/s)

Image

. . .

Both allow search over scale

Recall: Applying Laplacian Filter at Different Scales

!30

Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Searching over Scale-space

!31

�

Searching over Scale-space

!31

�

Searching over Scale-space

!31

�

Searching over Scale-space

!31

�

Searching over Scale-space

!32

�0 = 2�
�0 = 3�

�

Searching over Scale-space

!33

s = 0.5
s = 0.33

� � �

!34

Gaussian

Laplacian

1. Multi-scale Extrema Detection

!35

Selected if larger than
all 26 neighbors

Difference of Gaussian (DoG)

Sc
ale

 o
f G

au
ss

ian
 v

ar
ian

ce

1. Multi-scale Extrema Detection
Detect maxima and minima of Difference of Gaussian in scale space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

� = 21/s

!36

More points are found as sampling frequency increases, but accuracy of matching
decreases after 3 scales/octave

1. Multi-scale Extrema Detection — Sampling Frequency

2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

!37

2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge,
vs. well-localized?

!38

2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge,
vs. well-localized?

!39

C =

2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge,
vs. well-localized?

— Lowe suggests computing the ratio of the eigenvalues of C (recall Harris
corners) and checking if it is greater than a threshold

— Aside: The ratio can be computed efficiently in fewer than 20 floating point
operations, using a trick involving the trace and determinant of C - no need to
explicitly compute the eigenvalues

!40

!41

2. Keypoint Localization
Example:

3. Orientation Assignment

— Create histogram of local gradient
directions computed at selected scale

— Assign canonical orientation at peak
of smoothed histogram

— Each key specifies stable 2D
coordinates (x , y , scale, orientation)

!42

3. Orientation Assignment

!43

Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)

3. Orientation Assignment

!44

Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)

3. Orientation Assignment

!45

Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)

3. Orientation Assignment

!46

Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)

3. Orientation Assignment

!47

Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)

3. Orientation Assignment

!48

Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)

3. Orientation Assignment

!49

Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length) Assigned Orientation

3. Orientation Assignment

!50

Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length) Assigned Orientation

3. Orientation Assignment

!51

Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)

Multiply gradient magnitude by a Gaussian kernel

3. Orientation Assignment

— Histogram of 36 bins (10 degree
increments)

— Size of the window is 1.5 scale (recall
the Gaussian filter)

— Gaussian-weighted voting

— Highest peak and peaks above 80% of
highest also considered for calculating
dominant orientations

!52

!53

3. Keypoint Localization
Example:

4. Keypoint Description

We have seen how to assign a location, scale, and orientation to each key point
— keypoint detection

— The next step is to compute a keypoint descriptor: should be robust to
local shape distortions, changes in illumination or 3D viewpoint

— Keypoint detection is not the same as keypoint description, e.g. some
applications skip keypoint detection and extract SIFT descriptors on a regularly
spaced grid

!54

— Thresholded image gradients are sampled over 16 × 16 array of locations in
scale space (weighted by a Gaussian with sigma half the size of the window)
— Create array of orientation histograms
— 8 orientations × 4 × 4 histogram array

!55

4. SIFT Descriptor

Demo

!56

How many dimensions are there in a SIFT descriptor?

(Hint: This diagram shows a 2 x 2 histogram array but the actual descriptor
uses a 4 x 4 histogram array)

!57

4. SIFT Descriptor

Descriptor is normalized to unit length (i.e. magnitude of 1) to reduce the
effects of illumination change

— if brightness values are scaled (multiplied) by a constant, the gradients are
scaled by the same constant, and the normalization cancels the change

— if brightness values are increased/decreased by a constant, the gradients do
not change

!58

4. SIFT Descriptor

Feature Stability to Noise
Match features after random change in image scale & orientation, with differing
levels of image noise

Find nearest neighbour in database of 30,000 features

!59

Feature Stability to Affine Change
Match features after random change in image scale & orientation, with differing
levels of image noise

Find nearest neighbour in database of 30,000 features

!60

Distinctiveness of Features
Vary size of database of features, with 30 degree affine change, 2% image
noise

Measure % correct for single nearest neighbour match

!61

Summary
Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection
— use DoG pyramid
— 3 scales/octave, down-sample by factor of 2 each octave

	2. Keypoint localization
— select stable keypoints (threshold on magnitude of extremum, ratio of

principal curvatures)
	3. Keypoint orientation assignment

— based on histogram of local image gradient directions
	4. Keypoint descriptor

— histogram of local gradient directions — vector with 8 × (4 × 4) = 128 dim
— vector normalized (to unit length)

!62

