
Lecture 15: Corner Detection (cont), Texture

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )

Image Credit: https://en.wikipedia.org/wiki/Corner_detection

https://en.wikipedia.org/wiki/Corner_detection


Menu for Today (October 14, 2020)
Topics: 

— Harris Corner Detector (review) 
— Blob Detection 

Readings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3 

— Next Lecture:       Forsyth & Ponce (2nd ed.) 3.1-3.3

Reminders: 
— Assignment 2: Face Detection in a Scaled Representation is due today 
— Assignment 3: Texture Synthesis is out today 
— Study questions for Midterm are on Canvas (answers on Friday) 

— Searching over Scale 
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— Texture  
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Template matching 
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Template matching 
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Today’s “fun” Example: Face Detection
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Today’s “fun” Example: Face Detection
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https://www.youtube.com/watch?v=gWjBleSfZBk

Today’s “fun” Example: Face Detection
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https://www.youtube.com/watch?v=gWjBleSfZBk

Today’s “fun” Example: Face Detection
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Lecture 14: Re-cap (Harris Corner Detection)

1.Compute image gradients over 
small region

2.Compute the covariance matrix

3.Compute eigenvectors and     
eigenvalues

4.Use threshold on eigenvalues to 
detect corners

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)



Lecture 14: Re-cap (compute image gradients at patch)
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array of x gradients

array of y gradients

(not just a single pixel)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Lecture 14: Re-cap (compute the covariance matrix)
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Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

Matrix is symmetric

C =



Lecture 14: Re-cap
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Lecture 14: Re-cap (computing eigenvalues and eigenvectors)
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1. Compute the determinant of 
(returns a polynomial)

eigenvector

eigenvalue

2. Find the roots of polynomial 
(returns eigenvalues)

3. For each eigenvalue, solve 
(returns eigenvectors)

Ce = �e (C � �I)e = 0

det(C � �I) = 0

(C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

(C � �I)e = 0
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‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Lecture 14: Re-cap (interpreting eigenvalues)



flat

strong 
corner
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Think of a function to 
score ‘cornerness’

�1

�2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 14: Re-cap (Threshold on Eigenvalues to Detect Corners)
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Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

det(C)� trace2(C)

det(C)

trace(C) + ✏

Lecture 14: Re-cap (Threshold on Eigenvalues to Detect Corners)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example: Harris Corner Detection
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0 1 1 1 1 0 0
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0 0 1 1 1 0 0



Example: Harris Corner Detection
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Lets compute a measure of “corner-ness” for the green pixel: 



Example: Harris Corner Detection
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Example: Harris Corner Detection
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Example: Harris Corner Detection
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Example: Harris Corner Detection
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C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04



Example: Harris Corner Detection
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Example: Harris Corner Detection
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Example: Harris Corner Detection
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det(C)� 0.04trace2(C) = �0.36
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det(C)� 0.04trace2(C) = �0.36



Example: Harris Corner Detection

!37

0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 
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�
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det(C)� 0.04trace2(C) = 5

C =


3 0
0 2

�
=> �1 = 3;�2 = 2

det(C)� 0.04trace2(C) = 5



Harris Corner Detection Review

— Filter image with Gaussian 

— Compute magnitude of the x and y gradients at each pixel  

— Construct C in a window around each pixel  
      — Harris uses a Gaussian window  

— Solve for product of the λ’s  

— If λ’s both are big (product reaches local maximum above threshold) then we 
have a corner 
      — Harris also checks that ratio of λs is not too high  
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Harris & Stephens (1988)

det(C)� trace2(C)



Properties: Rotational Invariance
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Ellipse rotates but its shape  
(eigenvalues) remains the same

Corner response is invariant to image rotation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Properties: (partial) Invariance to Intensity Shifts and Scaling
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x (image coordinate)

threshold

x (image coordinate)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Only derivatives are used -> Invariance to intensity shifts 

Intensity scale could effect performance



Properties: NOT Invariant to Scale Changes
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edge!
corner!

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example 1: 
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Harris corners

• Originally developed as features for motion tracking
• Greatly reduces amount of computation compared to 

tracking every pixel
• Translation and rotation invariant (but not scale invariant)



Example 2: Wagon Wheel (Harris Results)
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� = 1 (219 points) � = 2 (155 points) � = 3 (110 points) � = 4 (87 points)



Example 3: Crash Test Dummy (Harris Result)
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� = 1 (175 points)corner response image
Original Image Credit: John Shakespeare, Sydney Morning Herald 



Example 2: Wagon Wheel (Harris Results)
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� = 1 (219 points) � = 2 (155 points) � = 3 (110 points) � = 4 (87 points)



Intuitively …

!46 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Intuitively …
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Find local maxima in both position and scale

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Highest response when the signal has the same characteristic scale as 
the filter

Laplacian filter

Formally …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



!48 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Characteristic Scale 
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characteristic scale - the scale that produces peak filter response

characteristic scale
we need to search over characteristic scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 

!50

Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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jet color scale 
blue: low, red: high

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 
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Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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peak!

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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peak!

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 
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Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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2.1 4.2 6.0

9.8 15.5 17.0

peak!

Applying Laplacian Filter at Different Scales 
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2.1 4.2 6.0

9.8 15.5 17.0

Applying Laplacian Filter at Different Scales 

maximum  
response



Optimal Scale
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2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image



Optimal Scale
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2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image

maximum 
response

maximum 
response



Implementation
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For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

if local maximum and cross-scale
save scale and location of feature



Summary

A corner is a distinct 2D feature that can be localized reliably  

Edge detectors perform poorly at corners  
→ consider corner detection directly  

Harris corner detection 
— corners are places where intensity gradient direction takes on multiple 
distinct values 
— interpret in terms of autocorrelation of local window 
— translation and rotation invariant, but not scale invariant  

!70



Lecture 15: Texture

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Texture
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Texture is widespread, easy to recognize, but hard to define  

Views of large numbers of small objects are often considered textures 
— e.g. grass, foliage, pebbles, hair  

Patterned surface markings are considered textures  
— e.g. patterns on wood 

What is texture?

Figure Credit: Alexei Efros and Thomas Leung 



Definition of Texture

(Functional) Definition:  

Texture is detail in an image that is at a scale too small to be resolved into its 
constituent elements and at a scale large enough to be apparent in the spatial 
distribution of image measurements  

Sometimes, textures are thought of as patterns composed of repeated 
instances of one (or more) identifiable elements, called textons. 
— e.g. bricks in a wall, spots on a cheetah  
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Uses of Texture

Texture can be a strong cue to object identity if the object has distinctive 
material properties  

Texture can be a strong cue to an object’s shape based on the deformation of 
the texture from point to point. 
— Estimating surface orientation or shape from texture is known as “shape 
from texture"  
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Texture

We will look at two main questions:  

1.  How do we represent texture?  
→ Texture analysis  

2.  How do we generate new examples of a texture?  
→ Texture synthesis  

We begin with texture synthesis to set up Assignment 3 
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