

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: <u>https://en.wikipedia.org/wiki/Corner_detection</u>

Lecture 15: Corner Detection (cont), Texture

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Menu for Today (October 14, 2020)

Topics:

- Harris **Corner** Detector (review)
- **Blob** Detection

Readings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3
- Next Lecture: Forsyth & Ponce (2nd ed.) 3.1-3.3

Reminders:

- Assignment 3: Texture Synthesis is out today
- Study questions for **Midterm** are on Canvas (answers on Friday)

- Searching over Scale - Texture

— Assignment 2: Face Detection in a Scaled Representation is due today

Level Image Pyramid (s)

0

-

Template

- - -

Level Image Pyramid (s)

0

-

Template

Level Image Pyramid (s)

0

-

Template

Image Pyramid (s) Level

0

-

Template

Image Pyramid (s) Level

0

Template

JUDYBATS

 $(x_0, y_0) \pm (w_0/2, h_0/2)$

 $(x_L, y_L) \pm (w_L/2, h_L/2)$

$x_L = x_0 s^L \qquad w_L = w_0 s^L$ $y_L = y_0 s^L \qquad h_L = h_0 s^L$

Level Image Pyramid (s)

0

-

Template

Image Pyramid (s) Level

0

-

Template

JUDYBATS

. . .

 (x_0, y_0)

 $x_0 = x_L \times \frac{1}{s^L}$

 $y_0 = y_L \times \frac{1}{s^L}$

Image Pyramid (s) Level

0

-

Template

 $(x_0, y_0) \pm (w_0/2, h_0/2)$

 $x_0 = x_L \times$

 $y_0 = y_L imes rac{1}{s^{\prime}}$

 $(x_L, y_L) \pm (w_L/2, h_L/2)$

. . .

$$\frac{1}{s^{L}} \qquad w_{0} = w \times \frac{1}{s^{L}}$$
$$\frac{1}{s^{L}} \qquad h_{0} = h \times \frac{1}{s^{L}}$$

$$\frac{1}{s^L}$$
 $h_0 = h \times \frac{1}{s^L}$

Level Image Pyramid (s)

0

-

Template

. . .

Template Pyramid (1/s)

. . .

Image

Image Pyramid (s) Level

0

Template

. . .

Template Pyramid (1/s)

. . .

Both allow search over scale

Image

Image Pyramid (s) Level

0

Template

Faster

. . .

Template Pyramid (1/s)

inget .

. . .

Image

<

Both allow search over scale

Image Pyramid (s) Level

0

-

- - -

. . .

Template Pyramid (s)

Note: This does not search over scales

https://www.youtube.com/watch?v=gWjBleSfZBk

https://www.youtube.com/watch?v=gWjBleSfZBk

Lecture 14: Re-cap (Harris Corner Detection)

- 1.Compute image gradients over small region
- 2.Compute the covariance matrix
- 3.Compute eigenvectors and eigenvalues
- 4.Use threshold on eigenvalues to detect corners

$$I_x = \frac{\partial I}{\partial x}$$

 $I_y = \frac{\partial I}{\partial y}$

 $\begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 14: Re-cap (compute image gradients at patch) (not just a single pixel)

array of y gradients

$$I_y = \frac{\partial I}{\partial y}$$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 14: Re-cap (compute the covariance matrix)

Sum over small region around the corner

Matrix is **symmetric**

Gradient with respect to x, times gradient with respect to y

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

Lecture 14: Re-cap

It can be shown that since every C is symmetric:

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in I} I_y I_y & \sum_{p \in I} I_y & \sum_$

$$\begin{bmatrix} x & \sum_{p \in P} I_x I_y \\ x & \sum_{p \in P} I_y I_y \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

Lecture 14: Re-cap (computing eigenvalues and eigenvectors) eigenvalue $Ce = \lambda e$ $(C - \lambda I)e = 0$ R 7 eigenvector

1. Compute the determinant of (returns a polynomial)

2. Find the roots of polynomial (returns eigenvalues)

3. For each eigenvalue, solve (returns eigenvectors)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 14: Re-cap (interpreting eigenvalues)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 14: Re-cap (Threshold on Eigenvalues to Detect Corners)

Think of a function to score 'cornerness'

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 14: Re-cap (Threshold on Eigenvalues to Detect Corners)

Harris & Stephens (1988)

 $\det(C) - \kappa \operatorname{trace}^2(C)$

Kanade & Tomasi (1994)

 $\min(\lambda_1, \lambda_2)$

Nobel (1998) $\det(C)$ $\operatorname{trace}(C) + \epsilon$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

 $I_x = \frac{\partial I}{\partial x}$

(using **backwards** differencing)

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

(using **backwards** differencing)

0	0	0
-1	1	0
-1	0	0
-1	0	0
0	-1	0
0	-1	0
0	-1	0
0	-1	0

 $I_x = \frac{\partial I}{\partial x}$

(using **backwards** differencing)

0	-1	0	0	0	-1
0	0	-1	-1	-1	1
0	0	0	0	0	0
0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0			\sum
0	1	0	0	0	1	0			
0	1	1	1	1	0	0			
0	1	1	1	1	0	0	0	0	0
0	0	1	1	1	0	0	-1	1	0
0	0	1	1	1	0	0	-1	0	0
0	0	1	1	1	0	0	-1	0	0
0	0	1	1	1	0	0	0	-1	0

$$I_x = \frac{\partial I}{\partial x}$$

0

0

0

-1

_

-1

U

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \odot \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 3$$

-1

0

0

0

0

Lets compute a measure of "corner-ness" for the green pixel:

	-					
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1			0	0

 $\mathbf{C} = \left[\begin{array}{cc} 3 & 2 \\ 2 & 4 \end{array} \right]$

0	0	0	
-1	1	0	
-1	0	0	
-1	0	0	
0	-1	0	
0	-1	0	
0	-1	0	
0	-1	0	

$$I_x = \frac{\partial I}{\partial x}$$

-1 -1 \mathbf{O} -1 -1 -1 -1 \mathbf{O} \mathbf{O} \mathbf{O} $\mathbf{\cap}$ U $= \frac{\partial I}{\partial y}$

	-					
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1			0	0

 $\mathbf{C} = \left[\begin{array}{cc} 3 & 2 \\ 2 & 4 \end{array} \right]$

0	0	0	
-1	1	0	
-1	0	0	
-1	0	0	
0	-1	0	
0	-1	0	
0	-1	0	
0	-1	0	

$$I_x = \frac{\partial I}{\partial x}$$

$$\begin{vmatrix} 2 \\ 4 \end{vmatrix} => \lambda_1 = 1.4384; \lambda_2 = 5.5616$$

	-					
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1			0	0

 $\mathbf{C} = \begin{bmatrix} 3\\ 2 \end{bmatrix}$

0	0	0	
-1	1	0	
-1	0	0	
-1	0	0	
0	-1	0	
0	-1	0	
0	-1	0	
0	-1	0	

$$I_x = \frac{\partial I}{\partial x}$$

$$\begin{vmatrix} 2 \\ 4 \end{vmatrix} => \lambda_1 = 1.4384; \lambda_2 = 5.5616$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = 6.04$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

 $\mathbf{C} = \begin{bmatrix} 3\\ 0 \end{bmatrix}$

0	0	0
-1	1	0
-1	0	0
-1	0	0
0	-1	0
0	-1	0
0	-1	0
0	-1	0

$$I_x = \frac{\partial I}{\partial x}$$

$$\begin{bmatrix} 0\\0 \end{bmatrix} => \lambda_1 = 3; \lambda_2 = 0$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = -0.36$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

 $\mathbf{C} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$

0	0	0
-1	1	0
-1	0	0
-1	0	0
0	-1	0
0	-1	0
0	-1	0
0	-1	0

 $I_x = \frac{\partial I}{\partial x}$

$$\begin{bmatrix} 0\\2 \end{bmatrix} => \lambda_1 = 3; \lambda_2 = 2$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = 5$$

0	-1	0	0	0	-1
0	0	-1	-1	-1	1
0	0	0	0	0	0
0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Harris Corner Detection Review

- Filter image with **Gaussian**
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel Harris uses a Gaussian window
- Solve for product of the λ 's
- have a corner
 - Harris also checks that ratio of λs is not too high

Harris & Stephens (1988) $\det(C) - \kappa \operatorname{trace}^2(C)$

- If λ 's both are big (product reaches local maximum above threshold) then we

Corner response is **invariant** to image rotation

Ellipse rotates but its shape (eigenvalues) remains the same

Properties: Rotational Invariance

Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance

x (image coordinate)

x (image coordinate)

Properties: NOT Invariant to Scale Changes

corner!

Example 1:

Example 2: Wagon Wheel (Harris Results)

 $\sigma = 1$ (219 points) $\sigma = 2$ (155 points) $\sigma = 3$ (110 points) $\sigma = 4$ (87 points)

Example 3: Crash Test Dummy (Harris Result)

corner response image

Original Image Credit: John Shakespeare, Sydney Morning Herald

www.johnshakespeare.com.au

$\sigma = 1$ (175 points)

44

Example 2: Wagon Wheel (Harris Results)

 $\sigma = 1$ (219 points) $\sigma = 2$ (155 points) $\sigma = 3$ (110 points) $\sigma = 4$ (87 points)

Intuitively ...

Intuitively ...

Find local maxima in both **position** and **scale**

Formally ...

Highest response when the signal has the same characteristic scale as the filter

Characteristic Scale

characteristic scale - the scale that produces peak filter response

characteristic scale

we need to search over characteristic scales

Full size

3/4 size

jet color scale blue: low, red: high

x10

Full size

3/4 size

Full size

3/4 size

2.1

9.8

4.2

6.0

15.5

65

2.1

9.8

4.2

6.0

15.5

66

Optimal Scale

2.1 4.2 6.0

2.1 4.2

15.5

Full size image

9.8

17.0

3/4 size image

Optimal Scale

6.0

2.1 4.2

6.0

Full size image

9.8

15.5

17.0

3/4 size image
Implementation

- For each level of the Gaussian pyramid compute feature response (e.g. Harris, Laplacian) For each level of the Gaussian pyramid if local maximum and cross-scale
 - save scale and location of feature $\left(x,y,s
 ight)$

A **corner** is a distinct 2D feature that can be localized reliably

Edge detectors perform poorly at corners → consider corner detection directly

Harris corner detection

- corners are places where intensity gradient direction takes on multiple distinct values
- interpret in terms of autocorrelation of local window
- translation and rotation invariant, but not scale invariant

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 15: Texture

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Texture

What is **texture**?

Figure Credit: Alexei Efros and Thomas Leung Texture is widespread, easy to recognize, but hard to define

- Views of large numbers of small objects are often considered textures
- e.g. grass, foliage, pebbles, hair
- Patterned surface markings are considered textures e.g. patterns on wood

Definition of **Texture**

(Functional) **Definition**:

distribution of image measurements

Texture is detail in an image that is at a scale too small to be resolved into its constituent elements and at a scale large enough to be apparent in the spatial

Definition of **Texture**

(Functional) **Definition**:

distribution of image measurements

Sometimes, textures are thought of as patterns composed of repeated instances of one (or more) identifiable elements, called **textons**. - e.g. bricks in a wall, spots on a cheetah

Texture is detail in an image that is at a scale too small to be resolved into its constituent elements and at a scale large enough to be apparent in the spatial

Uses of **Texture**

Texture can be a strong cue to **object identity** if the object has distinctive material properties

the texture from point to point.

from texture"

Texture can be a strong cue to an **object's shape** based on the deformation of

- Estimating surface orientation or shape from texture is known as "**shape**

Texture

We will look at two main questions:

1. How do we represent texture? → Texture **analysis**

2. How do we generate new examples of a texture? → Texture **synthesis**

We begin with texture synthesis to set up **Assignment 3**