
Lecture 14: Corner Detection (cont)

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )

Image Credit: https://en.wikipedia.org/wiki/Corner_detection

https://en.wikipedia.org/wiki/Corner_detection


Menu for Today (October 9, 2020)
Topics: 

Redings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 5.3.0 - 5.3.1 

— Next Lecture:       Forsyth & Ponce (2nd ed.) 6.1, 6.3 

Reminders: 
— No class on Monday (it’s Thanksgiving — Have Fun!) 
— Assignment 2: Face Detection in a Scaled Representation is October 14th 

— Autocorrelation 
— Harris Corner Detector
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Today’s “fun” Example: Colour Constancy

Image Credit: Akiyosha Kitoaka
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Today’s “fun” Example: Colour Constancy

Image Credit: Akiyosha Kitoaka
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Today’s “fun” Example: Colour Constancy
— Some people see a white and gold dress. 

— Some people see a blue and black dress. 

— Some people see one interpretation and then switch 
to the other

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html
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Today’s “fun” Example: Colour Constancy

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

— Some people see a white and gold dress. 

— Some people see a blue and black dress. 

— Some people see one interpretation and then switch 
to the other

Two pieces 
of the dress

Average  
colors

The basic pattern 
of the dress

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html
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Today’s “fun” Example: Colour Constancy

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html
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https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

Today’s “fun” Example: Colour Constancy

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html


Local: features are local, robust to occlusion and clutter 

Accurate: precise localization  

Robust: noise, blur, compression, etc. do not have a big impact on the feature.  

Distinctive: individual features can be easily matched 

Efficient: close to real-time performance 
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Lecture 13: Re-cap Good Local Features



A corner can be localized reliably.  

Thought experiment:  

!10

Lecture 13: Re-cap



A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
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“flat” region: 
no change in all 

directions

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: Re-cap
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“flat” region: 
no change in all 

directions

A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: Re-cap
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A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

“edge”: 
no change along 
the edge direction

— Place a small window over an edge.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: Re-cap



!14

A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

“edge”: 
no change along 
the edge direction

— Place a small window over an edge. If you slide the window in the direction of 
the edge, the image in the window will not change 
     → Cannot estimate location along an edge (a.k.a., aperture problem) 

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: Re-cap
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A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

“corner”: 
significant change 

in all directions

— Place a small window over an edge. If you slide the window in the direction of 
the edge, the image in the window will not change 
     → Cannot estimate location along an edge (a.k.a., aperture problem) 

— Place a small window over a corner.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: Re-cap
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A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

“corner”: 
significant change 

in all directions

— Place a small window over an edge. If you slide the window in the direction of 
the edge, the image in the window will not change 
     → Cannot estimate location along an edge (a.k.a., aperture problem) 

— Place a small window over a corner. If you slide the window in any direction, 
the image in the window changes. 

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: Re-cap



Corner Detection

Edge detectors perform poorly at corners  

Observations:  
— The gradient is ill defined exactly at a corner 
— Near a corner, the gradient has two (or more) distinct values  
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How do you find a corner? 
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Easily recognized by looking through a small window 

Shifting the window should give large change in intensity

[Moravec 1980]

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Autocorrelation

Autocorrelation is the correlation of the image with itself.  

— Windows centered on an edge point will have autocorrelation that falls off 
slowly in the direction along the edge and rapidly in the direction across 
(perpendicular to) the edge.  

— Windows centered on a corner point will have autocorrelation that falls of 
rapidly in all directions.  
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Autocorrelation
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Szeliski, Figure 4.5



Autocorrelation
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Szeliski, Figure 4.5



Autocorrelation
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Szeliski, Figure 4.5



Autocorrelation
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Szeliski, Figure 4.5



Autocorrelation
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Szeliski, Figure 4.5



Autocorrelation
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Szeliski, Figure 4.5



Autocorrelation

Autocorrelation is the correlation of the image with itself.  

— Windows centered on an edge point will have autocorrelation that falls off 
slowly in the direction along the edge and rapidly in the direction across 
(perpendicular to) the edge.  

— Windows centered on a corner point will have autocorrelation that falls of 
rapidly in all directions.  
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Harris Corner Detection
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1.Compute image gradients over 
small region

2.Compute the covariance matrix

3.Compute eigenvectors and     
eigenvalues

4.Use threshold on eigenvalues to 
detect corners

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)



1. Compute image gradients over a small region
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array of x gradients

array of y gradients

(not just a single pixel)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Visualization of Gradients
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image

X derivative

Y derivative

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



What Does a Distribution Tells You About the Region? 

!30 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



What Does a Distribution Tells You About the Region? 

!31 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



What Does a Distribution Tells You About the Region? 

!32 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Distribution reveals the orientation and magnitude 



What Does a Distribution Tells You About the Region? 
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Distribution reveals the orientation and magnitude 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
How do we quantify the orientation and magnitude? 



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)
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C =



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)
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Sum over small region  
around the corner

C =



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)
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Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

C =



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)
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Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

C =

array of x gradients array of y gradients

.*=sum( )



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)
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Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

Matrix is symmetric

C =



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

!39

By computing the gradient covariance matrix …

we are fitting a quadratic to the gradients over a  small image region

C =



Simple Case
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Simple Case
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Simple Case
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Simple Case
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Simple Case
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high value along vertical  
strip of pixels and 0 elsewhere

high value along horizontal  
strip of pixels and 0 elsewhere
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General Case
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It can be shown that since every C is symmetric: 

… so general case is like a rotated version of the simple one



3. Computing Eigenvalues and Eigenvectors

!46 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Quick Eigenvalue/Eigenvector Review

Given a square matrix    , a scalar    is called an eigenvalue of     if there exists 
a nonzero vector    that satisfies  

 
The vector    is called an eigenvector for     corresponding to the eigenvalue   .  

The eigenvalues of     are obtained by solving 
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Av = �v

det(A� �I) = 0

�

A

v

A�
v

A

A



3. Computing Eigenvalues and Eigenvectors
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eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



3. Computing Eigenvalues and Eigenvectors
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eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of 
(returns a polynomial) (C � �I)e = 0



3. Computing Eigenvalues and Eigenvectors
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eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of 
(returns a polynomial)

2. Find the roots of polynomial 
(returns eigenvalues) det(C � �I) = 0

(C � �I)e = 0



3. Computing Eigenvalues and Eigenvectors
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1. Compute the determinant of 
(returns a polynomial)

eigenvector

eigenvalue

2. Find the roots of polynomial 
(returns eigenvalues)

3. For each eigenvalue, solve 
(returns eigenvectors)

Ce = �e (C � �I)e = 0

det(C � �I) = 0

(C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

(C � �I)e = 0



Example
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C =


2 1
1 2

�

det
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of 
(returns a polynomial)

2. Find the roots of polynomial 
(returns eigenvalues)

3. For each eigenvalue, solve 
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0



Example
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of 
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2. Find the roots of polynomial 
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3. For each eigenvalue, solve 
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

det

✓
2� � 1
1 2� �

�◆



Example
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Example
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Example

!54

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

a

�2 � 4�+ 3 = 0
(�� 3)(�� 1) = 0
�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 31. Compute the determinant of 
(returns a polynomial)

2. Find the roots of polynomial 
(returns eigenvalues)

3. For each eigenvalue, solve 
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

det

✓
2� � 1
1 2� �

�◆



Visualization as Quadratic

!55

can be written in matrix form like this…

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Visualization as Quadratic
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can be written in matrix form like this…

eigenvalues 
along diagonaleigenvectors

Result of Computing Eigenvalues and Eigenvectors (using SVD)

axis of the 
‘ellipse slice’

scaling of the quadratic 
along the axis

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Since     is symmetric, we have

Ellipse equation:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Visualization as Ellipse
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We can visualize     as an ellipse with axis lengths determined by the eigenvalues 
and orientation determined by 
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Since     is symmetric, we have

direction of 
the major 

axis

direction of the 
minor axis

(λmax)-1/2

(λmin)-1/2

Ellipse equation:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Visualization as Ellipse
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We can visualize     as an ellipse with axis lengths determined by the eigenvalues 
and orientation determined by 
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Interpreting Eigenvalues
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λ2 >> λ1

λ1 >> λ2

What kind of image patch 
does each region represent?

�1

�2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

!60 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues



‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

!61 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Interpreting Eigenvalues
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‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues
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‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues



4. Threshold on Eigenvalues to Detect Corners

!64 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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flat

Think of a function to 
score ‘cornerness’

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



flat

strong 
corner
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Think of a function to 
score ‘cornerness’

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



flat

corner

Use the smallest eigenvalue as the 
response function
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flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



flat

corner
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flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



det(C)� trace2(C)

flat

corner
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flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

=

(more efficient)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



flat

corner
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flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

 < 0

 > 0

 < 0

=

det(C)� trace2(C)

(more efficient)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

det(C)� trace2(C)

det(C)

trace(C) + ✏

4. Threshold on Eigenvalues to Detect Corners
^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Harris Corner Detection Review

— Filter image with Gaussian 

— Compute magnitude of the x and y gradients at each pixel  

— Construct C in a window around each pixel  
      — Harris uses a Gaussian window  

— Solve for product of the λ’s  

— If λ’s both are big (product reaches local maximum above threshold) then we 
have a corner 
      — Harris also checks that ratio of λs is not too high  
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Compute the Covariance Matrix
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Sum can be implemented as an  
(unnormalized) box filter with 

C =

Harris uses a Gaussian weighting instead  



Compute the Covariance Matrix
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Sum can be implemented as an  
(unnormalized) box filter with 

C =

Harris uses a Gaussian weighting instead  

(has to do with bilinear Taylor expansion of 2D function that measures 
change of intensity for small shifts … remember AutoCorrelation)

IntensityShifted 
intensity

Window 
function

Error 
function



Harris Corner Detection Review

— Filter image with Gaussian 

— Compute magnitude of the x and y gradients at each pixel  

— Construct C in a window around each pixel  
      — Harris uses a Gaussian window  

— Solve for product of the λ’s  

— If λ’s both are big (product reaches local maximum above threshold) then we 
have a corner 
      — Harris also checks that ratio of λs is not too high  
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Harris & Stephens (1988)

det(C)� trace2(C)



Example: Harris Corner Detection
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0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0



Example: Harris Corner Detection
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0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 



Example: Harris Corner Detection
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0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0
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0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 



Example: Harris Corner Detection
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0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0



Example: Harris Corner Detection
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0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



Example: Harris Corner Detection
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0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

X
2

4
0 0 0
0 �1 1
0 1 0

3

5�

2

4
0 0 0
0 �1 1
0 1 0

3

5 = 3



Example: Harris Corner Detection
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0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04



Example: Harris Corner Detection
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0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04



Example: Harris Corner Detection
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0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04



Example: Harris Corner Detection
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0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 0
0 0

�
=> �1 = 3;�2 = 0

det(C)� 0.04trace2(C) = �0.36

C =


3 0
0 0

�
=> �1 = 3;�2 = 0

det(C)� 0.04trace2(C) = �0.36



Example: Harris Corner Detection
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0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 0
0 2

�
=> �1 = 3;�2 = 2

det(C)� 0.04trace2(C) = 5

C =


3 0
0 2

�
=> �1 = 3;�2 = 2

det(C)� 0.04trace2(C) = 5



Harris Corner Detection Review

— Filter image with Gaussian 

— Compute magnitude of the x and y gradients at each pixel  

— Construct C in a window around each pixel  
      — Harris uses a Gaussian window  

— Solve for product of the λ’s  

— If λ’s both are big (product reaches local maximum above threshold) then we 
have a corner 
      — Harris also checks that ratio of λs is not too high  
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Properties: Rotational Invariance
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Ellipse rotates but its shape  
(eigenvalues) remains the same

Corner response is invariant to image rotation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Properties: (partial) Invariance to Intensity Shifts and Scaling
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x (image coordinate)

threshold

x (image coordinate)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Only derivatives are used -> Invariance to intensity shifts 

Intensity scale could effect performance



Properties: NOT Invariant to Scale Changes
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edge!
corner!

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Intuitively …

!91 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Intuitively …
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Find local maxima in both position and scale

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example 1: 
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Harris corners

• Originally developed as features for motion tracking
• Greatly reduces amount of computation compared to 

tracking every pixel
• Translation and rotation invariant (but not scale invariant)



Example 2: Wagon Wheel (Harris Results)
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� = 1 (219 points) � = 2 (155 points) � = 3 (110 points) � = 4 (87 points)



Example 3: Crash Test Dummy (Harris Result)
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� = 1 (175 points)corner response image
Original Image Credit: John Shakespeare, Sydney Morning Herald 



Summary Table
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Summary of what we have seen so far:


