
Lecture 14: Corner Detection (cont)

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Image Credit: https://en.wikipedia.org/wiki/Corner_detection

https://en.wikipedia.org/wiki/Corner_detection

Menu for Today (October 9, 2020)
Topics:

Redings:

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 5.3.0 - 5.3.1

— Next Lecture: Forsyth & Ponce (2nd ed.) 6.1, 6.3

Reminders:
— No class on Monday (it’s Thanksgiving — Have Fun!)
— Assignment 2: Face Detection in a Scaled Representation is October 14th

— Autocorrelation
— Harris Corner Detector

!2

!3

Today’s “fun” Example: Colour Constancy

Image Credit: Akiyosha Kitoaka

!4

Today’s “fun” Example: Colour Constancy

Image Credit: Akiyosha Kitoaka

!5

Today’s “fun” Example: Colour Constancy
— Some people see a white and gold dress.

— Some people see a blue and black dress.

— Some people see one interpretation and then switch
to the other

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

!6

Today’s “fun” Example: Colour Constancy

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

— Some people see a white and gold dress.

— Some people see a blue and black dress.

— Some people see one interpretation and then switch
to the other

Two pieces
of the dress

Average
colors

The basic pattern
of the dress

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

!7

Today’s “fun” Example: Colour Constancy

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

!8
https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

Today’s “fun” Example: Colour Constancy

https://www.nytimes.com/interactive/2015/02/28/science/white-or-blue-dress.html

Local: features are local, robust to occlusion and clutter

Accurate: precise localization  

Robust: noise, blur, compression, etc. do not have a big impact on the feature.  

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

!9

Lecture 13: Re-cap Good Local Features

A corner can be localized reliably.

Thought experiment:

!10

Lecture 13: Re-cap

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.

!11

“flat” region: 
no change in all

directions

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: Re-cap

!12

“flat” region: 
no change in all

directions

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: Re-cap

!13

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

“edge”: 
no change along
the edge direction

— Place a small window over an edge.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: Re-cap

!14

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

“edge”: 
no change along
the edge direction

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change
 → Cannot estimate location along an edge (a.k.a., aperture problem)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: Re-cap

!15

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

“corner”: 
significant change

in all directions

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change
 → Cannot estimate location along an edge (a.k.a., aperture problem)

— Place a small window over a corner.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: Re-cap

!16

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

“corner”: 
significant change

in all directions

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change
 → Cannot estimate location along an edge (a.k.a., aperture problem)

— Place a small window over a corner. If you slide the window in any direction,
the image in the window changes.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 13: Re-cap

Corner Detection

Edge detectors perform poorly at corners

Observations:
— The gradient is ill defined exactly at a corner
— Near a corner, the gradient has two (or more) distinct values

!17

How do you find a corner?

!18

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

[Moravec 1980]

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Autocorrelation

Autocorrelation is the correlation of the image with itself.

— Windows centered on an edge point will have autocorrelation that falls off
slowly in the direction along the edge and rapidly in the direction across
(perpendicular to) the edge.

— Windows centered on a corner point will have autocorrelation that falls of
rapidly in all directions.

!19

Autocorrelation

!20

Szeliski, Figure 4.5

Autocorrelation

!21

Szeliski, Figure 4.5

Autocorrelation

!22

Szeliski, Figure 4.5

Autocorrelation

!23

Szeliski, Figure 4.5

Autocorrelation

!24

Szeliski, Figure 4.5

Autocorrelation

!25

Szeliski, Figure 4.5

Autocorrelation

Autocorrelation is the correlation of the image with itself.

— Windows centered on an edge point will have autocorrelation that falls off
slowly in the direction along the edge and rapidly in the direction across
(perpendicular to) the edge.

— Windows centered on a corner point will have autocorrelation that falls of
rapidly in all directions.

!26

Harris Corner Detection

!27

1.Compute image gradients over
small region

2.Compute the covariance matrix

3.Compute eigenvectors and
eigenvalues

4.Use threshold on eigenvalues to
detect corners

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute image gradients over a small region

!28

array of x gradients

array of y gradients

(not just a single pixel)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Visualization of Gradients

!29

image

X derivative

Y derivative

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What Does a Distribution Tells You About the Region?

!30 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What Does a Distribution Tells You About the Region?

!31 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What Does a Distribution Tells You About the Region?

!32 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Distribution reveals the orientation and magnitude

What Does a Distribution Tells You About the Region?

!33

Distribution reveals the orientation and magnitude

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
How do we quantify the orientation and magnitude?

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

!34

C =

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

!35

Sum over small region
around the corner

C =

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

!36

Sum over small region
around the corner

Gradient with respect to x, times
gradient with respect to y

C =

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

!37

Sum over small region
around the corner

Gradient with respect to x, times
gradient with respect to y

C =

array of x gradients array of y gradients

.*=sum()

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

!38

Sum over small region
around the corner

Gradient with respect to x, times
gradient with respect to y

Matrix is symmetric

C =

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

!39

By computing the gradient covariance matrix …

we are fitting a quadratic to the gradients over a small image region

C =

Simple Case

!40

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 =


�1 0
0 �2

�

?

Local Image Patch

Simple Case

!41

I
x

Iy

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 =


�1 0
0 �2

�

?

Local Image Patch

? ?

Simple Case

!42

I
x

Iy

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 =


�1 0
0 �2

�

?

Local Image Patch

?
high value along vertical

strip of pixels and 0 elsewhere

Simple Case

!43

I
x

Iy

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 =


�1 0
0 �2

�

?

Local Image Patch high value along vertical
strip of pixels and 0 elsewhere

high value along horizontal
strip of pixels and 0 elsewhere

Simple Case

!44

high value along vertical
strip of pixels and 0 elsewhere

high value along horizontal
strip of pixels and 0 elsewhere

I
x

Iy

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 =


�1 0
0 �2

�

Local Image Patch

General Case

!45

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 = R�1


�1 0
0 �2

�
R

It can be shown that since every C is symmetric:

… so general case is like a rotated version of the simple one

3. Computing Eigenvalues and Eigenvectors

!46 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Quick Eigenvalue/Eigenvector Review

Given a square matrix , a scalar is called an eigenvalue of if there exists
a nonzero vector that satisfies

 
The vector is called an eigenvector for corresponding to the eigenvalue .

The eigenvalues of are obtained by solving

!47

Av = �v

det(A� �I) = 0

�

A

v

A�
v

A

A

3. Computing Eigenvalues and Eigenvectors

!48

eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

3. Computing Eigenvalues and Eigenvectors

!49

eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial) (C � �I)e = 0

3. Computing Eigenvalues and Eigenvectors

!50

eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues) det(C � �I) = 0

(C � �I)e = 0

3. Computing Eigenvalues and Eigenvectors

!51

1. Compute the determinant of
(returns a polynomial)

eigenvector

eigenvalue

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

Ce = �e (C � �I)e = 0

det(C � �I) = 0

(C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

(C � �I)e = 0

Example

!52

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

Example

!53

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

det

✓
2� � 1
1 2� �

�◆

Example

!53

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

det

✓
2� � 1
1 2� �

�◆

Example

!54

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 31. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

det

✓
2� � 1
1 2� �

�◆

Example

!54

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

a

�2 � 4�+ 3 = 0
(�� 3)(�� 1) = 0
�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 31. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

det

✓
2� � 1
1 2� �

�◆

Visualization as Quadratic

!55

can be written in matrix form like this…

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Visualization as Quadratic

!56

can be written in matrix form like this…

eigenvalues
along diagonaleigenvectors

Result of Computing Eigenvalues and Eigenvectors (using SVD)

axis of the
‘ellipse slice’

scaling of the quadratic
along the axis

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!57

Since is symmetric, we have

Ellipse equation:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Visualization as Ellipse

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 = R�1


�1 0
0 �2

�
RC =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 = R�1


�1 0
0 �2

�
RC =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 = R�1


�1 0
0 �2

�
R

We can visualize as an ellipse with axis lengths determined by the eigenvalues
and orientation determined by

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 = R�1


�1 0
0 �2

�
R

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 = R�1


�1 0
0 �2

�
R

!58

Since is symmetric, we have

direction of
the major

axis

direction of the
minor axis

(λmax)-1/2

(λmin)-1/2

Ellipse equation:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Visualization as Ellipse

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 = R�1


�1 0
0 �2

�
RC =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 = R�1


�1 0
0 �2

�
RC =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 = R�1


�1 0
0 �2

�
R

We can visualize as an ellipse with axis lengths determined by the eigenvalues
and orientation determined by

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 = R�1


�1 0
0 �2

�
R

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 = R�1


�1 0
0 �2

�
R

Interpreting Eigenvalues

!59

λ2 >> λ1

λ1 >> λ2

What kind of image patch
does each region represent?

�1

�2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

!60 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues

‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

!61 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues

!62

‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues

!63

‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues

4. Threshold on Eigenvalues to Detect Corners

!64 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!65

flat

Think of a function to
score ‘cornerness’

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

flat

strong
corner

!66

Think of a function to
score ‘cornerness’

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

flat

corner

Use the smallest eigenvalue as the
response function

!67

flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

flat

corner

!68

flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

det(C)� trace2(C)

flat

corner

!69

flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

=

(more efficient)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

flat

corner

!70

flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

 < 0

 > 0

 < 0

=

det(C)� trace2(C)

(more efficient)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!71

Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

det(C)� trace2(C)

det(C)

trace(C) + ✏

4. Threshold on Eigenvalues to Detect Corners
^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Harris Corner Detection Review

— Filter image with Gaussian

— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel
 — Harris uses a Gaussian window

— Solve for product of the λ’s

— If λ’s both are big (product reaches local maximum above threshold) then we
have a corner
 — Harris also checks that ratio of λs is not too high

!72

Compute the Covariance Matrix

!73

Sum can be implemented as an
(unnormalized) box filter with

C =

Harris uses a Gaussian weighting instead

Compute the Covariance Matrix

!74

Sum can be implemented as an
(unnormalized) box filter with

C =

Harris uses a Gaussian weighting instead

(has to do with bilinear Taylor expansion of 2D function that measures
change of intensity for small shifts … remember AutoCorrelation)

IntensityShifted
intensity

Window
function

Error
function

Harris Corner Detection Review

— Filter image with Gaussian

— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel
 — Harris uses a Gaussian window

— Solve for product of the λ’s

— If λ’s both are big (product reaches local maximum above threshold) then we
have a corner
 — Harris also checks that ratio of λs is not too high

!75

Harris & Stephens (1988)

det(C)� trace2(C)

Example: Harris Corner Detection

!76

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Example: Harris Corner Detection

!77

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

Example: Harris Corner Detection

!78

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

Example: Harris Corner Detection

!79

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

Example: Harris Corner Detection

!80

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Example: Harris Corner Detection

!81

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

X
2

4
0 0 0
0 �1 1
0 1 0

3

5�

2

4
0 0 0
0 �1 1
0 1 0

3

5 = 3

Example: Harris Corner Detection

!82

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

Example: Harris Corner Detection

!83

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

Example: Harris Corner Detection

!84

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

Example: Harris Corner Detection

!85

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 0
0 0

�
=> �1 = 3;�2 = 0

det(C)� 0.04trace2(C) = �0.36

C =


3 0
0 0

�
=> �1 = 3;�2 = 0

det(C)� 0.04trace2(C) = �0.36

Example: Harris Corner Detection

!86

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel:

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 0
0 2

�
=> �1 = 3;�2 = 2

det(C)� 0.04trace2(C) = 5

C =


3 0
0 2

�
=> �1 = 3;�2 = 2

det(C)� 0.04trace2(C) = 5

Harris Corner Detection Review

— Filter image with Gaussian

— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel
 — Harris uses a Gaussian window

— Solve for product of the λ’s

— If λ’s both are big (product reaches local maximum above threshold) then we
have a corner
 — Harris also checks that ratio of λs is not too high

!87

Properties: Rotational Invariance

!88

Ellipse rotates but its shape
(eigenvalues) remains the same

Corner response is invariant to image rotation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Properties: (partial) Invariance to Intensity Shifts and Scaling

!89

x (image coordinate)

threshold

x (image coordinate)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance

Properties: NOT Invariant to Scale Changes

!90

edge!
corner!

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intuitively …

!91 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Intuitively …

!91

Find local maxima in both position and scale

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Example 1:

!92

Harris corners

• Originally developed as features for motion tracking
• Greatly reduces amount of computation compared to

tracking every pixel
• Translation and rotation invariant (but not scale invariant)

Example 2: Wagon Wheel (Harris Results)

!93

� = 1 (219 points) � = 2 (155 points) � = 3 (110 points) � = 4 (87 points)

Example 3: Crash Test Dummy (Harris Result)

!94

� = 1 (175 points)corner response image
Original Image Credit: John Shakespeare, Sydney Morning Herald

Summary Table

!95

Summary of what we have seen so far:

