Lecture 14: Corner Detection (cont)

Image Credit: https://en.wikipedia.org/wiki/Corn_detection

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)
Menu for Today (October 9, 2020)

Topics:

— Autocorrelation
— Harris Corner Detector

Readings:

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 5.3.0 - 5.3.1
— Next Lecture: Forsyth & Ponce (2nd ed.) 6.1, 6.3

Reminders:

— No class on Monday (it’s Thanksgiving — Have Fun!)
— Assignment 2: Face Detection in a Scaled Representation is October 14th
Today’s “fun” Example: Colour Constancy

Image Credit: Akiyosha Kitoaka
Today’s “fun” Example: Colour Constancy

Image Credit: Akiyosha Kitoaka
Today’s “fun” Example: Colour Constancy

- Some people see a white and gold dress.
- Some people see a blue and black dress.
- Some people see one interpretation and then switch to the other

Today’s “fun” Example: Colour Constancy

— Some people see a white and gold dress.
— Some people see a blue and black dress.
— Some people see one interpretation and then switch to the other

Two pieces of the dress

Average colors

The basic pattern of the dress

Today’s “fun” Example: Colour Constancy

IS THE DRESS IN SHADOW?
If you think the dress is in shadow, your brain may remove the blue cast and perceive the dress as being white and gold.

THE DRESS IN THE PHOTO
If the photograph showed more of the room, or if skin tones were visible, there might have been more clues about the ambient light.

IS THE DRESS IN BRIGHT LIGHT?
If you think the dress is being washed out by bright light, your brain may perceive the dress as a darker blue and black.

Today’s “fun” Example: Colour Constancy

Lecture 13: Re-cap Good Local Features

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance
A corner can be localized reliably.

Thought experiment:
A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.

“flat” region:

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
A corner can be **localized reliably**.

Thought experiment:

— Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.
A corner can be *localized reliably*.

Thought experiment:

— Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.

— Place a small window over an edge.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
A corner can be **localized reliably**.

Thought experiment:

- Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change.

 → Cannot estimate location along an edge (a.k.a., **aperture** problem)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.

— Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change. → Cannot estimate location along an edge (a.k.a., aperture problem)

— Place a small window over a corner.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
A corner can be **localized reliably**.

Thought experiment:

— Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.

— Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change

→ Cannot estimate location along an edge (a.k.a., **aperture** problem)

— Place a small window over a corner. If you slide the window in any direction, the image in the window changes.
Corner Detection

Edge detectors perform poorly at corners

Observations:
- The gradient is ill defined exactly at a corner
- Near a corner, the gradient has two (or more) distinct values
How do you find a corner?

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

[Moravec 1980]
Autocorrelation is the correlation of the image with itself.

— Windows centered on an edge point will have autocorrelation that falls off slowly in the direction along the edge and rapidly in the direction across (perpendicular to) the edge.

— Windows centered on a corner point will have autocorrelation that falls off rapidly in all directions.
Autocorrelation

Szeliski, Figure 4.5
Autocorrelation is the correlation of the image with itself.

— Windows centered on an edge point will have autocorrelation that falls off slowly in the direction along the edge and rapidly in the direction across (perpendicular to) the edge.

— Windows centered on a corner point will have autocorrelation that falls off rapidly in all directions.
Harris Corner Detection

1. Compute image gradients over small region

2. Compute the covariance matrix

3. Compute eigenvectors and eigenvalues

4. Use threshold on eigenvalues to detect corners
1. Compute **image gradients** over a small region (not just a single pixel)

$$I_x = \frac{\partial I}{\partial x}$$

array of x gradients

$$I_y = \frac{\partial I}{\partial y}$$

array of y gradients

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Visualization of Gradients

image

X derivative

Y derivative

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
What Does a **Distribution** Tells You About the **Region**?

\[I_y = \frac{\partial I}{\partial y} \]
\[I_x = \frac{\partial I}{\partial x} \]

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
What Does a **Distribution** Tells You About the Region?

$$I_y = \frac{\partial I}{\partial y}$$

$$I_x = \frac{\partial I}{\partial x}$$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
What Does a **Distribution** Tells You About the **Region**?

Distribution reveals the **orientation** and **magnitude**.
What Does a **Distribution** Tells You About the **Region**?

Distribution reveals the orientation and magnitude

How do we quantify the **orientation** and **magnitude**?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
2. Compute the **covariance matrix** (a.k.a. 2nd moment matrix)

\[C = \begin{bmatrix}
\sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\
\sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y
\end{bmatrix} \]
2. Compute the **covariance matrix** (a.k.a. 2nd moment matrix)

Sum over small region around the corner

\[
C = \begin{bmatrix}
\sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\
\sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y
\end{bmatrix}
\]
2. Compute the **covariance matrix** (a.k.a. 2nd moment matrix)

\[C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} \]

- **Sum** over small region around the corner
- **Gradient** with respect to \(x \), times gradient with respect to \(y \)
2. Compute the **covariance matrix** (a.k.a. 2nd moment matrix)

\[C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} \]

Sum over small region around the corner

Gradient with respect to x, times gradient with respect to y

\[\sum_{p \in P} I_x I_y = \text{sum} \left(\begin{array}{c} \text{array of x gradients} \\ \text{array of y gradients} \end{array} \right) \]
2. Compute the **covariance matrix** (a.k.a. 2nd moment matrix)

Sum over small region around the corner

\[
C = \begin{bmatrix}
\sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\
\sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y
\end{bmatrix}
\]

Matrix is **symmetric**

Gradient with respect to x, times gradient with respect to y
2. Compute the **covariance matrix** (a.k.a. 2nd moment matrix)

By computing the **gradient covariance matrix** …

\[
C = \begin{bmatrix}
\sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\
\sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y
\end{bmatrix}
\]

we are fitting a **quadratic** to the gradients over a small image region
Simple Case

Local Image Patch

\[
C' = \begin{bmatrix}
\sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\
\sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y
\end{bmatrix} = ?
\]
Simple Case

Local Image Patch

\[
C = \begin{bmatrix}
\sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\
\sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y
\end{bmatrix} = ?
\]
Simple Case

Local Image Patch

\[C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ? \]

high value along vertical strip of pixels and 0 elsewhere
Simple Case

\[C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ? \]

Local Image Patch

\(I_x \) high value along vertical strip of pixels and 0 elsewhere

\(I_y \) high value along horizontal strip of pixels and 0 elsewhere
Simple Case

Local Image Patch
high value along vertical strip of pixels and 0 elsewhere

High value along horizontal strip of pixels and 0 elsewhere

\[
C = \begin{bmatrix}
\sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\
\sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y
\end{bmatrix} = \begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix}
\]
General Case

It can be shown that since every C is symmetric:

$$C = \begin{bmatrix}
\sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\
\sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y
\end{bmatrix} = R^{-1} \begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix} R$$

... so general case is like a rotated version of the simple one.
3. Computing **Eigenvalues** and **Eigenvectors**
Quick **Eigenvalue/Eigenvector** Review

Given a square matrix A, a scalar λ is called an **eigenvalue** of A if there exists a nonzero vector v that satisfies

$$Av = \lambda v$$

The vector v is called an **eigenvector** for A corresponding to the eigenvalue λ.

The eigenvalues of A are obtained by solving

$$\det(A - \lambda I) = 0$$
3. Computing **Eigenvalues** and **Eigenvectors**

\[Ce = \lambda e \]

\[(C - \lambda I)e = 0 \]

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
3. Computing **Eigenvalues** and **Eigenvectors**

\[Ce = \lambda e \]

\[(C - \lambda I)e = 0 \]

1. Compute the determinant of \(C - \lambda I \) (returns a polynomial)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
3. Computing **Eigenvalues** and **Eigenvectors**

- **Eigenvalue**
 - $Ce = \lambda e$
 - $(C - \lambda I)e = 0$

- **Eigenvector**

1. Compute the determinant of $C - \lambda I$
 - (returns a polynomial)
 - $C - \lambda I$

2. Find the roots of polynomial $det(C - \lambda I) = 0$
 - (returns eigenvalues)
3. Computing **Eigenvalues** and **Eigenvectors**

1. Compute the determinant of
 (returns a polynomial)
 \[\begin{align*}
 &C - \lambda I \\
 \text{det}(C - \lambda I) = 0 & \\
 \end{align*} \]

2. Find the roots of polynomial
 (returns eigenvalues)
 \[(C - \lambda I)e = 0 \]

3. For each eigenvalue, solve
 (returns eigenvectors)
 \[(C - \lambda I)e = 0 \]

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Example

\[C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \]

1. Compute the determinant of
 (returns a polynomial)
 \[C - \lambda I \]

2. Find the roots of polynomial
 (returns eigenvalues)
 \[\det(C - \lambda I) = 0 \]

3. For each eigenvalue, solve
 (returns eigenvectors)
 \[(C - \lambda I)e = 0 \]

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
\[C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \]

\[
\det \left(\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right)
\]

1. Compute the determinant of \(C - \lambda I \) (returns a polynomial)

\[C - \lambda I \]

2. Find the roots of polynomial (returns eigenvalues)

\[\det(C - \lambda I) = 0 \]

3. For each eigenvalue, solve (returns eigenvectors)

\[(C - \lambda I)e = 0 \]
Example

\[C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \]

\[\det \left(\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right) \]

\[(2 - \lambda)(2 - \lambda) - (1)(1) \]

1. Compute the determinant of \(C \) (returns a polynomial) \(C - \lambda I \)

2. Find the roots of polynomial (returns eigenvalues) \(\det(C - \lambda I) = 0 \)

3. For each eigenvalue, solve (returns eigenvectors) \((C - \lambda I)e = 0\)
Example

\[C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \]

\[
\det \left(\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right)
\]

\[(2 - \lambda)(2 - \lambda) - (1)(1) = 0\]

1. Compute the determinant of \(C\) (returns a polynomial)

\[
C - \lambda I
\]

2. Find the roots of polynomial \(C - \lambda I\) (returns eigenvalues)

\[
\det(C - \lambda I) = 0
\]

3. For each eigenvalue, solve \((C - \lambda I)e = 0\) (returns eigenvectors)

\[
(C - \lambda I)e = 0
\]
Example

\[
C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}
\]

\[
\det \left(\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right)
\]

\[
(2 - \lambda)(2 - \lambda) - (1)(1) = 0
\]

\[
\lambda^2 - 4\lambda + 3 = 0
\]

\[
(\lambda - 3)(\lambda - 1) = 0
\]

\[
\lambda_1 = 1, \lambda_2 = 3
\]

1. Compute the determinant of \(C - \lambda I \) (returns a polynomial)

\[
C - \lambda I
\]

2. Find the roots of polynomial (returns eigenvalues)

\[
\det(C - \lambda I) = 0
\]

3. For each eigenvalue, solve \((C - \lambda I)e = 0 \) (returns eigenvectors)

\[
(C - \lambda I)e = 0
\]
Visualization as **Quadratic**

\[f(x, y) = x^2 + y^2 \]

can be written in matrix form like this…

\[
\begin{bmatrix}
 f(x, y) = & [x & y] \\
\end{bmatrix}
\begin{bmatrix}
 1 & 0 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
\end{bmatrix}
\]
Visualization as **Quadratic**

\[f(x, y) = x^2 + y^2 \]

can be written in matrix form like this…

\[f(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]

Result of Computing **Eigenvalues** and **Eigenvectors** (using SVD)

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}^T
\]

- **eigenvectors** along diagonal
- **axis of the ‘ellipse slice’**
- **scaling of the quadratic along the axis**

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Visualization as **Ellipse**

Since C is symmetric, we have

$$C = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

We can visualize C as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R.

Ellipse equation:

$$f(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \text{const}$$
Visualization as **Ellipse**

Since C is symmetric, we have

$$C = R^{-1} \begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix} R$$

We can visualize C as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Ellipse equation:

$$f(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\
0 & 1 \end{bmatrix} \begin{bmatrix} x \\
y \end{bmatrix} = \text{const}$$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Interpreting Eigenvalues

What kind of image patch does each region represent?

\[\lambda_2 \gg \lambda_1 \]

\[\lambda_1 \sim 0 \]

\[\lambda_2 \sim 0 \]

\[\lambda_1 \gg \lambda_2 \]
Interpreting Eigenvalues

- $\lambda_2 >> \lambda_1$
- $\lambda_2 \sim \lambda_1$
- $\lambda_1 >> \lambda_2$

- 'horizontal' edge
- 'vertical' edge
- flat
- corner

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Interpreting Eigenvalues

\[\lambda_2 \gg \lambda_1 \]

\[\lambda_1 \sim \lambda_2 \]

\[\lambda_1 \gg \lambda_2 \]

‘horizontal’ edge

corner

flat

‘vertical’ edge

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Interpreting Eigenvalues

- $\lambda_2 \gg \lambda_1$
- $\lambda_1 \sim \lambda_2$
- $\lambda_1 \gg \lambda_2$

- 'horizontal' edge
- 'vertical' edge
- corner
- flat

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Interpreting Eigenvalues

- \(\lambda_2 \gg \lambda_1 \) ("horizontal" edge)
- \(\lambda_1 \sim \lambda_2 \)
- \(\lambda_1 \gg \lambda_2 \) ("vertical" edge)
- Corner

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
4. Threshold on Eigenvalues to Detect Corners

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Think of a function to score ‘cornerness’
4. **Threshold** on Eigenvalues to **Detect Corners**

(a function of)

Think of a function to score ‘cornerness’
4. Threshold on Eigenvalues to Detect Corners

(a function of)

Use the smallest eigenvalue as the response function

\[\min(\lambda_1, \lambda_2) \]
4. **Threshold on Eigenvalues to Detect Corners**

(a function of)

\[\lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2 \]

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
4. Threshold on Eigenvalues to Detect Corners

(a function of)

\[\lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2 \]

= \[\det(C') - \kappa \text{trace}^2(C') \]

(more efficient)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
4. **Threshold** on Eigenvalues to **Detect Corners**

\[\text{det}(M) - \kappa \text{trace}^2(M) < 0 \quad (\text{a function of}) \]

\[\lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2 \]

\[= \text{det}(C') - \kappa \text{trace}^2(C') \]

(more efficient)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
4. Threshold on Eigenvalues to Detect Corners

(a function of)

Harris & Stephens (1988)

$$\det(C') - \kappa \text{trace}^2(C')$$

Kanade & Tomasi (1994)

$$\min(\lambda_1, \lambda_2)$$

Nobel (1998)

$$\frac{\det(C')}{\text{trace}(C') + \epsilon}$$

Slide Credit: Ioannis (Yannis) Gkioulakes (CMU)
Harris Corner Detection Review

- Filter image with Gaussian

- Compute magnitude of the x and y gradients at each pixel

- Construct C in a window around each pixel
 - Harris uses a Gaussian window

- Solve for product of the λ’s

- If λ’s both are big (product reaches local maximum above threshold) then we have a corner
 - Harris also checks that ratio of λs is not too high
Compute the **Covariance Matrix**

Sum can be implemented as an (unnormalized) box filter with

$$
\begin{align*}
C &= \begin{bmatrix}
\sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\
\sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y
\end{bmatrix}
\end{align*}
$$

Harris uses a **Gaussian** weighting instead
Compute the **Covariance Matrix**

Sum can be implemented as an (unnormalized) box filter with

\[
C = \begin{bmatrix}
\sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\
\sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y
\end{bmatrix}
\]

Harris uses a **Gaussian** weighting instead

(has to do with bilinear Taylor expansion of 2D function that measures change of intensity for small shifts … remember AutoCorrelation)
Harris Corner Detection Review

- Filter image with **Gaussian**
- Compute magnitude of the x and y **gradients** at each pixel
- Construct C in a window around each pixel
 - Harris uses a **Gaussian window**
- Solve for product of the λ's
- If λ's both are big (product reaches local maximum above threshold) then we have a corner
 - Harris also checks that ratio of λs is not too high

Harris & Stephens (1988)

\[
\det(C') - \kappa \text{trace}^2(C')
\]
Example: Harris Corner Detection
Example: Harris Corner Detection

Let's compute a measure of "corner-ness" for the green pixel:

```plaintext
0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
```

![Corner Detection Matrix](image)
Example: Harris Corner Detection

Let's compute a measure of “corner-ness” for the green pixel:
Example: Harris Corner Detection

Let's compute a measure of “corner-ness” for the green pixel:

\[I_x = \frac{\partial I}{\partial x} \]
Example: Harris Corner Detection

Let's compute a measure of “corner-ness” for the green pixel:

$$I_x = \frac{\partial I}{\partial x}$$

$$I_y = \frac{\partial I}{\partial y}$$
Example: Harris Corner Detection

Let's compute a measure of "corner-ness" for the green pixel:

\[\sum \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \odot \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 3 \]
Example: Harris Corner Detection

Let's compute a measure of “corner-ness” for the green pixel:

\[C = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix} \]

\[I_x = \frac{\partial I}{\partial x} \]

\[I_y = \frac{\partial I}{\partial y} \]
Example: Harris Corner Detection

Let's compute a measure of "corner-ness" for the green pixel:

\[C = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix} \implies \lambda_1 = 1.4384; \lambda_2 = 5.5616 \]
Example: Harris Corner Detection

Let's compute a measure of “corner-ness” for the green pixel:

\[C = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix} \implies \lambda_1 = 1.4384; \lambda_2 = 5.5616 \]

\[\det(C) - 0.04 \text{trace}^2(C) = 6.04 \]
Example: Harris Corner Detection

Let's compute a measure of "corner-ness" for the green pixel:

\[C = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow \lambda_1 = 3; \lambda_2 = 0 \]

\[\det(C) - 0.04 \text{trace}^2(C) = -0.36 \]
Example: Harris Corner Detection

Let's compute a measure of “corner-ness” for the green pixel:

\[
C = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \implies \lambda_1 = 3; \lambda_2 = 2
\]

\[
\det(C) - 0.04\text{trace}(C)^2 = 5
\]
Harris Corner Detection Review

— Filter image with **Gaussian**

— Compute magnitude of the x and y **gradients** at each pixel

— Construct C in a window around each pixel
 — Harris uses a **Gaussian window**

— Solve for product of the λ’s

— If λ’s both are big (product reaches local maximum above threshold) then we have a corner
 — Harris also checks that ratio of λs is not too high
Properties: Rotational Invariance

Ellipse rotates but its shape (eigenvalues) remains the same

Corner response is invariant to image rotation
Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance
Properties: NOT Invariant to Scale Changes

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Intuitively …
Intuitively …

Find local maxima in both **position** and **scale**
Example 1:

Harris corners

- Originally developed as features for motion tracking
- Greatly reduces amount of computation compared to tracking every pixel
- Translation and rotation invariant (but not scale invariant)
Example 2: Wagon Wheel (Harris Results)

$\sigma = 1$ (219 points) \hspace{1cm} \sigma = 2$ (155 points) \hspace{1cm} \sigma = 3$ (110 points) \hspace{1cm} \sigma = 4$ (87 points)
Example 3: Crash Test Dummy (Harris Result)

corner response image

$\sigma = 1$ (175 points)

Original Image Credit: John Shakespeare, Sydney Morning Herald
Summary Table

Summary of what we have seen so far:

<table>
<thead>
<tr>
<th>Representation</th>
<th>Result is...</th>
<th>Approach</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>intensity</td>
<td>dense</td>
<td>template matching</td>
<td>(normalized) correlation</td>
</tr>
<tr>
<td>edge</td>
<td>relatively sparse</td>
<td>derivatives</td>
<td>$\nabla^2 G$, Canny</td>
</tr>
<tr>
<td>corner</td>
<td>sparse</td>
<td>locally distinct features</td>
<td>Harris</td>
</tr>
</tbody>
</table>