
Lecture 13: Laplacian Pyramids, Corner Detection

CPSC 425: Computer Vision 



Menu for Today (October 7, 2020)
Topics: 

— Laplacian Pyramids (revisited)  
— Corner Detection

Redings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 5.3.0 - 5.3.1 

— Next Lecture:       Forsyth & Ponce (2nd ed.) 6.1, 6.3 

Reminders: 
— Quiz 2: due at the end of day today 
— Assignment 2: Face Detection in a Scaled Representation is October 14th 

— Autocorrelation 
— Harris Corner Detector
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Today’s “fun” Example:

Wait for it! :)



Lecture 12: Re-cap
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Physical properties of a 3D scene cause “edges” in an image:  
— depth discontinuity 
— surface orientation discontinuity 
— reflectance discontinuity  
— illumination boundaries  

Two generic approaches to edge detection: 
— local extrema of a first derivative operator → Canny 
— zero crossings of a second derivative operator → Marr/Hildreth  

Many algorithms consider “boundary detection” as a high-level 
recognition task and output a probability or confidence that a pixel is on a 
human-perceived boundary 
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What happens to the details? 
— They get smoothed out as we move  
     to higher levels

What is preserved at the higher levels? 
— Mostly large uniform regions in the 
     original image

How would you reconstruct the original 
image from the image at the upper 
level? 
— That’s not possible

Forsyth & Ponce (2nd ed.) Figure 4.17
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Gaussian Pyramid 



Laplacian Pyramid

Building a Laplacian pyramid:  
— Create a Gaussian pyramid 
— Take the difference between one Gaussian pyramid level and the next 
(before subsampling)  

Properties  
— Also known as the difference-of-Gaussian (DOG) function, a close 
approximation to the Laplacian  
— It is a band pass filter – each level represents a different band of spatial 
frequencies  
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Laplacian Pyramid
At each level, retain the residuals 
instead of the blurred images 
themselves.

Why is it called Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Why Laplacian Pyramid? 
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- =

-

unit Gaussian Laplacian

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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image

Laplacian is a Bandpass Filter

Low pass filtered imageFFT (Mag) 

complex  
element-wise 
multiplication 

larger sigma

Low pass filtered imageFFT (Mag) 

complex  
element-wise 
multiplication 

lower sigma
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image

Low pass filtered imageFFT (Mag) 

complex  
element-wise 
multiplication 

larger sigma

Low pass filtered imageFFT (Mag) 

complex  
element-wise 
multiplication 

lower sigma

- -

Laplacian is a Bandpass Filter



!11

image

Low passFFT (Mag) 

complex  
element-wise 
multiplication 

larger sigma

Low passFFT (Mag) 

complex  
element-wise 
multiplication 

lower sigma

-

Laplacian is a Bandpass Filter



!12

Laplacian Pyramid
At each level, retain the residuals 
instead of the blurred images 
themselves.

Can we reconstruct the original image 
using the pyramid? 
— Yes we can!

Why is it called Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Laplacian Pyramid
At each level, retain the residuals 
instead of the blurred images 
themselves.

Can we reconstruct the original image 
using the pyramid? 
— Yes we can!

What do we need to store to be able 
to reconstruct the original image?

Why is it called Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Let’s start by just looking at one level 
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= +

level 0 residual

Does this mean we need to store both residuals and the blurred copies of the 
original?

level 1 (upsampled)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Constructing a Laplacian Pyramid 
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repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Constructing a Laplacian Pyramid 
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repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Loss-lessLossy Lossy Loss-less



Constructing a Laplacian Pyramid 
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repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Loss-lessLossy



Constructing a Laplacian Pyramid 
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repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

What is this part?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Constructing a Laplacian Pyramid 
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repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

It’s a Gaussian 
Pyramid

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Constructing a Laplacian Pyramid 
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repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

It’s a Gaussian 
Pyramid

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

This is a Laplacian 
Pyramid



Reconstructing the Original Image 
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repeat:

upsample

until orig resolution reached

Algorithm

sum with residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Gaussian vs Laplacian Pyramid
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Shown in opposite 
order for space

Which one takes  
more space to 

store?
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Image Blending
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Burt and Adelson, “A multiresolution spline with application to image mosaics,”ACM 
Transactions on Graphics, 1983, Vol.2, pp.217-236. 



Aside: Image Blending
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Burt and Adelson, “A multiresolution spline with application to image 
mosaics,”ACM Transactions on Graphics, 1983, Vol.2, pp.217-236. 



!25https://becominghuman.ai/image-blending-using-laplacian-pyramids-2f8e9982077f

Aside: Image Blending



!26https://becominghuman.ai/image-blending-using-laplacian-pyramids-2f8e9982077f

Aside: Image Blending



!27https://becominghuman.ai/image-blending-using-laplacian-pyramids-2f8e9982077f

Aside: Image Blending



!28https://becominghuman.ai/image-blending-using-laplacian-pyramids-2f8e9982077f

Aside: Image Blending



High-level Intuition: Smoother blending of flatter regions, sharper blending of 
more detailed regions

!29

Aside: Image Blending



Aside: Image Blending

Algorithm: 

1. Build Laplacian pyramid LA and LB from images A and B 

2. Build a Gaussian pyramid GR from mask image R (the mask defines which 
image pixels should be coming from A or B) 

3. From a combined (blended) Laplacian pyramid LS, using nodes of GR as 
weights: LS(i,j) = GR(i,j) * LA(i,j) + (1-GR(i,j)) * LB(i,j) 

4. Reconstruct the final blended image from LS
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Aside: Image Blending
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Aside: Image Blending
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Aside: Image Blending
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Today’s “fun” Example: Eulerian Video Magnification

Video From: Wu at al., Siggraph 2012
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Today’s “fun” Example: Eulerian Video Magnification

Video From: Wu at al., Siggraph 2012
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Figure From: Wu at al., Siggraph 2012

Today’s “fun” Example: Eulerian Video Magnification



Lecture 13: Corner Detection

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )

Image Credit: https://en.wikipedia.org/wiki/Corner_detection

https://en.wikipedia.org/wiki/Corner_detection


When might template matching fail? 
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— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Motivation: Template Matching



When might template matching in scaled representation fail? 
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— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Motivation: Template Matching in Scaled Representation



When might edge matching in scaled representation fail? 
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— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Motivation: Edge Matching in Scaled Representation
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— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Motivation: Edge Matching in Scaled Representation



Planar Object Instance Recognition
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Database of planar objects Instance recognition

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Recognition under Occlusion

!42 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image Matching

!43 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image Matching

!44 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Finding Correspondences
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NASA Mars Rover images
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



!46 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Finding Correspondences



What is a Good Feature?
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Pick a point in the image. 
Find it again in the next image.

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



What is a Good Feature?

!48

Pick a point in the image. 
Find it again in the next image.

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



What is a Good Feature?
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Pick a point in the image. 
Find it again in the next image.

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



What is a Good Feature?

Local: features are local, robust to occlusion and clutter 

Accurate: precise localization  

Robust: noise, blur, compression, etc. do not have a big impact on the feature.  

Distinctive: individual features can be easily matched 

Efficient: close to real-time performance 
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What is a corner?

We can think of a corner as any locally distinct 2D image feature that (hopefully) 
corresponds to a distinct position on an 3D object of interest in the scene. 

!51

Image Credit: John Shakespeare, Sydney Morning Herald 



What is a corner?

We can think of a corner as any locally distinct 2D image feature that (hopefully) 
corresponds to a distinct position on an 3D object of interest in the scene. 
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Image Credit: John Shakespeare, Sydney Morning Herald 

Corner 

Interest Point 



Why are corners distinct?

A corner can be localized reliably.  

Thought experiment:  
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Why are corners distinct?

A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
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“flat” region: 
no change in all 

directions

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Why are corners distinct?
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“flat” region: 
no change in all 

directions

A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Why are corners distinct?
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A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

“edge”: 
no change along 
the edge direction

— Place a small window over an edge.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Why are corners distinct?
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A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

“edge”: 
no change along 
the edge direction

— Place a small window over an edge. If you slide the window in the direction of 
the edge, the image in the window will not change 
     → Cannot estimate location along an edge (a.k.a., aperture problem) 

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Why are corners distinct?
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A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

“corner”: 
significant change 

in all directions

— Place a small window over an edge. If you slide the window in the direction of 
the edge, the image in the window will not change 
     → Cannot estimate location along an edge (a.k.a., aperture problem) 

— Place a small window over a corner.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Why are corners distinct?
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A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

“corner”: 
significant change 

in all directions

— Place a small window over an edge. If you slide the window in the direction of 
the edge, the image in the window will not change 
     → Cannot estimate location along an edge (a.k.a., aperture problem) 

— Place a small window over a corner. If you slide the window in any direction, 
the image in the window changes. 

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Corner Detection

Edge detectors perform poorly at corners  

Observations:  
— The gradient is ill defined exactly at a corner 
— Near a corner, the gradient has two (or more) distinct values  
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How do you find a corner? 
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Easily recognized by looking through a small window 

Shifting the window should give large change in intensity

[Moravec 1980]

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Autocorrelation

Autocorrelation is the correlation of the image with itself.  

— Windows centered on an edge point will have autocorrelation that falls off 
slowly in the direction along the edge and rapidly in the direction across 
(perpendicular to) the edge.  

— Windows centered on a corner point will have autocorrelation that falls of 
rapidly in all directions.  
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Autocorrelation
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Szeliski, Figure 4.5



Autocorrelation
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Szeliski, Figure 4.5



Autocorrelation
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Szeliski, Figure 4.5



Autocorrelation
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Szeliski, Figure 4.5



Autocorrelation
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Szeliski, Figure 4.5



Autocorrelation
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Szeliski, Figure 4.5



Autocorrelation

Autocorrelation is the correlation of the image with itself.  

— Windows centered on an edge point will have autocorrelation that falls off 
slowly in the direction along the edge and rapidly in the direction across 
(perpendicular to) the edge.  

— Windows centered on a corner point will have autocorrelation that falls of 
rapidly in all directions.  
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Harris Corner Detection
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1.Compute image gradients over 
small region

2.Compute the covariance matrix

3.Compute eigenvectors and     
eigenvalues

4.Use threshold on eigenvalues to 
detect corners

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)



1. Compute image gradients over a small region
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array of x gradients

array of y gradients

(not just a single pixel)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Visualization of Gradients
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image

X derivative

Y derivative

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



What Does a Distribution Tells You About the Region? 

!73 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



What Does a Distribution Tells You About the Region? 

!74 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



What Does a Distribution Tells You About the Region? 

!75 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Distribution reveals the orientation and magnitude 



What Does a Distribution Tells You About the Region? 
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Distribution reveals the orientation and magnitude 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
How do we quantify the orientation and magnitude? 



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)
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C =



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)
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Sum over small region  
around the corner

C =



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)
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Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

C =



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)
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Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

C =

array of x gradients array of y gradients

.*=sum( )



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)
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Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

Matrix is symmetric

C =



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)
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By computing the gradient covariance matrix …

we are fitting a quadratic to the gradients over a  small image region

C =



Simple Case
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Simple Case
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Simple Case
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Simple Case
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Simple Case
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General Case
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It can be shown that since every C is symmetric: 

… so general case is like a rotated version of the simple one



3. Computing Eigenvalues and Eigenvectors

!89 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Quick Eigenvalue/Eigenvector Review

Given a square matrix    , a scalar    is called an eigenvalue of     if there exists 
a nonzero vector    that satisfies  

 
The vector    is called an eigenvector for     corresponding to the eigenvalue   .  

The eigenvalues of     are obtained by solving 
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Av = �v

det(A� �I) = 0

�

A

v

A�
v

A

A



3. Computing Eigenvalues and Eigenvectors
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eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



3. Computing Eigenvalues and Eigenvectors
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eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of 
(returns a polynomial) (C � �I)e = 0



3. Computing Eigenvalues and Eigenvectors
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eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of 
(returns a polynomial)

2. Find the roots of polynomial 
(returns eigenvalues) det(C � �I) = 0

(C � �I)e = 0



3. Computing Eigenvalues and Eigenvectors
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1. Compute the determinant of 
(returns a polynomial)

eigenvector

eigenvalue

2. Find the roots of polynomial 
(returns eigenvalues)

3. For each eigenvalue, solve 
(returns eigenvectors)

Ce = �e (C � �I)e = 0

det(C � �I) = 0

(C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

(C � �I)e = 0



Example
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C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of 
(returns a polynomial)

2. Find the roots of polynomial 
(returns eigenvalues)

3. For each eigenvalue, solve 
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0



Example
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of 
(returns a polynomial)

2. Find the roots of polynomial 
(returns eigenvalues)
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det(C � �I) = 0

(C � �I)e = 0
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Example
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Example
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Example
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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2. Find the roots of polynomial 
(returns eigenvalues)

3. For each eigenvalue, solve 
(returns eigenvectors)
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