
Lecture 13: Laplacian Pyramids, Corner Detection

CPSC 425: Computer Vision

Menu for Today (October 7, 2020)
Topics:

— Laplacian Pyramids (revisited)
— Corner Detection

Redings:

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 5.3.0 - 5.3.1

— Next Lecture: Forsyth & Ponce (2nd ed.) 6.1, 6.3

Reminders:
— Quiz 2: due at the end of day today
— Assignment 2: Face Detection in a Scaled Representation is October 14th

— Autocorrelation
— Harris Corner Detector

!2

!3

Today’s “fun” Example:

Wait for it! :)

Lecture 12: Re-cap

!4

Physical properties of a 3D scene cause “edges” in an image:
— depth discontinuity
— surface orientation discontinuity
— reflectance discontinuity
— illumination boundaries

Two generic approaches to edge detection:
— local extrema of a first derivative operator → Canny
— zero crossings of a second derivative operator → Marr/Hildreth

Many algorithms consider “boundary detection” as a high-level
recognition task and output a probability or confidence that a pixel is on a
human-perceived boundary

!5

What happens to the details?
— They get smoothed out as we move
 to higher levels

What is preserved at the higher levels?
— Mostly large uniform regions in the
 original image

How would you reconstruct the original
image from the image at the upper
level?
— That’s not possible

Forsyth & Ponce (2nd ed.) Figure 4.17
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Gaussian Pyramid

Laplacian Pyramid

Building a Laplacian pyramid:
— Create a Gaussian pyramid
— Take the difference between one Gaussian pyramid level and the next
(before subsampling)

Properties
— Also known as the difference-of-Gaussian (DOG) function, a close
approximation to the Laplacian
— It is a band pass filter – each level represents a different band of spatial
frequencies

!6

!7

Laplacian Pyramid
At each level, retain the residuals
instead of the blurred images
themselves.

Why is it called Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Why Laplacian Pyramid?

!8

- =

-

unit Gaussian Laplacian

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!9

image

Laplacian is a Bandpass Filter

Low pass filtered imageFFT (Mag)

complex
element-wise
multiplication

larger sigma

Low pass filtered imageFFT (Mag)

complex
element-wise
multiplication

lower sigma

!10

image

Low pass filtered imageFFT (Mag)

complex
element-wise
multiplication

larger sigma

Low pass filtered imageFFT (Mag)

complex
element-wise
multiplication

lower sigma

- -

Laplacian is a Bandpass Filter

!11

image

Low passFFT (Mag)

complex
element-wise
multiplication

larger sigma

Low passFFT (Mag)

complex
element-wise
multiplication

lower sigma

-

Laplacian is a Bandpass Filter

!12

Laplacian Pyramid
At each level, retain the residuals
instead of the blurred images
themselves.

Can we reconstruct the original image
using the pyramid?
— Yes we can!

Why is it called Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!13

Laplacian Pyramid
At each level, retain the residuals
instead of the blurred images
themselves.

Can we reconstruct the original image
using the pyramid?
— Yes we can!

What do we need to store to be able
to reconstruct the original image?

Why is it called Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Let’s start by just looking at one level

!14

= +

level 0 residual

Does this mean we need to store both residuals and the blurred copies of the
original?

level 1 (upsampled)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Constructing a Laplacian Pyramid

!15

repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Constructing a Laplacian Pyramid

!16

repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Loss-lessLossy Lossy Loss-less

Constructing a Laplacian Pyramid

!17

repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Loss-lessLossy

Constructing a Laplacian Pyramid

!18

repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

What is this part?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Constructing a Laplacian Pyramid

!19

repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

It’s a Gaussian
Pyramid

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Constructing a Laplacian Pyramid

!20

repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

It’s a Gaussian
Pyramid

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

This is a Laplacian
Pyramid

Reconstructing the Original Image

!21

repeat:

upsample

until orig resolution reached

Algorithm

sum with residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Gaussian vs Laplacian Pyramid

!22

Shown in opposite
order for space

Which one takes
more space to

store?
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Aside: Image Blending

!23

Burt and Adelson, “A multiresolution spline with application to image mosaics,”ACM
Transactions on Graphics, 1983, Vol.2, pp.217-236.

Aside: Image Blending

!24

Burt and Adelson, “A multiresolution spline with application to image
mosaics,”ACM Transactions on Graphics, 1983, Vol.2, pp.217-236.

!25https://becominghuman.ai/image-blending-using-laplacian-pyramids-2f8e9982077f

Aside: Image Blending

!26https://becominghuman.ai/image-blending-using-laplacian-pyramids-2f8e9982077f

Aside: Image Blending

!27https://becominghuman.ai/image-blending-using-laplacian-pyramids-2f8e9982077f

Aside: Image Blending

!28https://becominghuman.ai/image-blending-using-laplacian-pyramids-2f8e9982077f

Aside: Image Blending

High-level Intuition: Smoother blending of flatter regions, sharper blending of
more detailed regions

!29

Aside: Image Blending

Aside: Image Blending

Algorithm:

1. Build Laplacian pyramid LA and LB from images A and B

2. Build a Gaussian pyramid GR from mask image R (the mask defines which
image pixels should be coming from A or B)

3. From a combined (blended) Laplacian pyramid LS, using nodes of GR as
weights: LS(i,j) = GR(i,j) * LA(i,j) + (1-GR(i,j)) * LB(i,j)

4. Reconstruct the final blended image from LS

!30

Aside: Image Blending

!31

Aside: Image Blending

!32

Aside: Image Blending

!33

!34

Today’s “fun” Example: Eulerian Video Magnification

Video From: Wu at al., Siggraph 2012

!34

Today’s “fun” Example: Eulerian Video Magnification

Video From: Wu at al., Siggraph 2012

!35

Figure From: Wu at al., Siggraph 2012

Today’s “fun” Example: Eulerian Video Magnification

Lecture 13: Corner Detection

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Image Credit: https://en.wikipedia.org/wiki/Corner_detection

https://en.wikipedia.org/wiki/Corner_detection

When might template matching fail?

!37

— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Motivation: Template Matching

When might template matching in scaled representation fail?

!38

— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Motivation: Template Matching in Scaled Representation

When might edge matching in scaled representation fail?

!39

— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Motivation: Edge Matching in Scaled Representation

!40

— Different scales

— Different orientation

— Lighting conditions

— Left vs. Right hand

— Partial Occlusions

— Different Perspective

— Motion / blur

Motivation: Edge Matching in Scaled Representation

Planar Object Instance Recognition

!41

Database of planar objects Instance recognition

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Recognition under Occlusion

!42 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image Matching

!43 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image Matching

!44 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Finding Correspondences

!45

NASA Mars Rover images
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!46 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Finding Correspondences

What is a Good Feature?

!47

Pick a point in the image.
Find it again in the next image.

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What is a Good Feature?

!48

Pick a point in the image.
Find it again in the next image.

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What is a Good Feature?

!49

Pick a point in the image.
Find it again in the next image.

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What is a Good Feature?

Local: features are local, robust to occlusion and clutter

Accurate: precise localization  

Robust: noise, blur, compression, etc. do not have a big impact on the feature.  

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

!50

What is a corner?

We can think of a corner as any locally distinct 2D image feature that (hopefully)
corresponds to a distinct position on an 3D object of interest in the scene.

!51

Image Credit: John Shakespeare, Sydney Morning Herald

What is a corner?

We can think of a corner as any locally distinct 2D image feature that (hopefully)
corresponds to a distinct position on an 3D object of interest in the scene.

!52

Image Credit: John Shakespeare, Sydney Morning Herald

Corner

Interest Point

Why are corners distinct?

A corner can be localized reliably.

Thought experiment:

!53

Why are corners distinct?

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.

!54

“flat” region: 
no change in all

directions

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Why are corners distinct?

!55

“flat” region: 
no change in all

directions

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Why are corners distinct?

!56

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

“edge”: 
no change along
the edge direction

— Place a small window over an edge.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Why are corners distinct?

!57

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

“edge”: 
no change along
the edge direction

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change
 → Cannot estimate location along an edge (a.k.a., aperture problem)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Why are corners distinct?

!58

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

“corner”: 
significant change

in all directions

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change
 → Cannot estimate location along an edge (a.k.a., aperture problem)

— Place a small window over a corner.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Why are corners distinct?

!59

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value.
If you slide the window in any direction, the image in the
window will not change.

“corner”: 
significant change

in all directions

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change
 → Cannot estimate location along an edge (a.k.a., aperture problem)

— Place a small window over a corner. If you slide the window in any direction,
the image in the window changes.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Corner Detection

Edge detectors perform poorly at corners

Observations:
— The gradient is ill defined exactly at a corner
— Near a corner, the gradient has two (or more) distinct values

!60

How do you find a corner?

!61

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

[Moravec 1980]

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Autocorrelation

Autocorrelation is the correlation of the image with itself.

— Windows centered on an edge point will have autocorrelation that falls off
slowly in the direction along the edge and rapidly in the direction across
(perpendicular to) the edge.

— Windows centered on a corner point will have autocorrelation that falls of
rapidly in all directions.

!62

Autocorrelation

!63

Szeliski, Figure 4.5

Autocorrelation

!64

Szeliski, Figure 4.5

Autocorrelation

!65

Szeliski, Figure 4.5

Autocorrelation

!66

Szeliski, Figure 4.5

Autocorrelation

!67

Szeliski, Figure 4.5

Autocorrelation

!68

Szeliski, Figure 4.5

Autocorrelation

Autocorrelation is the correlation of the image with itself.

— Windows centered on an edge point will have autocorrelation that falls off
slowly in the direction along the edge and rapidly in the direction across
(perpendicular to) the edge.

— Windows centered on a corner point will have autocorrelation that falls of
rapidly in all directions.

!69

Harris Corner Detection

!70

1.Compute image gradients over
small region

2.Compute the covariance matrix

3.Compute eigenvectors and
eigenvalues

4.Use threshold on eigenvalues to
detect corners

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute image gradients over a small region

!71

array of x gradients

array of y gradients

(not just a single pixel)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Visualization of Gradients

!72

image

X derivative

Y derivative

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What Does a Distribution Tells You About the Region?

!73 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What Does a Distribution Tells You About the Region?

!74 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What Does a Distribution Tells You About the Region?

!75 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Distribution reveals the orientation and magnitude

What Does a Distribution Tells You About the Region?

!76

Distribution reveals the orientation and magnitude

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
How do we quantify the orientation and magnitude?

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

!77

C =

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

!78

Sum over small region
around the corner

C =

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

!79

Sum over small region
around the corner

Gradient with respect to x, times
gradient with respect to y

C =

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

!80

Sum over small region
around the corner

Gradient with respect to x, times
gradient with respect to y

C =

array of x gradients array of y gradients

.*=sum()

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

!81

Sum over small region
around the corner

Gradient with respect to x, times
gradient with respect to y

Matrix is symmetric

C =

2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

!82

By computing the gradient covariance matrix …

we are fitting a quadratic to the gradients over a small image region

C =

Simple Case

!83

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 =


�1 0
0 �2

�

?

Local Image Patch

Simple Case

!84

I
x

Iy

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 =


�1 0
0 �2

�

?

Local Image Patch

? ?

Simple Case

!85

I
x

Iy

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 =


�1 0
0 �2

�

?

Local Image Patch

?
high value along vertical

strip of pixels and 0 elsewhere

Simple Case

!86

I
x

Iy

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 =


�1 0
0 �2

�

?

Local Image Patch high value along vertical
strip of pixels and 0 elsewhere

high value along horizontal
strip of pixels and 0 elsewhere

Simple Case

!87

high value along vertical
strip of pixels and 0 elsewhere

high value along horizontal
strip of pixels and 0 elsewhere

I
x

Iy

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 =


�1 0
0 �2

�

Local Image Patch

General Case

!88

C =

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5 = R�1


�1 0
0 �2

�
R

It can be shown that since every C is symmetric:

… so general case is like a rotated version of the simple one

3. Computing Eigenvalues and Eigenvectors

!89 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Quick Eigenvalue/Eigenvector Review

Given a square matrix , a scalar is called an eigenvalue of if there exists
a nonzero vector that satisfies

 
The vector is called an eigenvector for corresponding to the eigenvalue .

The eigenvalues of are obtained by solving

!90

Av = �v

det(A� �I) = 0

�

A

v

A�
v

A

A

3. Computing Eigenvalues and Eigenvectors

!91

eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

3. Computing Eigenvalues and Eigenvectors

!92

eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial) (C � �I)e = 0

3. Computing Eigenvalues and Eigenvectors

!93

eigenvector

eigenvalue

Ce = �e (C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues) det(C � �I) = 0

(C � �I)e = 0

3. Computing Eigenvalues and Eigenvectors

!94

1. Compute the determinant of
(returns a polynomial)

eigenvector

eigenvalue

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

Ce = �e (C � �I)e = 0

det(C � �I) = 0

(C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

(C � �I)e = 0

Example

!95

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

Example

!96

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

det

✓
2� � 1
1 2� �

�◆

Example

!96

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

det

✓
2� � 1
1 2� �

�◆

Example

!97

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 31. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

det

✓
2� � 1
1 2� �

�◆

Example

!97

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 3

a

�2 � 4�+ 3 = 0
(�� 3)(�� 1) = 0
�1 = 1,�2 = 3

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

C =


2 1
1 2

�

det

✓
2 1
1 2

�◆
= 0

(2� �)(2� �)� (1)(1) = 0

�2 � 4�+ 3 = 0

(�� 3)(�� 1) = 0

�1 = 1,�2 = 31. Compute the determinant of
(returns a polynomial)

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

det(C � �I) = 0

(C � �I)e = 0

(C � �I)e = 0

det

✓
2� � 1
1 2� �

�◆

