
Lecture 12: Edge Detection (cont.)

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today (October 5, 2020)
Topics: 

— Canny Edges

Redings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 5.1 - 5.2 
— Next Lecture:       Forsyth & Ponce (2nd ed.) 5.3.0 - 5.3.1 

Reminders: 

— Assignment 2: Scaled Representations, Face Detection and Image Blending 
— Quiz 1 correct answers are posted  
— Midterm prep questions will be available this week (initially without Answers)

— Image Boundaries 
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Today’s “fun” Example:
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Today’s “fun” Example:
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Today’s “fun” Example:



Lecture 11: Re-cap

Physical properties of a 3D scene cause “edges” in an image:  
— depth discontinuity 
— surface orientation discontinuity 
— reflectance discontinuity  
— illumination boundaries  
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Lecture 11: Re-cap

Edge: a location with high gradient (derivative) 

Need smoothing to reduce noise prior to taking derivative  

Need two derivatives, in x and y direction  

We can use derivative of Gaussian filters 
— because differentiation is convolution, and  
— convolution is associative  

Let     denote convolution  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D ⌦ (G⌦ I(X,Y )) = (D ⌦G)⌦ I(X,Y )

⌦



The edge strength is given by the gradient magnitude: 

The gradient direction is given by: 

Lecture 11: Re-cap
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The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 

(how is this related to the direction of the edge?)



Lecture 11: Re-Cap Sobel Edge Detector
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1. Use central differencing to compute gradient image (instead of first 
forward differencing). This is more accurate. 

2. Threshold to obtain edges 

Sobel Gradient Sobel EdgesOriginal Image

Thresholds are brittle, we can do better! 



Two Generic Approaches for Edge Detection
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Two generic approaches to edge point detection: 
— (significant) local extrema of a first derivative operator  
— zero crossings of a second derivative operator 



Lecture 11: Marr / Hildreth Laplacian of Gaussian

A “zero crossings of a second derivative operator” approach  
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Lecture 11: Marr / Hildreth Laplacian of Gaussian
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Image From: A. Campilho



Comparing Edge Detectors 

Good detection: minimize probability of false positives/negatives (spurious/missing) edges 

Good localization: found edges should be as close to true image edge as possible 

Single response: minimize the number of edge pixels around a single edge 
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Approach Detection Localization Single Resp Limitations

Sobel Gradient Magnitude 
Threshold Good Poor Poor Results in Thick 

Edges

Marr / Hildreth Zero-crossings of 2nd 
Derivative (LoG) Good Good Good Smooths 

Corners

Canny Local extrema of 1st 
Derivative Best Good Good



Canny Edge Detector
A “local extrema of a first derivative operator” approach  

Design Criteria:  

1. good detection 
       — low error rate for omissions (missed edges)  
       — low error rate for commissions (false positive)  

2. good localization  

3. one (single) response to a given edge 
       — (i.e., eliminate multiple responses to a single edge) 
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Example: Edge Detection
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filter
response

Question: How many edges are there?  

Question: What is the position of each edge? 
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filter
response

threshold

Question: How many edges are there?  

Question: What is the position of each edge? 

Example: Edge Detection



!17

filter
response

threshold

Question: How many edges are there?  

Question: What is the position of each edge? 

Example: Edge Detection



Canny Edge Detector
Steps:  

1. Apply directional derivatives of Gaussian  

2. Compute gradient magnitude and gradient direction  

3. Non-maximum suppression  
    — thin multi-pixel wide “ridges” down to single pixel width  

4. Linking and thresholding 
    — Low, high edge-strength thresholds 
    — Accept all edges over low threshold that are connected to edge over high    
         threshold 
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Non-maxima Suppression
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Idea: suppress near-by similar detections to obtain one “true” result
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Slide Credit: Kristen Grauman

Idea: suppress near-by similar detections to obtain one “true” result

Non-maxima Suppression
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Slide Credit: Kristen Grauman

Idea: suppress near-by similar detections to obtain one “true” result

Non-maxima Suppression



Non-maxima Suppression
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Select the image maximum point across the width of the edge

Forsyth & Ponce (1st ed.) Figure 8.11
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Forsyth & Ponce (2nd ed.) Figure 5.5 left

Value at q must be larger than interpolated values at p and r

Non-maxima Suppression
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Forsyth & Ponce (2nd ed.) Figure 5.5 left

Value at q must be larger than interpolated values at p and r

Non-maxima Suppression



Example: Non-maxima Suppression
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Slide Credit: Christopher Rasmussen

Original Image Gradient Magnitude Non-maxima  
Suppression



Example
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Forsyth & Ponce (1st ed.) Figure 8.13 top
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Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom left 
Fine scale (          ), high threshold

Example

� = 1
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Example

Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom middle 
Fine scale (          ), high threshold� = 4



!29

Example

Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom right 
Fine scale (          ), low threshold  � = 4



Linking Edge Points
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Assume the marked point is an edge point. Take the normal to the gradient at 
that point and use this to predict continuation points (either r or s) 

Forsyth & Ponce (2nd ed.) Figure 5.5 right



Edge Hysteresis

One way to deal with broken edge chains is to use hysteresis  

Hysteresis: A lag or momentum factor  

Idea: Maintain two thresholds          and  
— Use khigh to find strong edges to start edge chain 
— Use klow to find weak edges which continue edge chain  

Typical ratio of thresholds is (roughly):  
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Canny Edge Detector

!32

Original  
Image

Strong  
Edges

Weak  
Edges

Strong +  
connected  
Weak Edges



How do humans perceive boundaries? 

Edges are a property of the 2D image.  

It is interesting to ask: How closely do image edges correspond to 
boundaries that humans perceive to be salient or significant?  
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Traditional Edge Detection 
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Generally lacks semantics (i.e., too low-level for many task)
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"Divide the image into some number of segments, where the segments 
represent ’things’ or ’parts of things’ in the scene. The number of segments is 
up to you, as it depends on the image. Something between 2 and 30 is likely to 
be appropriate. It is important that all of the segments have approximately equal 
importance."  

(Martin et al. 2004) 

How do humans perceive boundaries? 
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Figure Credit: Martin et al. 2001

How do humans perceive boundaries? 
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How do humans perceive boundaries? 

Figure Credit: Martin et al. 2001
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Figure Credit: Szeliski Fig. 4.31. Original: Martin et al. 2004

Each image shows multiple (4-8) human-marked boundaries. Pixels are darker 
where more humans marked a boundary. 

How do humans perceive boundaries? 



Boundary Detection

We can formulate boundary detection as a high-level recognition task  
— Try to learn, from sample human-annotated images, which visual features or 
cues are predictive of a salient/significant boundary  

Many boundary detectors output a probability or confidence that a pixel is 
on a boundary  
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— Consider circular windows of radii    at each pixel         
cut in half by an oriented line through the middle  

— Compare visual features on both sides of the cut  

— If features are very different on the two sides, the 
cut line probably corresponds to a boundary  

— Notice this gives us an idea of the orientation of the 
boundary as well  
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Boundary Detection: Example Approach

✓

(x, y)
r

(x, y)

r



— Consider circular windows of radii    at each pixel         
cut in half by an oriented line through the middle  

— Compare visual features on both sides of the cut  

— If features are very different on the two sides, the 
cut line probably corresponds to a boundary  

— Notice this gives us an idea of the orientation of the 
boundary as well  
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Boundary Detection: Example Approach

✓

(x, y)
r

(x, y)

r

Implementation: consider 8 discrete orientations (   )  and 3 scales (  )r✓
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Features: 
— Raw Intensity 
— Orientation Energy 
— Brightness Gradient 
— Color Gradient  
— Texture gradient

Raw 
Intensity

Bright 
Grad

Color 
Grad

Texture 
Grad

Boundary Detection:



For each feature type  
— Compute non-parametric distribution (histogram) for left side 
— Compute non-parametric distribution (histogram) for right side 
— Compare two histograms, on left and right side, using statistical test 

Use all the histogram similarities as features in a learning based approach that 
outputs probabilities (Logistic Regression, SVM, etc.) 
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Boundary Detection:
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Boundary Detection: Example Approach

Figure Credit: Szeliski Fig. 4.33. Original: Martin et al. 2004



Summary
Physical properties of a 3D scene cause “edges” in an image:  
— depth discontinuity 
— surface orientation discontinuity 
— reflectance discontinuity  
— illumination boundaries  

Two generic approaches to edge detection: 
— local extrema of a first derivative operator → Canny 
— zero crossings of a second derivative operator → Marr/Hildreth  

Many algorithms consider “boundary detection” as a high-level 
recognition task and output a probability or confidence that a pixel is on a 
human-perceived boundary 
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Lecture 12: Laplacian Pyramids (aside for HW2)

CPSC 425: Computer Vision 
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What happens to the details? 
— They get smoothed out as we move  
     to higher levels

What is preserved at the higher levels? 
— Mostly large uniform regions in the 
     original image

How would you reconstruct the original 
image from the image at the upper 
level? 
— That’s not possible

Forsyth & Ponce (2nd ed.) Figure 4.17
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Gaussian Pyramid 



Laplacian Pyramid

Building a Laplacian pyramid:  
— Create a Gaussian pyramid 
— Take the difference between one Gaussian pyramid level and the next 
(before subsampling)  

Properties  
— Also known as the difference-of-Gaussian (DOG) function, a close 
approximation to the Laplacian  
— It is a band pass filter – each level represents a different band of spatial 
frequencies  
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Laplacian Pyramid
At each level, retain the residuals 
instead of the blurred images 
themselves.

Why is it called Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Why Laplacian Pyramid? 
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- =

-

unit Gaussian Laplacian

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Laplacian Pyramid
At each level, retain the residuals 
instead of the blurred images 
themselves.

Can we reconstruct the original image 
using the pyramid? 
— Yes we can!

Why is it called Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Laplacian Pyramid
At each level, retain the residuals 
instead of the blurred images 
themselves.

Can we reconstruct the original image 
using the pyramid? 
— Yes we can!

What do we need to store to be able 
to reconstruct the original image?

Why is it called Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Let’s start by just looking at one level 
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= +

level 0 residual

Does this mean we need to store both residuals and the blurred copies of the 
original?

level 1 (upsampled)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Constructing a Laplacian Pyramid 
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repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Constructing a Laplacian Pyramid 
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repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

What is this part?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Constructing a Laplacian Pyramid 
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repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

It’s a Gaussian 
Pyramid

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Reconstructing the Original Image 
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repeat:

upsample

until orig resolution reached

Algorithm

sum with residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Gaussian vs Laplacian Pyramid
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Shown in opposite 
order for space

Which one takes  
more space to 

store?
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Image Blending
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Burt and Adelson, “A multiresolution spline with application to image mosaics,”ACM 
Transactions on Graphics, 1983, Vol.2, pp.217-236. 



Aside: Image Blending
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Burt and Adelson, “A multiresolution spline with application to image 
mosaics,”ACM Transactions on Graphics, 1983, Vol.2, pp.217-236. 



Aside: Image Blending

Algorithm: 

1. Build Laplacian pyramid LA and LB from images A and B 

2. Build a Gaussian pyramid GR from mask image R (the mask defines which 
image pixels should be coming from A or B) 

3. From a combined (blended) Laplacian pyramid LS, using nodes of GR as 
weights: LS(i,j) = GR(i,j) * LA(i,j) + (1-GR(i,j)) * LB(i,j) 

4. Reconstruct the final blended image from LS
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Aside: Image Blending
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Aside: Image Blending
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Aside: Image Blending
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