

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Lecture 12: Edge Detection (cont.)

Menu for Today (October 5, 2020)

Topics:

— Canny Edges

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 5.1 - 5.2 - Next Lecture: Forsyth & Ponce (2nd ed.) 5.3.0 - 5.3.1

Reminders:

- Assignment 2: Scaled Representations, Face Detection and Image Blending - Quiz 1 correct answers are posted
- Midterm prep questions will be available this week (initially without Answers)

— Image Boundaries

Today's "fun" Example:

Today's "fun" Example:

Today's "fun" Example:

Lecture 11: Re-cap

Physical properties of a 3D scene cause "edges" in an image:

- depth discontinuity
- surface orientation discontinuity
- reflectance discontinuity
- illumination boundaries

Lecture 11: Re-cap

- **Edge:** a location with high gradient (derivative) Need smoothing to reduce noise prior to taking derivative Need two derivatives, in x and y direction We can use **derivative of Gaussian** filters because differentiation is convolution, and - convolution is associative
- Let \otimes denote convolution
 - $D \otimes (G \otimes I(X,Y)) = (D \otimes G) \otimes I(X,Y)$

Lecture 11: Re-cap

The gradient of an image: $\nabla f = \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right|$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \nabla f = \nabla f$$

The gradient points in the direction of most rapid **increase of intensity**:

The gradient direction is given by: $\theta = \tan^{-1}\left(\frac{\partial f}{\partial u}/\frac{\partial f}{\partial x}\right)$

(how is this related to the direction of the edge?)

The edge strength is given by the **gradient magnitude**: $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$= \left[\mathbf{0}, \frac{\partial f}{\partial y}\right]$$

Lecture 11: Re-Cap Sobel Edge Detector

1. Use **central differencing** to compute gradient image (instead of first forward differencing). This is more accurate.

2. Threshold to obtain edges

Original Image

Sobel Gradient

Thresholds are brittle, we can do better!

Sobel Edges

Two Generic Approaches for **Edge** Detection

Two generic approaches to edge point detection:

- (significant) local extrema of a first derivative operator
- zero crossings of a second derivative operator

Lecture 11: Marr / Hildreth Laplacian of Gaussian

A "zero crossings of a second derivative operator" approach

Lecture 11: Marr / Hildreth Laplacian of Gaussian

Original Image

LoG Filter

Zero Crossings

Scale (σ)

Comparing Edge Detectors

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

	Approach	Detection	Localization	Single Resp	Limitations
Sobel	Gradient Magnitude Threshold	Good	Poor	Poor	Results in Thic Edges
Marr / Hildreth	Zero-crossings of 2nd Derivative (LoG)	Good	Good	Good	Smooths Corners
Canny	Local extrema of 1st Derivative	Best	Good	Good	

- **Good detection**: minimize probability of false positives/negatives (spurious/missing) edges

Canny Edge Detector

A "local extrema of a first derivative operator" approach

Design Criteria:

1. good detection

- low error rate for omissions (missed edges)
- low error rate for commissions (false positive)
- 2. good localization
- 3. one (single) response to a given edge - (i.e., eliminate multiple responses to a single edge)

Question: How many edges are there? **Question**: What is the position of each edge?

Question: How many edges are there?Question: What is the position of each edge?

Question: How many edges are there?Question: What is the position of each edge?

Canny Edge Detector

Steps:

- 1. Apply directional derivatives of Gaussian
- 2. Compute gradient magnitude and gradient direction
- 3. Non-maximum suppression — thin multi-pixel wide "ridges" down to single pixel width
- 4. Linking and thresholding
 - Low, high edge-strength thresholds
 - threshold

Accept all edges over low threshold that are connected to edge over high

Idea: suppress near-by similar detections to obtain one "true" result

Idea: suppress near-by similar detections to obtain one "true" result

Detected template

Correlation map

Slide Credit: Kristen Grauman

Idea: suppress near-by similar detections to obtain one "true" result

Detected template

Correlation map

Slide Credit: Kristen Grauman

Forsyth & Ponce (1st ed.) Figure 8.11

Select the image **maximum point** across the width of the edge

Value at q must be larger than interpolated values at p and r

Forsyth & Ponce (2nd ed.) Figure 5.5 left

Value at q must be larger than interpolated values at p and r

Forsyth & Ponce (2nd ed.) Figure 5.5 left

Example: Non-maxima Suppression

Original Image

Gradient Magnitude

courtesy of G. Loy

Non-maxima Suppression

Slide Credit: Christopher Rasmussen

Forsyth & Ponce (1st ed.) Figure 8.13 top

26

Forsyth & Ponce (1st ed.) Figure 8.13 top

Figure 8.13 bottom left Fine scale ($\sigma = 1$), high threshold

Forsyth & Ponce (1st ed.) Figure 8.13 top

Figure 8.13 bottom middle Fine scale ($\sigma = 4$), high threshold

Forsyth & Ponce (1st ed.) Figure 8.13 top

Figure 8.13 bottom right Fine scale ($\sigma = 4$), low threshold

Linking Edge Points

Forsyth & Ponce (2nd ed.) Figure 5.5 right

Assume the marked point is an **edge point**. Take the normal to the gradient at that point and use this to predict continuation points (either *r* or *s*)

Edge Hysteresis

- One way to deal with broken edge chains is to use hysteresis
- Hysteresis: A lag or momentum factor
- Idea: Maintain two thresholds \mathbf{k}_{high} and \mathbf{k}_{low} Use khigh to find strong edges to start edge chain
- Use klow to find weak edges which continue edge chain
- Typical ratio of thresholds is (roughly):

 \mathbf{k}_h

$$\frac{nigh}{2} = 2$$

hlow

Canny Edge Detector

Original Image

courtesy of G. Loy

Weak Edges

5

Edges are a property of the 2D image.

It is interesting to ask: How closely do image edges correspond to boundaries that humans perceive to be salient or significant?

Traditional Edge Detection

Generally lacks semantics (i.e., too low-level for many task)

"Divide the image into some number of segments, where the segments represent 'things' or 'parts of things' in the scene. The number of segments is up to you, as it depends on the image. Something between 2 and 30 is likely to be appropriate. It is important that all of the segments have approximately equal importance."

(Martin et al. 2004)

Figure Credit: Martin et al. 2001

.

Figure Credit: Martin et al. 2001

.

Each image shows multiple (4-8) human-marked boundaries. Pixels are darker where more humans marked a boundary.

Figure Credit: Szeliski Fig. 4.31. Original: Martin et al. 2004

Boundary Detection

We can formulate **boundary detection** as a high-level recognition task - Try to learn, from sample human-annotated images, which visual features or cues are predictive of a salient/significant boundary

on a boundary

Many boundary detectors output a **probability or confidence** that a pixel is

Boundary Detection: Example Approach

- Consider circular windows of radii r at each pixel (x, y)cut in half by an oriented line through the middle

- Compare visual features on both sides of the cut
- If features are very **different** on the two sides, the cut line probably corresponds to a boundary
- Notice this gives us an idea of the orientation of the boundary as well

Boundary Detection: Example Approach

- Consider circular windows of radii r at each pixel (x, y)cut in half by an oriented line through the middle

- Compare visual features on both sides of the cut

- If features are very **different** on the two sides, the cut line probably corresponds to a boundary

 Notice this gives us an idea of the orientation of the boundary as well

Implementation: consider 8 discrete orientations (θ) and 3 scales (r)

(x, y)

Boundary Detection:

Features:

- Raw Intensity
- Orientation Energy
- Brightness Gradient
- Color Gradient
- Texture gradient

Boundary Detection:

For each **feature** type

- Compute non-parametric distribution (histogram) for left side
- Compute non-parametric distribution (histogram) for right side
- Compare two histograms, on left and right side, using statistical test

outputs probabilities (Logistic Regression, SVM, etc.)

Use all the histogram similarities as features in a learning based approach that

Boundary Detection: Example Approach

Figure Credit: Szeliski Fig. 4.33. Original: Martin et al. 2004

Summary

Physical properties of a 3D scene cause "edges" in an image:

- depth discontinuity
- surface orientation discontinuity
- reflectance discontinuity
- illumination boundaries

Two generic approaches to edge detection:

- local extrema of a first derivative operator \rightarrow Canny
- zero crossings of a second derivative operator \rightarrow Marr/Hildreth

Many algorithms consider "boundary detection" as a high-level recognition task and output a probability or confidence that a pixel is on a human-perceived boundary

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 12: Laplacian Pyramids (aside for HW2)

Gaussian Pyramid

512 256128 64 32 16

Forsyth & Ponce (2nd ed.) Figure 4.17

8

What happens to the details?

 They get smoothed out as we move to higher levels

What is preserved at the higher levels?

 Mostly large uniform regions in the original image

How would you reconstruct the original image from the image at the upper level?

That's not possible

Laplacian Pyramid

Building a **Laplacian** pyramid:

Create a Gaussian pyramid

- Take the difference between one Gaussian pyramid level and the next (before subsampling)

Properties

- Also known as the difference-of-Gaussian (DOG) function, a close approximation to the Laplacian It is a band pass filter – each level represents a different band of spatial

frequencies

Laplacian Pyramid

At each level, retain the residuals instead of the blurred images themselves.

Why is it called Laplacian Pyramid?

Why Laplacian Pyramid?

unit

Gaussian

Laplacian

Laplacian Pyramid

512 32 256 128 64 16

8

At each level, retain the residuals instead of the blurred images themselves.

Why is it called Laplacian Pyramid?

Can we reconstruct the original image using the pyramid? - Yes we can!

Laplacian Pyramid

512 32 256 128 64 16

8

At each level, retain the residuals instead of the blurred images themselves.

Why is it called Laplacian Pyramid?

Can we reconstruct the original image using the pyramid? - Yes we can!

What do we need to store to be able to reconstruct the original image?

Let's start by just looking at one level

level 0

Does this mean we need to store both residuals and the blurred copies of the original?

+

level 1 (upsampled)

residual

Constructing a Laplacian Pyramid

Algorithm

repeat:

filter

compute residual

subsample

until min resolution reached

Constructing a Laplacian Pyramid

What is this part?

Algorithm

repeat:

filter

compute residual

subsample

until min resolution reached

 h_{θ}

Constructing a Laplacian Pyramid

It's a Gaussian Pyramid

Algorithm

repeat:

filter

compute residual

subsample

until min resolution reached

 h_{θ}

Reconstructing the Original Image

Algorithm

repeat:

upsample

sum with residual

until orig resolution reached

Gaussian vs Laplacian Pyramid

Which one takes more space to store?

Shown in opposite order for space

Left pyramid

Burt and Adelson, "A multiresolution spline with application to image mosaics," ACM Transactions on Graphics, 1983, Vol.2, pp.217-236.

blend **Right pyramid**

Burt and Adelson, "A multiresolution spline with application to image mosaics," ACM Transactions on Graphics, 1983, Vol.2, pp.217-236.

Algorithm:

- 1. Build Laplacian pyramid LA and LB from images A and B
- 2. Build a Gaussian pyramid GR from mask image R (the mask defines which image pixels should be coming from A or B)
- 3. From a combined (blended) Laplacian pyramid LS, using nodes of GR as weights: LS(i,j) = GR(i,j) * LA(i,j) + (1-GR(i,j)) * LB(i,j)

4. Reconstruct the final blended image from LS

left

mask

blended

62

© david dmartin (Boston College)

© Chris Cameron