

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Lecture 11: Edge Detection (cont.)

Menu for Today (October 2, 2020)

Topics:

– Edge Detection

— Marr / Hildreth and Canny Edges

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 5.1 5.2
- Next Lecture: Forsyth & Ponce (2nd ed.) 5.3.0 5.3.1

Reminders:

– Image Boundaries

- Assignment 2: Scaled Representations, Face Detection and Image Blending

Today's "fun" Example #1: Motion Illusion

Today's "fun" Example #1: Rotating Snakes Illusion

A (discrete) approximation is

- "First forward difference"

Can be implemented as a convolution

$\frac{\partial f}{\partial x} \approx \frac{F(X+1,y) - F(x,y)}{\Delta x}$

5

A (discrete) approximation is

"forward difference" implemented as

correlation

convolution

from left

$\frac{\partial f}{\partial x} \approx \frac{F(X+1,y) - F(x,y)}{\Lambda x}$

"backward difference" implemented as

correlation

convolution

from right

Use the "first forward difference" to compute the image derivatives in X and Y directions.

1	1	0.6	0.3	0	0
1	1	0.6	0.3	0	0
0	0	0	0	0	0
0	0	0	0	0	0

(Compute two arrays, one of $\frac{\partial f}{\partial x}$ values and one of $\frac{\partial f}{\partial y}$ values.)

A Sort **Exercise**: Derivative in Y Direction

Use the "first forward difference" to compute the image derivatives in X and Y directions.

	1	1	0.6	0.3	0	0
	1	1	0.6	0.3	0	0
	0	0	0	0	0	0
↑	0	0	0	0	0	0

(Compute two arrays, one of $\frac{\partial f}{\partial x}$ values and one of $\frac{\partial f}{\partial x}$

$$\frac{\partial f}{\partial y}$$
 values.)

Derivative in Y (i.e., vertical) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)

Derivative in X (i.e., horizontal) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right)

Estimating **Derivatives**

Question: Why, in general, should the weights of a filter used for differentiation sum to 0?

-1 1

Estimating **Derivatives**

Question: Why, in general, should the weights of a filter used for differentiation sum to 0?

Answer: Think of a constant image, I(X, Y) = k. The derivative is 0. Therefore, the weights of any filter used for differentiation need to sum to 0.

|--|

Estimating **Derivatives**

Question: Why, in general, should the weights of a filter used for differentiation sum to 0?

Answer: Think of a constant image, I(X, Y) = k. The derivative is 0. Therefore, the weights of any filter used for differentiation need to sum to 0.

$$\sum_{i=1}^{N} f_i \cdot k = k \sum_{i=1}^{N} i = 1$$

|--|

Edge Detection

Goal: Identify sudden changes in image intensity

This is where most shape information is encoded

Example: artist's line drawing (but artist also is using object-level knowledge)

What Causes Edges?

- Depth discontinuity
- Surface orientation discontinuity
- Reflectance discontinuity (i.e., change in surface material properties)
- Illumination discontinuity (e.g., shadow)

Slide Credit: Christopher Rasmussen

Smoothing and Differentiation

- **Edge:** a location with high gradient (derivative) Need smoothing to reduce noise prior to taking derivative Need two derivatives, in x and y direction We can use **derivative of Gaussian** filters because differentiation is convolution, and – convolution is associative
- Let \otimes denote convolution
 - $D \otimes (G \otimes I(X,Y)) = (D \otimes G) \otimes I(X,Y)$

1D Example

Lets consider a row of pixels in an image:

Where is the edge?

1D Example: Derivative

Lets consider a row of pixels in an image:

Where is the edge?

1D Example: Smoothing + Derivative

Lets consider a row of pixels in an image:

1D Example: Smoothing + Derivative

Lets consider a row of pixels in an image:

20

1D Example: Smoothing + Derivative (efficient)

Lets consider a row of pixels in an image:

Partial Derivatives of Gaussian

Slide Credit: Christopher Rasmussen

Gradient Magnitude

Let I(X, Y) be a (digital) image

Let $I_x(X,Y)$ and $I_y(X,Y)$ be estimates of the partial derivatives in the x and y directions, respectively.

Call these estimates I_x and I_y (for short) The vector $[I_x, I_y]$ is the gradient

The scalar $\sqrt{I_x^2 + I_y^2}$ is the **gradient magnitude**

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \mathbf{0} \end{bmatrix}$$

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \mathbf{0}\right]$$

$\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \nabla f \\ \nabla f \end{bmatrix}$$

The gradient points in the direction of most rapid **increase of intensity**:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$= \left[0, \frac{\partial f}{\partial y}\right]$$

The gradient of an image: $\nabla f = \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right|$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \mathbf{0} \end{bmatrix}$$

$$\nabla f = \nabla f = \nabla f = \nabla f$$

The gradient points in the direction of most rapid **increase of intensity**:

The gradient direction is given by:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$= \left[0, \frac{\partial f}{\partial y}\right]$$

(how is this related to the direction of the edge?)

The gradient of an image: $\nabla f = \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right|$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \nabla f = \nabla f = \nabla f$$

The gradient points in the direction of most rapid **increase of intensity**:

The gradient direction is given by: $\theta = \tan^{-1}\left(\frac{\partial f}{\partial u}/\frac{\partial f}{\partial x}\right)$

(how is this related to the direction of the edge?)

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$= \left[\mathbf{0}, \frac{\partial f}{\partial y}\right]$$

The gradient of an image: $\nabla f = \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right|$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \nabla f = \nabla f = \nabla f$$

The gradient points in the direction of most rapid **increase of intensity**:

The gradient direction is given by: (how is this related to the direction of the edge?)

The edge strength is given by the gradient magnitude:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$= \left[0, \frac{\partial f}{\partial y}\right]$$

The gradient of an image: $\nabla f = \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right|$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \nabla f \\ \nabla f \end{bmatrix}$$

The gradient points in the direction of most rapid **increase of intensity**:

The gradient direction is given by: $\theta = \tan^{-1}\left(\frac{\partial f}{\partial u}/\frac{\partial f}{\partial x}\right)$

(how is this related to the direction of the edge?)

The edge strength is given by the **gradient magnitude**: $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$= \left[\mathbf{0}, \frac{\partial f}{\partial y}\right]$$

Gradient Magnitude

Increased **smoothing**:

- eliminates noise edges
- makes edges smoother and thicker
- removes fine detail

 $\sigma = 2$ $\sigma = 1$ Forsyth & Ponce (2nd ed.) Figure 5.4

Sobel Edge Detector

1. Use **central differencing** to compute gradient image (instead of first forward differencing). This is more accurate.

2. Threshold to obtain edges

Original Image

Thresholds are brittle, we can do better!

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Sobel Gradient

Sobel Edges

Two Generic Approaches for **Edge** Detection

Two generic approaches to edge point detection:

- (significant) local extrema of a first derivative operator
- zero crossings of a second derivative operator

A "zero crossings of a second derivative operator" approach

Design Criteria:

- 1. localization in space
- 2. localization in frequency
- 3. rotationally invariant

A "zero crossings of a second derivative operator" approach

Steps:

1. Gaussian for smoothing

2. Laplacian (∇^2) for differentiation where

 $\nabla^2 f(x, y) = \frac{\partial^2}{\partial y}$

3. Locate zero-crossings in the Laplacian of the Gaussian ($\nabla^2 G$) where

$$\nabla^2 G(x,y) = \frac{-1}{2\pi\sigma^4}$$

$$\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$$

$$\left[2 - \frac{x^2 + y^2}{\sigma^2}\right] \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

34

Here's a 3D plot of the Laplacian of the Gaussian ($abla^2 G$)

... with its characteristic "Mexican hat" shape

1D Example: Continued

Lets consider a row of pixels in an image:

Where is the edge?

Zero-crossings of bottom graph

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

0	0	0	0	0	0	-1	-1	-1	-1	-1	0	0	0	0	0
0	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0
0	0	-1	-1	-1	-2	-3	-3	-3	-3	-3	-2	-1	-1	-1	0
0	0	-1	-1	-2	-3	-3	-3	-3	-3	-3	-3	-2	-1	-1	0
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1
0	-1	-2	-3	-3	-3	0	2	4	2	0	-3	-3	-3	-2	-1
-1	-1	-3	-3	-3	0	4	10	12	10	4	0	-3	-3	-3	-1
-1	-1	-3	-3	-2	2	10	18	21	18	10	2	-2	-3	-3	-1
-1	-1	-3	-3	-3	4	12	21	24	21	12	4	-3	-3	-3	-1
-1	-1	-3	-3	-2	2	10	18	21	18	10	2	-2	-3	-3	-1
-1	-1	-3	-3	-3	0	4	10	12	10	4	0	-3	-3	-3	-1
0	-1	-2	-3	-3	-3	0	2	4	2	0	-3	-3	-3	-2	-1
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1
0	0	-1	-1	-1	-2	-3	-3	-3	-3	-3	-2	-1	-1	-1	0
0	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0

17 x 17 LoG filter

Scale (σ)

Original Image

LoG Filter

Zero Crossings

Scale (σ)

Image From: A. Campilho

Assignment 1: High Frequency Image

original

smoothed (5x5 Gaussian)

original - smoothed (scaled by 4, offset +128)

Assignment 1: High Frequency Image

original

smoothed (5x5 Gaussian)

smoothed - original (scaled by 4, offset +128)

Assignment 1: High Frequency Image

