THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 11: Edge Detection (cont.)

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Menu for Today (october 2, 2020)

Topics:

— Edge Detection — Image Boundaries
— Marr / Hildreth and Canny Edges

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 5.1 - 5.2
— Next Lecture: Forsyth & Ponce (2nd ed.) 5.3.0 - 5.3.1

Reminders:

— Assignment 2. Scaled Representations, Face Detection and Image Blending




Today’s “fun” Example #1: Motion lllusion




INg Snakes lllusion

Rotat

Today’s “fun” Example #1




Lecture 10: Re-cap

A (discrete) approximation IS

or Ax

— "Hirst forward difference”
— Can be mplemented as a convolution




Lecture 10: Re-cap

A (discrete) approximation IS

or Ax
“forward difference” implemented as “‘backward difference” implemented as
correlation convolution correlation convolution

from left from right



Lecture 10: Re-cap

Use the "first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

| FEED
[N




A Sort Exercise: Derivative in Y Direction

Use the "first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

_ FEED
.- DI




Lecture 10: Re-cap

Derivative in Y (i.e., vertical) direction

=

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)
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Lecture 10: Re-cap

Derivative in X (i.e., horizontal) direction

=

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right)
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=stimating Derivatives

Question: \Why, in general, should the weights of a filter used for differentiation
sum to 07
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=stimating Derivatives

Question: \Why, in general, should the weights of a filter used for differentiation
sum to 07

Answer: Think of a constant image, I(X,Y) = k. The derivative is O. Therefore,
the weights of any filter used for differentiation need to sum to O.
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=stimating Derivatives

Question: \Why, in general, should the weights of a filter used for differentiation
sum to 07

Answer: Think of a constant image, I(X,Y) = k. The derivative is O. Therefore,
the weights of any filter used for differentiation need to sum to O.
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Edge Detection

Goal: Identify sudden changes in image
INntensity

This Is where most shape information Is
encoded

Example: artist’s line drawing (but artist
also is using object-level knowledge)

14



What Causes Edges”?’

e Depth discontinuity

e Surface orientation
discontinuity

e Reflectance
discontinuity (i.e.,
change in surface
material properties)

e Jllumination
discontinuity (e.qg.,
shadow)

Slide Credit: Christopher Rasmussen
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Smoothing and Differentiation

Edge: a location with high gradient (derivative)
Need smoothing to reduce noise prior to taking derivative
Need two derivatives, in x and y direction

We can use derivative of Gaussian filters
— because differentiation Is convolution, and
— convolution 1s assoclative F

Let ® denote convolution

DRGIX,Y)=(D2G)®I(X,Y)
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1D Example

Lets consider a row of pixels in an iImage:

1(X, 245)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge”
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1D Example: Derivative

Lets consider a row of pixels in an iImage:

T(X,245) Lo ot o

0 200 400 600 800 1000 1200 1400 1600 1800 2000

01(X,245) :
ox

| | | | |

| | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge”
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1D Example: smoothing + Derivative

Lets consider a row of pixels In an image:

Sigma = 50
I(X,245) Bl .. . A T N T —
Z | |
T d

| | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

| | | | | |
600 800 1000 1200 1400 1600 1800 2000

GOIXY) 3 [ TS O
7 A SN S S TN S— J ST S—

| | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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1D Example: smoothing + Derivative

Lets consider a row of pixels In an image:

Sigma = 50
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1D Example: Smoothing + Derivative (efficient)

Lets consider a row of pixels in an iImage:

.................................................

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Kernel
i

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

9G
— R I(X,Y) 2 @ @
TR I \

| 1 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Partial Derivatives of Gaussian

Slide Credit: Christopher Rasmussen
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Gradient Magnitude

Let I(X,Y) be a (digital) image

Let I, (X,Y)and I,(X,Y) be estimates of the partial derivatives in the x and ¥
directions, respectively.

Call these estimates I, and I,, (for short) The vector |1, I,,] is the gradient

The scalar \/ 12 + [5 'S the gradient magnitude
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Image Gradient

The gradient of an image:

V=
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Image Gradient

The gradient of an image:

V=
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Image Gradient

The gradient of an image:

V=
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Image Gradient

The gradient of an image: V f = Jf af

71 = [o.5

The gradient points in the direction of most rapid increase of intensity:
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Image Gradient

The gradient of an image: V f = Jf af

SRy
vf =105
The gradient points in the direction of most rapid increase of intensity:

The gradient direction is given by:

(how is this related to the direction of the edge?)
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Image Gradient

The gradient of an image: V f = Jf af

vr=[o.4

The gradient points in the direction of most rapid increase of intensity:

The gradient direction is given by: § = tan—1 (af/a—f)

(how is this related to the direction of the edge?)
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Image Gradient

The gradient of an image: V f = Jf af

SRy
vf =105
The gradient points in the direction of most rapid increase of intensity:

The gradient direction is given by:

(how is this related to the direction of the edge?)

The edge strength is given by the gradient magnitude:

29



Image Gradient

The gradient of an image: V f = Jf af

SRy
vf =105
The gradient points in the direction of most rapid increase of intensity:

The gradient direction is given by: § = tan—1 (af/a—f)

(how is this related to the direction of the edge?)

The edge strength is given by the gradient magnitude: ||V f|| = \/ ( a;’;) + (% )
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Forsyth & Ponce (2nd ed.) Figure 5.4

Increased smoothing:

— eliminates noise edges

— makes edges smoother and thicker
— removes fine detall
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Sobel Edge Detector

1. Use central differencing to compute gradient image (instead of first

forward differencing). This is more accurate. " 10 1°
—2 0 2
2. Threshold to obtain edges -1 0L

Thresholds are brittle, we can do better!
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Two Generic Approaches for Edge Detection

P

X

Two generic approaches to edge point detection:
— (significant) local extrema of a first derivative operator
— Zero crossings of a second derivative operator
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Marr / Hildreth Laplacian of Gaussian

A “zero crossings of a second derivative operator” approach

Design Criteria:
1. localization In space
2. localization In frequency

3. rotationally invariant
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Marr / Hildreth Laplacian of Gaussian

A “zero crossings of a second derivative operator” approach
Steps:
1. Gaussian for smoothing

2. Laplacian (Vv?) for differentiation where

02 (x,y) | &f(a
Vif(z,y) = 6,(;2 v) | 5,(;2 Y)

3. Locate zero-crossings in the Laplacian of the Gaussian ( VG ) where

—1 [ z*4y* 22442
VQG(x,y) — 27_‘_0_4 2 > exp 202

O
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Marr / Hildreth Laplacian of Gaussian

Here’s a 3D plot of the Laplacian of the Gaussian (V4G )

... with its characteristic “Mexican hat” shape
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1D Example: Continued

Lets consider a row of pixels in an iImage:

T(X,245) Bl o _

1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

I
Ok N Laplacian.of Gaussian. . ...t i, a
v 2 G 2 operator
'(T_) .
X
! i ! i ! i ! i !

0 200 400 600 800 1000 1200 1400 1600 1800 2000

VG I(X,Y) I T

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge” /ero-crossings of bottom graph
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Marr / Hildreth Laplacian of Gaussian

Scale (o)
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Image From: A. Campilho
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Marr / Hildreth Laplacian of Gaussian

Scale (o)

Original Image

Image From: A. Campilho
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Assignment 1: High Frequency Image

original smoothed original - smoothed
(5x5 Gaussian) (scaled by 4, offset +128)
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Assignment 1: High Frequency Image

original smoothed smoothed - original
(5x5 Gaussian) (scaled by 4, offset +128)
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Assignment 1: High Frequency Image

Laplacian of Gaussian
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