
Lecture 11: Edge Detection (cont.)

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today (October 2, 2020)
Topics: 

— Edge Detection 
— Marr / Hildreth and Canny Edges

Redings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 5.1 - 5.2 
— Next Lecture:       Forsyth & Ponce (2nd ed.) 5.3.0 - 5.3.1 

Reminders: 
— Assignment 2: Scaled Representations, Face Detection and Image Blending 

— Image Boundaries 
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Today’s “fun” Example #1: Motion Illusion
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Today’s “fun” Example #1: Rotating Snakes Illusion
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Lecture 10: Re-cap

A (discrete) approximation is  

— “First forward difference” 
— Can be implemented as a convolution
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= lim
✏!0

f(x+ ✏, y)� f(x, y)
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⇡ F (X + 1, y)� F (x, y)
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A (discrete) approximation is  @f
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= lim
✏!0

f(x+ ✏, y)� f(x, y)

✏
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⇡ F (X + 1, y)� F (x, y)
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“forward difference” implemented as

�1 1

correlation convolution

�11�1 1

“backward difference” implemented as

   correlation convolution

from left from right 

Lecture 10: Re-cap



Use the “first forward difference" to compute the image derivatives in X and Y 
directions.  

(Compute two arrays, one of        values and one of        values.)  

!7

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

@f

@y
@f

@x

Lecture 10: Re-cap



Use the “first forward difference" to compute the image derivatives in X and Y 
directions.  

(Compute two arrays, one of        values and one of        values.)  
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A Sort Exercise: Derivative in Y Direction
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Lecture 10: Re-cap
Derivative in Y (i.e., vertical) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle) 



!10

Derivative in X (i.e., horizontal) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right) 

Lecture 10: Re-cap



Estimating Derivatives 

Question: Why, in general, should the weights of a filter used for differentiation 
sum to 0?  
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Estimating Derivatives 

Question: Why, in general, should the weights of a filter used for differentiation 
sum to 0?  

Answer: Think of a constant image,                   . The derivative is 0. Therefore, 
the weights of any filter used for differentiation need to sum to 0. 
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I(X,Y ) = k

�1 1



Estimating Derivatives 

Question: Why, in general, should the weights of a filter used for differentiation 
sum to 0?  

Answer: Think of a constant image,                   . The derivative is 0. Therefore, 
the weights of any filter used for differentiation need to sum to 0. 
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i=1

fi · k = k
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fi = 0 =)
NX
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fi = 0

I(X,Y ) = k
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Edge Detection

Goal: Identify sudden changes in image 
intensity  

This is where most shape information is 
encoded  

Example: artist’s line drawing (but artist 
also is using object-level knowledge)  
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What Causes Edges?
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What causes an edge?

• Depth discontinuity
• Surface orientation 

discontinuity
• Reflectance 

discontinuity (i.e., 
change in surface 
material properties)

• Illumination 
discontinuity (e.g., 
shadow)

Slide credit: Christopher Rasmussen

Slide Credit: Christopher Rasmussen



Smoothing and Differentiation 

Edge: a location with high gradient (derivative) 

Need smoothing to reduce noise prior to taking derivative  

Need two derivatives, in x and y direction  

We can use derivative of Gaussian filters 
— because differentiation is convolution, and  
— convolution is associative  

Let     denote convolution  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D ⌦ (G⌦ I(X,Y )) = (D ⌦G)⌦ I(X,Y )

⌦



1D Example
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I(X, 245)

Lets consider a row of pixels in an image:

Where is the edge?



1D Example: Derivative
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I(X, 245)

@I(X, 245)

@x

Lets consider a row of pixels in an image:

Where is the edge?



!19

1D Example: Smoothing + Derivative

G

G⌦ I(X,Y )

I(X, 245)

Lets consider a row of pixels in an image:
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1D Example: Smoothing + Derivative

G

G⌦ I(X,Y )

@G⌦ I(X,Y )

@x

I(X, 245)

Lets consider a row of pixels in an image:
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@G

@x

⌦ I(X,Y )

@G

@x

1D Example: Smoothing + Derivative (efficient)
Lets consider a row of pixels in an image:

I(X, 245)



Partial Derivatives of Gaussian
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Derivative of Gaussian

Slide credit: Christopher Rasmussen
Slide Credit: Christopher Rasmussen



Gradient Magnitude

Let              be a (digital) image 

Let               and                be estimates of the partial derivatives in the    and    
directions, respectively. 

Call these estimates     and      (for short) The vector            is the gradient  

The scalar                 is the gradient magnitude  
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Image Gradient
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The gradient of an image: 



Image Gradient
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The gradient of an image: 



Image Gradient
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The gradient of an image: 



Image Gradient
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The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 



The gradient direction is given by: 

Image Gradient
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The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 

(how is this related to the direction of the edge?)



The gradient direction is given by: 

Image Gradient
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The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 

(how is this related to the direction of the edge?)



The edge strength is given by the gradient magnitude: 

The gradient direction is given by: 

Image Gradient
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The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 

(how is this related to the direction of the edge?)



The edge strength is given by the gradient magnitude: 

The gradient direction is given by: 

Image Gradient
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The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 

(how is this related to the direction of the edge?)



Increased smoothing: 
— eliminates noise edges 
— makes edges smoother and thicker  
— removes fine detail 
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Gradient Magnitude

Scale
Increased smoothing:
• Eliminates noise edges.
• Makes edges smoother and thicker.
• Removes fine detail.

� = 1 � = 2

Forsyth & Ponce (2nd ed.) Figure 5.4



Sobel Edge Detector
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1. Use central differencing to compute gradient image (instead of first 
forward differencing). This is more accurate. 

2. Threshold to obtain edges 

Sobel Gradient Sobel EdgesOriginal Image

Thresholds are brittle, we can do better! 

2

4
�1 0 1
�2 0 2
�1 0 1

3

5



Two Generic Approaches for Edge Detection
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Two generic approaches to edge point detection: 
— (significant) local extrema of a first derivative operator  
— zero crossings of a second derivative operator 



Marr / Hildreth Laplacian of Gaussian

A “zero crossings of a second derivative operator” approach  

Design Criteria:  

1. localization in space  

2. localization in frequency  

3. rotationally invariant  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Marr / Hildreth Laplacian of Gaussian
A “zero crossings of a second derivative operator” approach  

Steps:  
1. Gaussian for smoothing  

2. Laplacian (     ) for differentiation where  

3. Locate zero-crossings in the Laplacian of the Gaussian (         ) where  
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Here’s a 3D plot of the Laplacian of the Gaussian (         ) 

. . . with its characteristic “Mexican hat” shape
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Marr / Hildreth Laplacian of Gaussian

r2G
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Laplacian of Gaussian 
operator

Where is the edge?  Zero-crossings of bottom graph

1D Example: Continued

r2G
@G

@x

⌦ I(X,Y )

I(X, 245)

r2G

Lets consider a row of pixels in an image:
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Image From: A. Campilho

Marr / Hildreth Laplacian of Gaussian



Marr / Hildreth Laplacian of Gaussian
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Image From: A. Campilho



Assignment 1: High Frequency Image
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original - smoothed 
(scaled by 4, offset +128)

smoothed  
(5x5 Gaussian)

original

- =



Assignment 1: High Frequency Image
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smoothed - original 
(scaled by 4, offset +128)

smoothed  
(5x5 Gaussian)

original

- =



Assignment 1: High Frequency Image
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Gaussian
delta function

Laplacian of Gaussian


