
Lecture 10: Scaled Representations (cont.), Image Gradients

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Image Credit: https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html

https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html

Menu for Today (September 30, 2020)
Topics:

Redings:

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 4.5 - 4.7, 5.1
— Next Lecture: Forsyth & Ponce (2nd ed.) 5.1 - 5.2

Reminders:

— Assignment 1: Image Filtering and Hybrid Images is due today
— Assignment 2: Scaled Representations, Face Detection and Image Blending

(likely tonight)

— Scaled Representations
— Image Derivatives

!2

— Edge Detection

!3

Today’s “fun” Example: NCIS

!4

Today’s “fun” Example: NCIS

!4

Today’s “fun” Example: NCIS

!5

Today’s “fun” Example: LavaRAND

!6

Today’s “fun” Example: LavaRAND

Linear filtering the entire image computes the entire set of dot products, one for
each possible alignment of filter and image

Important Insight:
— filters look like the pattern they are intended to find
— filters find patterns they look like

Linear filtering is sometimes referred to as template matching

!7

Lecture 9: Re-cap Template Matching

!8

Let and be vectors. Let be the angle between them. We know

where · is dot product and | | is vector magnitude

cos ✓ =

a · b
|a||b| =

a · bp
(a · a)(b · b)

=

a

|a|
b

|b|

a b ✓

Lecture 9: Re-cap Template Matching

!9
Slide Credit: Kristen Grauman

Lecture 9: Re-cap Template Matching

!10

Credit: W. Freeman et al., “Computer Vision for Interactive Computer Graphics,”
IEEE Computer Graphics and Applications, 1998

Template (left), image (middle),
normalized correlation (right)

Note peak value at the true
position of the hand

Lecture 9: Re-cap

Template matching as (normalized) correlation

Template matching is not robust to changes in
— 2D spatial scale and 2D orientation
— 3D pose and viewing direction
— illumination

Scaled representations facilitate:
— template matching at multiple scales
— efficient search for image-to-image correspondences
— image analysis at multiple levels of detail

A Gaussian pyramid reduces artifacts introduced when sub-sampling to
coarser scales

!11

Lecture 9: Re-cap

Template Matching: Sub-sample with Gaussian Pre-filtering

!12

Gaussian filter
delete even rows

delete even
columns

1/2

1/4

1/8

Apply a smoothing filter first, then throw away half the
rows and columns

Gaussian filter
delete even rows

delete even
columns

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!13

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Template Matching: Sub-sample with Gaussian Pre-filtering

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!14

Template Matching: Sub-sample with NO Pre-filtering

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Gaussian Pre-filtering

!15

Question: How much smoothing is needed to avoid aliasing?

Answer: Smoothing should be sufficient to ensure that the resulting image
is band limited “enough” to ensure we can sample every other pixel.

Practically: For every image reduction of 0.5, smooth by � = 1

� =
1

2s
In General: Sigma inversely proportional to image reduction

Image Pyramid

An image pyramid is a collection of representations of an image. Typically,
each layer of the pyramid is half the width and half the height
of the previous layer.

In a Gaussian pyramid, each layer is smoothed by a Gaussian filter and
resampled to get the next layer

!16

Again, let denote convolution
 
Create each level from previous one
— smooth and (re)sample 

Smooth with Gaussian, taking advantage of the fact that

!17

Gaussian Pyramid

⌦

G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)

!18

1/2
1/4

1/4

Gaussian filter ()
take every 4th row

take every 4th column

� =
p
2

Gaussian filter ()
take odd rows

take odd columns

� = 1 Gaussian filter ()
take odd rows

take odd columns

� = 1

Gaussian Pyramid

!19

1/2
1/4

1/4

Gaussian filter ()
take every 4th row

take every 4th column

� =
p
2

Gaussian filter ()
take odd rows

take odd columns

� = 1 Gaussian filter ()
take odd rows

take odd columns

� = 1

Filter size: 7x 7

applied on

Image = M x N

Cost: 49 x M x N

Filter size: 7x 7

applied on

Image = M/2 x N/2

Cost: ~12 x M x N

Filter size: 9 x 9

applied on

Image = M x N

Cost: 81 x M x N

Gaussian Pyramid

Example 2: Gaussian Pyramid

!20
Forsyth & Ponce (2nd ed.) Figure 4.17

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Example 2: Gaussian Pyramid

!21

What happens to the details?
— They get smoothed out as we move
 to higher levels

Forsyth & Ponce (2nd ed.) Figure 4.17
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Example 2: Gaussian Pyramid

!22
Forsyth & Ponce (2nd ed.) Figure 4.17

What happens to the details?
— They get smoothed out as we move
 to higher levels

What is preserved at the higher levels?
— Mostly large uniform regions in the
 original image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Example 2: Gaussian Pyramid

!23

What happens to the details?
— They get smoothed out as we move
 to higher levels

What is preserved at the higher levels?
— Mostly large uniform regions in the
 original image

How would you reconstruct the original
image from the image at the upper
level?
— That’s not possible

Forsyth & Ponce (2nd ed.) Figure 4.17
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Example 2: Gaussian Pyramid

!24

What happens to the details?
— They get smoothed out as we move
 to higher levels

What is preserved at the higher levels?
— Mostly large uniform regions in the
 original image

How would you reconstruct the original
image from the image at the upper
level?
— That’s not possible

Forsyth & Ponce (2nd ed.) Figure 4.17
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

From Template Matching to Local Feature Detection

We’ll now shift from global template matching to local feature detection

Consider the problem of finding images of an elephant using a template

!25

From Template Matching to Local Feature Detection

We’ll now shift from global template matching to local feature detection

Consider the problem of finding images of an elephant using a template

An elephant looks different from different viewpoints
— from above (as in an aerial photograph or satellite image)
— head on
— sideways (i.e., in profile)
— rear on

What happens if parts of an elephant are obscured from view by trees, rocks,
other elephants?

!26

!27
Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba

From Template Matching to Local Feature Detection

!28

From Template Matching to Local Feature Detection

Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba

— Move from global template matching to local template matching

— Local template matching also called local feature detection

— Obvious local features to detect are edges and corners

!29

From Template Matching to Local Feature Detection

Human vision …

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

David Marr, 1970s

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

David Marr, 1970s

[Stages of Visual Representation, David Marr] * slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

— Move from global template matching to local template matching

— Local template matching also called local feature detection

— Obvious local features to detect are edges and corners

!33

From Template Matching to Local Feature Detection

Recall, for a 2D (continuous) function, f(x,y)  

Differentiation is linear and shift invariant, and therefore can be implemented as
a convolution

!34

Estimating Derivatives

@f

@x

= lim
✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x

⇡ F (X + 1, y)� F (x, y)

�x

Recall, for a 2D (continuous) function, f(x,y)  

Differentiation is linear and shift invariant, and therefore can be implemented as
a convolution

A (discrete) approximation is

!35

@f

@x

= lim
✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x

⇡ F (X + 1, y)� F (x, y)

�x

Estimating Derivatives

@f

@x

= lim
✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x

⇡ F (X + 1, y)� F (x, y)

�x

Recall, for a 2D (continuous) function, f(x,y)  

Differentiation is linear and shift invariant, and therefore can be implemented as
a convolution

A (discrete) approximation is

!36

@f

@x

= lim
✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x

⇡ F (X + 1, y)� F (x, y)

�x

Estimating Derivatives

@f

@x

= lim
✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x

⇡ F (X + 1, y)� F (x, y)

�x

�1 1

!37

A (discrete) approximation is @f
@x

= lim
✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x

⇡ F (X + 1, y)� F (x, y)

�x

�11

“forward difference” implemented as

�1 1

correlation convolution

�11�1 1

“backward difference” implemented as

 correlation convolution

from left from right

Estimating Derivatives

!38

A (discrete) approximation is @f
@x

= lim
✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x

⇡ F (X + 1, y)� F (x, y)

�x

�11

“forward difference” implemented as

�1 1

correlation convolution

�11�1 1

“backward difference” implemented as

 correlation convolution

from left from right

Estimating Derivatives

A similar definition (and approximation) holds for

Image noise tends to result in pixels not looking exactly like their neighbours,
so simple “finite differences” are sensitive to noise.

The usual way to deal with this problem is to smooth the image prior to
derivative estimation.

!39

@f

@y

Estimating Derivatives

Example 1D

!40

0.5

0.4

0.3

0.2

Example 1D

!41

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5Signal

Example 1D

!42

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5Signal

Derivative

Example 1D

!43

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5

0.0

Signal

Derivative

Example 1D

!44

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5

0.0

Signal

Derivative

Example 1D

!45

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5

0.0 0.0

Signal

Derivative

Example 1D

!46

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5

0.0 0.0

Signal

Derivative

Example 1D

!47

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5

0.0 0.0 -0.1

Signal

Derivative

Example 1D

!48

0.5

0.4

0.3

0.2

0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5Signal

Derivative 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.15 0.15 0.0 X

!49

Estimating Derivatives
Derivative in Y (i.e., vertical) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)

!50

Estimating Derivatives
Derivative in Y (i.e., vertical) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)

Note: visualized by adding 0.5/128

!51

Estimating Derivatives
Derivative in X (i.e., horizontal) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right)

!52

Derivative in Y (i.e., vertical) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)

Estimating Derivatives

!53

Derivative in X (i.e., horizontal) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right)

Estimating Derivatives

A Sort Exercise

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

!54

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in X Direction

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

!55

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

@f

@y
@f

@x

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

!56

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in X Direction

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

!57

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in X Direction

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

!58

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in X Direction

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

!59

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0

0 0 0 0 0

0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in X Direction

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

!60

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 -0.4

0 0 0 0 0

0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in X Direction

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

!61

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 -0.4 -0.3 -0.3 0

0 -0.4 -0.3 -0.3 0

0 0 0 0 0

0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in X Direction

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

!62

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in Y Direction

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

!63

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in Y Direction

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

!64

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in Y Direction

Use the “first forward difference" to compute the image derivatives in X and Y
directions.

(Compute two arrays, one of values and one of values.)

!65

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

@f

@y
@f

@x

A Sort Exercise: Derivative in Y Direction

Estimating Derivatives

Question: Why, in general, should the weights of a filter used for differentiation
sum to 0?

!66

Estimating Derivatives

Question: Why, in general, should the weights of a filter used for differentiation
sum to 0?

Answer: Think of a constant image, . The derivative is 0. Therefore,
the weights of any filter used for differentiation need to sum to 0.

!67

I(X,Y) = k

Estimating Derivatives

Question: Why, in general, should the weights of a filter used for differentiation
sum to 0?

Answer: Think of a constant image, . The derivative is 0. Therefore,
the weights of any filter used for differentiation need to sum to 0.

!68

NX

i=1

fi · k = k
NX

i=1

fi = 0 =)
NX

i=1

fi = 0

I(X,Y) = k

Edge Detection

Goal: Identify sudden changes in image
intensity

This is where most shape information is
encoded

Example: artist’s line drawing (but artist
also is using object-level knowledge)

!69

What Causes Edges?

!70

What causes an edge?

• Depth discontinuity
• Surface orientation

discontinuity
• Reflectance

discontinuity (i.e.,
change in surface
material properties)

• Illumination
discontinuity (e.g.,
shadow)

Slide credit: Christopher Rasmussen

Slide Credit: Christopher Rasmussen

Smoothing and Differentiation

Edge: a location with high gradient (derivative)

Need smoothing to reduce noise prior to taking derivative

Need two derivatives, in x and y direction

We can use derivative of Gaussian filters
— because differentiation is convolution, and
— convolution is associative

Let denote convolution  

!71

D ⌦ (G⌦ I(X,Y)) = (D ⌦G)⌦ I(X,Y)

⌦

1D Example

!72

I(X, 245)

Lets consider a row of pixels in an image:

Where is the edge?

1D Example: Derivative

!73

I(X, 245)

@I(X, 245)

@x

Lets consider a row of pixels in an image:

Where is the edge?

!74

1D Example: Smoothing + Derivative

G

G⌦ I(X,Y)

I(X, 245)

Lets consider a row of pixels in an image:

!75

1D Example: Smoothing + Derivative

G

G⌦ I(X,Y)

@G⌦ I(X,Y)

@x

I(X, 245)

Lets consider a row of pixels in an image:

!76

@G

@x

⌦ I(X,Y)

@G

@x

1D Example: Smoothing + Derivative (efficient)
Lets consider a row of pixels in an image:

I(X, 245)

Partial Derivatives of Gaussian

!77

Derivative of Gaussian

Slide credit: Christopher Rasmussen
Slide Credit: Christopher Rasmussen

