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Lecture 10: Scaled Representations (cont.), Image Gradients

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )


https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html

Menu for Today (september 30, 2020)

Topics:

— Scaled Representations — Edge Detection
— Image Derivatives

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 4.5 - 4.7, 5.1
— Next Lecture: Forsyth & Ponce (2nd ed.) 5.1 - 5.2

Reminders:

— Assignment 1: Image Filtering and Hybrid Images is due today

— Assignment 2. Scaled Representations, Face Detection and Image Blending
(likely tonight)
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Today’s “fun” Example: NCIS
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Joday’s “fun” Example: LavaRAND
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Lecture 9. Re-cap Template Matching

Linear filtering the entire image computes the entire set of dot products, one for
each possible alignment of filter and image

Important Insight:
— filters look like the pattern they are intended to find

— filters find patterns they look like

Linear filtering Is sometimes referred to as template matching



Lecture 9. Re-cap Template Matching

Let a and b be vectors. Let 0 be the angle between them. We know
a-b a-b - a b
allb|  \/(a-a)(b-b) la| |b]

where - is dot product and | | is vector magnitude

cos ) =




Lecture 9. Re-cap Template Matching

Detected template Correlation map

Slide Credit: Kristen Grauman



Lecture 9: Re-cap

Template (left), image (middle),
normalized correlation (right)

Note peak value at the true
position of the hand

Credit: . Freeman et al., “Computer Vision for Interactive Computer Graphics,”
|IEEE Computer Graphics and Applications, 1998

10



Lecture 9: Re-cap

Template matching as (hormalized) correlation

Template matching is not robust to changes in
— 2D spatial scale and 2D orientation

— 3D pose and viewing direction

— Illumination

Scaled representations facilitate:

— template matching at multiple scales

— efficient search for image-to-image correspondences
— Image analysis at multiple levels of detall

A Gaussian pyramid reduces artifacts introduced when sub-sampling to

coarser scales
11



Template Matching: Sub-sample with Gaussian Pre-filtering

Apply a smoothing filter first, then throw away half the
rows and columns

Gaussian filter
delete even rows
delete even
columns

Gaussian filter
delete even rows
delete even
columns

12 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Template Matching: Sub-sample with Gaussian Pre-filtering

1/4 (2Xx zoom) 1/8 (4x zoom)

13 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Template Matching: Sub-sample with NO Pre-filtering

1/4 (2Xx zoom) 1/8 (4x zoom)

14 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Gaussian Pre-filtering

Question: How much smoothing is needed to avoid aliasing?

Answer: Smoothing should be sufficient to ensure that the resulting image
IS band limited “enough” to ensure we can sample every other pixel.

Practically: For every image reduction of 0.5, smooth by o =1

1

In General: Sigma inversely proportional to image reduction o = P
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Image Pyramid

An image pyramid is a collection of representations of an image. lypically,
each layer of the pyramid is half the width and half the height

of the previous layer.

In a Gaussian pyramid, each layer is smoothed by a Gaussian filter and
resampled to get the next layer
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Gaussian Pyramid

Again, let ® denote convolution

Create each level from previous one
— smooth and (re)sample

Smooth with Gaussian, taking advantage of the fact that

Go, (%) © Gy (2) = G ymao3()
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Gaussian Pyramid

Gaussian filter ( o = 1)
take odd rows
take odd columns

Gaussian filter ( ¢ = 1)
take odd rows
take odd columns

Gaussian filter (o = V2)
take every 4th row
take every 4th column
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Gaussian Pyramio

Filter size: /x 7/ Filter size;: /x 7/

applied on

applied on

Image =M x N Image = M/2 x N/2

Cost: 49 x M x N Cost: ~12 xM x N

Filter size: 9 x 9
applied on
Image =M x N

Cost: 81 x M x N
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Example 2: Gaussian Pyramid
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Forsyth & Ponce (2nd ed. ) Figure 4.17 .

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramid
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Forsyth & Ponce (2nd ed.) Figure 4.17 N

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramid

@ @\\ /A /%\ @ ? f What happens to the details?
— They get smoothed out as we move

512 128 to higher levels

What is preserved at the higher levels”
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Forsyth & Ponce (2nd ed.) Figure 4.17 .

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramid

@@wmﬁﬁr
— They get smoothed out as we move

512 128 8 to higher levels

What happens to the details?

What is preserved at the higher levels”

— Mostly large unitform regions in the
original image

How would you reconstruct the original
image from the image at the upper
level?
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Forsyth & Ponce (2nd ed.) Figure 4.17 .

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramid

@@wmﬁﬁr
— They get smoothed out as we move

512 128 8 to higher levels

What happens to the details?

What is preserved at the higher levels”

— Mostly large unitform regions in the
original image

How would you reconstruct the original
image from the image at the upper
level?
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m.
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.
f

— [hat’s not possible
Forsyth & Ponce (2nd ed.) Figure 4.17 o

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



-rom lemplate Matching to Local Feature Detection

We’'ll now shift from global template matching to local feature detection

Consider the problem of finding images of an elephant using a template
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-rom lemplate Matching to Local Feature Detection

We’'ll now shift from global template matching to local feature detection
Consider the problem of finding images of an elephant using a template

An elephant looks different from different viewpoints

— from above (as in an aerial photograph or satellite image)
— head on

— sideways (i.e., in profile)

— rear on

What happens if parts of an elephant are obscured from view by trees, rocks,
other elephants?

20



-rom lemplate Matching to Local Feature Detection

Find the cha|r in this |mage Output of normalized correlation
J |

This i1s a chair

- Slide Credit: Li Fei-Fel, Rob Fergus, and Antonio Torralba



~rom lemplate Matching to Local Feature Detection

Find the chair in this image

Pretty much garbage
Simple template matchingis not going to make it

” Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba



-rom lemplate Matching to Local Feature Detection

— Move from global template matching to local template matching
— Local template matching also called local feature detection

— Obvious local features to detect are edges and corners

29



Human Vvision
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* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



David Marr, 19/70s

Copyrighted Material

VISION

David Marr

OOOOOOOOOO
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Tomaso Poggio

Copyrighted Material

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



David Marr, 1970s

2 2-D _sl<_ejch 3-D model

—

Input image Edge image
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Sketch

2 V2-D 3-D Model
Sketch Representation

Zero crossings, Local surface 3-D models

blobs, edges,
bars, ends,

orientation and hierarchically

Perceived . — .
discontinuities organized in

in depth and in terms of surface

surface and volumetric
orientation primitives

Intensities . .
virtual lines,

groups, curves
boundaries

| Stages of Visual Representation, David Marr | * slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



-rom lemplate Matching to Local Feature Detection

— Move from global template matching to local template matching
— Local template matching also called local feature detection

— Obvious local features to detect are edges and corners
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=stimating Derivatives

Recall, for a 2D (continuous) function, f(x,y)

of _ . flztey) — flzy)
Ox _e—>0 €

Differentiation is linear and shift invariant, and therefore can be implemented as
a convolution
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=stimating Derivatives

Recall, for a 2D (continuous) function, f(x,y)

of _ . flztey) — flzy)
0x _e—>() €

Differentiation is linear and shift invariant, and therefore can be implemented as
a convolution

A (discrete) approximation is

or Ax
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=stimating Derivatives

Recall, for a 2D (continuous) function, f(x,y)

of _ . flztey) — flzy)
0x _e—>() €

Differentiation is linear and shift invariant, and therefore can be implemented as
a convolution

A (discrete) approximation is

Of _ F(X +1,y)— Flz,y)
Ox Ax

36




=stimating Derivatives

A (discrete) approximation IS

or Ax
“forward difference” implemented as “‘backward difference” implemented as
correlation convolution correlation convolution

from left from right

37



=stimating Derivatives

A (discrete) approximation IS

or Ax
“forward difference” implemented as “‘backward difference” implemented as
correlation convolution correlation convolution

from left from right
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=stimating Derivatives

A similar definition (and approximation) holds for ?
Y

Image noise tends to result In pixels not looking exactly like their neighlbours,
so simple “finite differences” are sensitive to noise.

The usual way to deal with this problem is to smooth the image prior to
derivative estimation.

39



Example 1D

0.5
0.4
0.3
0.2
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Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 0.5 05 05 04 03 02 02 02 035 05 0.5
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Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 05 04 03 02 02 02 035 05 0.5

Derivative
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Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 05 04 03 02 02 02 035 05 0.5

Derivative 0.0
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Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 0.5 04 03 02 02 02 035 05 0.5

Derivative 0.0
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Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 0.5 04 03 02 02 02 035 05 0.5

Derivative 0.0 0.0
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Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 05 0.5 03 02 0.2 02 035 05 05

Derivative 0.0 0.0
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Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 05 0.5 03 02 0.2 02 035 05 05

Derivative 0.0 0.0 -0.1

47



Example 1D

0.5 oo
0.4
0.3

0.2 ®

Signal 05 05 05 04 03 02 02 0.2 0.35 0.5

Derivative 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.15 0.15 0.0 X
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Estimating Derivatives

Derivative in Y (i.e., vertical) direction
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Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)
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Estimating Derivatives

Derivative in Y (i.e., vertical) direction

\

Note: visualized by adding 0.5/128

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)
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Estimating Derivatives

Derivative in X (i.e., horizontal) direction

\

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right)
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Estimating Derivatives

Derivative in Y (i.e., vertical) direction
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Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)
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Estimating Derivatives

Derivative in X (i.e., horizontal) direction

\

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right)
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A Sort Exercise

Use the "first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

| FEED
[N

o4



A Sort Exercise: Derivative in X Direction

Use the "first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

o IR
e IR
o 1o o000
o 0 [0 00

0O



A Sort Exercise: Derivative in X Direction

Use the "first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

o IR
e IR
o 1o o000
o 0 [0 00
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A Sort Exercise: Derivative in X Direction

Use the "first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

| FEED
[N
InDDnn

Lo

of



A Sort Exercise: Derivative in X Direction

Use the "first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

| FEED
[N
InDDnn

Lo
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A Sort Exercise: Derivative in X Direction

Use the "first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

| FEEn
- D
Lo [0 o Lo |
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A Sort Exercise: Derivative in X Direction

Use the "first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

| FEEn
- D
Lo [0 o Lo |
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A Sort Exercise: Derivative in X Direction

Use the "first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

0 [-04/-0.3 -0.3 O

| FEED
[N

0 [-04/-0.3 -0.3 O

o1



A Sort Exercise: Derivative in Y Direction

Use the "first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

| FEED
_ [N

o Jojojololo
| O O
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A Sort Exercise: Derivative in Y Direction

Use the "first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

o IR

e (IR
ofofofofofo
| oo lolo
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A Sort Exercise: Derivative in Y Direction

Use the "first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

_ FEED
.- DI
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A Sort Exercise: Derivative in Y Direction

Use the "first forward difference” to compute the image derivatives in X and Y

directions.
o0f o0f
(Compute two arrays, one of 5 values and one of 6’_y values.)
X

| FEED
[N
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=stimating Derivatives

Question: \Why, in general, should the weights of a filter used for differentiation
sum to 07
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=stimating Derivatives

Question: \Why, in general, should the weights of a filter used for differentiation
sum to 07

Answer: Think of a constant image, I(X,Y) = k. The derivative is O. Therefore,
the weights of any filter used for differentiation need to sum to O.

o/



=stimating Derivatives

Question: \Why, in general, should the weights of a filter used for differentiation
sum to 07

Answer: Think of a constant image, I(X,Y) = k. The derivative is O. Therefore,
the weights of any filter used for differentiation need to sum to O.

N N N
Zfi’k:kai:O — Zfi:()
i—1 i—1 i—1
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Edge Detection

Goal: Identify sudden changes in image
INntensity

This Is where most shape information Is
encoded

Example: artist’s line drawing (but artist
also is using object-level knowledge)
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What Causes Edges”?’

e Depth discontinuity

e Surface orientation
discontinuity

e Reflectance
discontinuity (i.e.,
change in surface
material properties)

e Jllumination
discontinuity (e.qg.,
shadow)

Slide Credit: Christopher Rasmussen
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Smoothing and Differentiation

Edge: a location with high gradient (derivative)
Need smoothing to reduce noise prior to taking derivative
Need two derivatives, in x and y direction

We can use derivative of Gaussian filters
— because differentiation Is convolution, and
— convolution 1s assoclative F

Let ® denote convolution

DRGIX,Y)=(D2G)®I(X,Y)

[a



1D Example

Lets consider a row of pixels in an iImage:

1(X, 245)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge”

(2



1D Example: Derivative

Lets consider a row of pixels in an iImage:

T(X,245) Lo ot o

0 200 400 600 800 1000 1200 1400 1600 1800 2000

01(X,245) :
ox

| | | | |

| | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge”
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1D Example: smoothing + Derivative

Lets consider a row of pixels In an image:

Sigma = 50
I(X,245) Bl .. . A T N T —
Z | |
T d

| | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

| | | | | |
600 800 1000 1200 1400 1600 1800 2000

GOIXY) 3 [ TS O
7 A SN S S TN S— J ST S—

| | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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1D Example: smoothing + Derivative

Lets consider a row of pixels In an image:

Sigma = 50

I S S S M. L ' ' ! !
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1D Example: Smoothing + Derivative (efficient)

Lets consider a row of pixels in an iImage:

.................................................

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Kernel
i

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

9G
— R I(X,Y) 2 @ @
TR I \

| 1 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Partial Derivatives of Gaussian

0.15 - . : ey i 0.15 -
0.4 -

0.05 -

Slide Credit: Christopher Rasmussen
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