THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: https://en.wikipedia.org/wiki/Corner detection

Lecture 9: Corner Detection

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )


https://en.wikipedia.org/wiki/Corner_detection

Menu for Today (February 4, 2020)

Topics:

— Corner Detection — Harris Corner Detector
— Autocorrelation

Redings:

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 5.3.0 - 5.3.1
— Next Lecture: Forsyth & Ponce (2nd ed.) 6.1, 6.3

Reminders:

— Assignment 2: Face Detection in a Scaled Representation is February 11th



Today’s “fun” Example:




Today’s “fun” Example:

Blue stripe

Green stripe







Lecture 8: Re-cap

Physical properties of a 3D scene cause “edges” in an image:
— depth discontinuity

— surface orientation discontinuity

— reflectance discontinuity

— Illumination boundaries

Iwo generic approaches to edge detection:
— local extrema of a first derivative operator = Canny
— zero crossings of a second derivative operator = Marr/Hildreth

Many algorithms consider “boundary detection” as a high-level
recognition task and output a probability or confidence that a pixel Is on a
human-perceived boundary



Motivation: lemplate Matching

When might template matching fail”

— Different scales 0

— Different orientation &

— Partial Occlusions g |
J

— — Different Perspective
— Lighting conditions ‘

_ Left vs. Right hana & w

— Motion / blur




Motivation: Template Matching in Scaled Representation

When might template matching in scaled representation fail”

—Bmmm—g—'a'—

— Different orientation &

— Partial Occlusions g |
J

— Different Perspective

— Lighting conditions ‘

_ Left vs. Right hana ﬂl \&

— Motion / blur



Motivation: Edge Matching in Scaled Representation
When might edge matching in scaled representation fail”?
— Different orientation &
— Left vs. Right hano @ \&

— Partial Occlusions w |
J

— Different Perspective

— Motion / blur



Planar Object Instance Recognition

Database of planar objects Instance recognition

BASAATI

10 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Recognition under Occlusion

11 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Image Matching

19 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Image Matching

113 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Finding Correspondences

NASA Mars Rover images

14 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Finding Correspondences

15 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What is a Good Feature”

Pick a point In the Image.
FIiNnd it again in the next image.

16 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What is a Good Feature”

Pick a point In the Image.
FIiNnd it again in the next image.

17 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What is a Good Feature”

Pick a point In the Image.
FIiNnd it again in the next iImage.

18 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What is a Good Feature”

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.
Distinctive: individual features can be easily matched

Efficient: close to real-time performance
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What Is a corner??

Image Credit: John Shakespeare, Sydney Morning Herald

We can think of a corner as any locally distinct 2D image feature that (hopefully)
corresponds to a distinct position on an 3D object of interest in the scene.

20



What Is a corner??

Corner

Interest Point

Image Credit: John Shakespeare, Sydney Morning Herald

We can think of a corner as any locally distinct 2D image feature that (hopefully)
corresponds to a distinct position on an 3D object of interest in the scene.
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Why are corners distinct’/

A corner can be localized reliably.

Thought experiment:

22



Why are corners distinct”

N

A corner can be localized reliably.
/

Thought experiment:

S —

. . “flat’ region:
— Place a small window over a patch of constant image value. ar Tegen

23 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

N

A corner can be localized reliably.
/

Thought experiment:

| | “flat” region:
— Place a small window over a patch of constant image value. no change in all

f you slide the window In any direction, the image in the directions
window will not change.

o4 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

A corner can be localized reliably.

Thought experiment:

. . 11 d ”:
— Place a small window over a patch of constant image value. ce9e

f you slide the window In any direction, the image in the
window will not change.

— Place a small window over an edge.

o5 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value edge”
' Nno change along

f you slide the window In any direction, the image in the the edge direction
window will not change.

— Place a small window over an edge. If you slide the window In the direction of
the edge, the image in the window will not change

— Cannot estimate location along an edge (a.k.a., aperture problem)

26 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value. corner

f you slide the window In any direction, the image in the
window will not change.

— Place a small window over an edge. If you slide the window In the direction of
the edge, the image in the window will not change

— Cannot estimate location along an edge (a.k.a., aperture problem)

— Place a small window over a corner.

o7 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

A corner can be localized reliably.

Thought experiment:

—_ - —

| . ‘corner’:
— Place a small window over a patch of constant image value. significant change

f you slide the window In any direction, the image in the in all directions
window will not change.

— Place a small window over an edge. If you slide the window In the direction of
the edge, the image in the window will not change

— Cannot estimate location along an edge (a.k.a., aperture problem)

— Place a small window over a corner. If you slide the window in any direction,
the image in the window changes.

08 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Corner Detection

Edge detectors pertorm poorly at corners
Observations:

— The gradient is Ill defined exactly at a corner
— Near a corner, the gradient has two (or more) distinct values

29



How do you find a corner”/

[Moravec 1980]

NA

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

30 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Autocorrelation

Autocorrelation is the correlation of the image with itself.

— Windows centered on an edge point will have autocorrelation that falls off

slowly In the direction along the edge and rapidly in the direction across
(oerpendicular to) the edge.

— Windows centered on a corner point will have autocorrelation that falls of
rapidly in all directions.
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Autocorrelation

Szeliski, Figure 4.5
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Autocorrelation

Szeliski, Figure 4.5
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Autocorrelation

Szeliski, Figure 4.5
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Autocorrelation

Szeliski, Figure 4.5
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Autocorrelation

Szeliski, Figure 4.5
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Autocorrelation
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Szeliski, Figure 4.5
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Autocorrelation

Autocorrelation is the correlation of the image with itself.

— Windows centered on an edge point will have autocorrelation that falls off

slowly In the direction along the edge and rapidly in the direction across
(oerpendicular to) the edge.

— Windows centered on a corner point will have autocorrelation that falls of
rapidly in all directions.
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Harris Corner Detection

l.Compute 1mage gradients over
small region

2.Compute the covariance matrix pEP pEP

3.Compute eigenvectors and
eilgenvalues

4 .Use threshold on eigenvalues to
detect corners

19 Slide Adopted: loannis (Yannis) Gkioulekas (CMU)



1. Compute image gradients over a small region

40

(not just a single pixel)

array of x gradients

Iy

o
- Oz

array of y gradients

I

"=y

ol

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Visualization of Gradients

»

- y . " .AA
WA I R

image

X derivative

Y derivative

lekas (CMU)

IOU

loannis (Yannis) Gk

Slide Credi
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What Does a Distribution Tells You About the Region”

49 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What Does a Distribution Tells You About the Region”

43 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What Does a Distribution Tells You About the Region”

Distribution reveals the orientation and magnitude

A4 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What Does a Distribution Tells You About the Region”

Distribution reveals the orientation and magnitude

How do we quantify the orientation and magnitude”
A5 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

>, 1.1, ) 1.1,

pEP pEP

C=|ynL ¥ 1,1,

peEP pEP

40



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner
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2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner
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2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner

array of x gradients array of y gradients
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2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner

> 11y
C o pEP

2.

pEP

2. Iyl
pEP

50



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)

By computing the gradient covariance matrix ...

>, 1.1, ) 1.1,

C o pEP pEP
| 2 Lyl ) Iyl
pEP pEP

we are fitting a quadratic to the gradients over a small image region

51



Simple Case

Local Image Patch

> LI, >, 1.1,

C __ peP peP

> Iyl ) Il |
_ peP pe P

I
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Simple Case

I, 1,
|]
Local Image Patch

C __ peP peP

2, Iyle 2, I,

_ peP peP

C S LI, Y L,
|2
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Simple Case

-

Local Image Patch high value along vertical
strip of pixels and O elsewhere

[ > .1, ) [, 1,
(' — peP peEP _ f?
Z Iylzv Z [y]y )

_ peP peP

o4



Simple Case

Local Image Patch high value along vertical high value along horizontal
strip of pixels and O elsewhere strip of pixels and O elsewhere
> LI, >, 1.1,
P cP
O = | PS P - N
2, Iyle >, Iy, -
_ peP peP

0O



Simple Case

Local Image Patch high value along vertical high value along horizontal
strip of pixels and O elsewhere strip of pixels and O elsewhere
TS L, Y L, _ _
() — pel peP _ At 0
S Y I 0 Ay
_ peP peP
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General Case

't can be shown that since every C is symmetric:

S L1, Y LI, _ _

_ | peP peP =1 A O
¢ = > LI Y L | Tl g |
pE pE

... SO general case Is like a rotated version of the simple one

of



3. Computing Eigenvalues and Eigenvectors

58 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Quick Eigenvalue/Eigenvector Review

Given a square matrix A, a scalar A is called an eigenvalue of A if there exists
a nhonzero vector v that satisfies

Av = )\v

The vector v is called an eigenvector for A corresponding to the eigenvalue ).

The eigenvalues of A are obtained by solving

det(A — \I) =0

59



3. Computing Eigenvalues and Eigenvectors

eigenvalue

!

Y
Ce = Xe (C'—=X)e=0
N/
elgenvector

80 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



3. Computing Eigenvalues and Eigenvectors

eigenvalue
i
\
Ce = de (C'—=X)e=0
N/
elgenvector
1. Compute the determinant of (O — M\

(returns a polynomial)

6 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



3. Computing Eigenvalues and Eigenvectors

eigenvalue
l
C'e = le (C’—)\I)e:()
N/
elgenvector
1. Compute the determinant of O — \]

(returns a polynomial)

62 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



3. Computing Eigenvalues and Eigenvectors

eigenvalue

|

Ce = Ae (C'—X)e=0
N/

elgenvector

1. Compute the determinant of O — \]
(returns a polynomial)

63 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Compute the determinant of O — \]
(returns a polynomial)

64 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example
2 1 2—-X 1
C=11 2 det(_ 1 2—>\_)
1. Compute the determinant of O — \]

(returns a polynomial)

65 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example
2 1 2—-X 1
C=11 2 det(_ 1 2—>\_)
(2=A)2-A)— (D)
1. Compute the determinant of O — \]

(returns a polynomial)

65 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example

| |
— DO

92—\ 1
det(_ | 2_)\_)

(2=2)2 =) = 1))

DO
| |

1. Compute the determinant of
(returns a polynomial)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example

| |
— DO

92—\ 1
det(_ | 2_)\_)

(2=2)2 =) = 1))

DO
| |

1. Compute the determinant of
(returns a polynomial)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Visualization as Quadratic

flz,y) =2z° +y°

can be written In matrix form like this...

fley) =1z y | (1) (1) .

67 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Visualization as Quadratic

flz,y) =2z° +y°

can be written In matrix form like this...

flz,y)=[z y ]

0
1 -

!
0

X
Y

Result of Computing Eigenvalues and Eigenvectors (using SVD)

elgenvectors

"D (@)
_01_

axis of the
‘ellipse slice’

03

eigenvalues

along diagonal

Do
0@,

1 01"

- O 1 d

scaling of the quadratic
along the axis

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Visualization as Ellipse

A 0
0 Ao

Since C is symmetric, we have (' = R R

We can visualize C' as an ellipse with axis lengths determined by the eigenvalues
and orientation determined by R

Ellipse equation:

= Cconst

flx,y) =z y |

eI

69 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Visualization as Ellipse

A 0
0 Ao

Since C is symmetric, we have (' = R R

We can visualize C' as an ellipse with axis lengths determined by the eigenvalues
and orientation determined by R

direction of the
MINor axis

0|z O\'max)_l/gz\’
1 J = const direction of
S the major
axis

70 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Ellipse equation:

flx,y) =z y |

eI




Interpreting Eigenvalues

Ao,

Al

71 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Interpreting Eigenvalues

: - ‘horizontal’ edge

Ay >> Ny

corner

_ B

A~ 2

A >> Ay
‘vertical’ edge J

70 Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Interpreting Eigenvalues

- ‘horizontal’ edge

Ay >> Ny

o 8 &8 8 8 8

10

)\1“’%@

100 .

73

corner

_ B

A >> A,

‘vertical’ edge J

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Interpreting Eigenvalues

oy

Al

74 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Interpreting Eigenvalues
Ao |

Image Credit: loannis (Yannis) Gkioulekas (CMU)

lgs



4. Threshold on Eigenvalues to Detect Corners

76 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



4. Threshold on Eigenvalues to Detect Corners
(a Function of )

Ao,

Think of a function to
score ‘cornerness’

77 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



4. Threshold on Eigenvalues to Detect Corners
(a function of )

oy

strong

corner Think of a function to
score ‘cornerness’

78 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



4. Threshold on Eigenvalues to Detect Corners
(a function of )

A2 4

corner

Use the smallest eigenvalue as the
response function

IIliIl(Al, )\2)

79 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



A
4. Threshold on Eigenvalues to Detect Corners
(a Function of )

A2

A1de — k(A1 + A2)?

80 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



4. Threshold on Eigenvalues to Detect Corners
(a function of )

A2

corner

Al)\g — K,()\l -|- )\2)2

det(C) — ktrace*(C)

(more efficient)

9 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



4. Threshold on Eigenvalues to Detect Corners
(a function of )

det(M) — strace?(M) <0

A2

corner

det(M) — wtrace?(M) > 0

Al)\g — K,()\l -|- )\2)2

det(C) — ktrace*(C)

- det(M) — rtrace®(M) <0 (more efficient)

det(M) — strace*(M) <0 1
89 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



4. Threshold on Eigenvalues to Detect Corners
(a function of )

Harris & Stephens (1988)
det(C) — ktrace*(C)

Kanade & Tomasi (1994)

IIliIl()\l, Ag)

Nobel (1998)
det(C)
trace(C') + ¢

93 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Harris Corner Detection Review

— Filter image with Gaussian
— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel
— Harris uses a Gaussian window

— Solve for product of the A’s

— If N’'s both are big (product reaches local maximum above threshold) then we
have a corner

— Harris also checks that ratio of As is not too high

84



Compute the Covariance Matrix

Sum can be implemented as an
(unnormalized) box filter with

>, I.1, > I.I,

C o pEP peP
R EPIR I IR 7
pE P pEP

Harris uses a Gaussian weighting instead

89



Compute the Covariance Matrix E) = Sue 1+ 40~ 1]

E 7] 1 \

Sum can be implemented as an cror Window Shifted ensity

| ' : function function intensi
(unnormalized) box filter with ! i tensity

>, I.1, > I.I,

C o pEP pEP
| 2 Lyl ) Iyl
pEP pEP

Harris uses a Gaussian weighting instead

(has to do with bilinear Taylor expansion of 2D function that measures
change of intensity for small shifts ... remember AutoCorrelation)

380



Harris Corner Detection Review

— Filter image with Gaussian
— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel Harris & Stephens (1988)

— Harris uses a Gaussian window ,
det(C') — wtrace”(C)
— Solve for product of the A’s

— If N's both are big (product reaches local maximum above threshold) then we
have a corner

— Harris also checks that ratio of As is not too high

87



Example: Harris Corner Detection

O O O O | OO | 0O | O

33



Example: Harris Corner Detection

L ets compute a measure of “corner-ness” for the green pixel.

O O O O | OO | 0O | O
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Example: Harris Corner Detection

L ets compute a measure of “corner-ness” for the green pixel.
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Example: Harris Corner Detection

L ets compute a measure of “corner-ness” for the green pixel.

0 0 0 0 0 O
11,0 0 -1 1
1.0 0 0 1 0
410 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
=% 10 40 0 1 0
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Example: Harris Corner Detection

L ets compute a measure of “corner-ness” for the green pixel.
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Example: Harris Corner Detection

L ets compute a measure of “corner-ness” for the green pixel.
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Example: Harris Corner Detection

L ets compute a measure of “corner-ness” for the green pixel.

94



Example: Harris Corner Detection

L ets compute a measure of “corner-ness” for the green pixel.

C = ‘;’ i —> Ay = 1.4384: Ay = 5.5616
0 0 0 0 -1 0
11 0 0 0 0
1.0 0 0 0 0 0 0
1.0 0 0 0 0 1. 0 0 0 0 O
0 -1 0 0 1 O 0 0 0 0 0 0 O
0 -1 0 0 1 O 0 0 0 0 0 0 O
0 -1 0 0 1 O 0 0 0 0 0 0 O
=% 10 40 0 1 0 =%
Ox oy
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Example: Harris Corner Detection

L ets compute a measure of “corner-ness” for the green pixel.

L
C=|, § |=>\=1438%\ =55616
' ' det(C) — 0.04trace?(C) = 6.04

O 0O O 0 | -1 0

-1 1 1 0 0O O 0

-110 | O 0 O 0O O 0

-110]0, 0 1 0 O/ 1 0 00 00

O -1 00 1]0 O 0O O 00 0O

O -1 00 1|0 O/ 0O O 00 0O

O -1 00 1]0 O/ 0O O 00 0O
o1 o1
_9 g 1.0 0 1 o0 =%
= oz Y Oy
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Example: Harris Corner Detection

L ets compute a measure of “corner-ness” for the green pixel.

C = g 8 => A\ =3; A =0
det(C) — 0.04trace*(C) = —0.36
O 0 0 00 O o/ -1 0 00 -1 0
111,00 -1 1 o 0o -1/-1 171 0
-1 000 1 0 o/ 0 0 000 O
-1 000 1 0 o/1 0 000 O
O -1 010 0 O/ 0 0]J]0 0 010
O -1 010 0 O 0 0100010
O -1 010 0 O/ 0 01000710
=% 10 40 0 1]0 =%
ox 0y
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Example: Harris Corner Detection

L ets compute a measure of “corner-ness” for the green pixel.

O O O O OO o000 o

C =

EEE

— O 2 -

:>)\1:3;)\2:2

O O O O O o o | O
O O O O O O 0o O

93

det(C) — 0.04trace*(C) = 5

o | O

O O O O] o O O

o o o =

O O O O O

O | O O O O

O | O O OO

O O O OO

O O O O o o O




Harris Corner Detection Review

— Filter image with Gaussian
— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel
— Harris uses a Gaussian window

— Solve for product of the A’s

— If N’'s both are big (product reaches local maximum above threshold) then we
have a corner

— Harris also checks that ratio of As is not too high
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Properties: Rotational Invariance

> > 4
— =

Ellipse rotates but Its shape
(eigenvalues) remains the same

Corner response is invariant to image rotation

100 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance

threshold //'\\//\\_/\/ﬂ\ / vxv/’\\

X (image coordinate) X (image coordinate)

101 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Properties: NOT Invariant to Scale Changes

edge!
corner!

C

102 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 1
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Exam '
ple 2. \Wagon Wheel (Harris Results

¢, ., o .
N "‘0"‘ .' - X
_g3% > " o e

- H.Qr.fx wl!

) o =2(155points) o ‘ ' ts)
INTS O

4 (87 points)
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Example 3: Crash Test Dummy (Harris Result)

corner response image oc=1 (175 points)

Original Image Credit: John Shakespeare, Sydney Morning Herald
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Summary Table

Summary of what we have seen so far:

Representation Result is. .. Approach Technique
ntensity dense templgte (normal.lzed)
matching correlation
edge relatively derivatives 2 @G, Canny
sparse
locally distinct .
corner sparse faatures Harris
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