

CPSC 425: Computer Vision

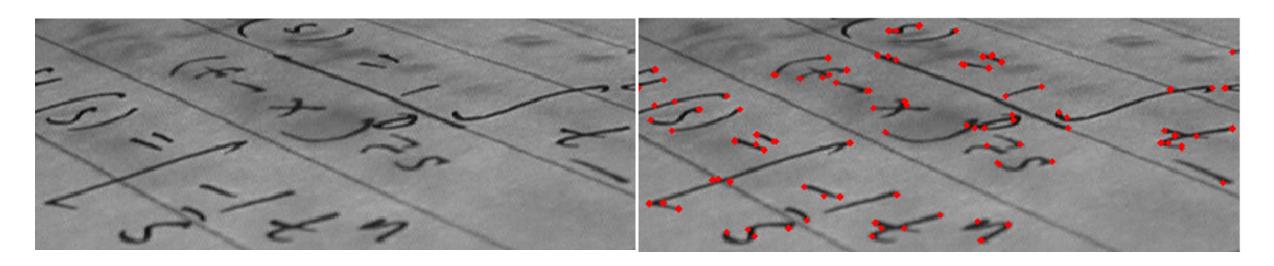


Image Credit: https://en.wikipedia.org/wiki/Corner_detection

Lecture 9: Corner Detection

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Menu for Today (February 4, 2020)

Topics:

- Corner Detection
- Autocorrelation

— Harris Corner Detector

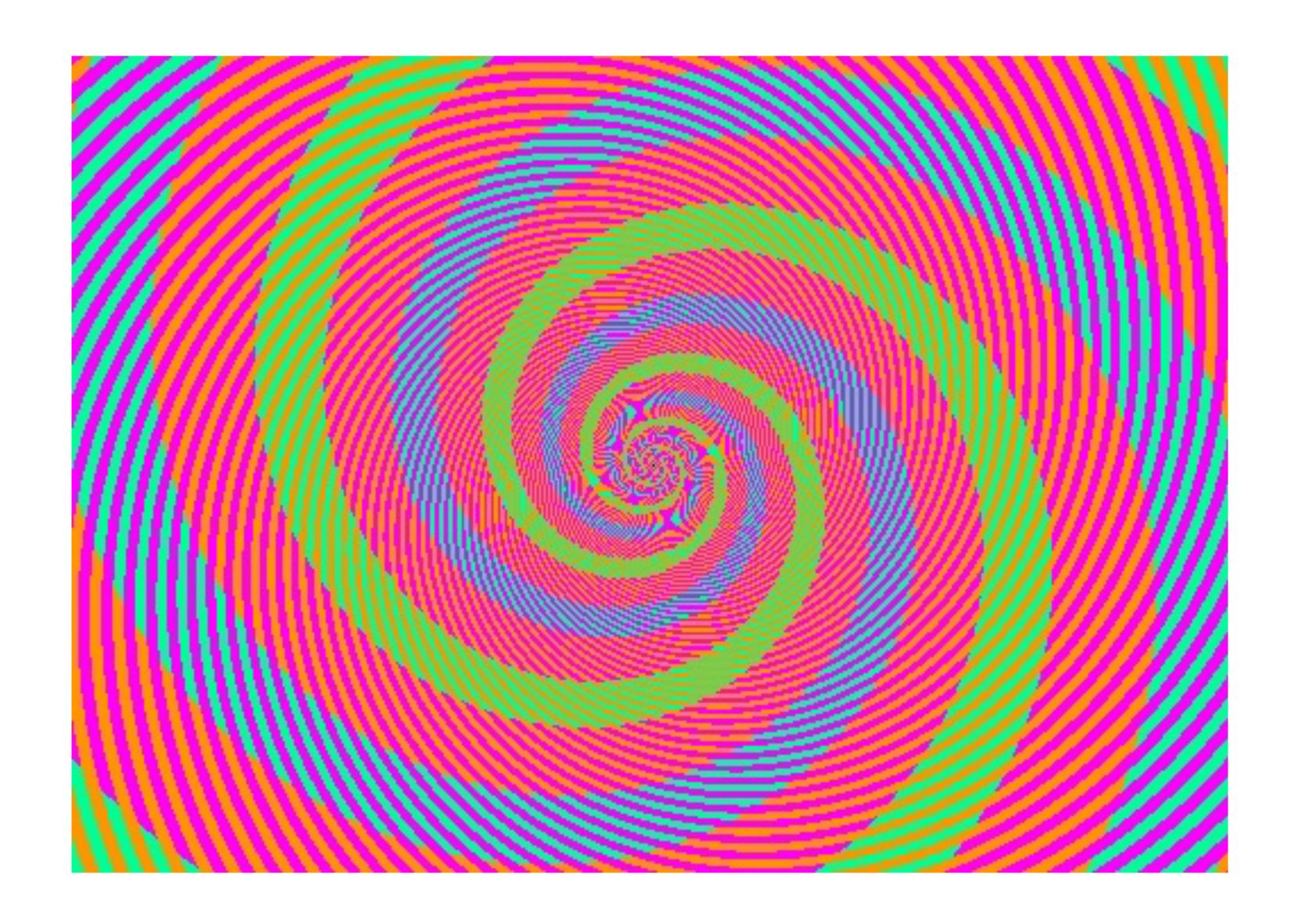
Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 5.3.0 5.3.1
- Next Lecture: Forsyth & Ponce (2nd ed.) 6.1, 6.3

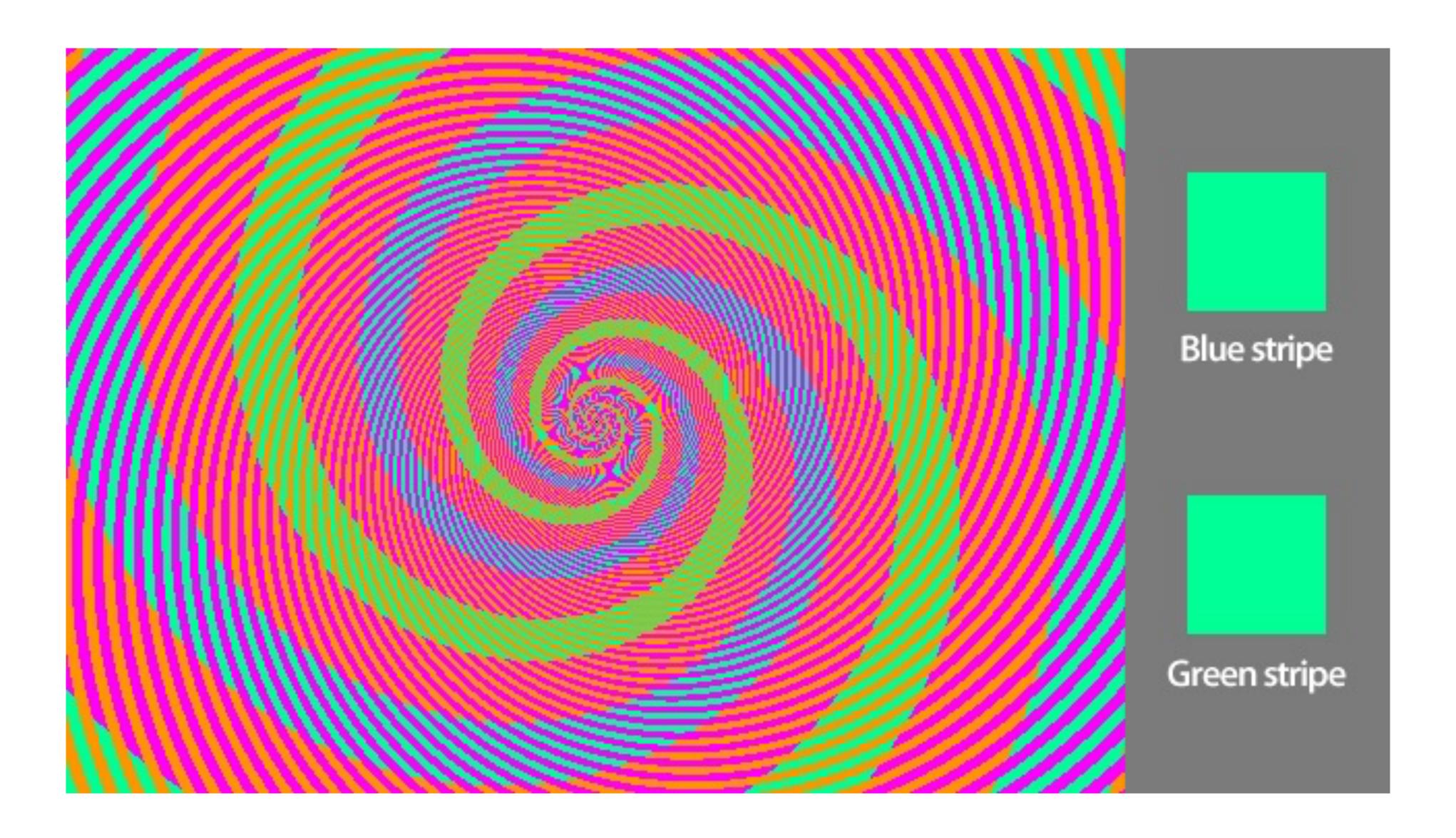
Reminders:

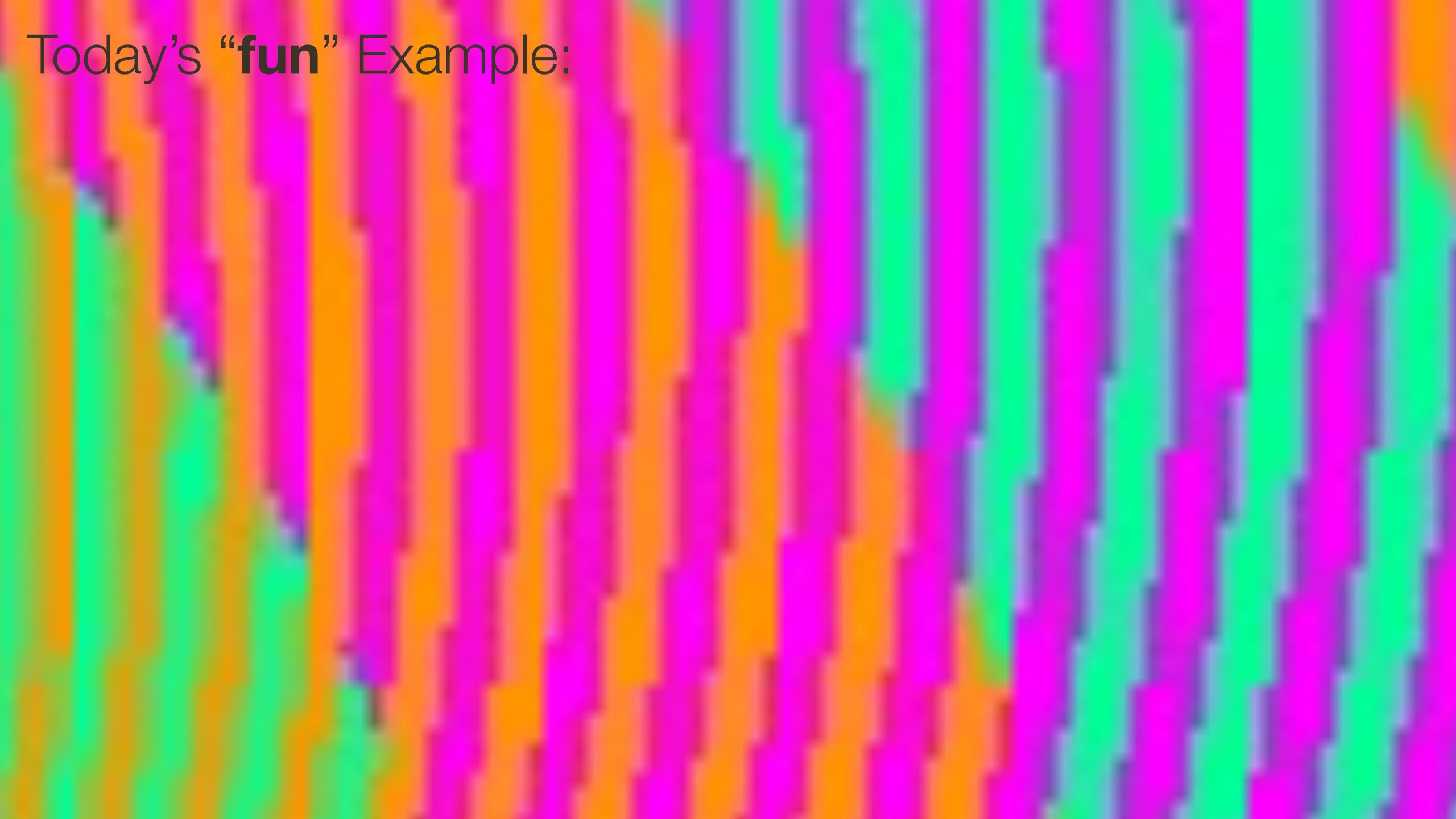
Assignment 2: Face Detection in a Scaled Representation is February 11th

Today's "fun" Example:



Today's "fun" Example:





Lecture 8: Re-cap

Physical properties of a 3D scene cause "edges" in an image:

- depth discontinuity
- surface orientation discontinuity
- reflectance discontinuity
- illumination boundaries

Two generic approaches to edge detection:

- local extrema of a first derivative operator → Canny
- zero crossings of a second derivative operator → Marr/Hildreth

Many algorithms consider "**boundary detection**" as a high-level recognition task and output a probability or confidence that a pixel is on a human-perceived boundary

Motivation: Template Matching

When might template matching fail?

Different scales

Different orientation

Lighting conditions

Left vs. Right hand

Partial Occlusions

Different Perspective

— Motion / blur

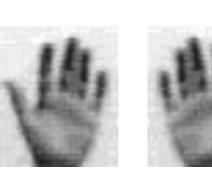
Motivation: Template Matching in Scaled Representation

When might template matching in scaled representation fail?

Different orientation

Lighting conditions

Left vs. Right hand



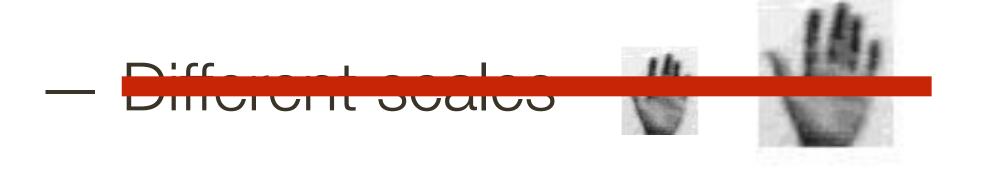
Partial Occlusions

Different Perspective

— Motion / blur

Motivation: Edge Matching in Scaled Representation

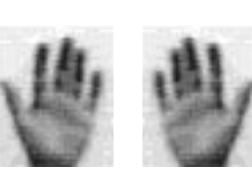
When might edge matching in scaled representation fail?



Different orientation

— Lighting conditions

Left vs. Right hand



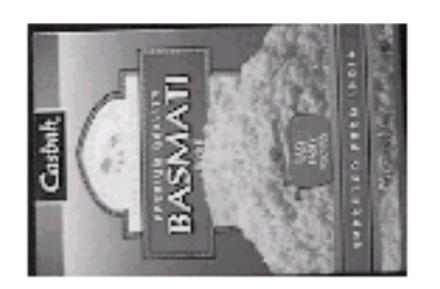
Partial Occlusions

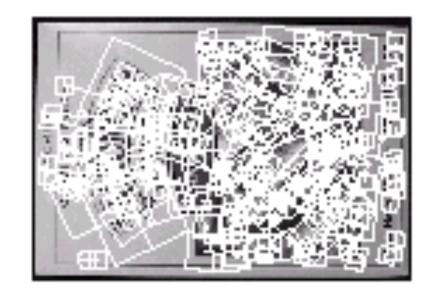
Different Perspective

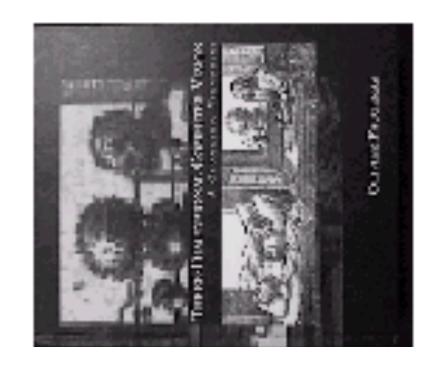
— Motion / blur

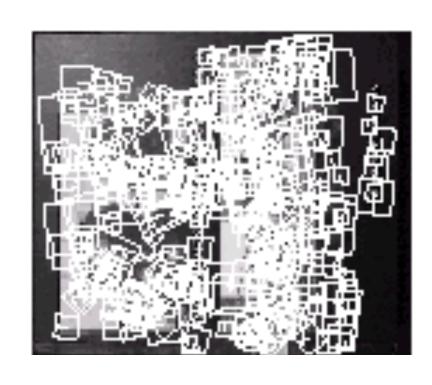
Planar Object Instance Recognition

Database of planar objects



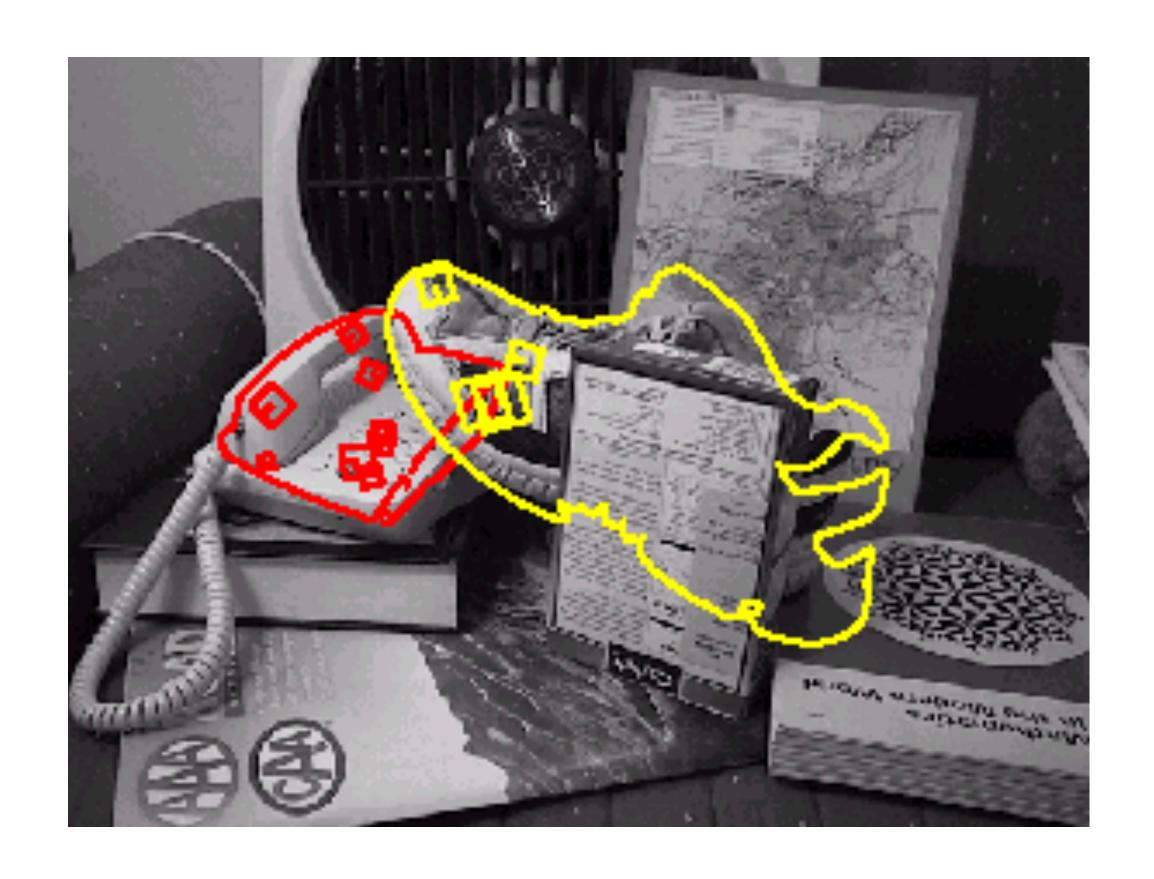






Instance recognition

Recognition under Occlusion



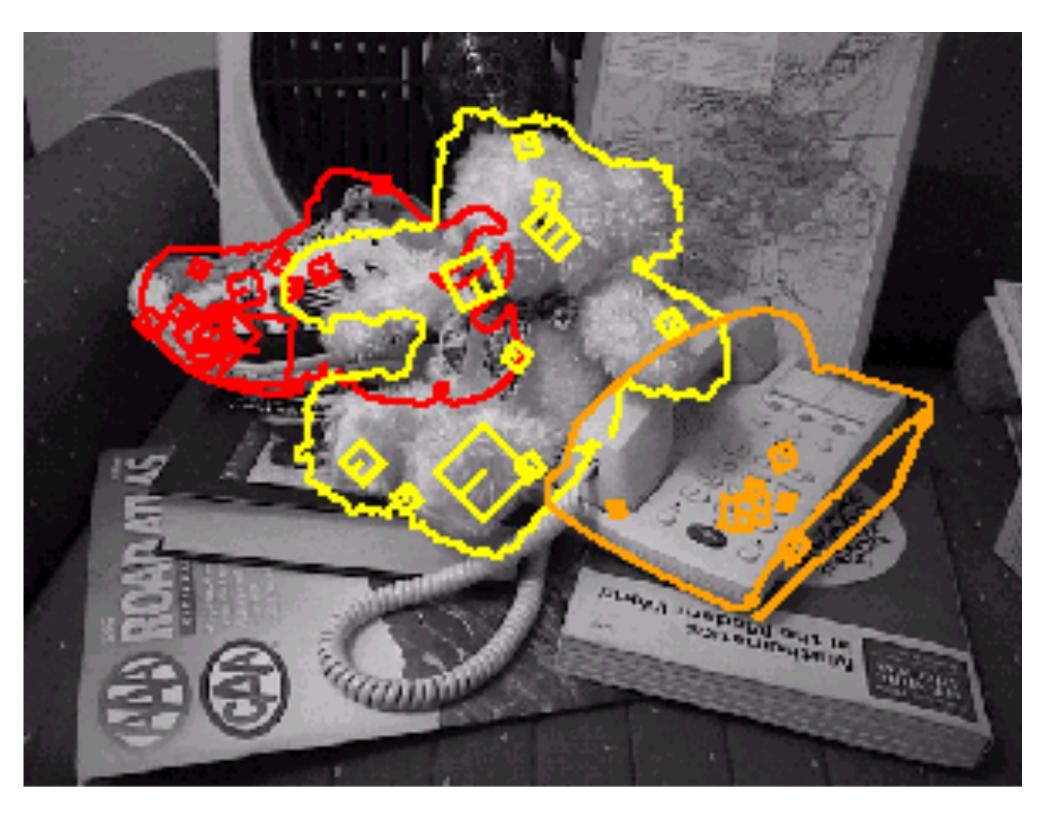
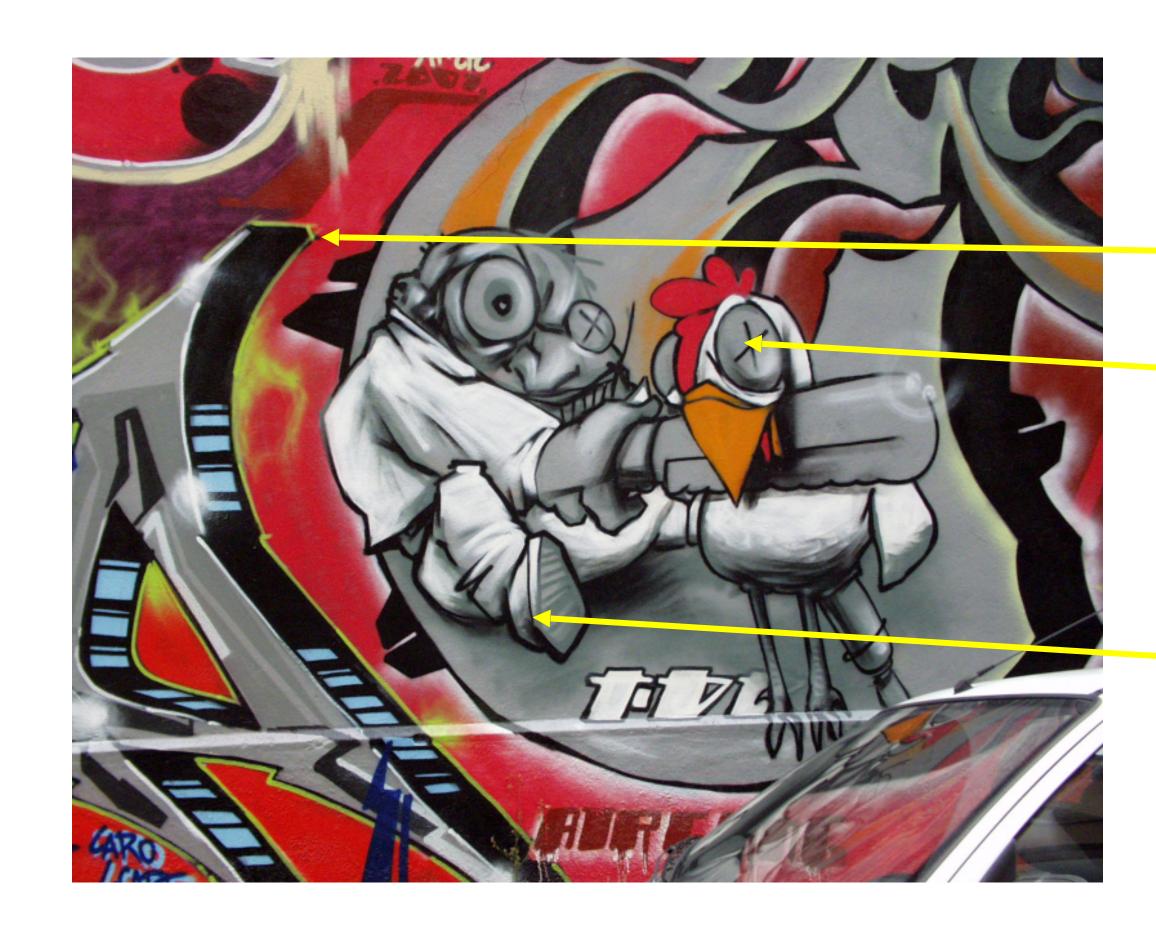
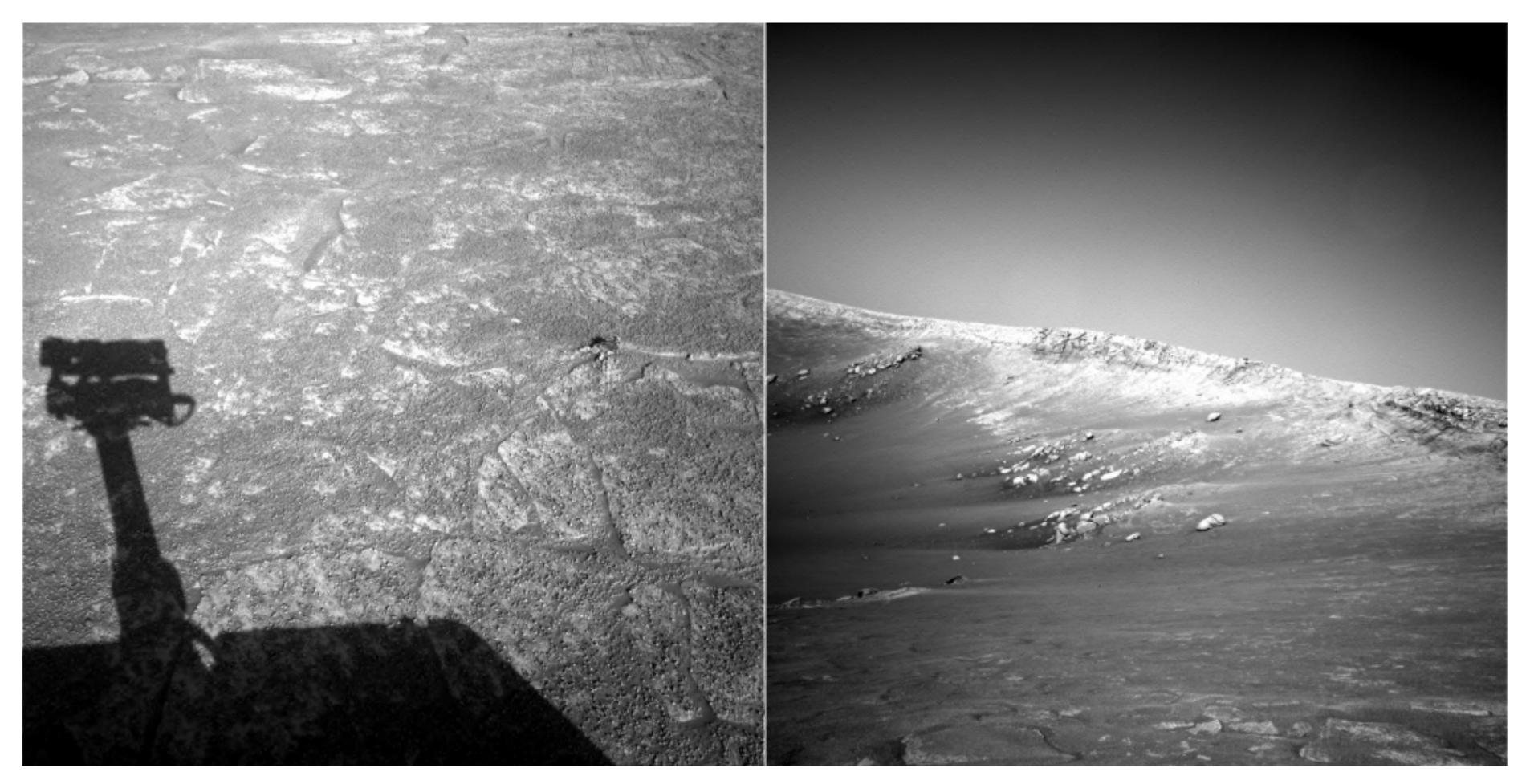


Image Matching

Image Matching

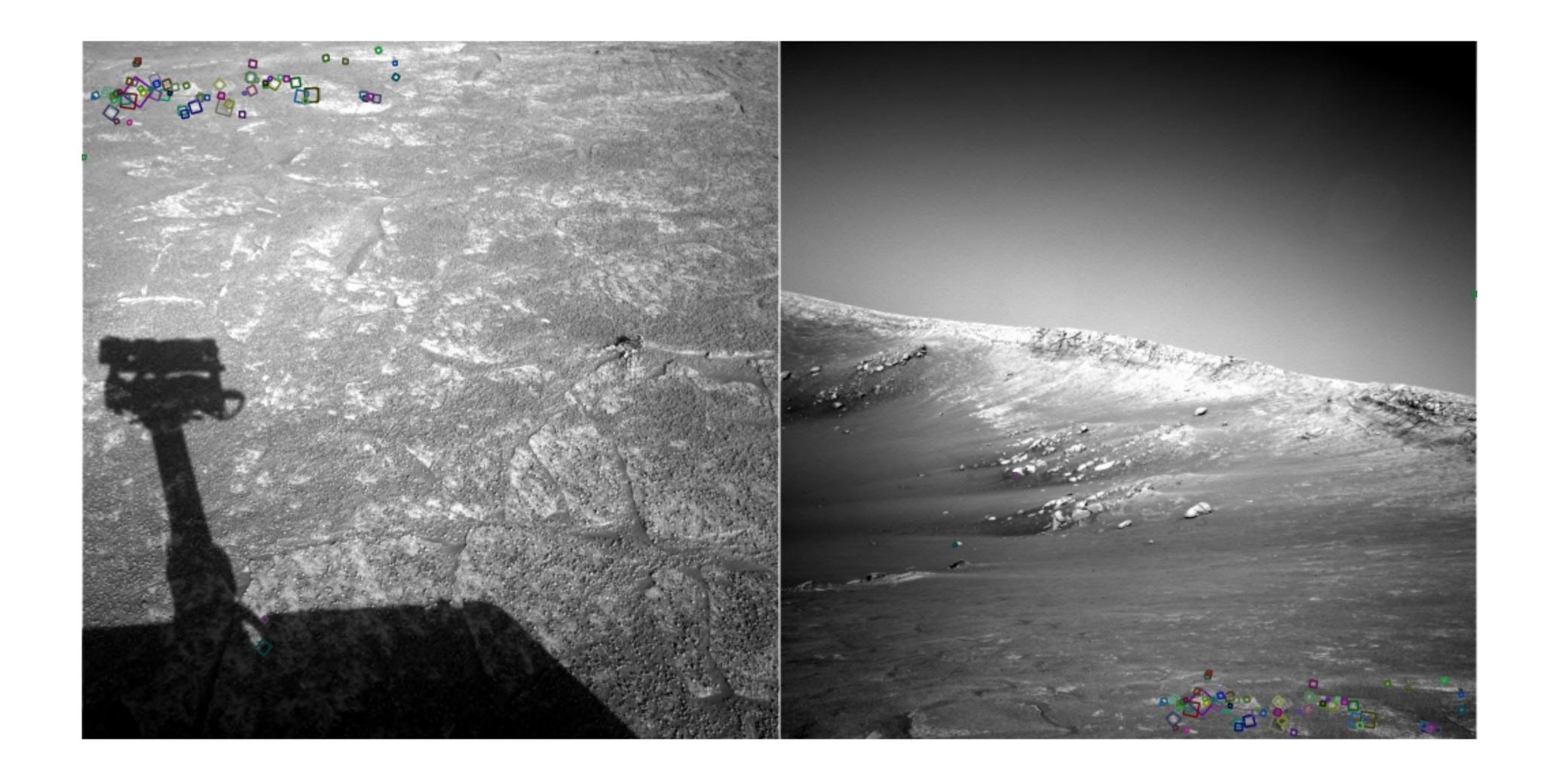


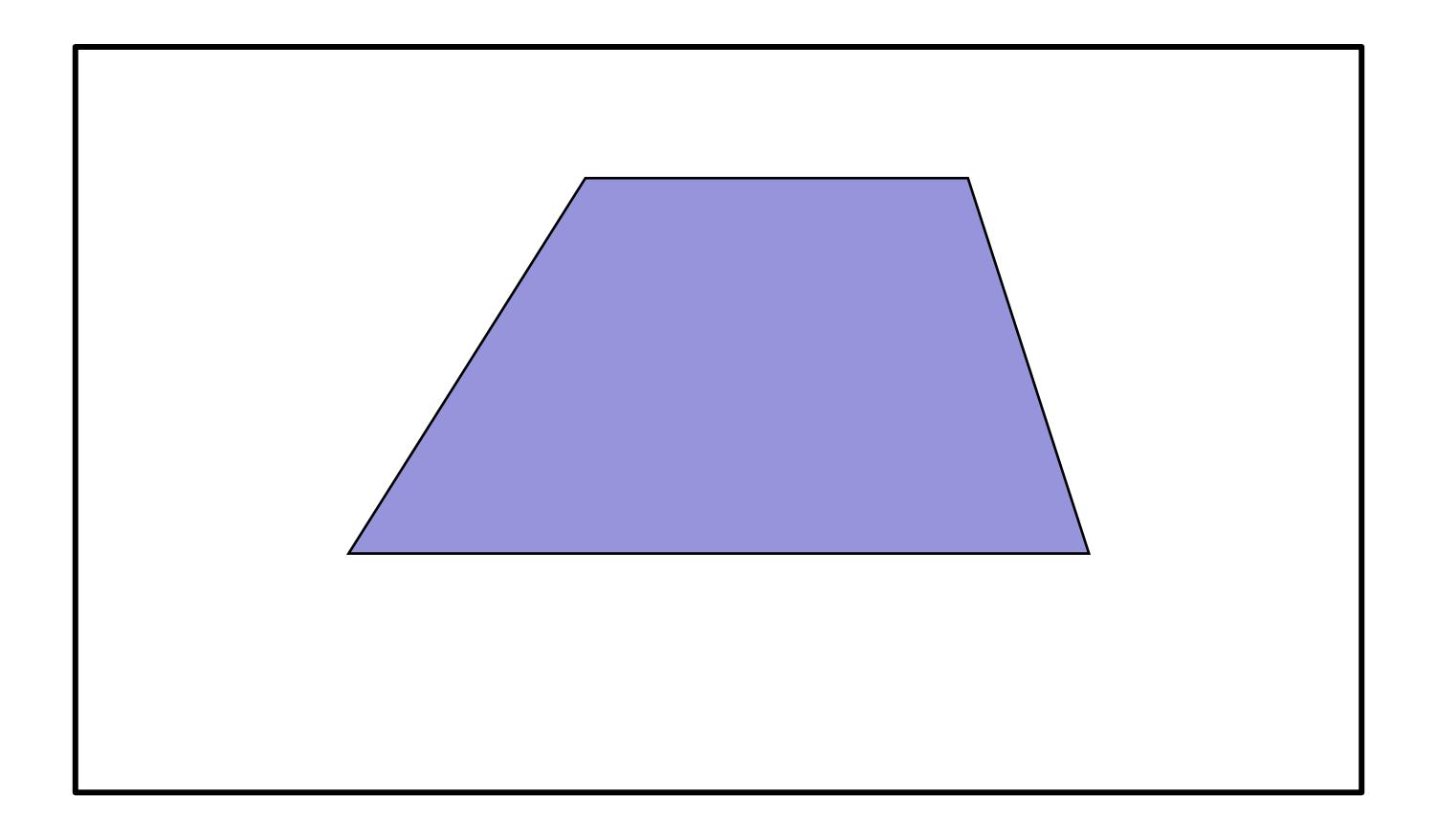
Finding Correspondences



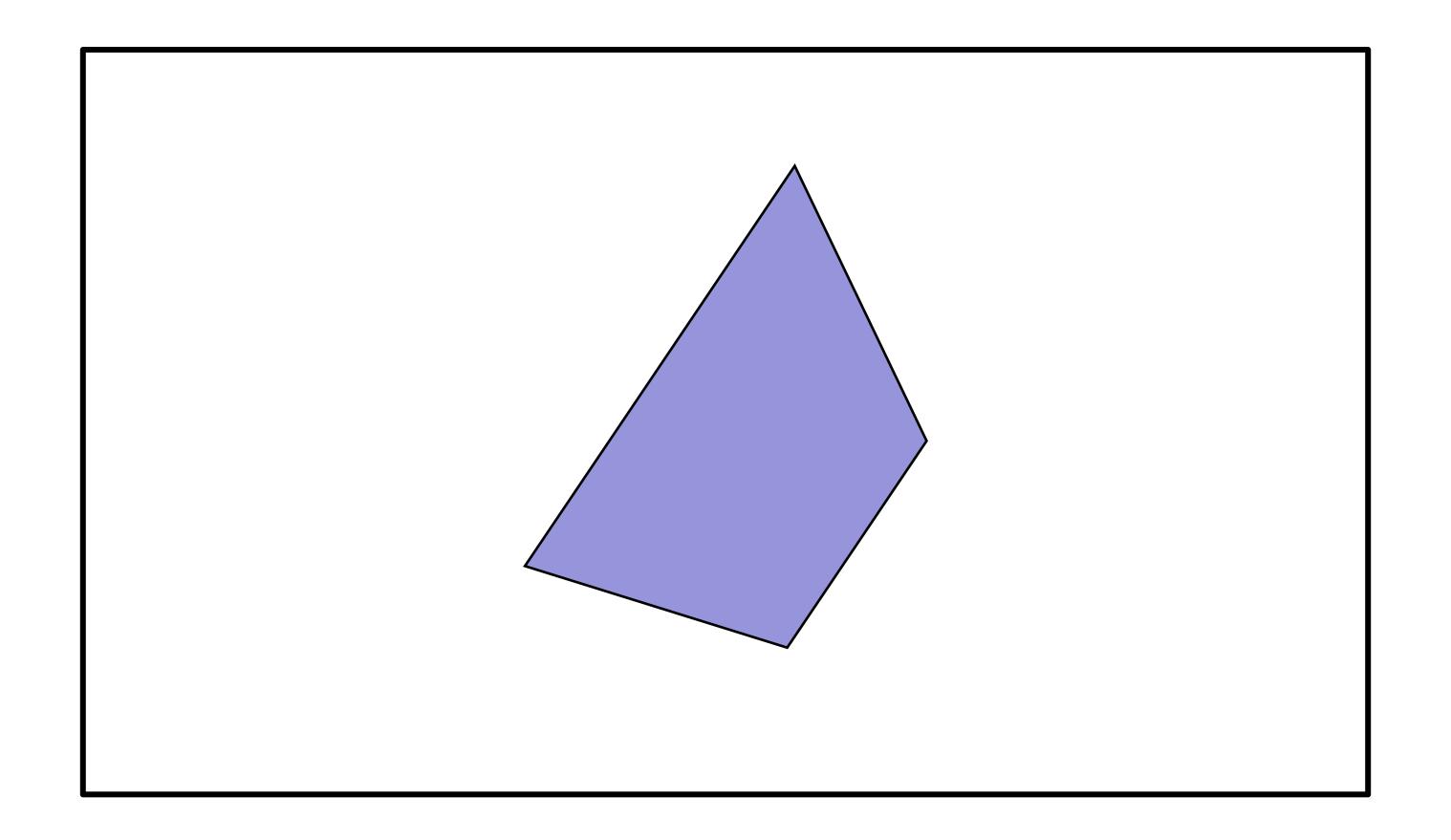
NASA Mars Rover images

Finding Correspondences

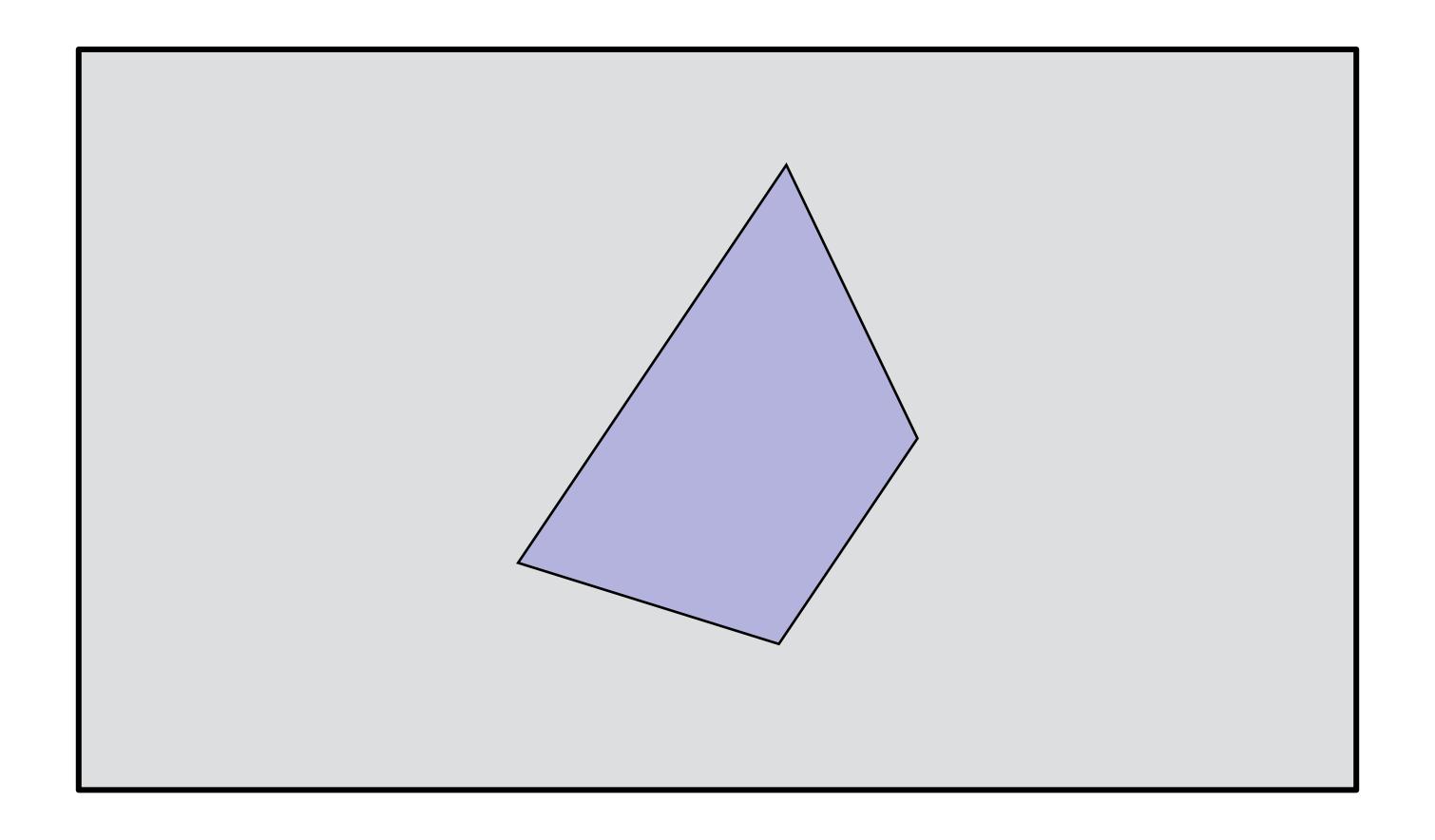




Pick a point in the image. Find it again in the next image.



Pick a point in the image. Find it again in the next image.



Pick a point in the image. Find it again in the next image.

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.

Distinctive: individual features can be easily matched

Efficient: close to real-time performance

What is a corner?

Image Credit: John Shakespeare, Sydney Morning Herald

We can think of a corner as any **locally distinct** 2D image feature that (hopefully) corresponds to a distinct position on an 3D object of interest in the scene.

What is a corner?

Corner

Interest Point

Image Credit: John Shakespeare, Sydney Morning Herald

We can think of a corner as any **locally distinct** 2D image feature that (hopefully) corresponds to a distinct position on an 3D object of interest in the scene.

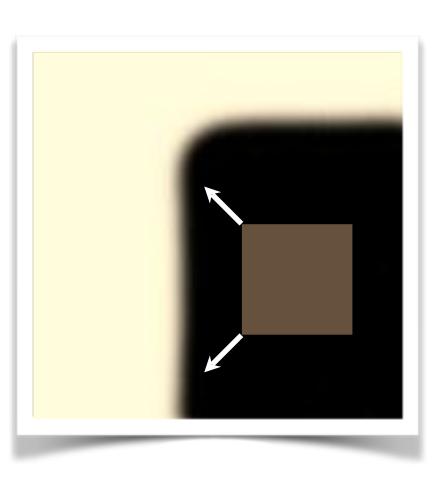
A corner can be localized reliably.

Thought experiment:

A corner can be localized reliably.

Thought experiment:

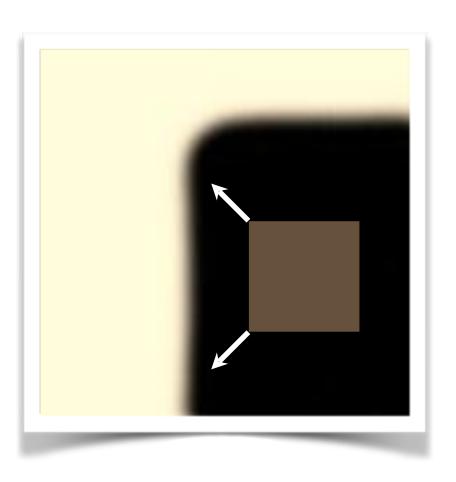
- Place a small window over a patch of constant image value.



"flat" region:

A corner can be localized reliably.

Thought experiment:

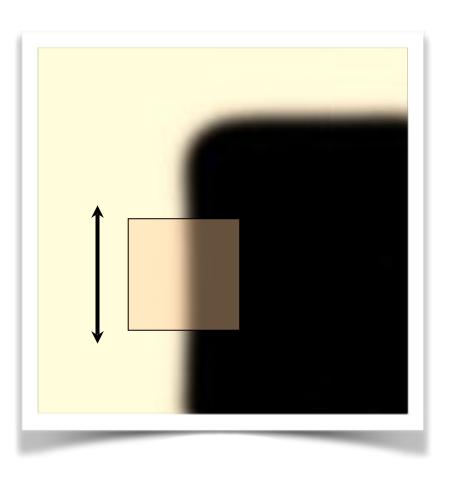


"flat" region:
no change in all
directions

A corner can be localized reliably.

Thought experiment:

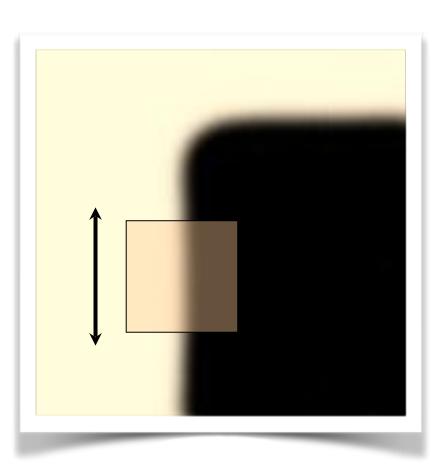
- Place a small window over a patch of constant image value.
 If you slide the window in any direction, the image in the window will not change.
- Place a small window over an edge.



"edge":

A corner can be localized reliably.

Thought experiment:

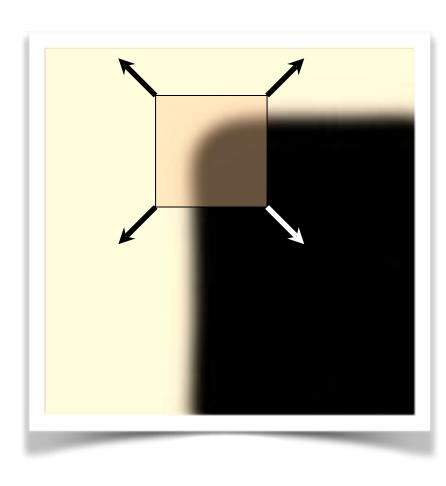


"edge":
no change along
the edge direction

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change
 - → Cannot estimate location along an edge (a.k.a., aperture problem)

A corner can be localized reliably.

Thought experiment:

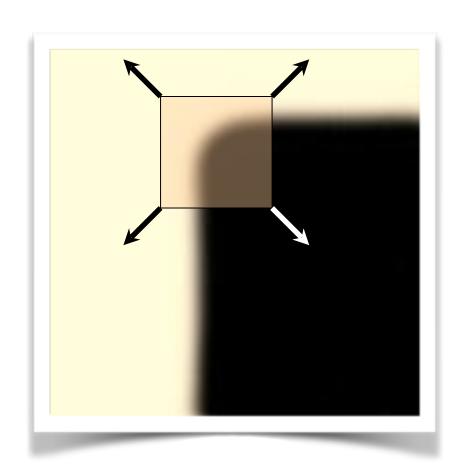


"corner":

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change
 - → Cannot estimate location along an edge (a.k.a., aperture problem)
- Place a small window over a corner.

A corner can be localized reliably.

Thought experiment:



"corner":
significant change
in all directions

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change
 - → Cannot estimate location along an edge (a.k.a., aperture problem)
- Place a small window over a corner. If you slide the window in any direction, the image in the window changes.

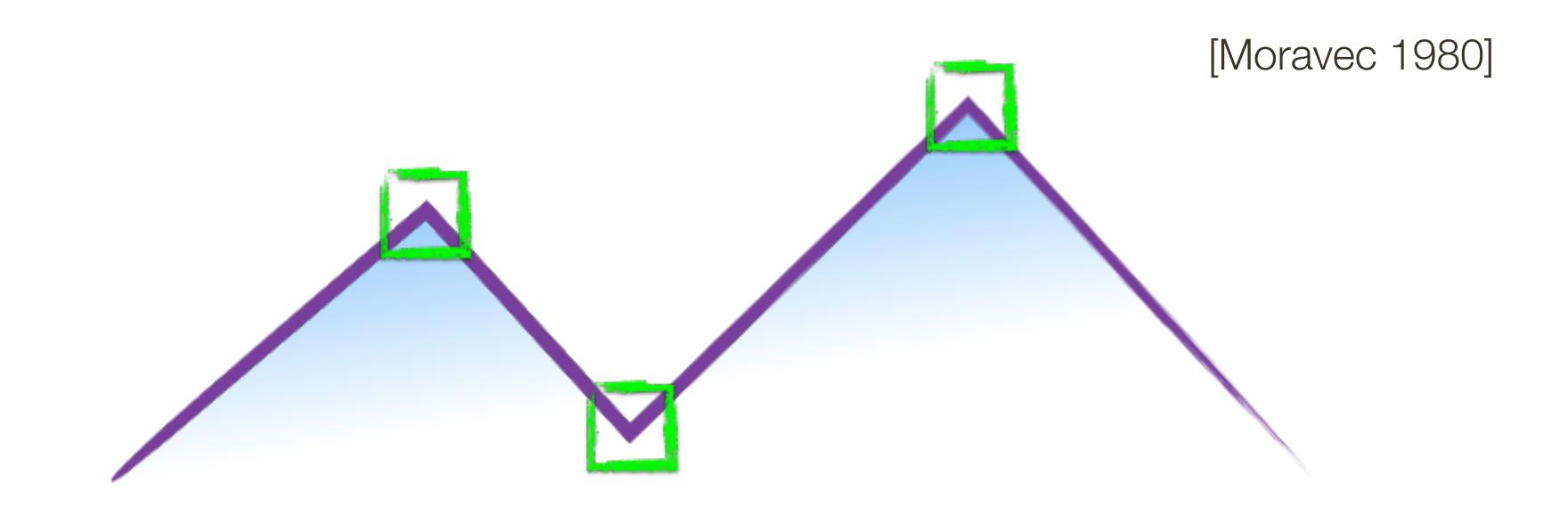
Corner Detection

Edge detectors perform poorly at corners

Observations:

- The gradient is ill defined exactly at a corner
- Near a corner, the gradient has two (or more) distinct values

How do you find a corner?

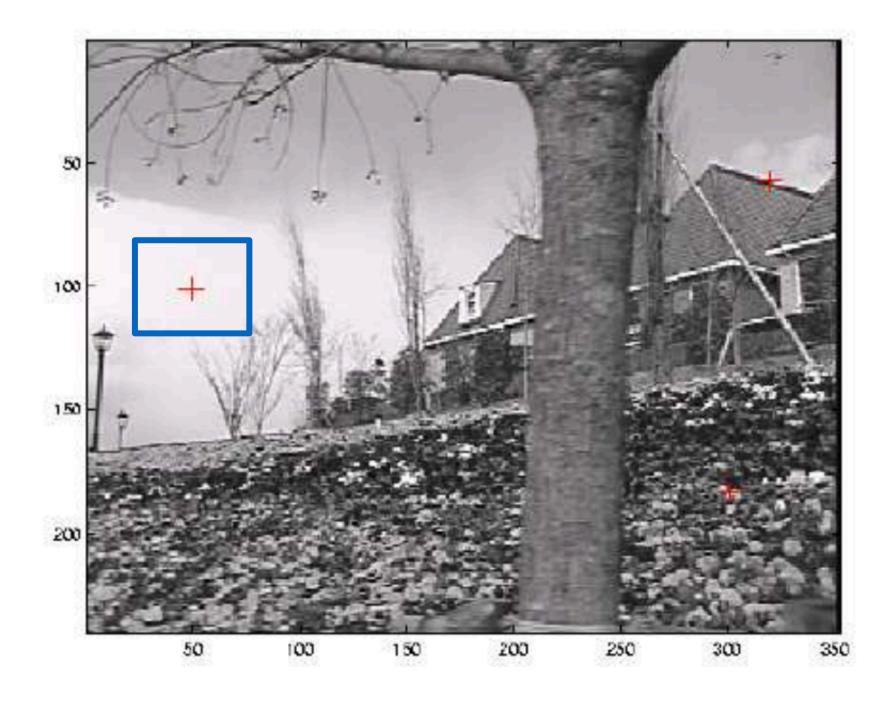


Easily recognized by looking through a small window

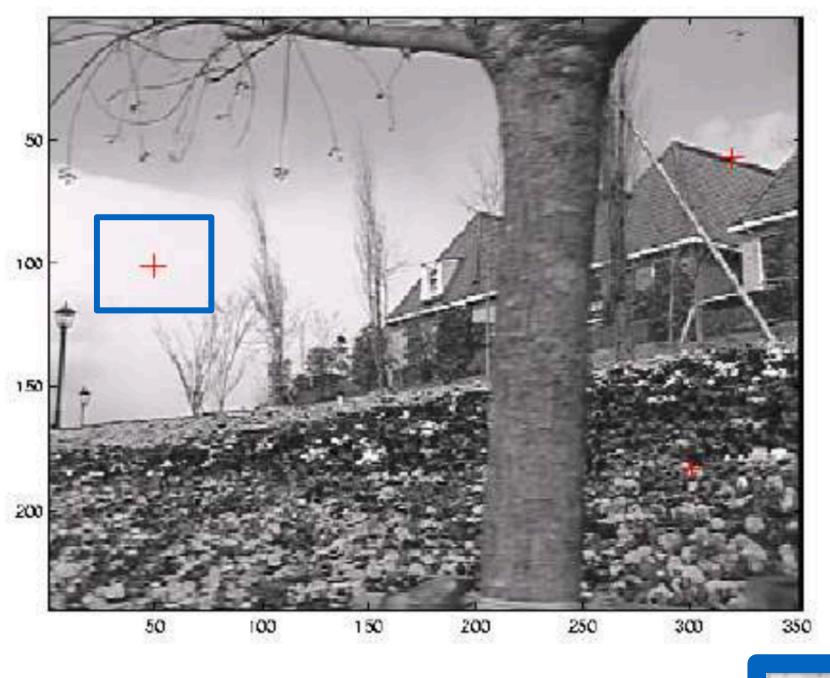
Shifting the window should give large change in intensity

Autocorrelation is the correlation of the image with itself.

- Windows centered on an edge point will have autocorrelation that falls off slowly in the direction along the edge and rapidly in the direction across (perpendicular to) the edge.
- Windows centered on a corner point will have autocorrelation that falls of rapidly in all directions.

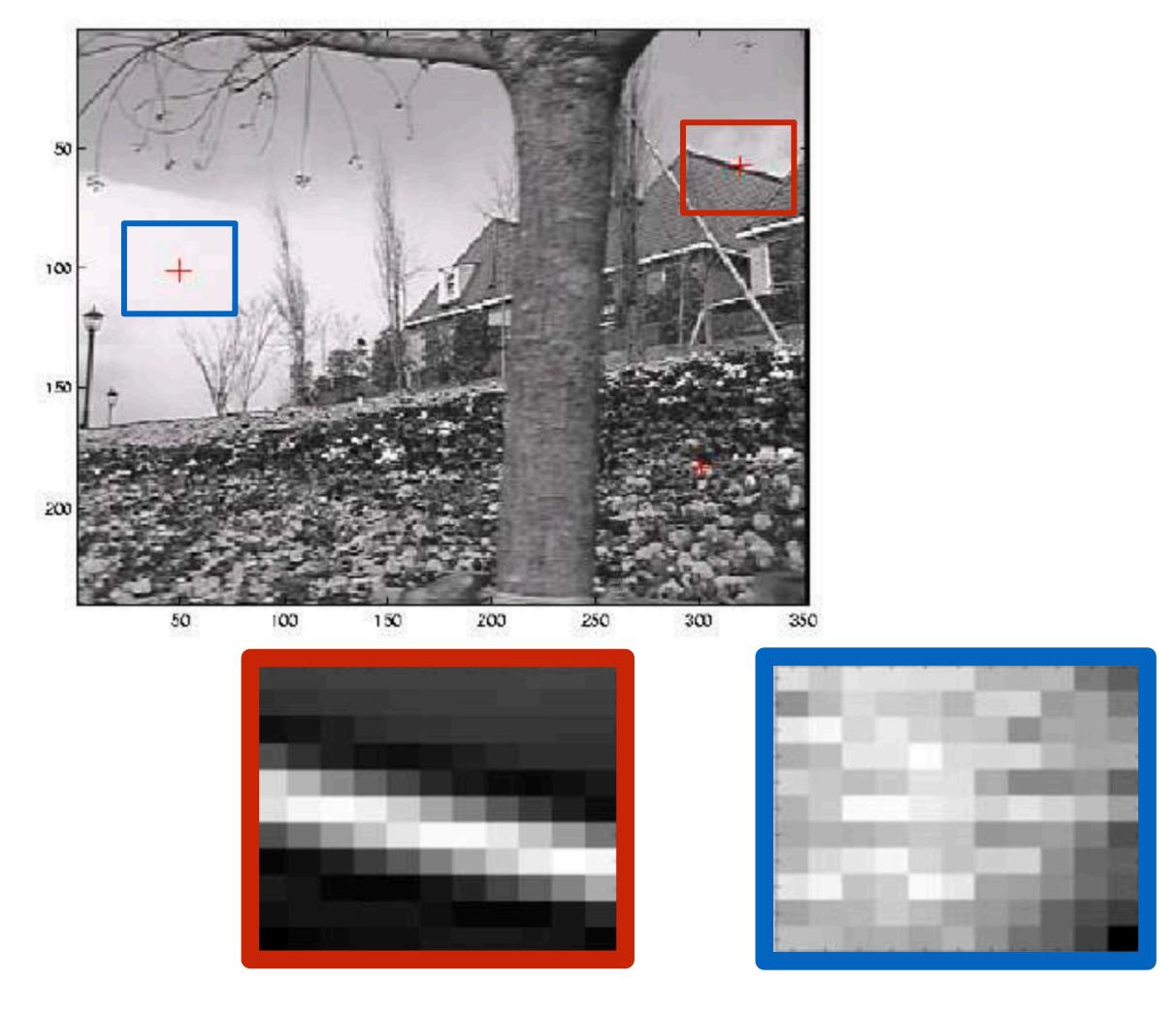


Szeliski, Figure 4.5

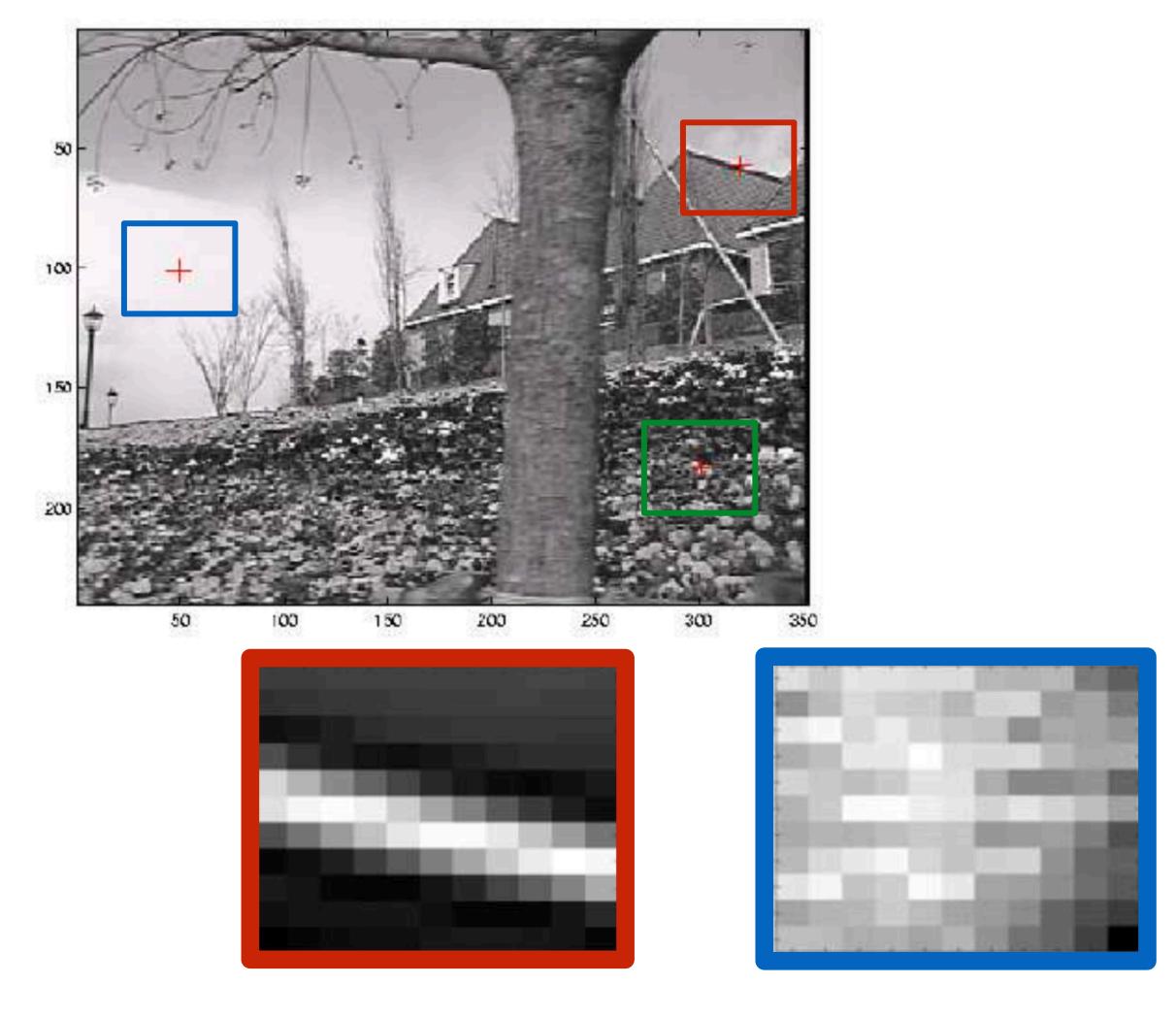


Szeliski, Figure 4.5

Szeliski, Figure 4.5

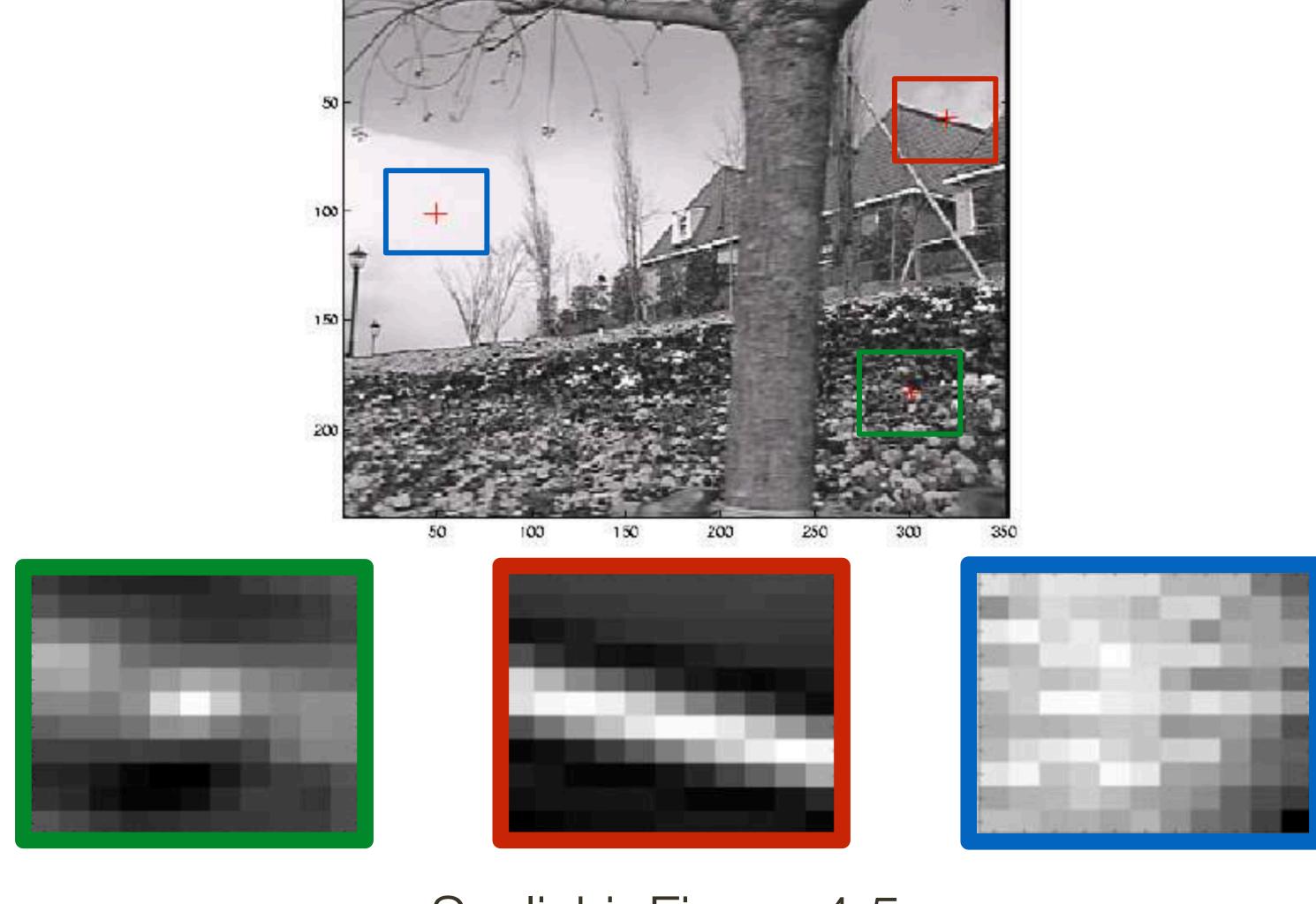


Szeliski, Figure 4.5



Szeliski, Figure 4.5

Autocorrelation



Szeliski, Figure 4.5

Autocorrelation

Autocorrelation is the correlation of the image with itself.

- Windows centered on an edge point will have autocorrelation that falls off slowly in the direction along the edge and rapidly in the direction across (perpendicular to) the edge.
- Windows centered on a corner point will have autocorrelation that falls of rapidly in all directions.

Harris Corner Detection

- 1.Compute image gradients over small region
- 2. Compute the covariance matrix
- 3.Compute eigenvectors and eigenvalues
- 4.Use threshold on eigenvalues to detect corners

$$I_x = \frac{\partial I}{\partial x}$$

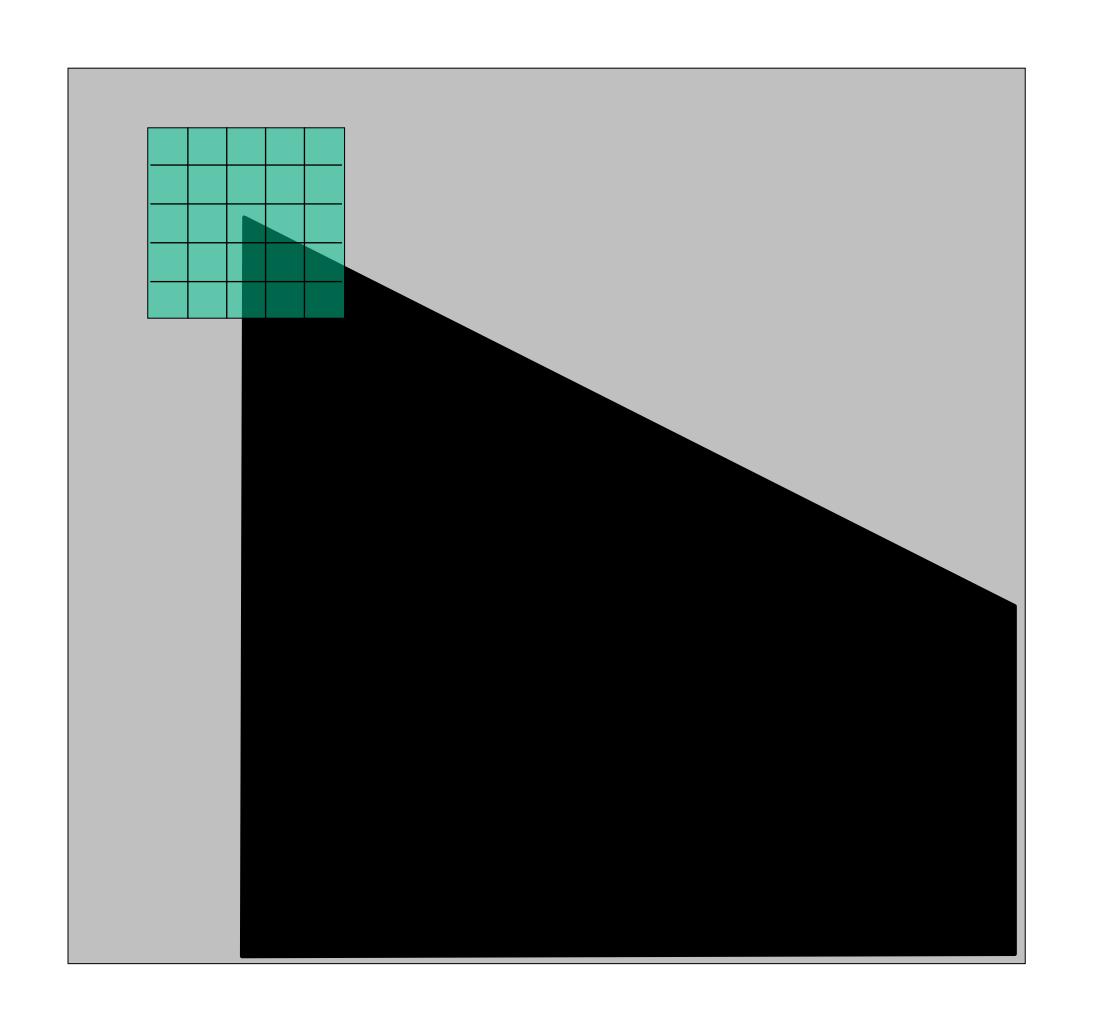
$$I_y = \frac{\partial I}{\partial y}$$



$$\begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

1. Compute image gradients over a small region

(not just a single pixel)



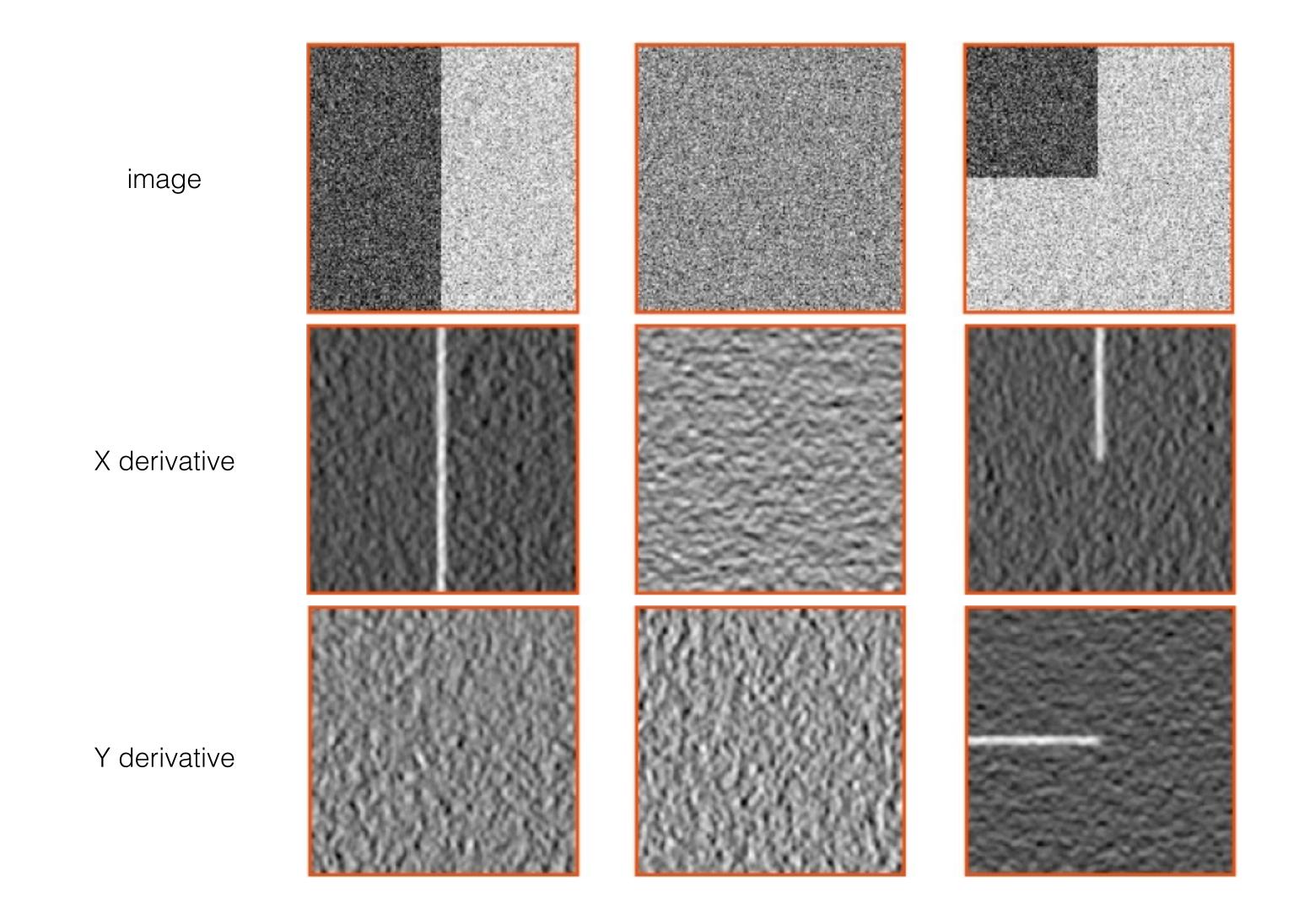
array of x gradients

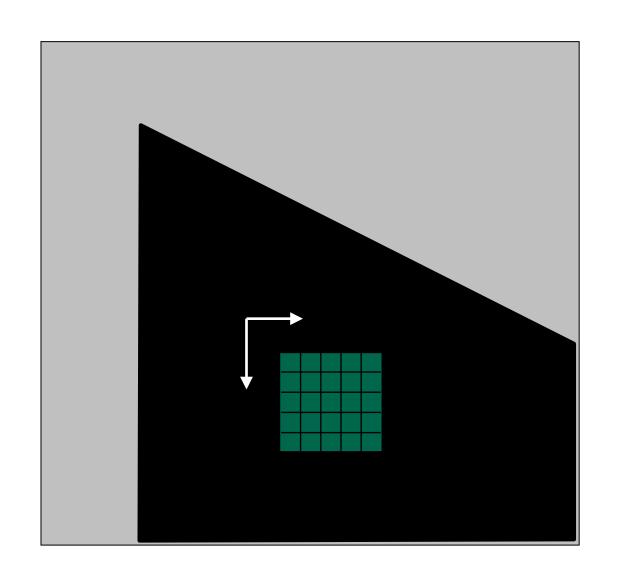
$$I_x = \frac{\partial I}{\partial x}$$

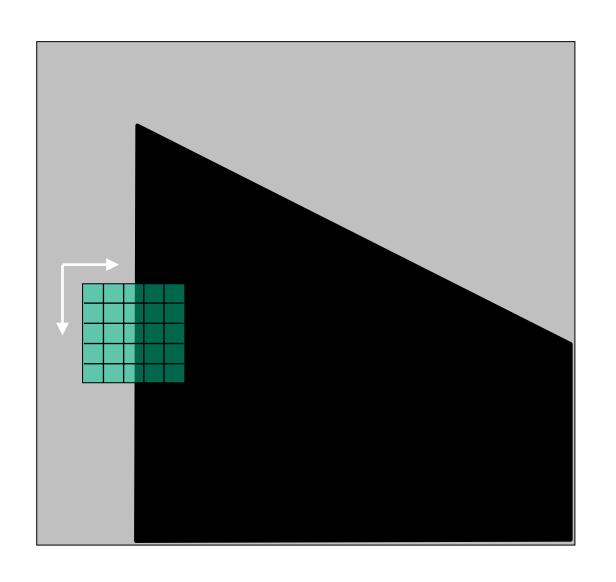
array of y gradients

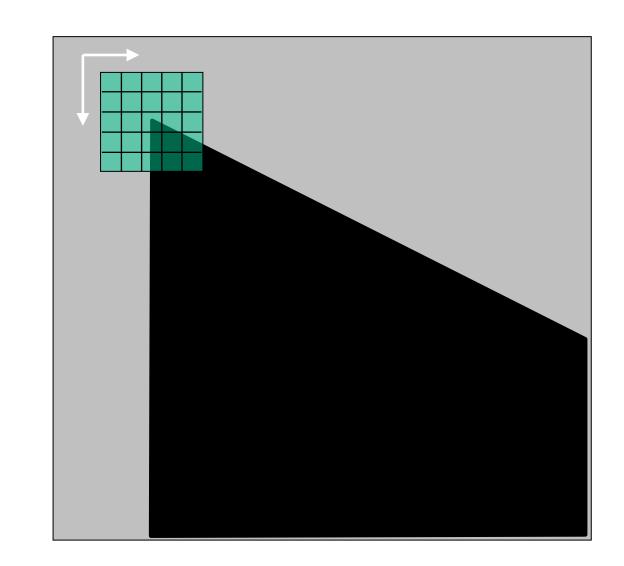
$$u_y = \frac{\partial I}{\partial y}$$

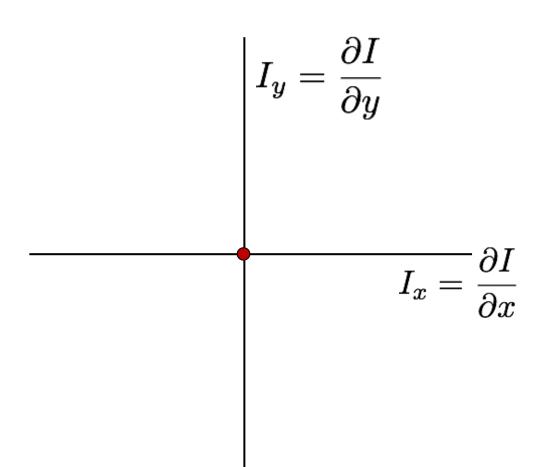
Visualization of Gradients

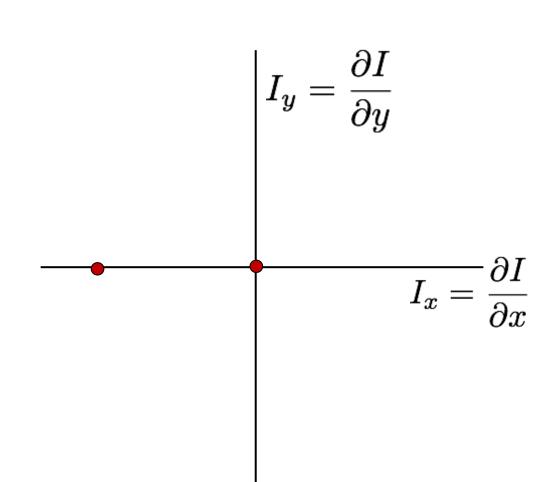


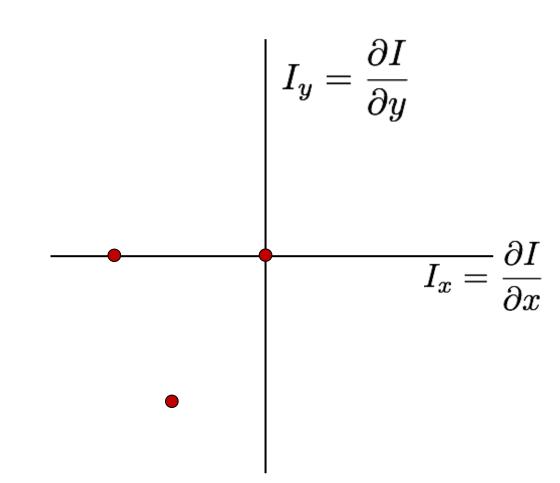


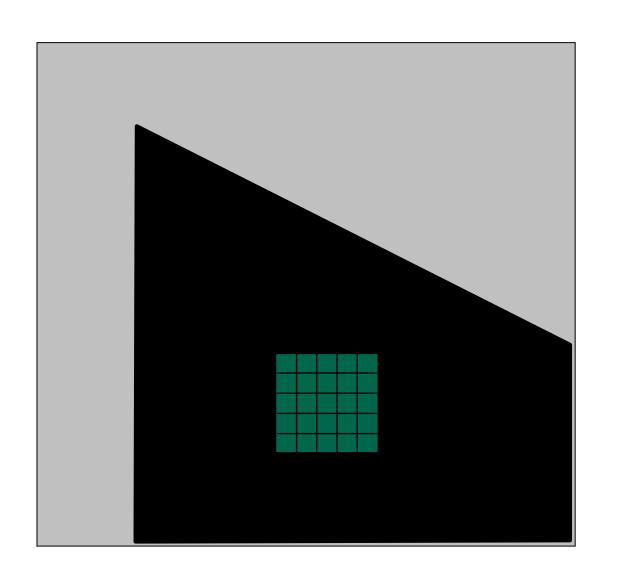


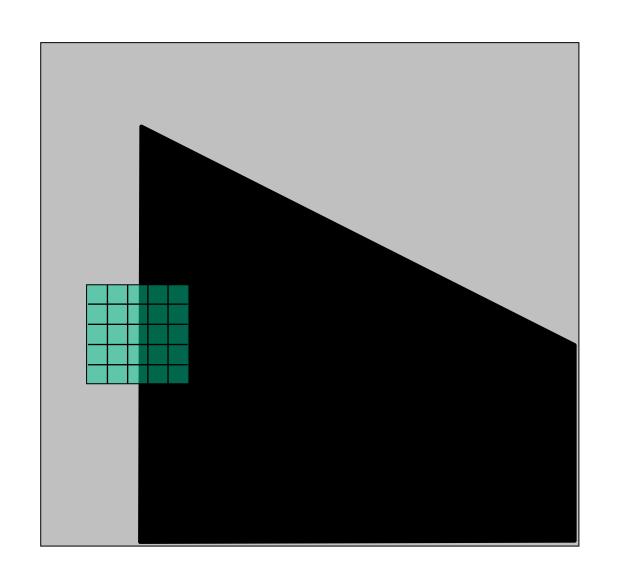


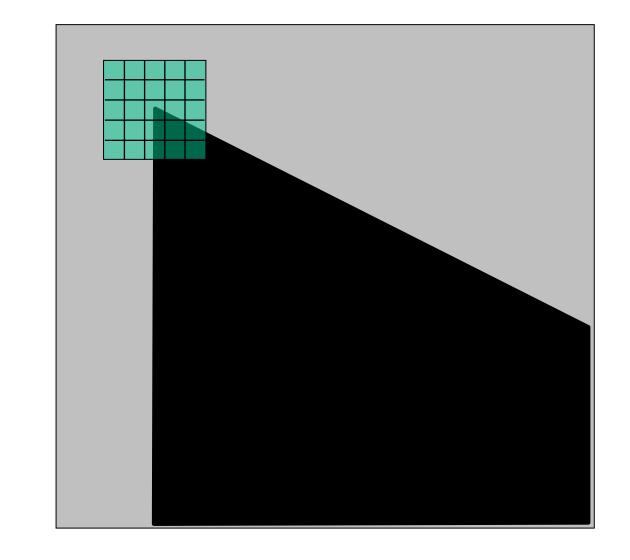


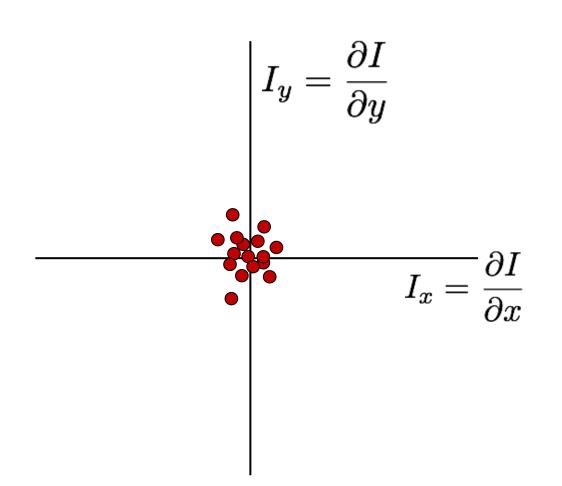


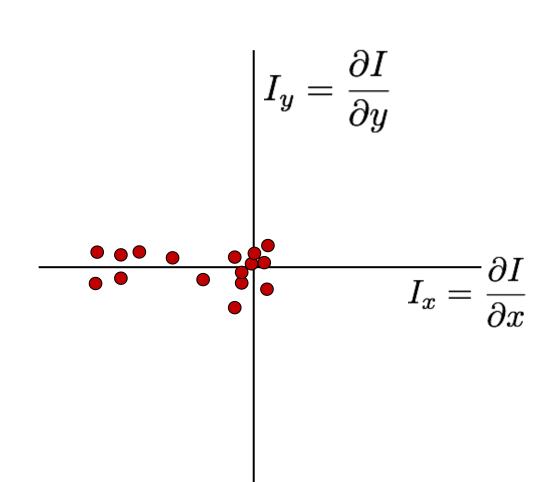




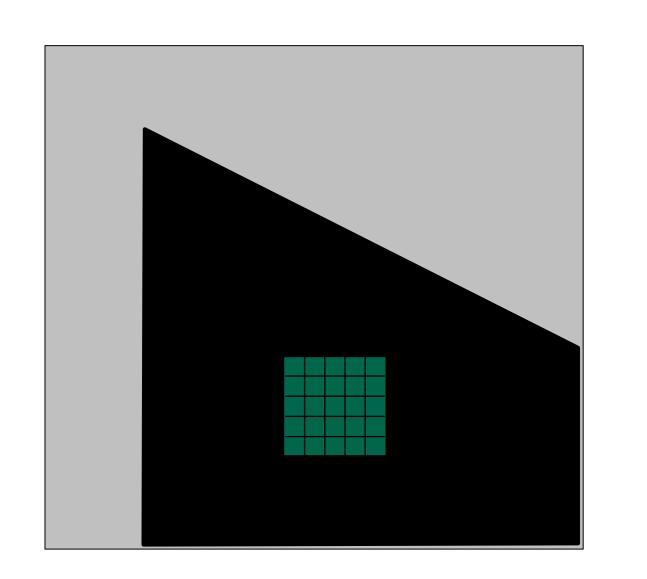


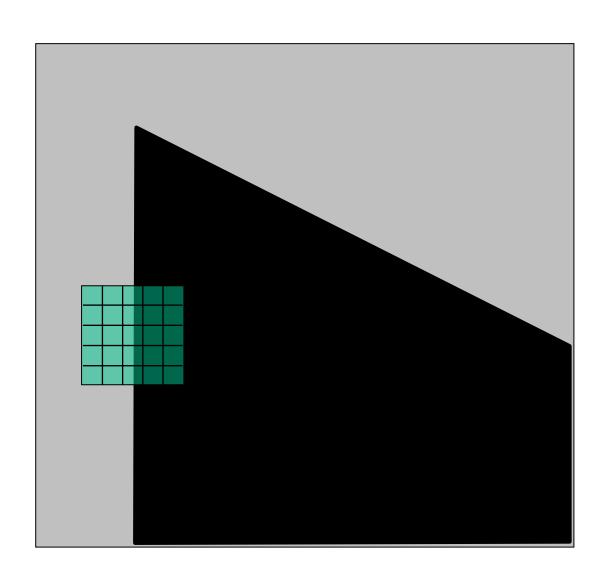


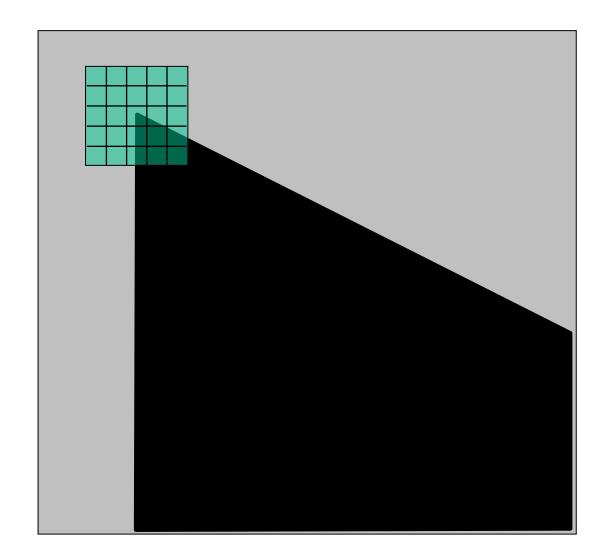




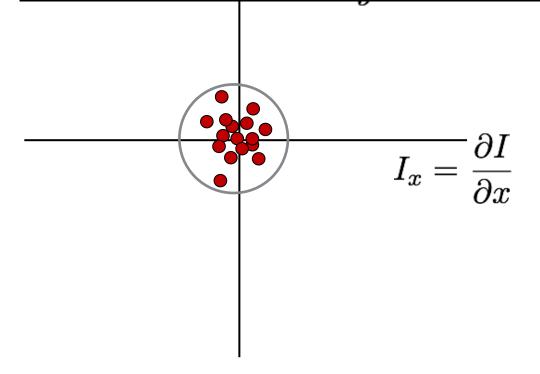


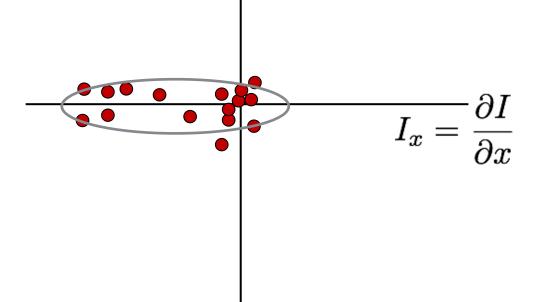


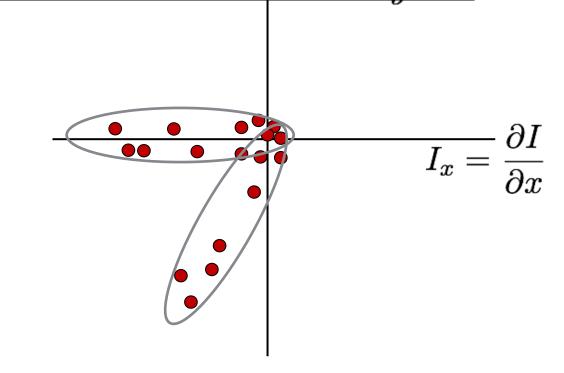


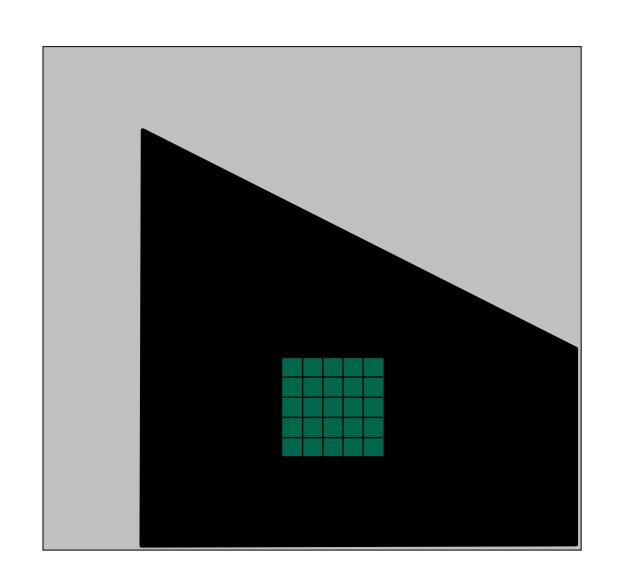


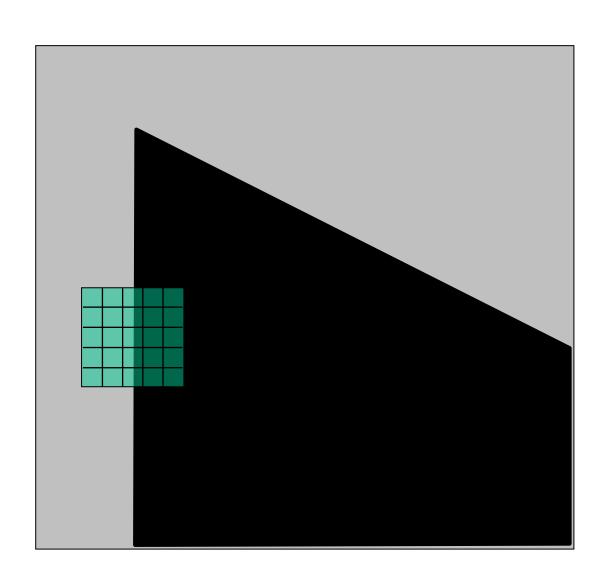
Distribution reveals the orientation and magnitude

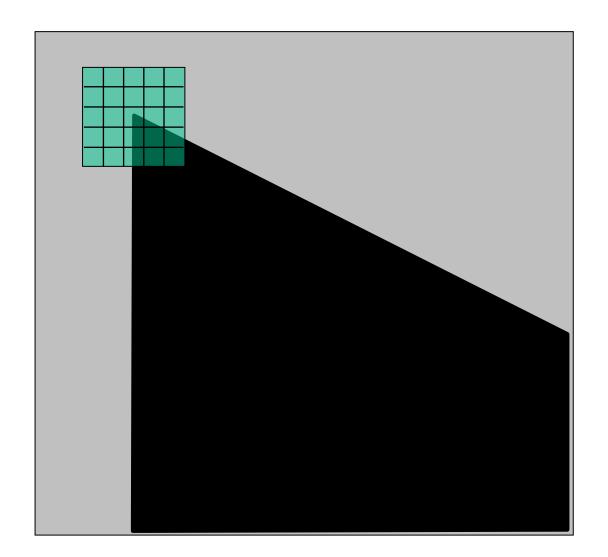




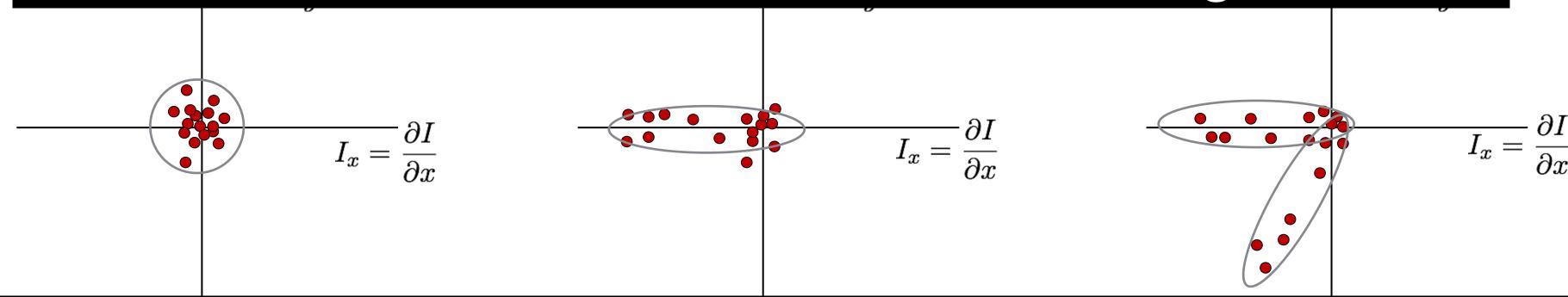








Distribution reveals the orientation and magnitude



How do we quantify the orientation and magnitude?

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Sum over small region around the corner

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Sum over small region around the corner

Gradient with respect to x, times gradient with respect to y

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Sum over small region around the corner

Gradient with respect to x, times gradient with respect to y

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

$$I_x=rac{\partial I}{\partial x}$$
 $I_y=rac{\partial I}{\partial y}$ $\sum_{m p\in P}I_xI_y$ =Sum(* array of x gradients array of y gradients

Sum over small region around the corner

Gradient with respect to x, times gradient with respect to y

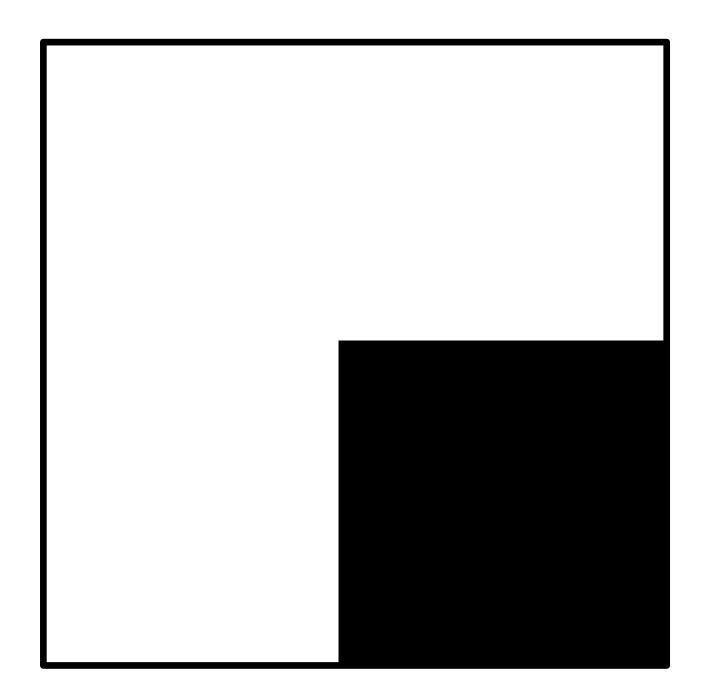
$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Matrix is symmetric

By computing the gradient covariance matrix ...

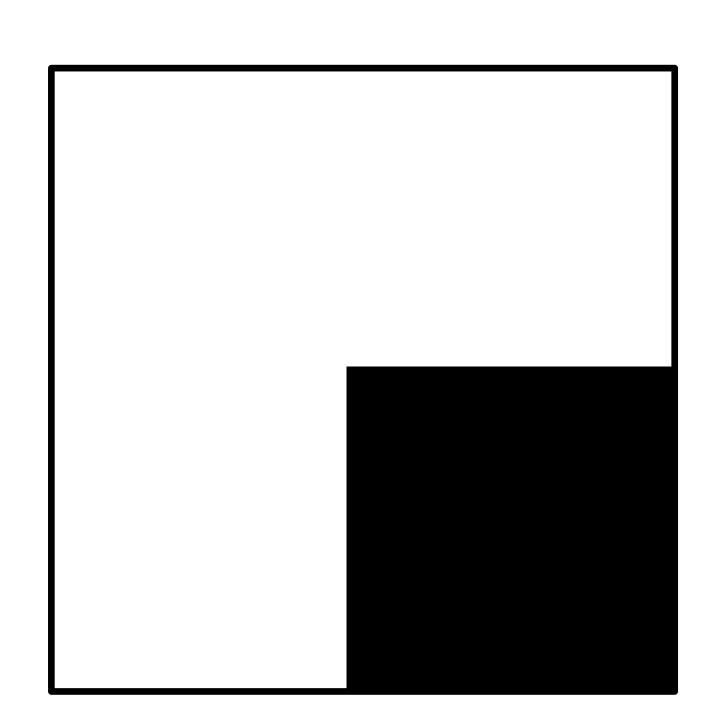
$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

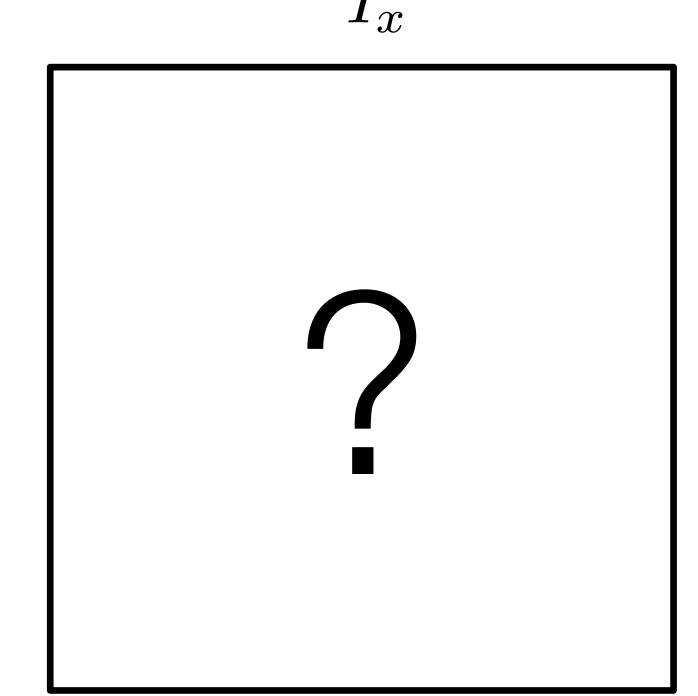
we are fitting a quadratic to the gradients over a small image region

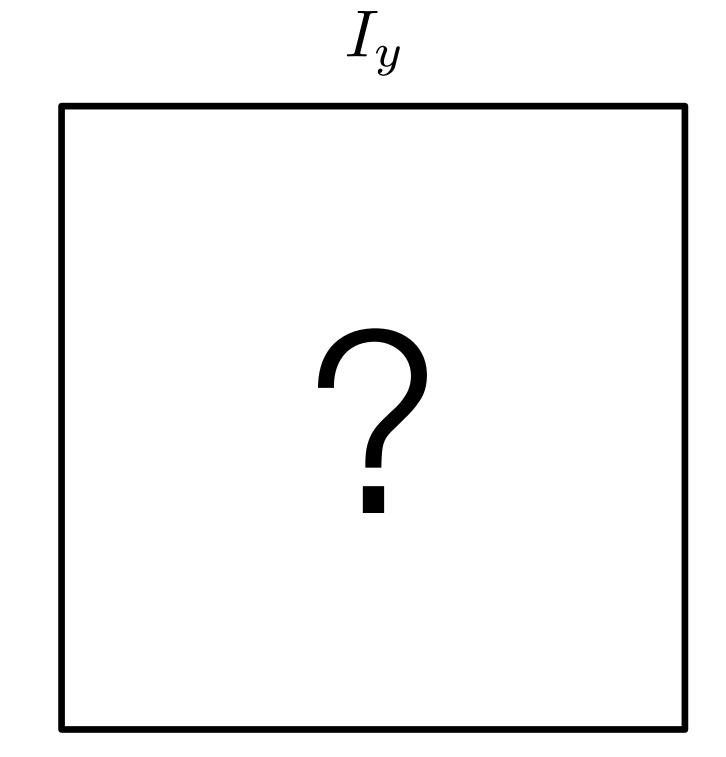


Local Image Patch

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$$

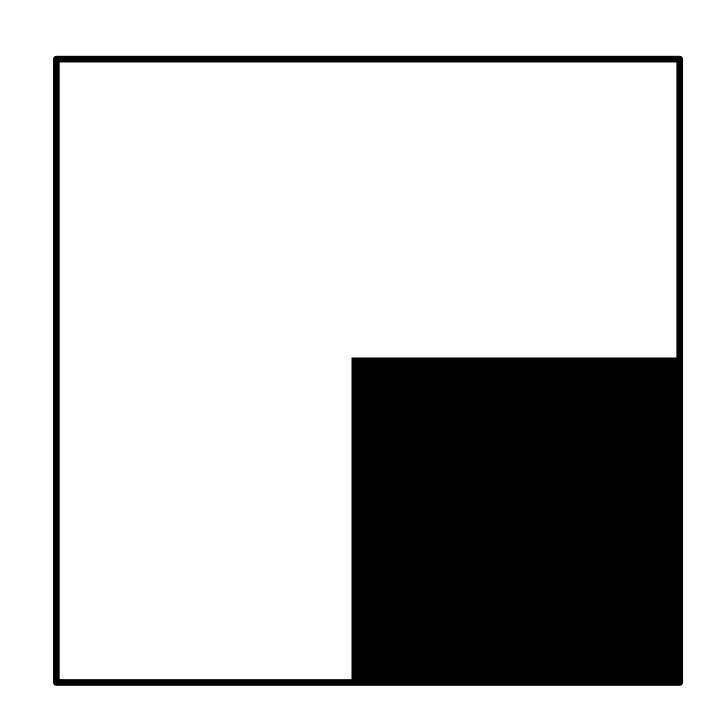




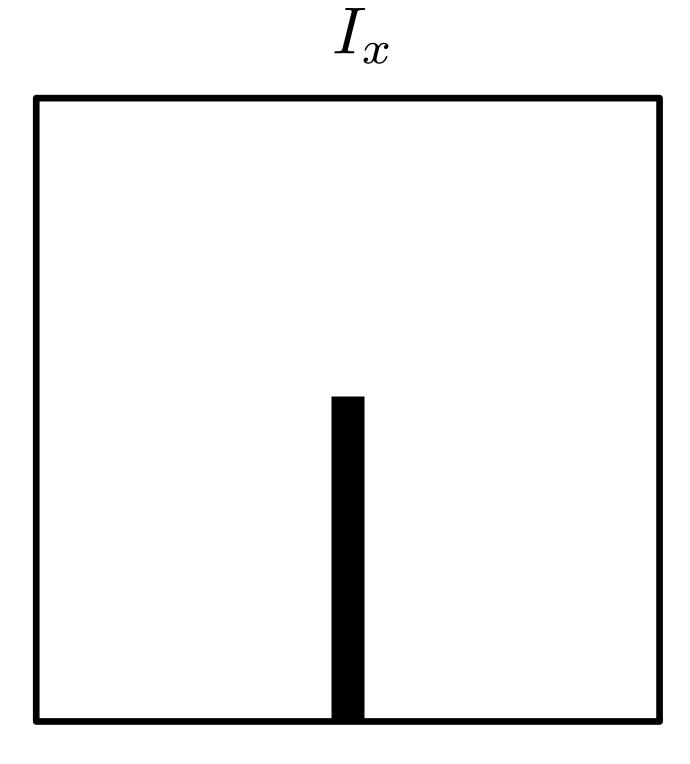


Local Image Patch

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$$

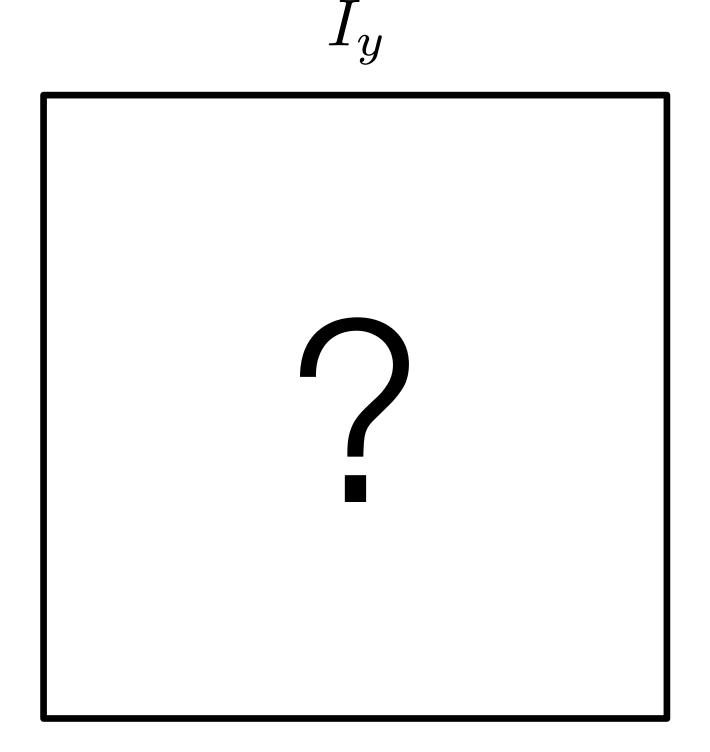


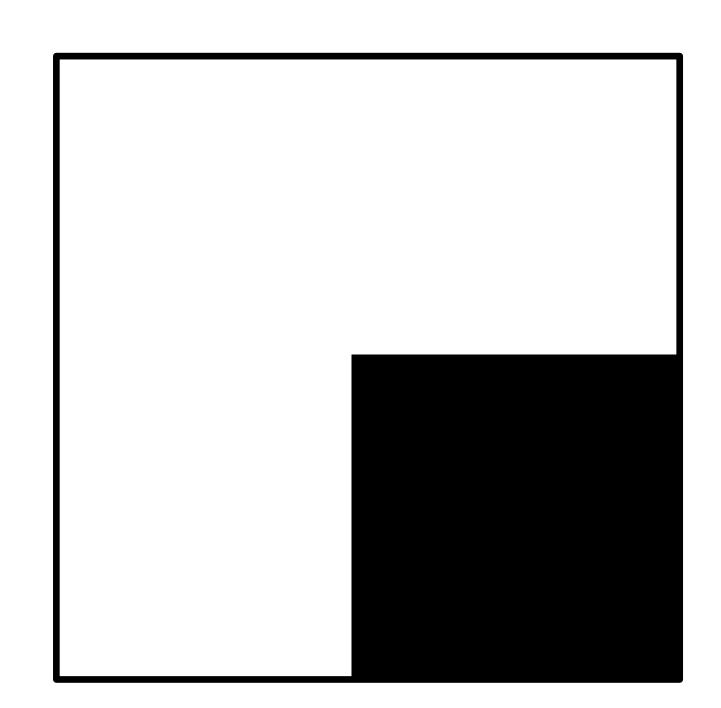
Local Image Patch



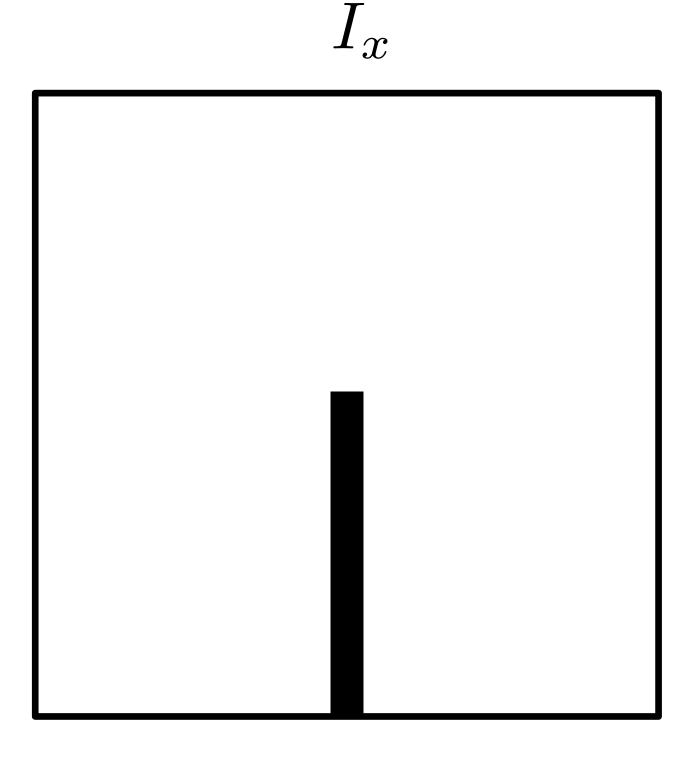
high value along vertical strip of pixels and 0 elsewhere

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$$



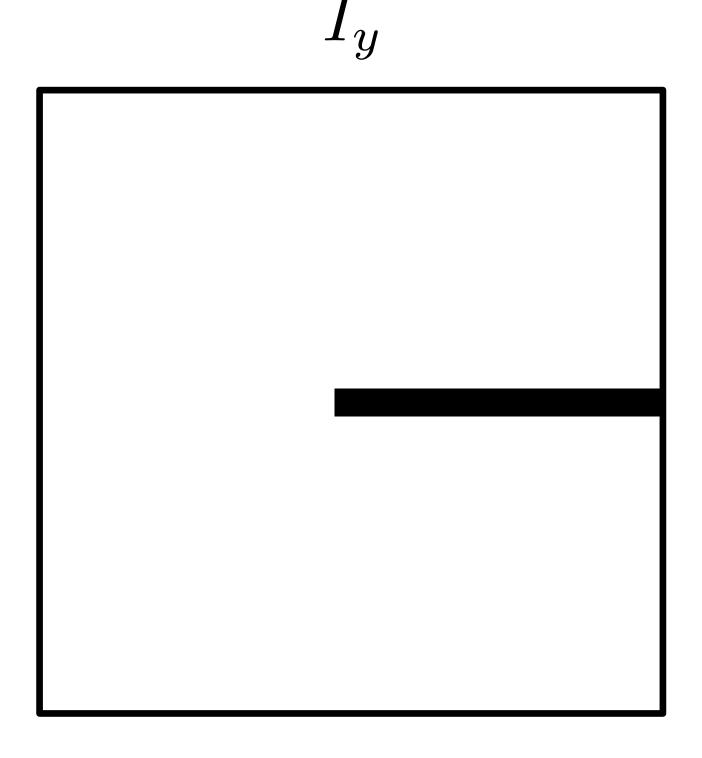


Local Image Patch

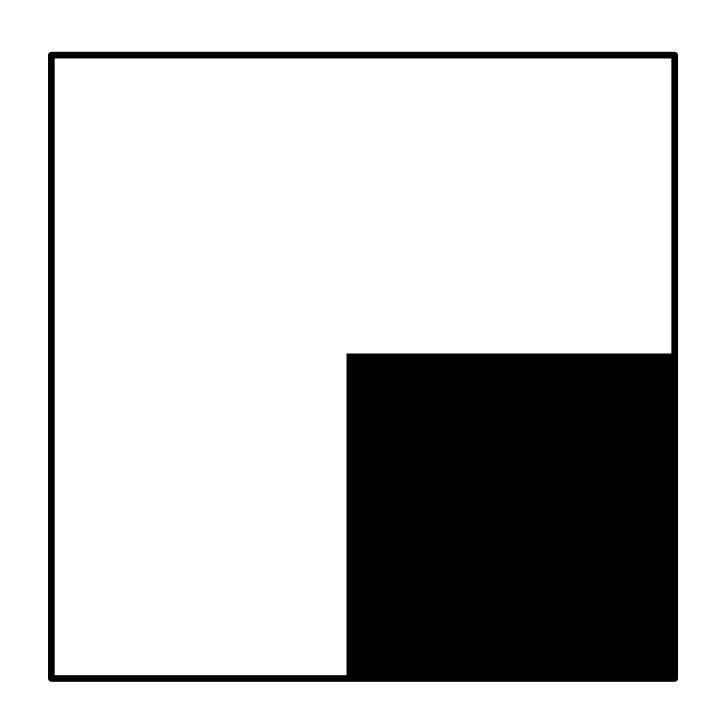


high value along vertical strip of pixels and 0 elsewhere

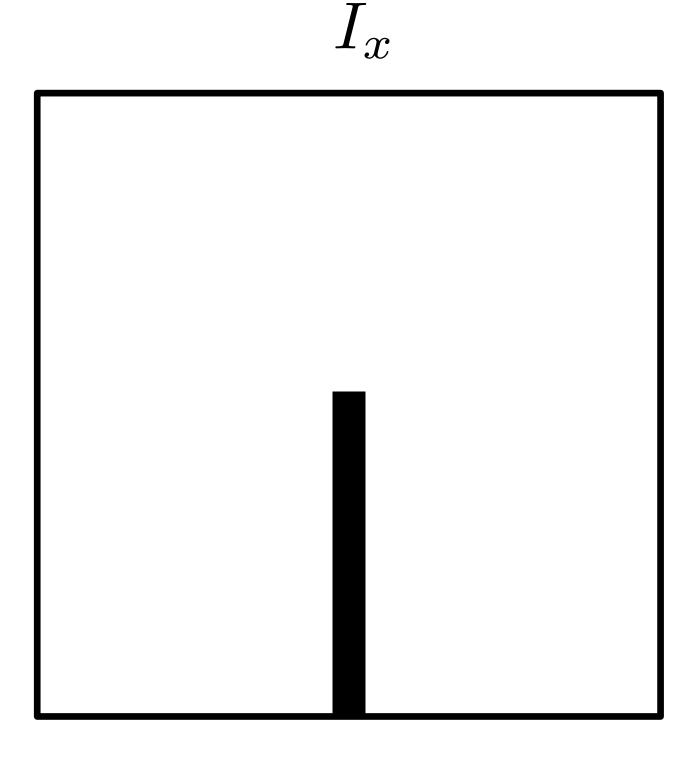
$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$$



high value along horizontal strip of pixels and 0 elsewhere

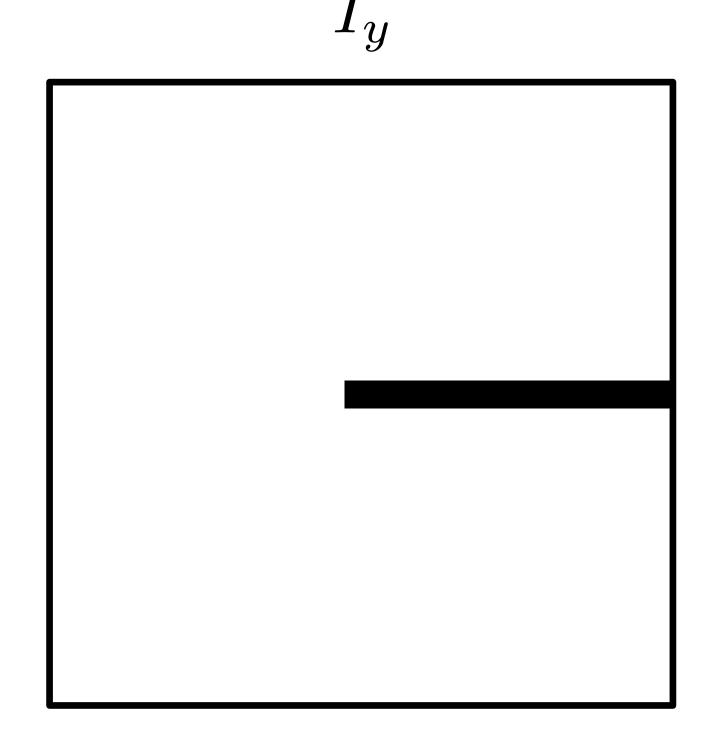


Local Image Patch



high value along vertical strip of pixels and 0 elsewhere

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$



high value along horizontal strip of pixels and 0 elsewhere

General Case

It can be shown that since every C is symmetric:

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

... so general case is like a rotated version of the simple one

Quick Eigenvalue/Eigenvector Review

Given a square matrix $\bf A$, a scalar λ is called an **eigenvalue** of $\bf A$ if there exists a nonzero vector $\bf v$ that satisfies

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

The vector ${\bf v}$ is called an **eigenvector** for ${\bf A}$ corresponding to the eigenvalue λ .

The eigenvalues of A are obtained by solving

$$\det(\mathbf{A} - \lambda I) = 0$$

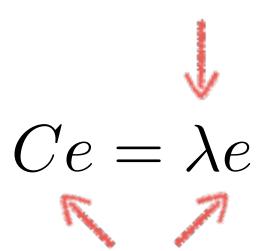
eigenvalue $Ce = \lambda e \qquad \qquad (C - \lambda I)e = 0$ eigenvector

eigenvalue $Ce = \lambda e \qquad \qquad (C - \lambda I)e = 0$ eigenvector

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

eigenvalue



eigenvector

$$(C - \lambda I)e = 0$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

eigenvalue

$$Ce = \lambda e$$

eigenvector

$$(C - \lambda I)e = 0$$

1. Compute the determinant of (returns a polynomial)

 $C - \lambda I$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \left[egin{array}{ccc} 2 & 1 \\ 1 & 2 \end{array}
ight]$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad \det \left(\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right)$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad \det \left(\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right)$$

$$(2 - \lambda)(2 - \lambda) - (1)(1)$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad \det \left(\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right)$$

 $(2 - \lambda)(2 - \lambda) - (1)(1)$

$$(2 - \lambda)(2 - \lambda) - (1)(1) = 0$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

$$C = \left[egin{array}{cc} 2 & 1 \ 1 & 2 \end{array}
ight]$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad \det \left(\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right)$$
$$(2 - \lambda)(2 - \lambda) - (1)(1)$$

$$(2 - \lambda)(2 - \lambda) - (1)(1) = 0$$
$$\lambda^{2} - 4\lambda + 3 = 0$$
$$(\lambda - 3)(\lambda - 1) = 0$$
$$\lambda_{1} = 1, \lambda_{2} = 3$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

$$(C - \lambda I)e = 0$$

Visualization as Quadratic

$$f(x,y) = x^2 + y^2$$

can be written in matrix form like this...

$$f(x,y) = \left[egin{array}{ccc} x & y \end{array}
ight] \left[egin{array}{ccc} 1 & 0 \ 0 & 1 \end{array}
ight] \left[egin{array}{ccc} x \ y \end{array}
ight]$$

Visualization as Quadratic

$$f(x,y) = x^2 + y^2$$

can be written in matrix form like this...

$$f(x,y) = \left[\begin{array}{ccc} x & y \end{array} \right] \left[\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array} \right] \left[\begin{array}{ccc} x \\ y \end{array} \right]$$

Result of Computing Eigenvalues and Eigenvectors (using SVD)

eigenvectors eigenvalues along diagonal
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^T$$
 axis of the 'ellipse slice' scaling of the quadratic 'ellipse slice' along the axis

Visualization as Ellipse

Since C is symmetric, we have $C=R^{-1} \left| \begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right| R$

We can visualize ${\cal C}$ as an ellipse with axis lengths determined by the eigenvalues and orientation determined by ${\cal R}$

Ellipse equation:

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \text{const}$$

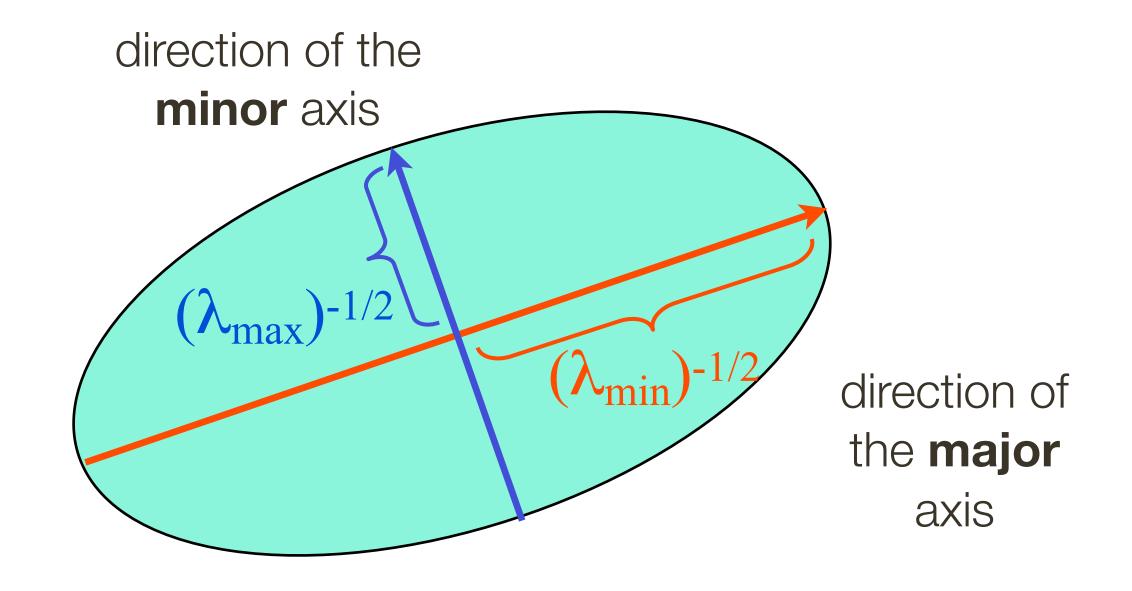
Visualization as Ellipse

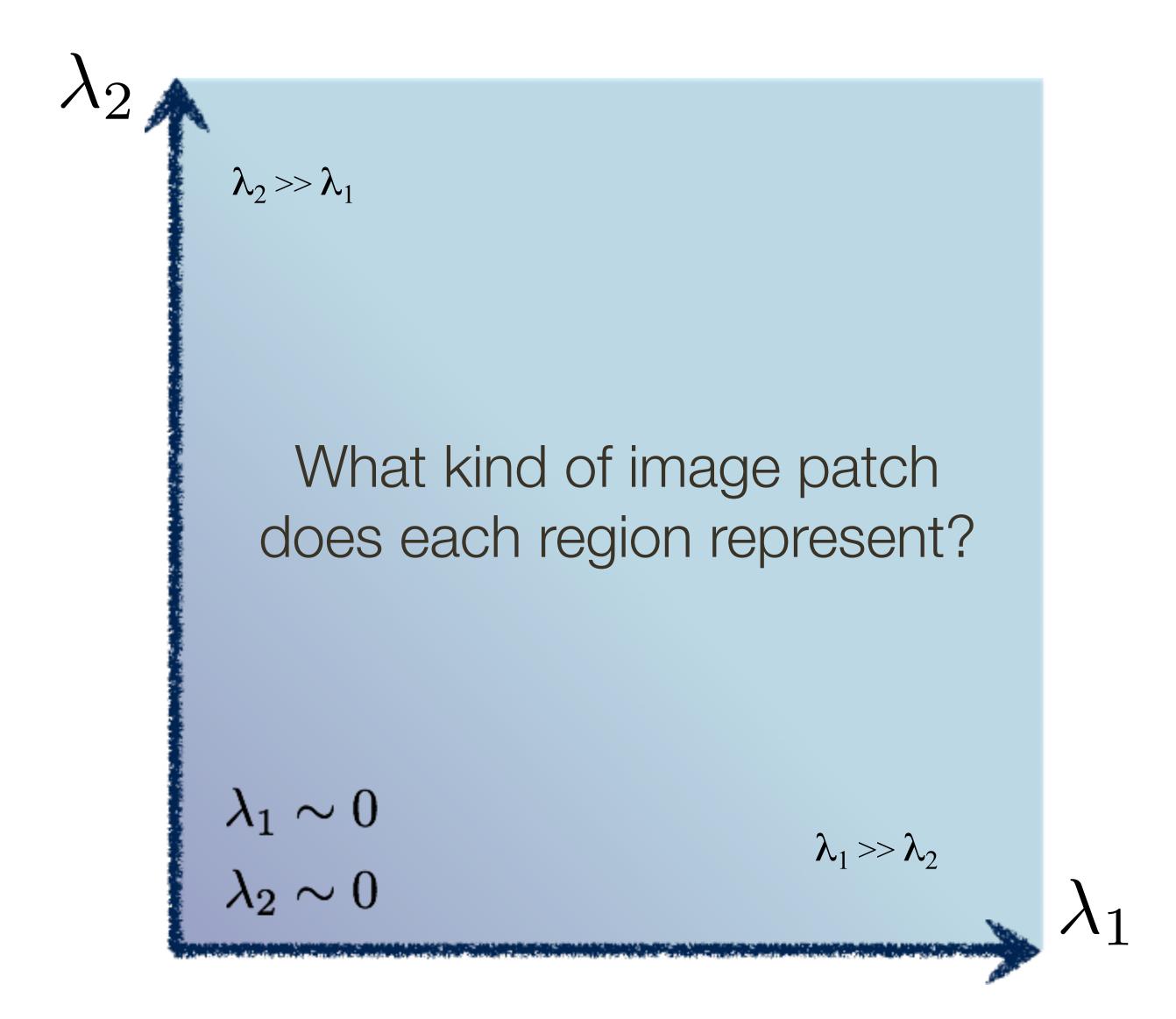
Since C is symmetric, we have $C=R^{-1}\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}R$

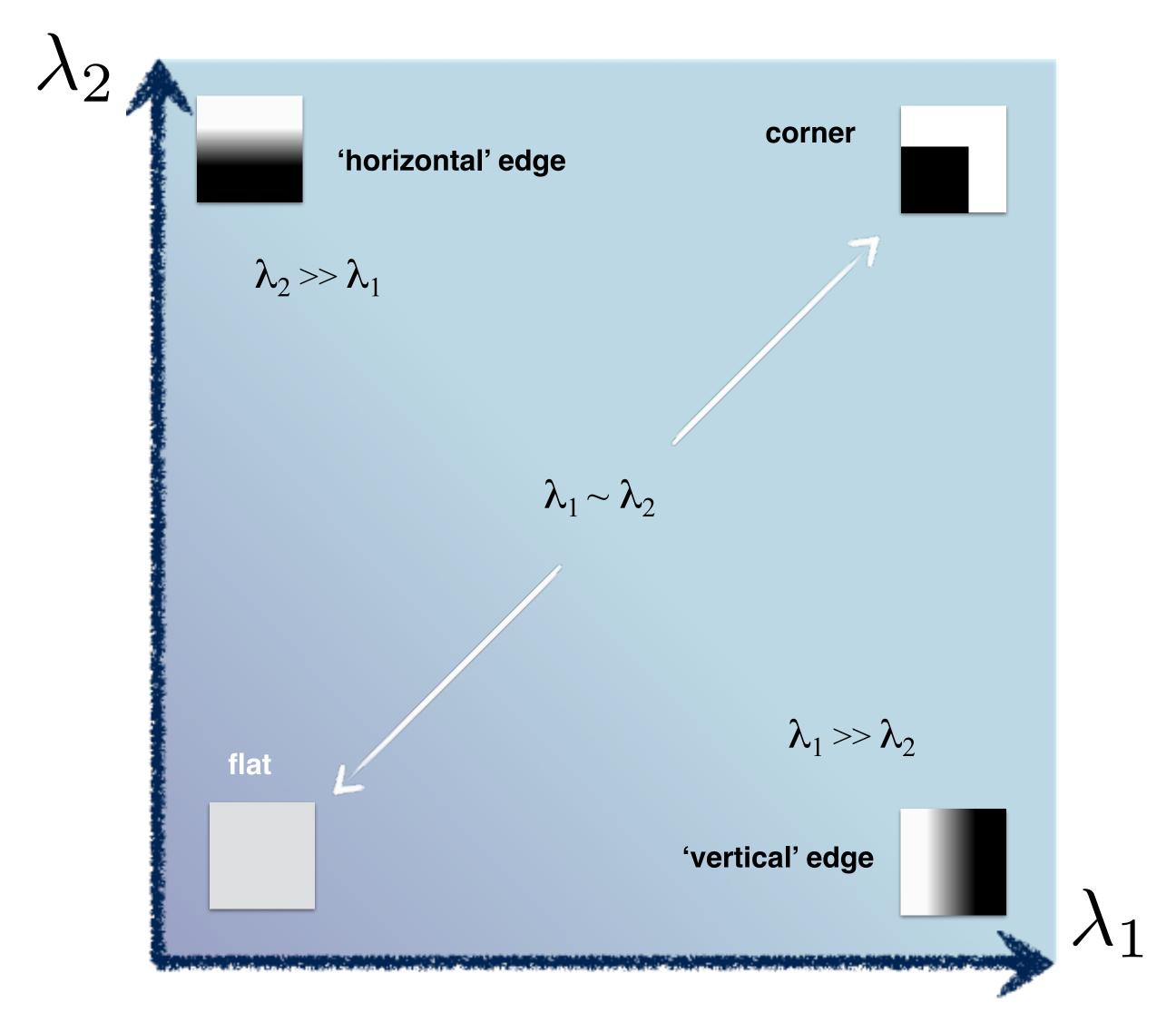
We can visualize ${\cal C}$ as an ellipse with axis lengths determined by the eigenvalues and orientation determined by ${\cal R}$

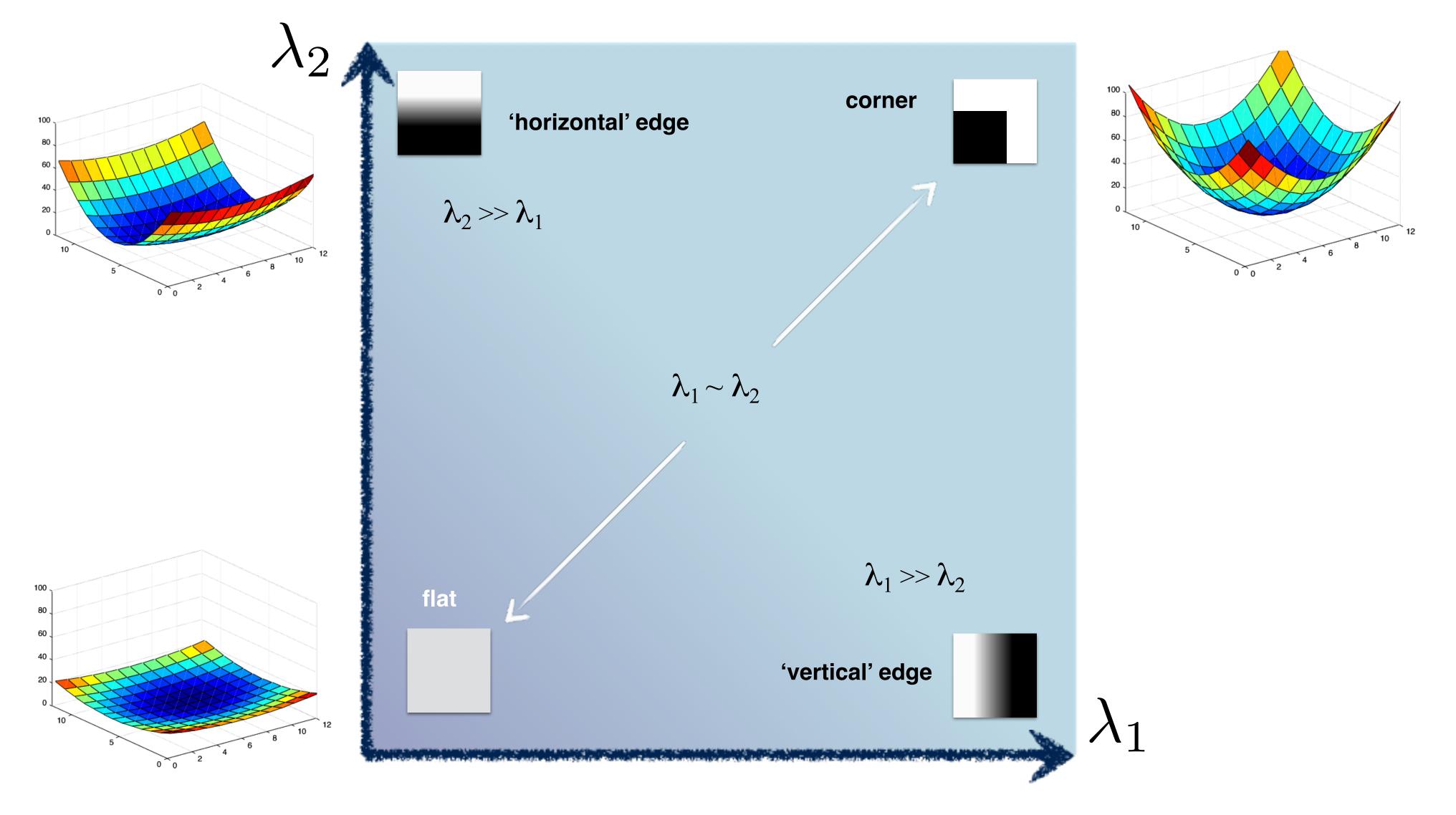
Ellipse equation:

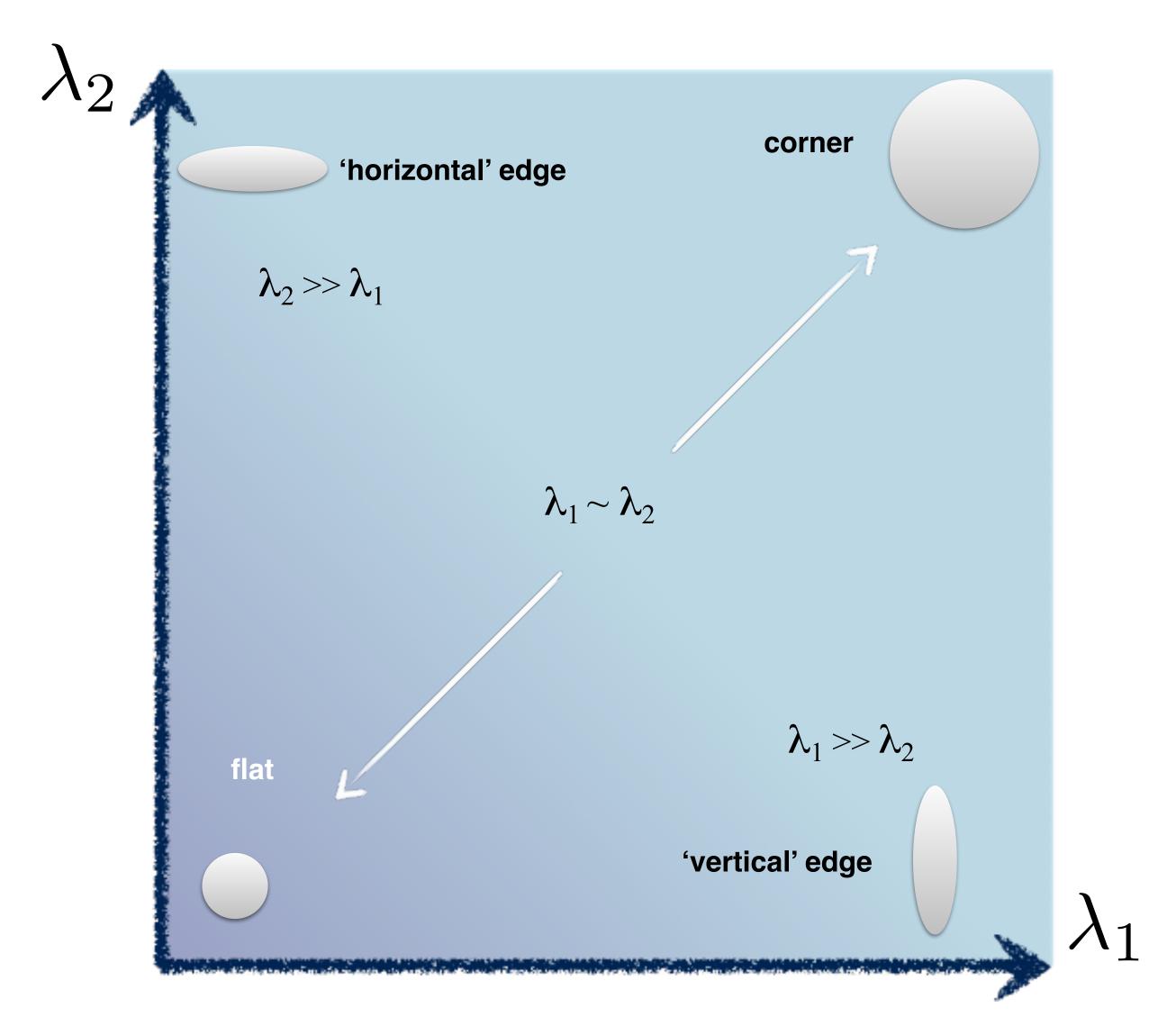
$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \text{const}$$

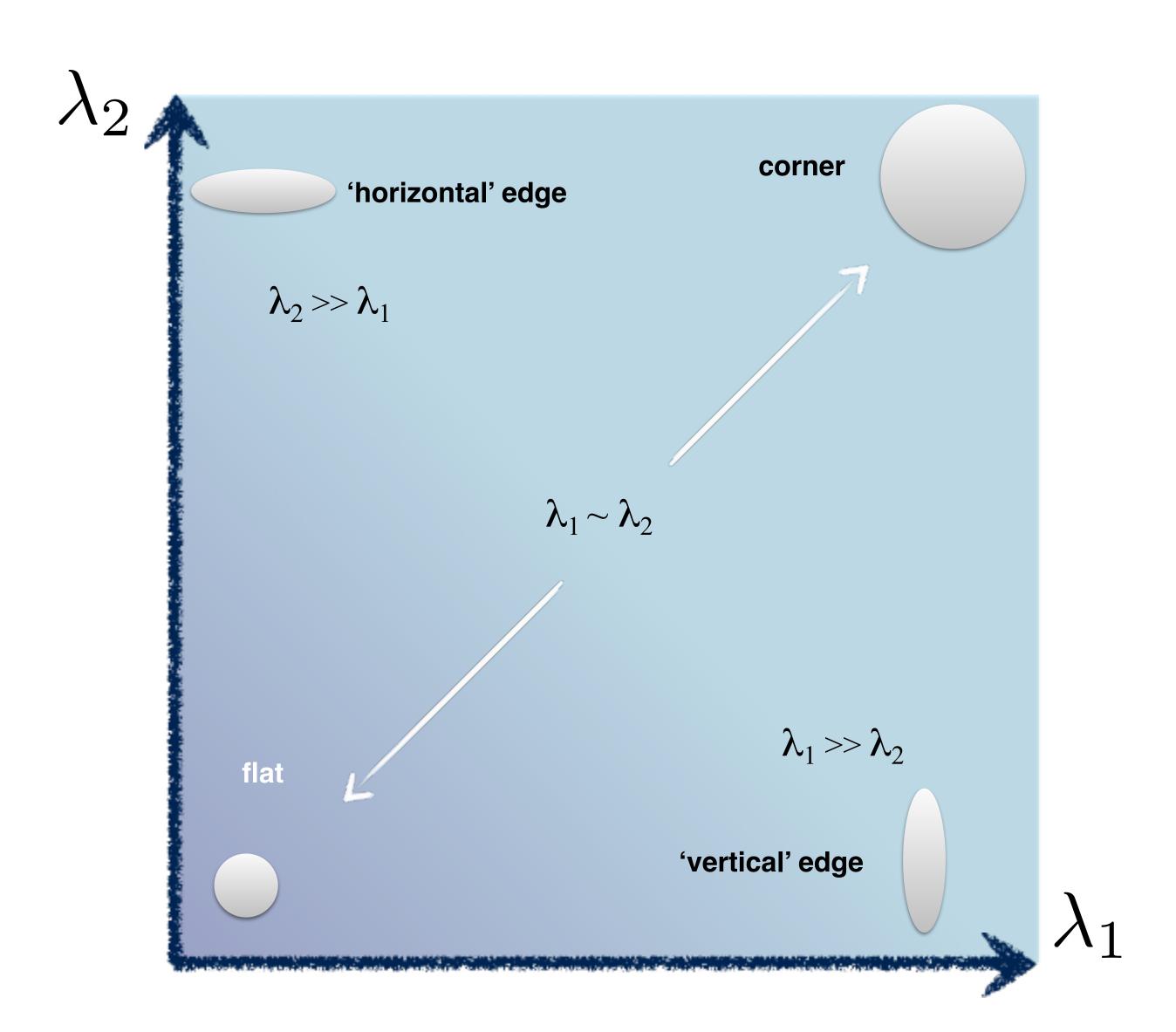












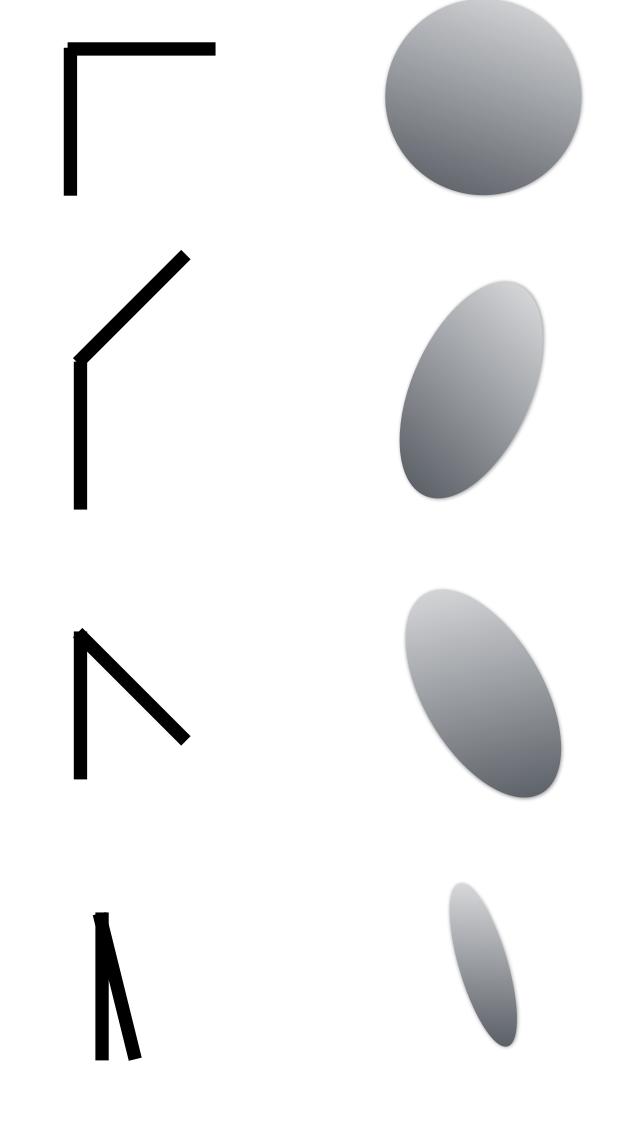
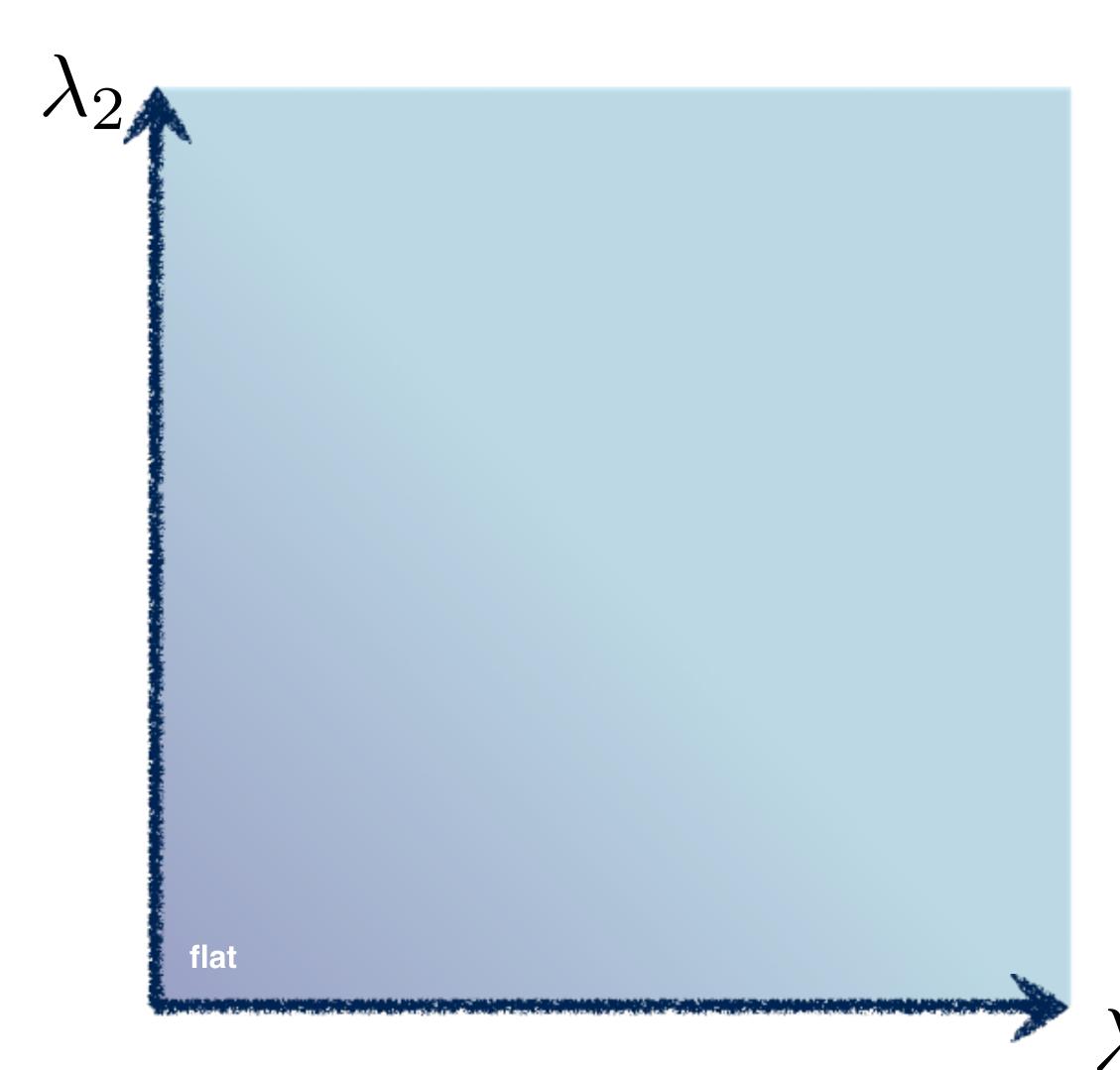


Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

(a function of)



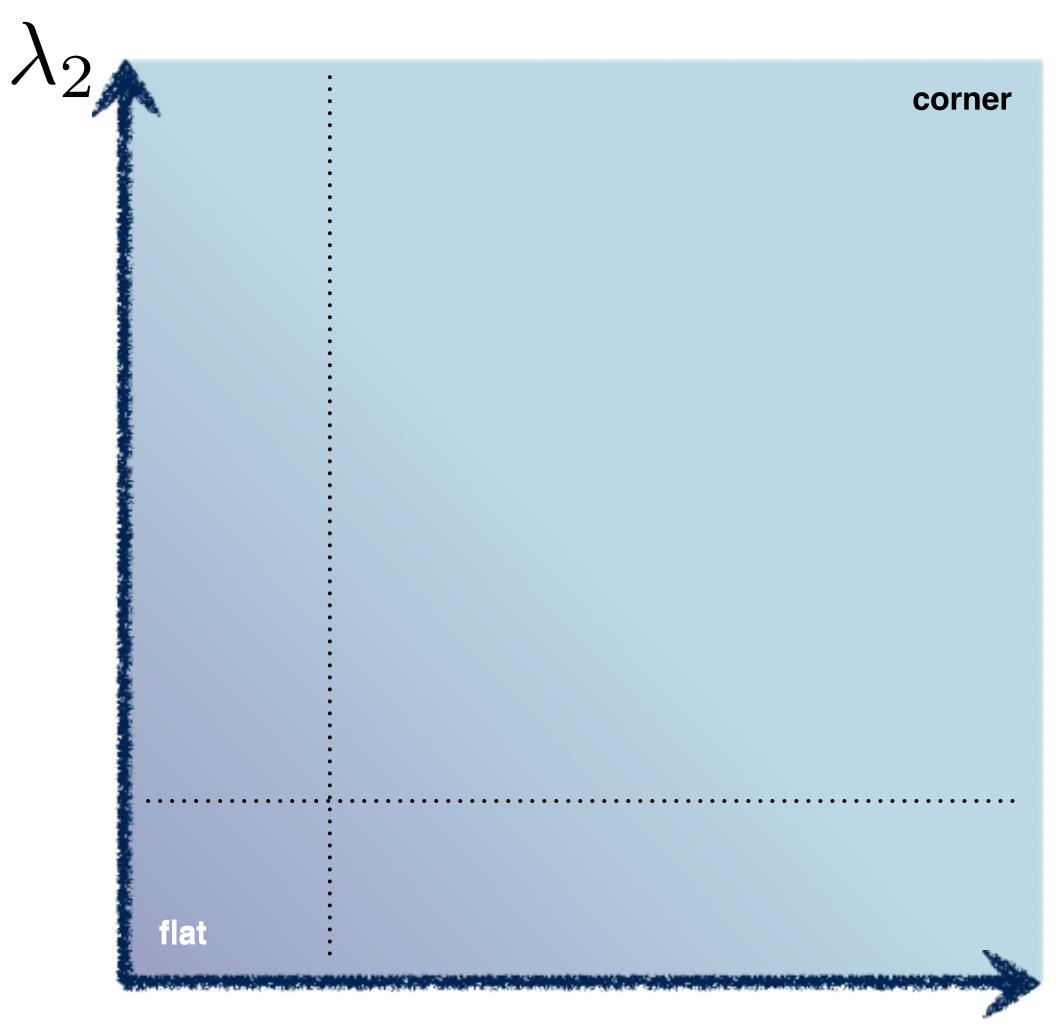
Think of a function to score 'cornerness'

(a function of)



Think of a function to score 'cornerness'

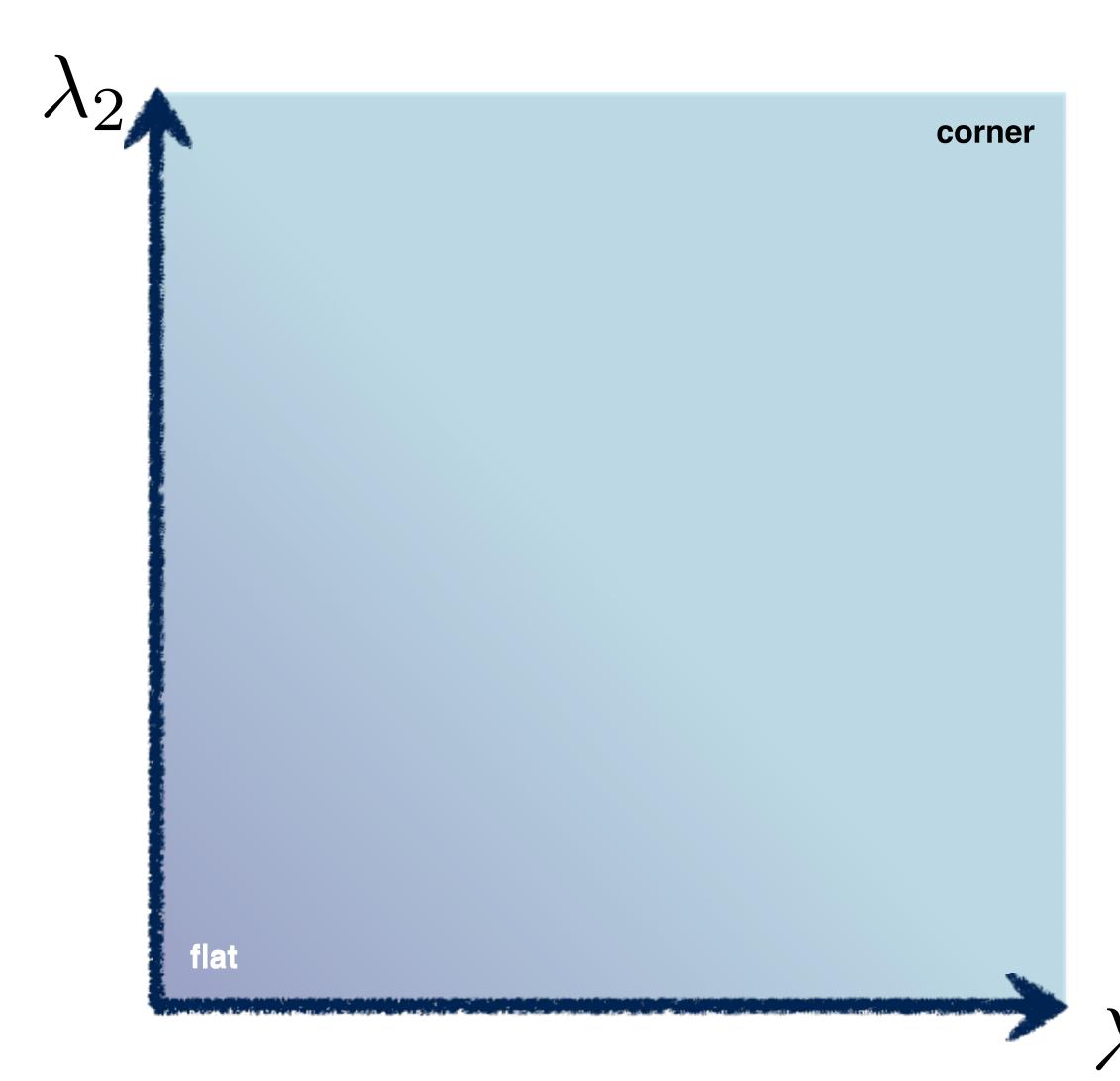
(a function of)



Use the **smallest eigenvalue** as the response function

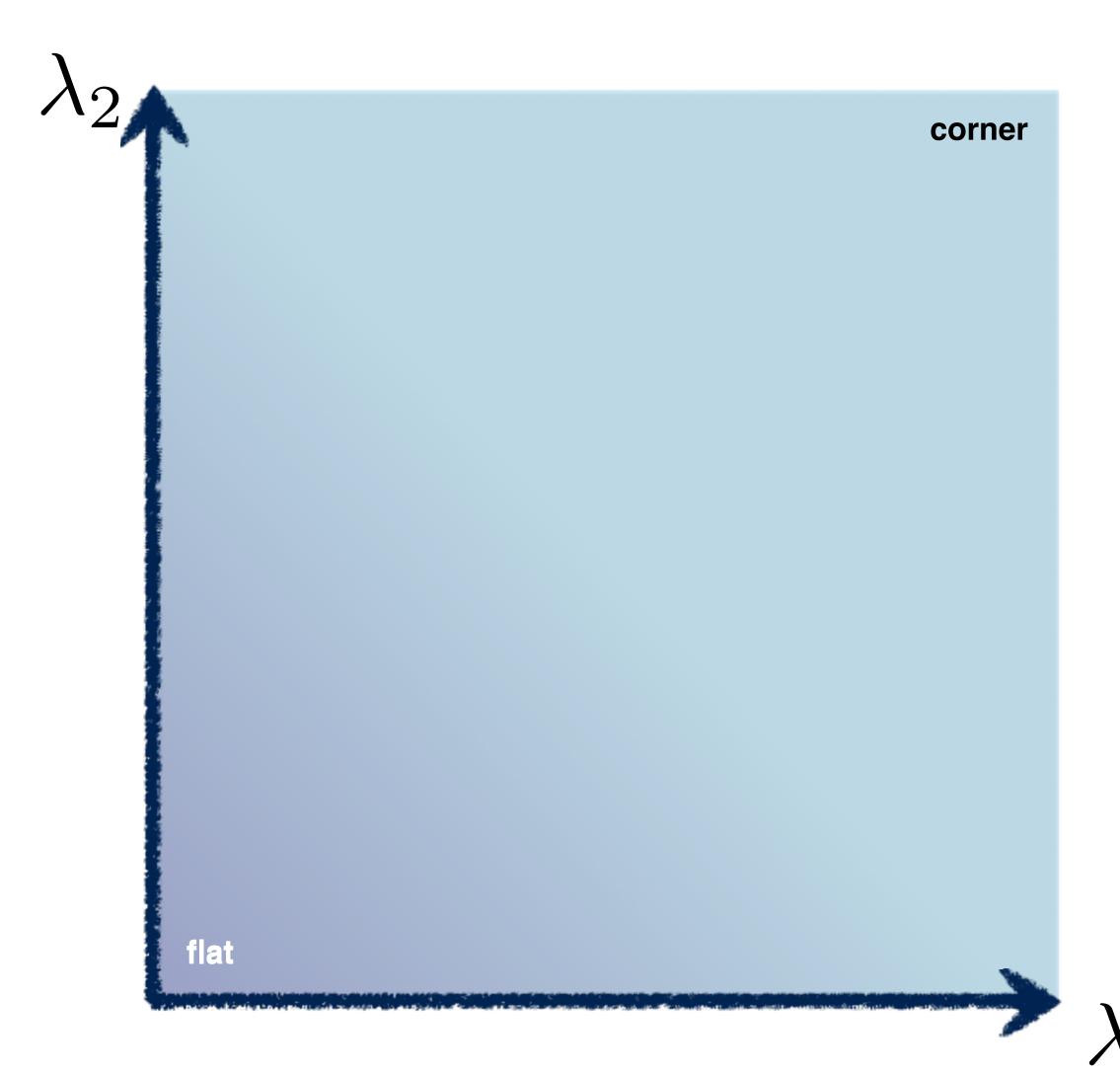
$$\min(\lambda_1, \lambda_2)$$

(a function of)



$$\lambda_1\lambda_2 - \kappa(\lambda_1 + \lambda_2)^2$$

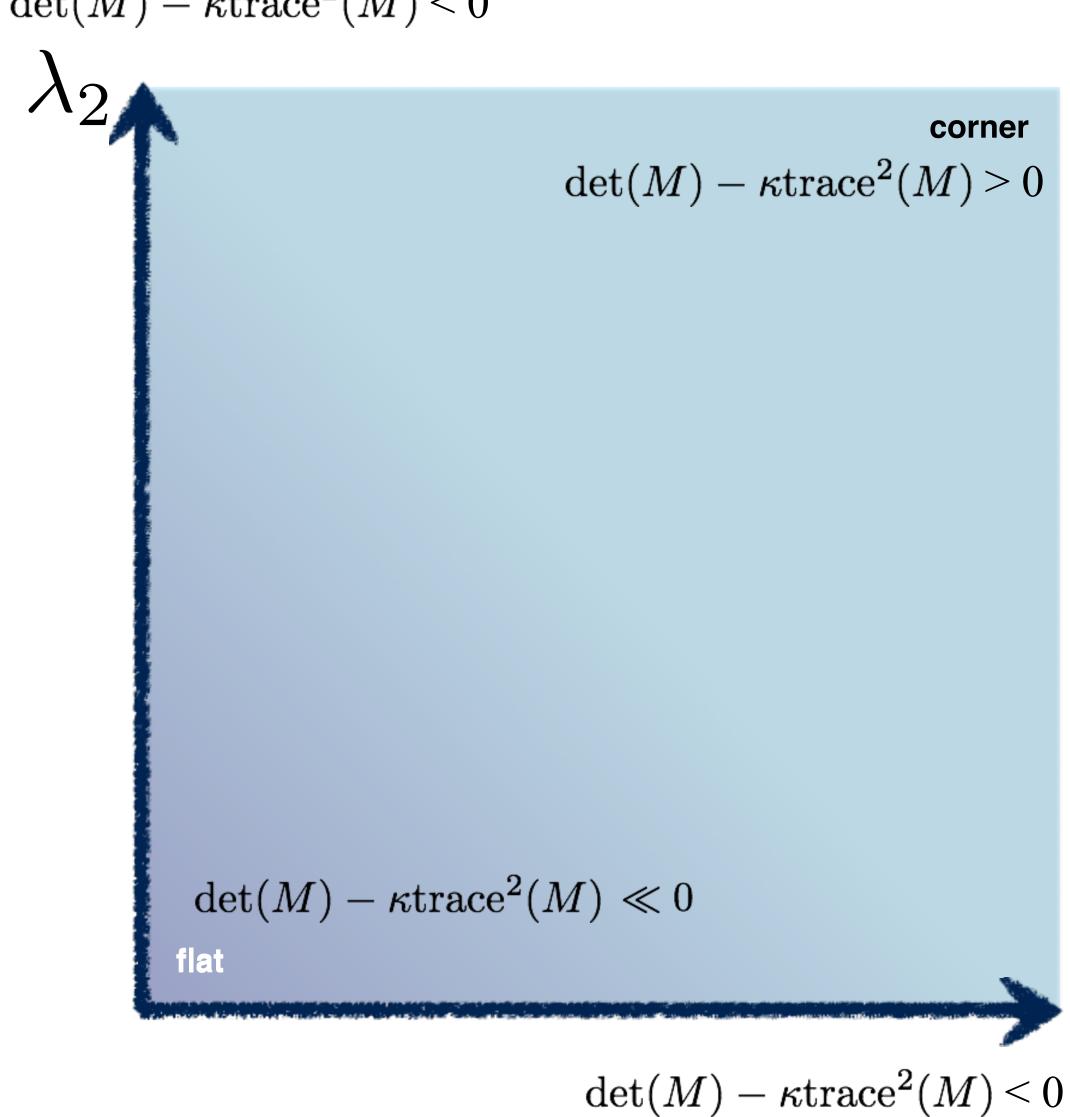
(a function of)



$$\lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$$

$$= \det(C) - \kappa \operatorname{trace}^2(C)$$
(more efficient)

 $\det(M) - \kappa \operatorname{trace}^2(M) < 0$ (a function of)



$$\lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$$

$$= \det(C) - \kappa \operatorname{trace}^2(C)$$
(more efficient)

(a function of)

Harris & Stephens (1988)

$$\det(C) - \kappa \operatorname{trace}^2(C)$$

Kanade & Tomasi (1994)

$$\min(\lambda_1,\lambda_2)$$

Nobel (1998)

$$\frac{\det(C)}{\operatorname{trace}(C) + \epsilon}$$

Harris Corner Detection Review

- Filter image with Gaussian
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel
 - Harris uses a Gaussian window
- Solve for product of the λ 's
- If λ 's both are big (product reaches local maximum above threshold) then we have a corner
 - Harris also checks that ratio of λs is not too high

Compute the Covariance Matrix

Sum can be implemented as an (unnormalized) box filter with

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Harris uses a Gaussian weighting instead

Compute the Covariance Matrix

 $E(u,v) = \sum_{x,y} w(x,y) \Big[I(x+u,y+v) - I(x,y) \Big]^{2}$ Error Window Shifted Intensity function function

Sum can be implemented as an (unnormalized) box filter with

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Harris uses a Gaussian weighting instead

(has to do with bilinear Taylor expansion of 2D function that measures change of intensity for small shifts ... remember AutoCorrelation)

Harris Corner Detection Review

- Filter image with Gaussian
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel
 - Harris uses a Gaussian window
- Solve for product of the λ 's

Harris & Stephens (1988)

$$\det(C) - \kappa \operatorname{trace}^2(C)$$

- If λ 's both are big (product reaches local maximum above threshold) then we have a corner
 - Harris also checks that ratio of λs is not too high

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

			-			
0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

$$I_x = \frac{\partial I}{\partial x}$$

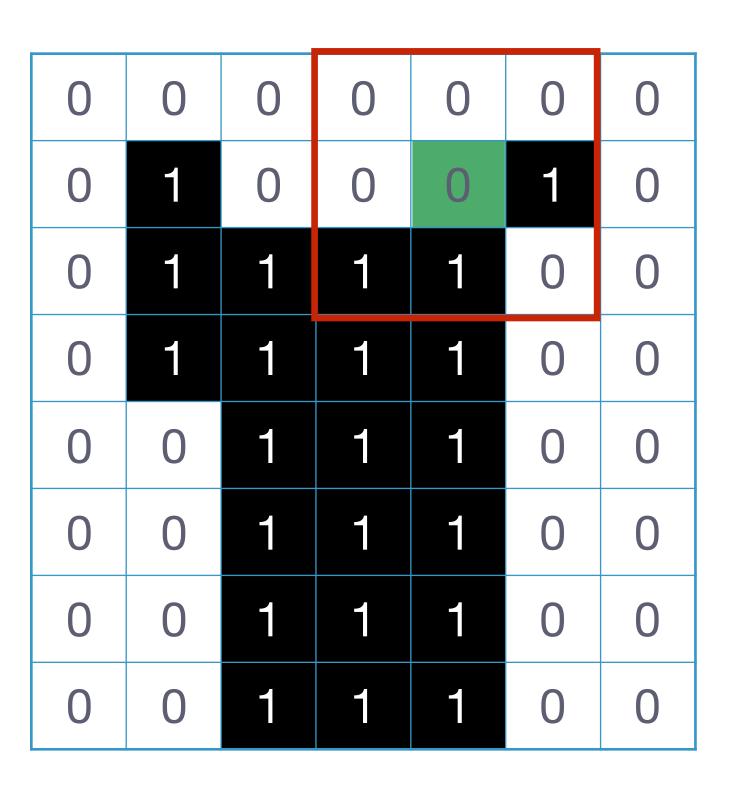
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$$I_x = \frac{\partial I}{\partial x}$$

$$I_y = \frac{\partial I}{\partial y}$$

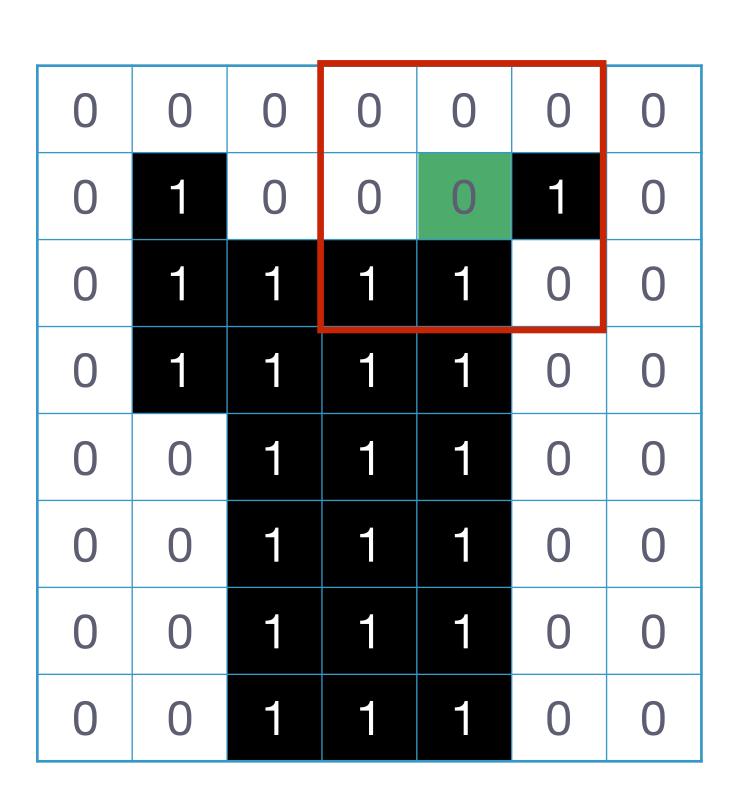


$$\sum \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \odot \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 3$$

0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

$$I_x = \frac{\partial I}{\partial x}$$

$$I_y = \frac{\partial I}{\partial y}$$



$$\mathbf{C} = \left[\begin{array}{cc} 3 & 2 \\ 2 & 4 \end{array} \right]$$

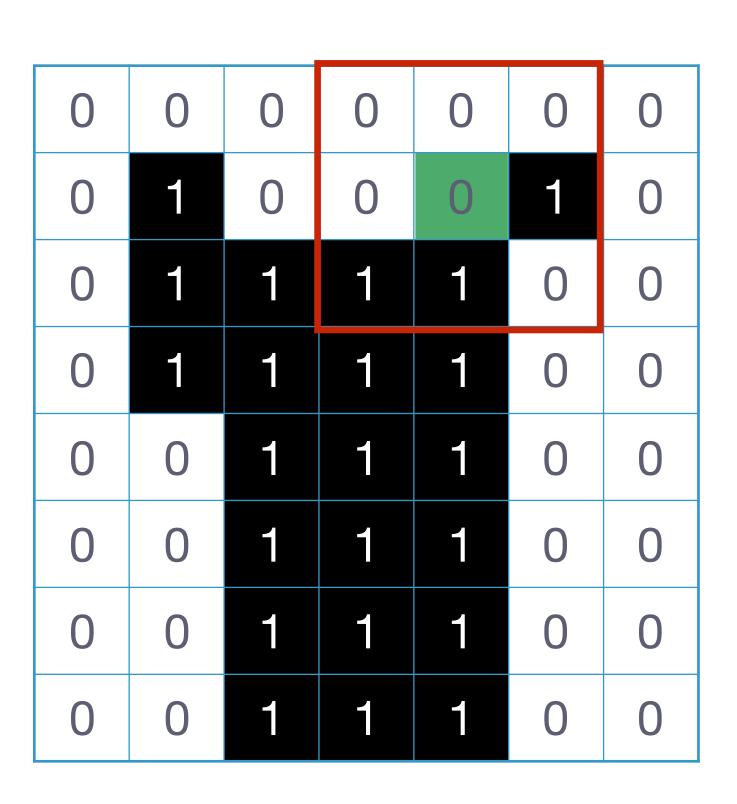
0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

$$I_x = \frac{\partial I}{\partial x}$$

- 1	ı	U	U	- 1	ı	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

$$I_y = \frac{\partial I}{\partial y}$$

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0



$$\mathbf{C} = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix} => \lambda_1 = 1.4384; \lambda_2 = 5.5616$$

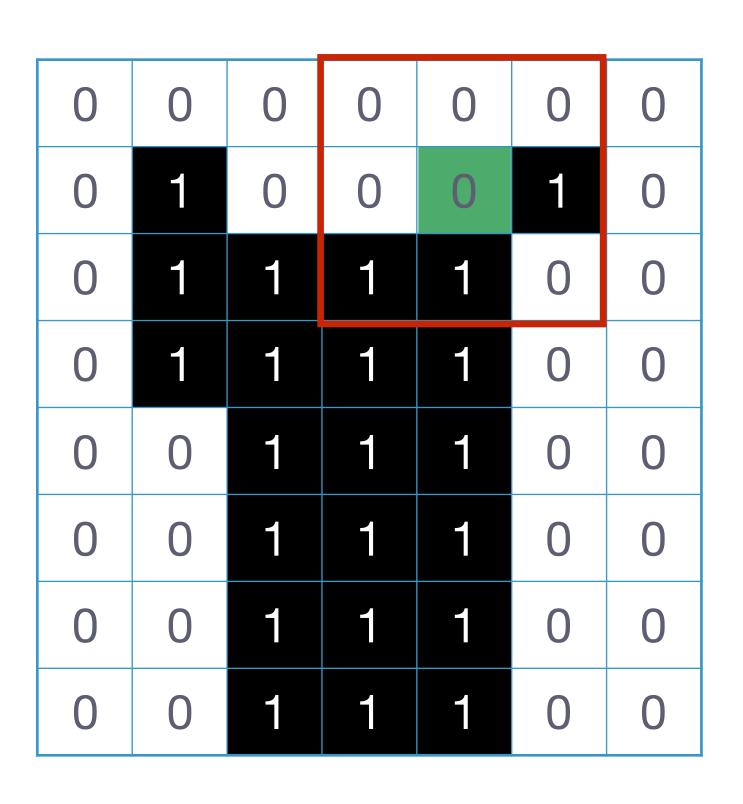
0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

$$I_x = \frac{\partial I}{\partial x}$$

-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

$$I_y = \frac{\partial I}{\partial y}$$

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0



$$\mathbf{C} = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix} => \lambda_1 = 1.4384; \lambda_2 = 5.5616$$

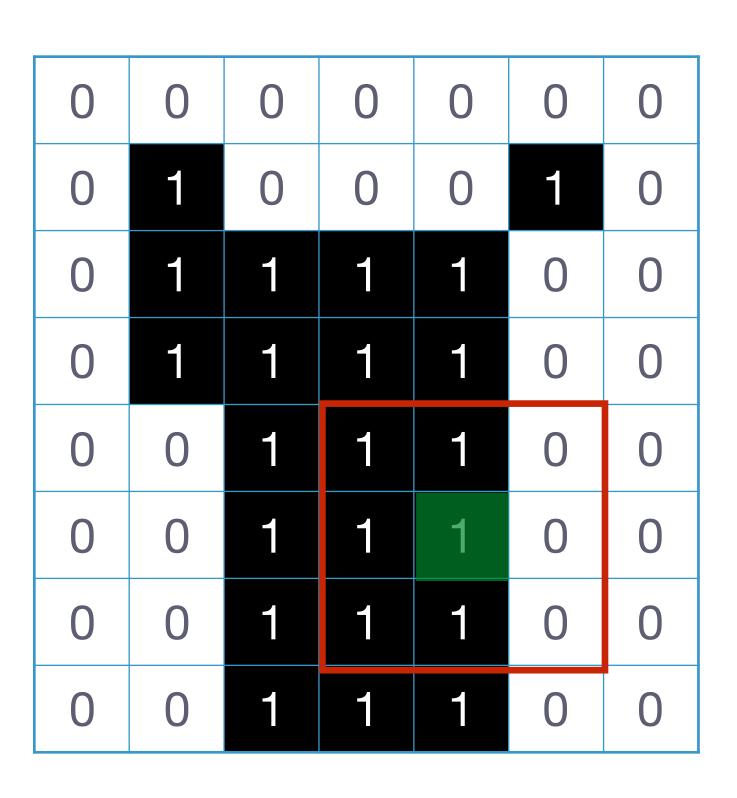
 $\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = 6.04$

0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

	•				•	
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$$I_x = \frac{\partial I}{\partial x}$$

Lets compute a measure of "corner-ness" for the green pixel:



$$\mathbf{C} = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \Longrightarrow \lambda_1 = 3; \lambda_2 = 0$$

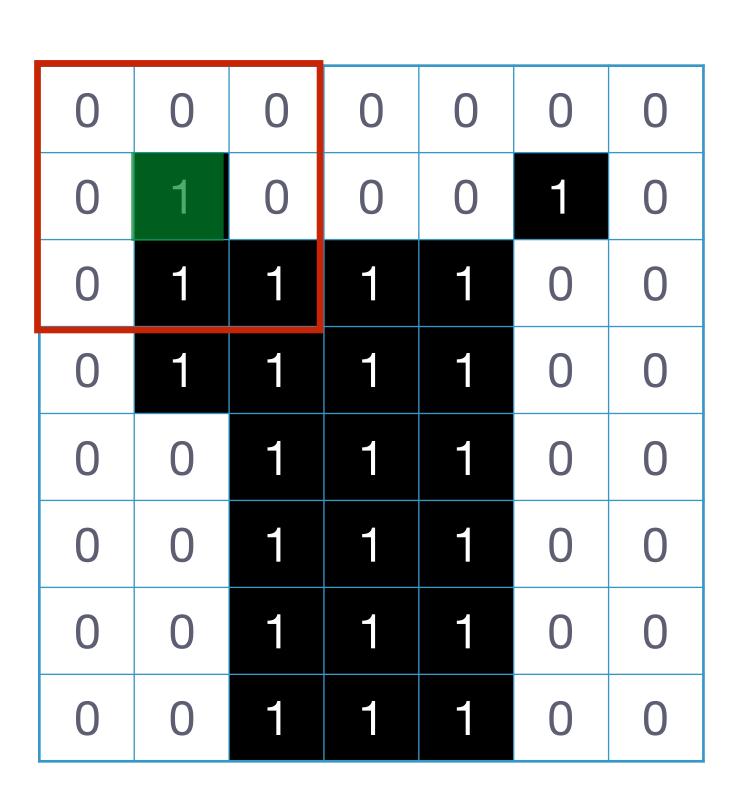
 $\det(\mathbf{C}) - 0.04 \operatorname{trace}^{2}(\mathbf{C}) = -0.36$

	-		-	-	-	-
0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$$I_x = \frac{\partial I}{\partial x}$$

$$I_y = \frac{\partial I}{\partial y}$$



$$\mathbf{C} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} => \lambda_1 = 3; \lambda_2 = 2$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = 5$$

						_
0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

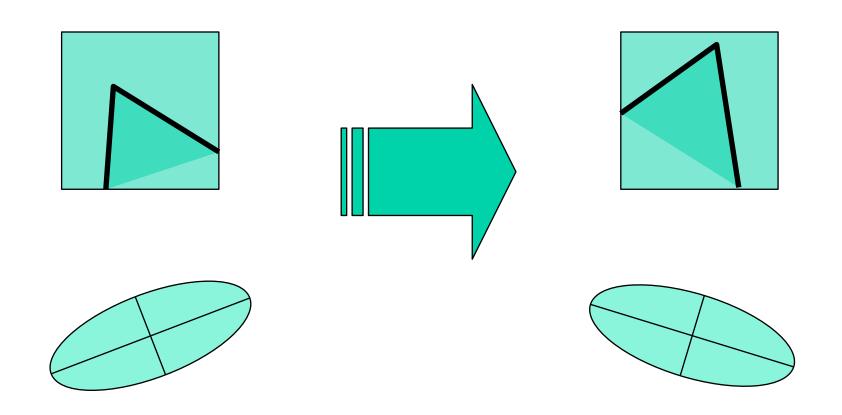
0	-1	0	0	0	-1	0
0	0	-1	-1	-1	1	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$$I_x = \frac{\partial I}{\partial x}$$

Harris Corner Detection Review

- Filter image with Gaussian
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel
 - Harris uses a Gaussian window
- Solve for product of the λ 's
- If λ 's both are big (product reaches local maximum above threshold) then we have a corner
 - Harris also checks that ratio of λs is not too high

Properties: Rotational Invariance



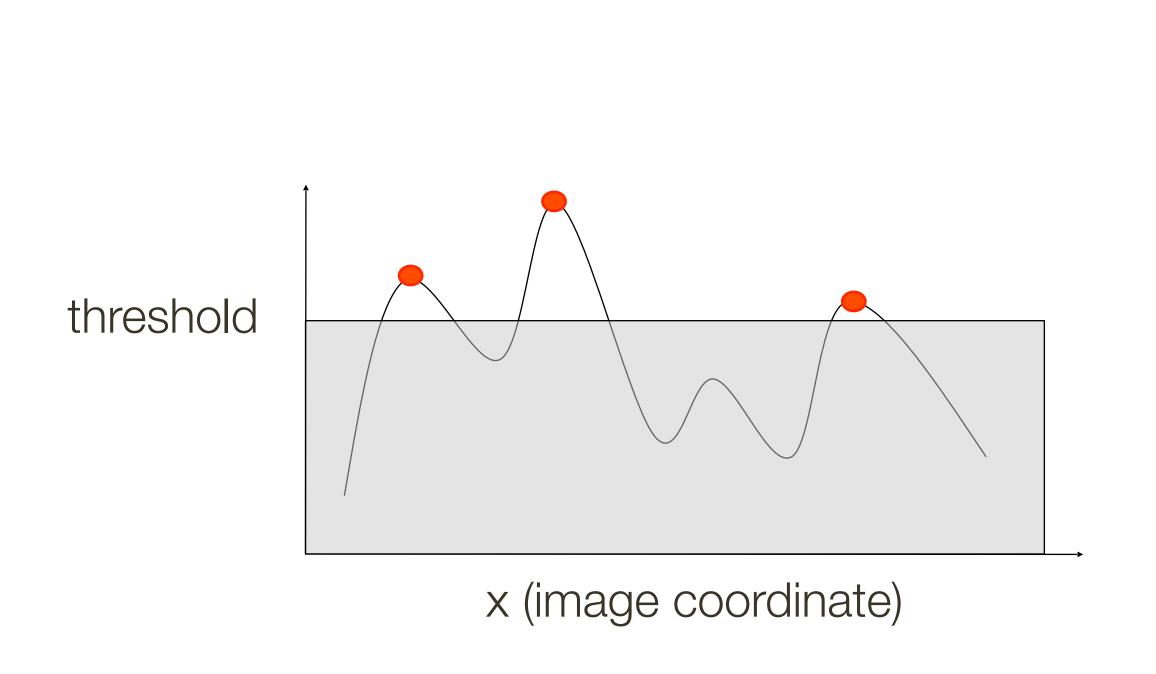
Ellipse rotates but its shape (eigenvalues) remains the same

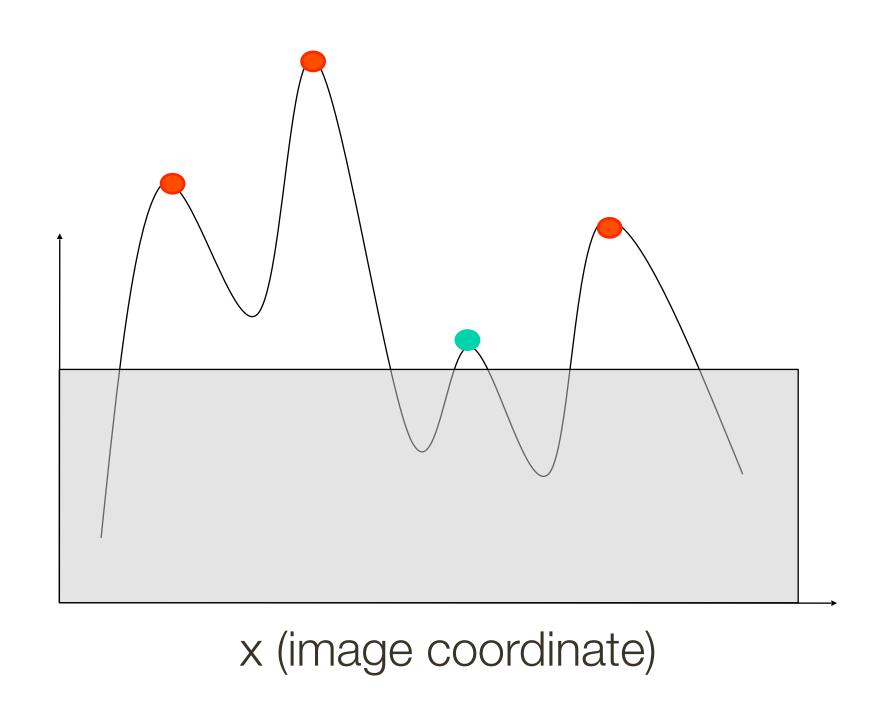
Corner response is invariant to image rotation

Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts

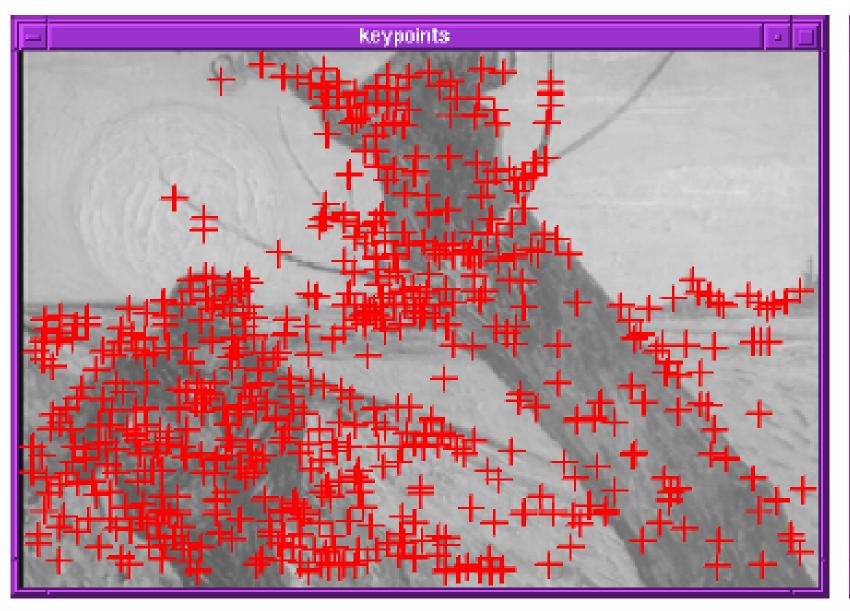
Intensity scale could effect performance

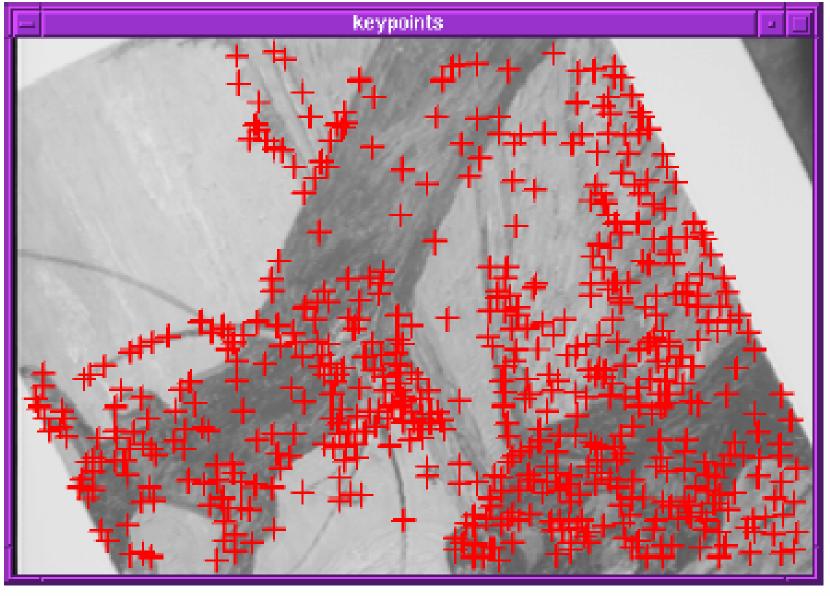




Properties: NOT Invariant to Scale Changes

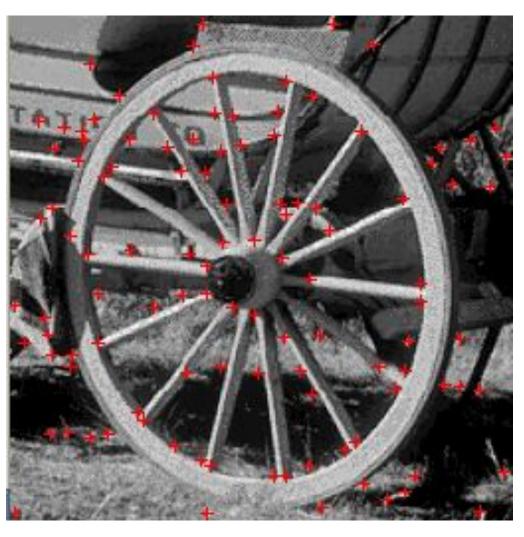
Example 1:



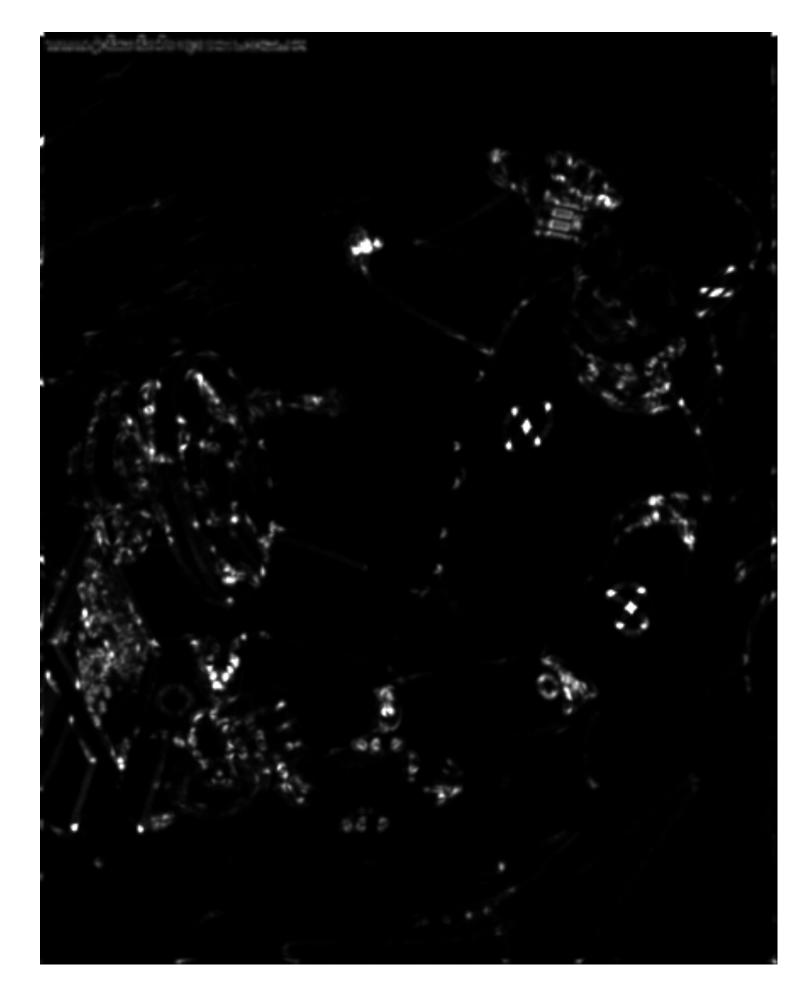


Example 2: Wagon Wheel (Harris Results)

 $\sigma=1$ (219 points) $\sigma=2$ (155 points) $\sigma=3$ (110 points) $\sigma=4$ (87 points)



Example 3: Crash Test Dummy (Harris Result)



 $\sigma = 1$ (175 points)

Original Image Credit: John Shakespeare, Sydney Morning Herald

Summary Table

Summary of what we have seen so far:

Representation	Result is	Approach	Technique
intensity	dense	template matching	(normalized) correlation
edge	relatively sparse	derivatives	
corner	sparse	locally distinct features	Harris