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Lecture 6: Sampling (part 2)

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )


https://en.wikibooks.org/wiki/Analog_and_Digital_Conversion/Nyquist_Sampling_Rate

Menu for Today (January 23, 2020)

Topics:
— Sampling theory — Color Filter Arrays
— Nyquist rate — Bayer patterns

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 4.5, 4.6
— Next Lecture: Forsyth & Ponce (2nd ed.) 4.6, 4.7

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due January 28th
— Code for Piazza sign up is (425S2)




Today’s “fun” Example: Optical lllusions

Image From: https://inudgeyou.com/en/nudging-traffic-safety-by-visual-illusions/
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Today's “fun” Example: Nudging
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Aerial view of the white stripes at the lake shore drive in Chicago.
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Today’s “fun” Example: Anchoring and Ordering

Champagne, Sporkling,

Rose, Sweet Wines
Olwunpagne

CH18 GREMILLET "Brut Selection" - Champagne $65
CH31 NV ERNEST RAPENEAU "Selection Brut™ - Champagne $65
CH12 NV CHAMPAGNE ERNEST RAPENEAU - BRUT - Chardonnay/Pinot Noir/Pinot Meunier- $75
CHOS NV DRAPPIER "Carte d'Or" - Champagne 578
CH30 2007 ERNEST RAPENEAU VINTAGE - Chardonnay/ Pinot Noir - Champagne S80
CH32 NV ERNEST RAPENEAU "Premier Cru Brut" - Champagne $80
CH28 NV DRAPPIER Brut Rose - Champagne $85
CH29 2012 DRAPPIER "Millesime Exception" - Champagne $98
CH11 2008 DRAPPIER " Cuvee Grande Sendree"” - Champagne $130
CH39 ERNEST RAPENEAU "Grande Reserve"- Magnum - Champagne $130
Sparhlmg Wines
CHO6 IL CORTIGIANO - Prosecco Extra Dry - Veneto S30
CH17 NV VALLFORMOSA "Clasic" Semi Seco - Cava $30
CH24 NV VEUVE MOISANS "Blanc de Blancs" - Loire Valley $30
CH25 NV VALDO - Prosecco Extra Dry - Treviso, Veneto $30
CH33 NV VALDO "Origine" Rose - Veneto $30
CHO3 2012 CHATEAU MONTGUERET Saumur Sec Rose - Cabernet Franc - Loire Valley $32
CHO4 NV CAVA MASET RESERVA BRUT - Macabeo/Xarello/Parellada - Cava $32
CH14 NV TRIVENTO "Brut Nature" - Mendoza $32
CH21 2015 CAMASELLA - Glera - Vaneto 532
CHO2 2013 BRUT D'ARGENT ICE - Chardonnay - France $35
CHO1 NV VALDO "ORO PUROQ" Prosecco Superiore - Veneto $36
CH40 NV MAISON DARRAGON - AOC Vouvray Brut - Loire Valley $38
CHO9 NV LOU MIRANDA ESTATE 'LEONE' - Sparkling Shiraz - Barossa Valley S42
Rose Wines

PO03 2014 CASAL MENDES Rose - Baga - Portugal $30
RHO9 2014 LA VIE EN ROSE - Cinsault - Languedoc $30
RH69 2015 LES EMBRUNS "La Croix des Saintes" - Sable de Camargue $30
RHO4 2015 LES MAITRES VIGNERONS DE ST TROPEZ - Cotes de Provence $32
RH15 2015 MANON - COTES DE PROVENCE - Grenache/Cinsault/Syrah. - Provence $34
RHO4AM 2015 LES MAITRES VIGNERONS DE LA PRESQU'ILE DE SAINT TROPEZ - Grenache/Mourve S68
Sweet Wines
AR33 2015 TRIVENTO "Birds & Bees" White - Mendoza $30
AR34 2016 TRIVENTO "Birds & Bees" Red - Mendoza 530
AUOS 2015 DEAKIN ESTATE - Moscato - Murray Darling $30
AU12 2016 Chalk Hill - Moscato - MclLaren Vale $30
AUGS NV WESTEND ESTATE "Richland" - Moscato - New South Wales $30
AU107 NV WESTEND ESTATE "Richland” - Pink Moscato - New South Wales S30



Framework for loday’s Topic
Problem: How do we go from the optics of image formation to digital images
as arrays of numbers?
Key Idea(s): Sampling and the notion of band limited functions

Theory: Sampling Theory
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Imaging system

(Internal) image plane

Scene element

Images are a discrete, or sampled, representation of a continuous world




What is an Image”’

Up to now provided a physical characterization
— Image formation as a problem in physics/optics
— we also talked about simple image processing algorithms on image arrays

Now provide a mathematical characterization
— to understand how to represent images digitally
— to understand how to compute with iImages



Continuous Case

‘Image” suggests a 2D surface whose appearance varies from point—to—point
— the surface typically is a plane (but might be curved, e.q., as is with an eye)

Appearance can be Grayscale (Black and White) or Colour

In Grayscale, variation in appearance can be described by a single parameter
corresponding to the amount of light reaching the image at a given point in a
given time



Continuous Case

Denote the image as a function, i(x, y), where x and y are spatial variables

Aside: The convention for this section Is to use lower case letters for the
continuous case and upper case letters for the discrete case
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Continuous Case: Observations

— i(z,y) is a real-valued function of real spatial variables, x and ¥
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Recall: Pinhole Camera

Image
plane

I . J
pinhole .-~ virtual
- image

Forsyth & Ponce (2nd ed.) Figure 1.2
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Continuous Case: Observations

— i(z,y) is a real-valued function of real spatial variables, x and ¥

— i(x,y) s bounded above and below. [hat is

0 <i(z,y) <M

for some maximum brightness M
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Continuous Case: Observations

— i(z,y) is a real-valued function of real spatial variables, x and ¥

— i(x,y) s bounded above and below. [hat is

0 <i(z,y) <M

for some maximum brightness M

— i(x,y)is bounded in extent. That is, ¢(x, y) is non-zero (i.e., strictly positive)
over, at most, a bounded region
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Continuous Case

— Images also can be considered a function of time. Then, we write i(x, y, t)
where x and y are spatial variable and t is a temporal variable

— o make the dependence of brightness on wavelength explicit, we can
instead write ¢(x, y,t, A\) where x, ¥ and t are as above and where A is a
spectral variable

— More commonly, we think of “color” already as discrete and write

iR(ajv y)
ig(il?, y)
Z.B (567 y)

for specific colour channels, R, G and B
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Discrete Case

Idea: Superimpose (regular) grid on continuous image

Sample the underlying continuous image according to the tessellation
imposed by the grid
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Discrete Case

— pixel
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Discrete Case

Each grid cell is called a picture element (pixel)

— pixel

Denote the discrete image as I(X,Y)

We can store the pixels in a matrix or array
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Discrete Case

Question: How to sample?
— Sample brightness at the point”

— “Average” brightness over entire pixel?

Answer:
— Point sampling Is useful for theoretical development

— Area-based sampling occurs Iin practice
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Discrete Case

Question: What about the brightness samples themselves”?
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Discrete Case

Question: What about the brightness samples themselves”?

Answer: We make values of I(X,Y) discrete as well

Recal: 0<i(x,y) <M

We divide the range [0, M| into a finite number of equivalence classes. This is
called quantization.

The values are called grey-levels.
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Discrete Case

Quantization is a topic in its own right
For now, a simple linear scheme Is sufficient

Suppose n bits-per-pixel are available. One can divide the range |0, M| into
evenly spaced intervals as follows:

i(x,y) — z(f\f) (2" —1)+ 0.5

where | ] is floor (.e., greatest integer less than or equal to)

Typically n = 8 resulting in grey-levels in the range |0, 255]
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Sampling

't Is clear that some information may be lost when we work on a discrete pixel grid.

Forsyth & Ponce (2nd ed.) Figure 4.7
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Sampling

't Is clear that some information may be lost when we work on a discrete pixel grid.

Forsyth & Ponce (2nd ed.) Figure 4.7
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Sampling

't Is clear that some information may be lost when we work on a discrete pixel grid.

Forsyth & Ponce (2nd ed.) Figure 4.7
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Sampling

't Is clear that some information may be lost when we work on a discrete pixel grid.

Forsyth & Ponce (2nd ed.) Figure 4.7
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Sampling

't Is clear that some information may be lost when we work on a discrete pixel grid.

Forsyth & Ponce (2nd ed.) Figure 4.7
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Sampling Theory (informal)

Question: When is I(X,Y) an exact characterization of i(x,y)?
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Sampling Theory (informal)

Question: When is I(X,Y) an exact characterization of i(x,y)?

Question (modified): When can we reconstruct i(x, y) exactly fromI(X,Y)?
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Sampling Theory (informal)

Question: When is I(X,Y) an exact characterization of i(x,y)?
Question (modified): When can we reconstruct i(x, y) exactly fromI(X,Y)?

Intuition: Reconstruction involves some kind of interpolation
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Sampling Theory (informal)

Question: When is I(X,Y) an exact characterization of i(x,y)?
Question (modified): When can we reconstruct i(x, y) exactly fromI(X,Y)?
Intuition: Reconstruction involves some kind of interpolation

Heuristic: \When in doubt, consider simple cases

31



Sampling Theory (informal)

Case 0: Supposei(x,y) = k (with k£ being one of our gray levels)

Note: we use equidistant sampling at integer values for convenience, Iin
general, sampling doesn’t need to be equidistant
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Sampling Theory (informal)

Case 0: Supposei(x,y) = k (with k£ being one of our gray levels)
1(X)
K
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Sampling Theory (informal)

Case 0: Supposei(x,y) = k (with k£ being one of our gray levels)

I(X,Y) = k. Any standard interpolation function would give i(x,y) = k for non-
integer x and vy (irrespective oh how coarse the sampling is)

34



Sampling Theory (informal)

Case 0: Supposei(x,y) has a discontinuity not falling precisely at integer x, y
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Sampling Theory (informal)

Case 0: Supposei(x,y) has a discontinuity not falling precisely at integer x, y

We cannot reconstruct ¢(x, y) exactly because we can never know exactly where
the discontinuity lies
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Sampling Theory (informal)

Case 0: Supposei(x,y) has a discontinuity not falling precisely at integer x, y

- This is impossible!

We cannot reconstruct ¢(x, y) exactly because we can never know exactly where
the discontinuity lies
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Sampling Theory (informal)

Question: How do we close the gap between “easy” and “impossible””

Next, we bulld intuition based on informal argument

338



Sampling Theory (informal)

Exact reconstruction requires constraint on the rate at which i(x,y) can change
between samples

— “rate of change” means derivative
— the formal concept is bandlimited signal

— “pandlimit” and “constraint on derivative” are linked

Think of music

— bandlimited if it has some maximum temporal frequency
— the upper limit of human hearing is about 20 kHz

Think of Imaging systems. Resolving power is measured in

— “line pairs per mm” (for a bar test pattern)
— “cycles per mm?” (for a sine wave test pattern)

An Image Is bandlimited If it has some maximum spatial frequency
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Example: A Simple Sine Wave

How do we discretize the signal”

40 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

N ML

41 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

How many samples should | take?
Can | take as many samples as | want”

42 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

How many samples should | take?
Can | take as few samples as | want?

43 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

Signal can be confused with one at lower frequency

44 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

Signal can be confused with one at lower frequency

45 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: A Simple Sine Wave

How do we discretize the signal”

VA VA VA AL
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Signal can always be confused with one at higher frequency

46 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Undersampling = Aliasing

AWAN

47 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Sampling Theory (informal)

The challenge to intuition is the fact that music (in the 1D case) and images (in

the 2D case) can be represented as linear combinations of individual sine waves
of differing frequencies and phases (rememlber discussion on FFTs)

A fundamental result (Sampling Theorem) is:

For bandlimited signals, If you sample regularly at or albove twice the

maximum frequency (called the Nyquist rate), then you can reconstruct
the original signal exactly
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Sampling Theory (informal)

Question: For a bandlimited signal, what if you oversample (i.e., sample at
greater than the Nyquist rate)
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Sampling Theory (informal)

Question: For a bandlimited signal, what if you oversample (i.e., sample at
greater than the Nyquist rate)

Answer: Nothing bad happens! Samples are redundant and there are wasted
pItS
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Sampling Theory (informal)

Question: For a bandlimited signal, what if you oversample (i.e., sample at
greater than the Nyquist rate)

Answer: Nothing bad happens! Samples are redundant and there are wasted
pItS

Question: For a bandlimited signal, what if you undersample (i.e., sample at
less than the Nyquist rate)
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Sampling Theory (informal)

Question: For a bandlimited signal, what if you oversample (i.e., sample at
greater than the Nyquist rate)

Answer: Nothing bad happens! Samples are redundant and there are wasted
pItS
Question: For a bandlimited signal, what if you undersample (i.e., sample at

less than the Nyquist rate)

Answer: Two bad things happen! Things are missing (i.e., things that should be
there aren’t). There are artifacts (i.e., things that shouldn’t be there are)
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Sampling Theory (informal)

Forsyth & Ponce (2nd ed.) Figure 4.7
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Sampling Theory (informal)
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Forsyth & Ponce (2nd ed.) Figure 4.12
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Reducing Aliasing Artifacts

1. Oversampling — sample more than you think you need and average (i.e.,
area sampling)

0O



Aliasing

aliasing artifacts anti-aliasing by oversampling

56 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Reducing Aliasing Artifacts

1. Oversampling — sample more than you think you need and average (i.e.,
area sampling)

2. Smoothing before sampling. Why?

of



Aliasing in Photographs

This is also known as “moire” b
- e
L ' B .l

58 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

[f camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DDRD

frame 0O frame 1 frame 2 frame 3 frame 4

- g

shutter open time

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing

effect

60 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing

effect

60 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing

effect
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Temporal Aliasing

o1 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing

o1 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Temporal Aliasing

o1 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Sampling Theory (informal)

Sometimes undersampling is unavoidable, and there is a trade-off between
“things missing” and “artifacts.”

— Medical imaging: usually try to maximize information content, tolerate
some artifacts

— Computer graphics: usually try to minimize artifacts, tolerate some
iINnformation missing
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Review: Continuous Case

— Images also can be considered a function of time. Then, we write i(x, y, t)
where x and y are spatial variable and t is a temporal variable

— o make the dependence of brightness on wavelength explicit, we can
instead write ¢(x, y,t, A\) where x, ¥ and t are as above and where A is a
spectral variable

— More commonly, we think of “color” already as discrete and write

iR(ajv y)
ig(il?, y)
Z.B (567 y)

for specific colour channels, R, G and B
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Color is an Artifact of Human Perception

“Color” is not an objective physical property of light (electromagnetic radiation).
Insteadq, light is characterized by its wavelength.

< Increasing Frequency (v)
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What we call “color” is how we
subjectively perceive a very small
range of these wavelengths.

] B
400 500 600 700

Increasing Wavelength (A) in nm —

04 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Color Filter Arrays (CFA)

photodiode photodiode photodiode

65 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Color Filter Arrays (CFA)

photodiode photodiode photodiode

66 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Color Filters

Two design choices:
— What spectral sensitivity functions f(A) to use for each color filter?
— How to spatially arrange (‘mosaic”) different color filters®

67 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Color Filters

Two design choices:
— What spectral sensitivity functions f(A) to use for each color filter?

— How to spatially arrange (‘mosaic”) different color filters®
Canon 50D

: Canon 50D

| Quantum Efficienc

=

Generally do not , S RGN N
matCh human _ BD;D 85;0 7000
sensitivity

Wavelength (A)

f(A)

68 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Color Filters

Two design choices:
— What spectral sensitivity functions f(A) to use for each color filter?

— How to spatially arrange (‘mosaic”) different color filters®
Canon 50D

: Canon 50D

0.4

Bayer
Maosaic

¥
o
w

| Quantum Efficienc
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h

Pixe

o 015

0.1

Generally do not sl o L
matCh h u man 4000_0 45500g-—-.;0i:0 55;00 60;0 85;0 7000

Wavelength (A)

sensitivity o
(A

69 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Color Filters

Two design choices:
— What spectral sensitivity functions f(A) to use for each color filter?

— How to spatially arrange (‘mosaic”) different color filters®
Canon 50D

: Canon 50D

Bayer
MosalC . 0

| Quantum Efficie

=

Generally do not , VP T
matCh human ‘ § é 60;0 85;0 7000
Why more sensitivity

green pixels? ()
70 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Wavelength (A)



Different Color Filter Arrays (CFAS)

Finding the “best” CFA mosaic is an active research area.

CYGM RGBE
Canon IXUS, Powershot Sony Cyber-shot

How would you go about designing your own
CFA"? What criteria would you consider”?

71 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Many Different Spectral Sensitivity Functions

Each camera has its more or less unique, and most of the time secret, SSF

Same scene captured using 3 different cameras with identical settings

/2 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



RAW Bayer Image

After all of this, what does an image look like"

mosaicking

lots of noise )
artifacts

L P R R T

e

' r..m;.:::ge” -

St

— We call this the RAW image

/3 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



CFA Demosicing

Produce full RGB image fromm mosaiced sensor output

Any ideas on how to do this”

74 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



CFA Demosicing

Produce full RGB image fromm mosaiced sensor output

Interpolate from neighbors:

— Bilinear interpolation (needs 4 neighbors)

— Bicubic interpolation (heeds more neighbors, may overblur)
— Edge-aware interpolation

/5 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Demosaicing by Bilinear Interpolation

Bilinear interpolation: Simply average your 4 neighbors.

. "H H B
A

Neighbornood changes for different channels:

/0 Slide Credit: loannis (Yannis) Gkioulekas (CMU)




(in camera) Image Processing Pipeline

The sequence of Image processing operations applied by the camera’s Image
signal processor (ISP) to convert a RAW image into a “conventional” image.

analog front-end

denoising

> | color transforms

CFA demosaicing

white balance

RAW image
(Mmosaiced,
inear, 12-bit)

tone reproduction

compression

, final RGB image

la4

(non-linear, 8-bit)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Summary

In the continuous case, Images are functions of two spatial variables, x and .

The discrete case is obtained from the continuous case via sampling (i.e.
tessellation, quantization).

f a signal is bandlimited then it is possible to design a sampling strategy such
that the sampled signal captures the underlying continuous signal exactly.

Adequate sampling may not always be practical. In such cases there Is a trade-
off between “things missing” and “artifacts”.

— Different applications make the trade-off differently
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