

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Lecture 5: Image Filtering (final)

Menu for Today (January 21, 2020)

Topics:

— **Non-linear** Filters: Median, ReLU

Readings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 4.4
- **Next** Lecture: Forsyth & Ponce (2nd ed.) 4.5

Reminders:

Assignment 1: Image Filtering and Hybrid Images due January 28th

- **Bilateral** Filter

Today's "fun" Example: Visual Question Answering

http://vqa.cloudcv.org

Today's "fun" Example: Clever Hans

Today's "fun" Example: Clever Hans

Hans could get 89% of the math questions right

Today's "fun" Example: Clever Hans

The course was **smart**, just not in the way van Osten thought!

Hans could get 89% of the math questions right

Clever DNN

Visual Question Answering

Is there zebra climbing the tree?

Al agent Yes

Lecture 4: Re-cap

Linear filtering (one intepretation):

- new pixels are a weighted sum of original pixel values — "filter" defines weights

Linear filtering (another intepretation): — each pixel influences the new value for itself and its neighbours - "filter" specifies the influences

Lecture 4: Re-cap

We covered two additional linear filters: Gaussian, pillbox

- 1D filters)
- (complex) multiplication
- Convolution is **associative** and **symmetric** (correlation is not in general)

Separability (of a 2D filter) allows for more efficient implementation (as two

- separable filter can be expressed as an **outer product** of two 1D filters

The Convolution Theorem: In **Fourier** space, convolution can be reduced to

Piazza: What are "frequencies" in an image?

Amplitude (magnitude) of Fourier transform (phase does not show desirable correlations with image structure)

Spatial frequency

Piazza: What are "frequencies" in an image?

Spatial frequency

Θ=30°

Θ=150°

Piazza: What are "frequencies" in an image?

Spatial frequency

12

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Image

First (lowest) frequency, a.k.a. average

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

+ Second frequency

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

+ Third frequency

+ 50% of frequencies

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

(III)

(IV)

Piazza: What is a low-pass filter?

complex element-wise multiplication

image

FFT (Mag)

High pass

filtered image

filtered **image**

Lecture 4: Re-cap

We covered two additional linear filters: Gaussian, pillbox

Separability (of a 2D filter) allows for more efficient implementation (as two 1D filters)

The Convolution Theorem: In Fourier space, convolution can be reduced to (complex) multiplication

Convolution is **associative** and **symmetric** (correlation is not in general)

 $1 \\
 4 \\
 6 =
 4 \\
 1$

 $\overline{256}$

 $\frac{1}{16}$

	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	1	4	6	4	1
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
_	0	0	0	0	0

 $\frac{1}{16}$

 \bigotimes

 \bigotimes

 $\overline{16}$

 $\left(\right)$ () $\mathbf{0}$ 0 0 \mathbf{O} 0 0 $\mathbf{0}$ ()1 6 4 1 4 16 $\left(\right)$ 0 $\mathbf{0}$ $\left(\right)$ 0 \mathbf{O} $\left(\right)$ $\left(\right)$ () \mathbf{O} $\mathbf{\cap}$

= 1 256

1	4	6	4	1
4	16			

 $\left(\right)$ \mathbf{O} () $\left(\right)$ 0 0 \mathbf{O} $\mathbf{0}$ 0 0 ()1 6 4 1 4 1 16 $\left(\right)$ \mathbf{O} $\mathbf{0}$ () $\left(\right)$ 0 \mathbf{O} \mathbf{O} $\left(\right)$ () $\left(\right)$ \bigcap

 $\frac{1}{16}$

 \bigotimes

 $\frac{1}{256}$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

 \mathbf{O} \mathbf{O} \mathbf{O} $\mathbf{0}$ $\left(\right)$ ()() $\left(\right)$ \mathbf{O} $\mathbf{0}$ $\left(\right)$ $\left(\right)$ $\left(\right)$ $\mathbf{0}$

 $\frac{1}{16}$

 \bigotimes

 $\begin{array}{c}
1 \\
4 \\
6 \\
4 \\
1
\end{array}$

Non-linear Filters

- shifting
- smoothing
- sharpening

filters.

For example, the median filter selects the **median** value from each pixel's neighborhood.

We've seen that **linear filters** can perform a variety of image transformations

In some applications, better performance can be obtained by using **non-linear**

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

Image

Output

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

4	5	5
---	---	---

Image

7	13	16	24	34	54
---	----	----	----	----	----

Output

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

4	5	5
---	---	---

Image

13	

Output

pepper' noise or 'shot' noise)

Image credit: <u>https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png</u>

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a 'salt and

The median filter forces points with distinct values to be more like their neighbors

An edge-preserving non-linear filter

Like a Gaussian filter:

- The filter weights depend on spatial distance from the center pixel
- **Unlike** a Gaussian filter:

- The filter weights also depend on range distance from the center pixel - Pixels with similar brightness value should have greater influence than pixels with dissimilar brightness value

- Pixels nearby (in space) should have greater influence than pixels far away

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

(with appropriate normalization)

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

(with appropriate normalization)

pixel I(X, Y) given by a product:

$$\exp^{-\frac{x^2+y^2}{2\sigma_d^2}} \exp^{-\frac{y^2+y^2}{2\sigma_d^2}} \exp^{-\frac{x^2+y^2}{2\sigma_d^2}} \exp^{-\frac{x^2+y^2}{2\sigma_d^2}}$$

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (x, y) away from the center

$$\frac{(I(X+x,Y+y)-I(X,Y))^2}{2\sigma_r^2}$$

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

(with appropriate normalization)

pixel I(X, Y) given by a product:

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (x, y) away from the center

$$\frac{(I(X+x,Y+y)-I(X,Y))^2}{2\sigma_r^2}$$
 range
kernel

image I(X,Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

36

image I(X,Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

image I(X, Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Domain Kernel $\sigma_d = 0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

image I(X, Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

image I(X, Y)01 0 01 1 1

0.1	0	0.1	1		
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Range Kernel $\sigma_r = 0.45$ 0.98 0.98 0.2 0.1 1 0.98

(this is different for each locations in the image)

0.1

Domain Kernel $\sigma_d = 0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

image
$$I(X, Y)$$

25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

image
$$I(X, Y)$$

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Range * Domain Kernel Range Kernel $\sigma_r = 0.45$ 0.98 0.98 0.2 0.08 0.12 0.02 multiply 0.12 0.20 0.01 0.1 1 0.08 0.12 0.01 0.98 0.1

(this is different for each locations in the image)

Domain Kernel $\sigma_d = 0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

image
$$I(X, Y)$$

25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

image
$$I(X, Y)$$

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Range Kernel Range * Domain Kernel $\sigma_r = 0.45$ 0.98 0.98 0.2 0.08 0.12 0.02 multiply 0.12 0.20 0.01 0.1 1 0.08 0.12 0.01 0.98 0.1

(this is different for each locations in the image)

Domain Kernel $\sigma_d = 0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

0.11	0.16	0.03
0.16	0.26	0.01
0.11	0.16	0.01

image
$$I(X, Y)$$

25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

image
$$I(X, Y)$$

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Range Kernel Range * Domain Kernel $\sigma_r = 0.45$ 0.98 0.98 0.2 0.08 0.12 0.02 multiply 0.12 0.20 0.01 0.1 1 0.08 0.12 0.01 0.98 0.1

(this is different for each locations in the image)

Domain Kernel $\sigma_{d} = 0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

image
$$I(X, Y)$$

25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

image
$$I(X, Y)$$

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Range Kernel Range * Domain Kernel $\sigma_r = 0.45$ 0.98 0.98 0.2 0.08 0.12 0.02 multiply 0.12 0.20 0.01 0.1 1 0.08 0.12 0.01 0.98 0.1

(this is different for each locations in the image)

Domain Kernel

Input

Range Kernel Influence

Bilateral Filter

(domain * range)

Output

Images from: Durand and Dorsey, 2002

Bilateral Filter Application: Denoising

Noisy Image

Gaussian Filter

Bilateral Filter

Slide Credit: Alexander Wong

Bilateral Filter Application: Cartooning

Original Image

After 5 iterations of **Bilateral** Filter

Slide Credit: Alexander Wong

Bilateral Filter Application: Flash Photography

noise and blur

But there are problems with **flash images**: — colour is often unnatural

- there may be strong shadows or specularities

Idea: Combine flash and non-flash images to achieve better exposure and colour balance, and to reduce noise

Non-flash images taken under low light conditions often suffer from excessive

Bilateral Filter Application: Flash Photography

System using 'joint' or 'cross' bilateral filtering:

Flash

'Joint' or 'Cross' bilateral: Range kernel is computed using a separate guidance image instead of the input image

No-Flash

Detail Transfer with Denoising

Figure Credit: Petschnigg et al., 2004

Aside: Linear Filter with ReLU

Feature Extraction from Image

Linear Image Filtering

Result of:

Classification

After Non-linear ReLU

Summary

We covered two three **non-linear filters**: Median, Bilateral, ReLU

1D filters)

Convolution is **associative** and **symmetric**

Convolution of a Gaussian with a Gaussian is another Gaussian

The **median filter** is a non-linear filter that selects the median in the neighbourhood

The **bilateral filter** is a non-linear filter that considers both spatial distance and range (intensity) distance, and has edge-preserving properties

Separability (of a 2D filter) allows for more efficient implementation (as two