
Lecture 4: Image Filtering (continued)

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today (January 16, 2020)
Topics: 

— Gaussian and Pillbox filters 
— Separability

Redings: 

— Today’s Lecture:  none 
— Next Lecture:       Forsyth & Ponce (2nd ed.) 4.4  

Reminders: 

— Assignment 1: Image Filtering and Hybrid Images due January 28-th 
— Today my office hours will start at 3:30pm (not 3pm as posted)

— The Convolution Theorem 
— Non-linear filters
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Today’s “fun” Example: Rolling Shutter 
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Today’s “fun” Example: Rolling Shutter 
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Today’s “fun” Example: Rolling Shutter 



!4

Today’s “fun” Example: Rolling Shutter 



Quiz 0 — Test Quiz

A) True 
B) False
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I am in class today:



— The correlation of               and             is:

Lecture 3: Re-cap
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— Visual interpretation: Superimpose the filter    on the image   at           , 
perform an element-wise multiply, and sum up the values  

— Convolution is like correlation except filter “flipped” 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

          if                                       then correlation = convolution.F (X,Y ) = F (�X,�Y )
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I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output



Ways to handle boundaries 
– Ignore/discard. Make the computation undefined for top/bottom k rows and left/right-most k columns 
– Pad with zeros. Return zero whenever a value of I is required beyond the image bounds 
– Assume periodicity. Top row wraps around to the bottom row; leftmost column wraps around to                                      

rightmost column.  

Simple examples of filtering:  
— copy, shift, smoothing, sharpening  

Linear filter properties: 
— superposition, scaling, shift invariance 

Characterization Theorem: Any linear, shift-invariant operation can be 
expressed as a convolution 
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Lecture 3: Re-cap



Example 5: Smoothing with a Box Filter
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Original 3x3

9x9

35x35

5x5

15x15

Gonzales & Woods (3rd ed.) Figure 3.3 



Smoothing

Smoothing with a box doesn’t model lens defocus well 
— Smoothing with a box filter depends on direction 
— Image in which the center point is 1 and every other point is 0  
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Lecture 2: Re-cap

* image credit: https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png
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1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

Smoothing with a box doesn’t model lens defocus well 
— Smoothing with a box filter depends on direction 
— Image in which the center point is 1 and every other point is 0 

Image
Filter

Smoothing



!12

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0
0 0
0 0
0 0 0 0 0

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
91 1 1

1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
91 1 1

1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

Smoothing with a box doesn’t model lens defocus well 
— Smoothing with a box filter depends on direction 
— Image in which the center point is 1 and every other point is 0 

Image
Filter

Result

Smoothing



Smoothing with a box doesn’t model lens defocus well 
— Smoothing with a box filter depends on direction 
— Image in which the center point is 1 and every other point is 0  

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)  

The Gaussian is a good general smoothing model 
— for phenomena (that are the sum of other small effects)  
— whenever the Central Limit Theorem applies 
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Smoothing



Example 6: Smoothing with a Gaussian
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Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

Forsyth & Ponce (2nd ed.)  
Figure 4.2



Summary
— The correlation of               and             is: 

  

— Visual interpretation: Superimpose the filter    on the image   at           , 
perform an element-wise multiply, and sum up the values  

— Convolution is like correlation except filter “flipped”  

— Characterization Theorem: Any linear, spatially invariant operation can be 
expressed as a convolution  
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I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5 I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5          if                                       then correlation = convolution.F (X,Y ) = F (�X,�Y )



Example 6: Smoothing with a Gaussian
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Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

Forsyth & Ponce (2nd ed.)  
Figure 4.2



Standard Deviation

Example 6: Smoothing with a Gaussian
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Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

Forsyth & Ponce (2nd ed.)  
Figure 4.2
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Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2
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Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2



With           :
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Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059



With           :
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Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What happens if     is larger?� = 1



With           :
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Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

What happens if     is larger?� = 1

— More blur



With           :
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Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What happens if     is larger?� = 1

What happens if     is smaller?� = 1



With           :
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Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

What happens if     is larger?� = 1

What happens if     is smaller?� = 1

— Less blur



Forsyth & Ponce (2nd ed.) Figure 4.1 (left and right) 
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Example 6: Smoothing with a Gaussian



Box vs. Gaussian Filter
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7x7 Gaussian

7x7 box

original

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Fun: How to get shadow effect?
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University of 
British 

Columbia

Adopted from: Ioannis (Yannis) Gkioulekas (CMU)



Fun: How to get shadow effect?
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Blur with a Gaussian kernel, then compose the blurred image with the original 
(with some offset)

Adopted from: Ioannis (Yannis) Gkioulekas (CMU)

University of 
British 

Columbia



With           :
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Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What is the problem with this filter? 



With           :
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Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What is the problem with this filter? 

truncated too much

does not sum to 1
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σ σσσ σσσσ

68%

99.99%

99.7%

95%

Gaussian: Area Under the Curve 



With           :
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Example 6: Smoothing with a Gaussian

� = 1 0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

Better version of the Gaussian filter:

In general, you want the Gaussian filter to capture       , for           => 7x7 filter 

— sums to 1 (normalized) 
— captures ±2�

±3� � = 1



Lets talk about efficiency

!33



Efficient Implementation: Separability

A 2D function of x and y is separable if it can be written as the product of two 
functions, one a function only of x and the other a function only of y  

Both the 2D box filter and the 2D Gaussian filter are separable  

Both can be implemented as two 1D convolutions:  
— First, convolve each row with a 1D filter 
— Then, convolve each column with a 1D filter 
— Aside: or vice versa  

The 2D Gaussian is the only (non trivial) 2D function that is both separable and 
rotationally invariant. 
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Separability: Box Filter Example

1 1 1
1 1 1
1 1 1

1

9

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

filter
F (X,Y ) = F (X)F (Y ) 0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0St

an
da

rd
 (3

x3
)



Separability: Box Filter Example

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 30 60 90 90 90 60 30
0 30 60 90 90 90 60 30
0 30 30 60 60 90 60 30
0 30 60 90 90 90 60 30
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
30 30 30 30 0 0 0 0
0 0 0 0 0 0 0 0

1 1 11

3

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

image

filter

1 1 1
1 1 1
1 1 1

1

9

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

filter
F (X,Y ) = F (X)F (Y ) 0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0

F (X,Y ) = F (X)F (Y )

Se
pa

ra
bl

e
St

an
da

rd
 (3

x3
)



Separability: Box Filter Example

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 30 60 90 90 90 60 30
0 30 60 90 90 90 60 30
0 30 30 60 60 90 60 30
0 30 60 90 90 90 60 30
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
30 30 30 30 0 0 0 0
0 0 0 0 0 0 0 0

1 1 11

3

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

image

filter

0 10 20 30 30 30 20 10
0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0

1
1
1

1

3

filter

1 1 1
1 1 1
1 1 1

1

9

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

filter
F (X,Y ) = F (X)F (Y ) 0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0

I 0(X,Y )output

F (X,Y ) = F (X)F (Y ) F (X,Y ) = F (X)F (Y )
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e
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an
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rd
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Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a 
function of x and another a function of y
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Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a 
function of x and another a function of y

function of x function of y
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Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a 
function of x and another a function of y

In this case the two functions are (identical) 1D Gaussians

function of x function of y
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At each pixel,           , there are              multiplications

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

There are                                               pixels in 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Total:                                                     multiplicationsm2 ⇥ n2

Naive implementation of 2D Gaussian:

Efficient Implementation: Separability
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At each pixel,           , there are              multiplications

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

There are                                               pixels in 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Total:                                                     multiplicationsm2 ⇥ n2

Naive implementation of 2D Gaussian:

Separable 2D Gaussian:

Efficient Implementation: Separability



Total:                                                     multiplications2m⇥ n2
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At each pixel,           , there are              multiplications

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

There are                                               pixels in 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Total:                                                     multiplicationsm2 ⇥ n2

At each pixel,           , there are              multiplications
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

There are                                               pixels in 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

2m

Naive implementation of 2D Gaussian:

Separable 2D Gaussian:

Efficient Implementation: Separability



The scaling constant,       , ensures that the area of the filter is one 
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Example 7: Smoothing with a Pillbox

Let the radius (i.e., half diameter) of the filter be 

In a contentious domain, a 2D (circular) pillbox filter,          , is defined as:

f(x, y) =

1

⇡r

2

⇢
1 if x

2
+ y

2  r

2

0 otherwise

f(x, y) =

1

⇡r

2

⇢
1 if x

2
+ y

2  r

2

0 otherwise

1

⇡r2

r

= +



Recall that the 2D Gaussian is the only (non trivial) 2D function that is both 
separable and rotationally invariant.  

A 2D pillbox is rotationally invariant but not separable.  

There are occasions when we want to convolve an image with a 2D pillbox. Thus, 
it worth exploring possibilities for efficient implementation.  
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Example 7: Smoothing with a Pillbox
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Example 7: Smoothing with a Pillbox

= +

A 2D box filter can be expressed as the sum of a 2D pillbox and some “extra 
corner bits”



= −
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Example 7: Smoothing with a Pillbox

Therefore, a 2D pillbox filter can be expressed as the difference of a 2D box 
filter and those same “extra corner bits”



Implementing convolution with a 2D pillbox filter as the difference between 
convolution with a box filter and convolution with the “extra corner bits” filter 
allows us to take advantage of the separability of a box filter  

Further, we can postpone scaling the output to a single, final step so that 
convolution involves filters containing all 0’s and 1’s 
— This means the required convolutions can be implemented without any 
multiplication at all 
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Example 7: Smoothing with a Pillbox

= −
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Example 7: Smoothing with a Pillbox

Original 11 x 11 Pillbox



Speeding Up Convolution (The Convolution Theorem) 

Let z be the product of two numbers, x and y, that is, 

Taking logarithms of both sides, one obtains 

Therefore. 

Interpretation: At the expense of two ln() and one exp() computations, 
multiplication is reduced to admission 

!50

z = xy

ln z = lnx+ ln y

z = exp

ln z

= exp

(ln x+ln y)



Speeding Up Convolution (The Convolution Theorem) 

Let z be the product of two numbers, x and y, that is, 

Taking logarithms of both sides, one obtains 

Therefore. 

Interpretation: At the expense of two ln() and one exp() computations, 
multiplication is reduced to admission 
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z = xy

ln z = lnx+ ln y

z = exp

ln z

= exp

(ln x+ln y)



Speeding Up Convolution (The Convolution Theorem) 

Let z be the product of two numbers, x and y, that is, 

Taking logarithms of both sides, one obtains 

Therefore. 

Interpretation: At the expense of two ln() and one exp() computations, 
multiplication is reduced to admission 
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z = xy

ln z = lnx+ ln y

z = exp

ln z

= exp

(ln x+ln y)



Speeding Up Convolution (The Convolution Theorem) 

Let z be the product of two numbers, x and y, that is, 

Taking logarithms of both sides, one obtains 

Therefore. 

Interpretation: At the expense of two ln() and one exp() computations, 
multiplication is reduced to admission 
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z = xy

ln z = lnx+ ln y

z = exp

ln z

= exp

(ln x+ln y)



Speeding Up Rotation 

Another analogy: 2D rotation of a point by an angle     about the origin 

The standard approach, in Euclidean coordinates, involves a matrix 
multiplication 

Suppose we transform to polar coordinates 

Rotation becomes addition, at expense of one polar coordinate transform and 
one inverse polar coordinate transform 
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
x

0

y

0

�
=


cos↵ � sin↵

sin↵ cos↵

� 
x

y

�

(x, y) ! (⇢, ✓) ! (⇢, ✓ + ↵) ! (x0
, y

0)

(x, y) ! (⇢, ✓) ! (⇢, ✓ + ↵) ! (x0
, y

0)
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Speeding Up Convolution (The Convolution Theorem) 

Gonzales & Woods (3rd ed.) Figure 2.39 

Similarly, some image processing operations become cheaper in a 
transform domain 
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Speeding Up Convolution (The Convolution Theorem) 

Convolution Theorem:

Let 

then

where                  ,                 , and                  are Fourier transforms of            ,

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

and

At the expense of two Fourier transforms and one inverse Fourier transform, 
convolution can be reduced to (complex) multiplication



Lets take a detour …
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What follows is for fun 
(you will NOT be tested on this)
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Fourier Transform (you will NOT be tested on this)
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Fourier’s claim: Add enough of these to get any periodic signal you want!

Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)
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Fourier’s claim: Add enough of these to get any periodic signal you want!

amplitude

angular 
frequency

variable
phase

sinusoid

Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



??
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How would you generate this function?

= +

Fourier Transform (you will NOT be tested on this)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



?
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How would you generate this function?

?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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How would you generate this function?

? ?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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How would you generate this function?

? ?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

??

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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=

+? ?

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

How would you 
express this 

mathematically?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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=

square wave

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

infinite sum of sine waves

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)
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Fourier’s claim: Add enough of these to get any periodic signal you want!

Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Fourier Transform (you will NOT be tested on this)

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images
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amplitude phase

Fourier Transform (you will NOT be tested on this)

Forsyth & Ponce (2nd ed.) Figure 4.6
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amplitude phase

Fourier Transform (you will NOT be tested on this)

Forsyth & Ponce (2nd ed.) Figure 4.6

cheetah phase 
with zebra 
amplitude

zebra phase 
with cheetah 

amplitude
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Fourier Transform (you will NOT be tested on this)

Experiment: Where of you see the stripes?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Fourier Transform (you will NOT be tested on this)

Campbell-Robson contrast sensitivity curve

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



What preceded was for fun 
(you will NOT be tested on it)
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Fourier Transform

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Preview of Part 3 of your homework
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Fourier Transform

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Preview of Part 3 of your homework
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Fourier Transform

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Preview of Part 3 of your homework



Low-pass Filtering = “Smoothing”

!81

1 1 1
1 1 1
1 1 1

1
9 = −

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Box Filter Pillbox Filter Gaussian Filter

Are all of these low-pass filters? 



Low-pass Filtering = “Smoothing”
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1 1 1
1 1 1
1 1 1

1
9 = −

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Box Filter Pillbox Filter Gaussian Filter

Are all of these low-pass filters? 

Low-pass filter: Low pass filter filters out all of the high 
frequency content of the image, only low frequencies remain



Low-pass Filtering = “Smoothing”
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1 1 1
1 1 1
1 1 1

1
9 = −

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

Image

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Box Filter Pillbox Filter Gaussian Filter

Are all of these low-pass filters? 

Low-pass filter: Low pass filter filters out all of the high 
frequency content of the image, only low frequencies remain



After long detour … 
lets go back to efficiency

!84
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Speeding Up Convolution (The Convolution Theorem) 

Convolution Theorem:

Let 

then

where                  ,                 , and                  are Fourier transforms of            ,

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
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y

) = F(w
x

, w

y

) I(w
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, w

y

)
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0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
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y

) = F(w
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y
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i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x
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)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

and

At the expense of two Fourier transforms and one inverse Fourier transform, 
convolution can be reduced to (complex) multiplication



Cost of FFT/IFFT for image: 
Cost of FFT/IFFT for filter:   
Cost of convolution: 

!86

Speeding Up Convolution (The Convolution Theorem) 

At each pixel,           , there are              multiplications

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

There are                                               pixels in 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Total:                                                     multiplicationsm2 ⇥ n2

General implementation of convolution:

O(m2
logm)

O(n2
log n)

Convolution if FFT space:

O(n2) Note: not a function of filter size !!!



Linear Filters: Properties (recall Lecture 3)

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))⌦ k F1 F2 F I(X,Y )

(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Let     denote convolution. Let              be a digital image 

Superposition: Let      and      be digital filters 

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Scaling: Let     be digital filter and let     be a scalar  

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is linear if it satisfies both superposition and scaling 
!87



— Convolution is symmetric. That is,

Linear Filters: Additional Properties

!88

Let     denote convolution. Let              be a digital image. Let F and G be  
digital filters
⌦ k F1 F2 F I(X,Y )

(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

G⌦ (F ⌦ I(X,Y )) = (G⌦ F )⌦ I(X,Y )

(G⌦ F )⌦ I(X,Y ) = (F ⌦G)⌦ I(X,Y )

— Convolution is associative. That is,

Convolving              with filter F and then convolving the result with filter G can 
be achieved in single step, namely convolving              with filter G⌦ F = F ⌦G

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )

Note: Correlation, in general, is not associative. 

(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )



Example: Two Box Filters
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3x3 Box 3x3 Box

filter = boxfilter(3)  
signal.correlate2d(filter, filter,′ full′) 
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Example: Two Box Filters
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Treat one filter as padded “image”
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Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
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0 0

0 0

0 0
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Output
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Treat one filter as padded “image”
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Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
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0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1
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0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output
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1
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Treat one filter as padded “image”
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Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9
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0 0 0 0 0 0 0
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0 0 0 0 0 0 0
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1 1 1
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0 0

0 0

0 0

0 0

0 0
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Output
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Treat one filter as padded “image”
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Example: Two Box Filters

1 1 1
1 1 1
1 1 1
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Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0
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0 0 0 0 0 0 0
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3x3 Box 3x3 Box 3x3 Box

Example: Two Box Filters
filter = boxfilter(3)  
temp = signal.correlate2d(filter, filter,′ full′)  
signal.correlate2d(filter, temp,′ full′) 



Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Pre-Convolving Filters 
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Convolving two filters of size              and             results in filter of size:m⇥m n⇥ n

⇣
n+ 2
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k⌘
⇥
⇣
n+ 2

jm
2

k⌘

 
m1 + 2

KX

k=2

jmk

2

k!
⇥
 
m1 + 2

KX

k=2

jmk

2

k!

More broadly for a set of      filters of sizes                 the resulting filter will 
have size:

mk ⇥mkK



Gaussian: An Additional Property
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G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)

G�(x) G

p
2�(x)

Let     denote convolution. Let              and              be be two 1D Gaussians⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)

Convolution of two Gaussians is another Gaussian 

Special case: Convolving with             twice is equivalent to 



Summary

We covered two additional linear filters: Gaussian, pillbox  

Separability (of a 2D filter) allows for more efficient implementation (as two 
1D filters) 

The Convolution Theorem: In Fourier space, convolution can be reduced to 
(complex) multiplication
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Menu for Today (January 16, 2020)
Topics: 

— Gaussian and Pillbox filters 
— Separability

Redings: 

— Today’s Lecture:  none 
— Next Lecture:       Forsyth & Ponce (2nd ed.) 4.4  

Reminders: 

— Assignment 1: Image Filtering and Hybrid Images due January 28-th 
— Today my office hours will start at 3:30pm (not 3pm as posted)

— The Convolution Theorem 
— Non-linear filters
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