
Lecture 4: Image Filtering (continued)

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today (January 16, 2020)
Topics:

— Gaussian and Pillbox filters
— Separability

Redings:

— Today’s Lecture: none
— Next Lecture: Forsyth & Ponce (2nd ed.) 4.4

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due January 28-th
— Today my office hours will start at 3:30pm (not 3pm as posted)

— The Convolution Theorem
— Non-linear filters

!2

!3

Today’s “fun” Example: Rolling Shutter

!3

Today’s “fun” Example: Rolling Shutter

!4

Today’s “fun” Example: Rolling Shutter

!4

Today’s “fun” Example: Rolling Shutter

Quiz 0 — Test Quiz

A) True
B) False

!5

I am in class today:

— The correlation of and is:

Lecture 3: Re-cap

!6

— Visual interpretation: Superimpose the filter on the image at ,
perform an element-wise multiply, and sum up the values

— Convolution is like correlation except filter “flipped”

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

 if then correlation = convolution.F (X,Y) = F (�X,�Y)

!6

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Ways to handle boundaries
– Ignore/discard. Make the computation undefined for top/bottom k rows and left/right-most k columns
– Pad with zeros. Return zero whenever a value of I is required beyond the image bounds
– Assume periodicity. Top row wraps around to the bottom row; leftmost column wraps around to

rightmost column.

Simple examples of filtering:
— copy, shift, smoothing, sharpening

Linear filter properties:
— superposition, scaling, shift invariance

Characterization Theorem: Any linear, shift-invariant operation can be
expressed as a convolution

!7

Lecture 3: Re-cap

Example 5: Smoothing with a Box Filter

!8

Original 3x3

9x9

35x35

5x5

15x15

Gonzales & Woods (3rd ed.) Figure 3.3

Smoothing

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is 0

!9

!10

Lecture 2: Re-cap

* image credit: https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

!11

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is 0

Image
Filter

Smoothing

!12

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0
0 0
0 0
0 0 0 0 0

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
91 1 1

1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
91 1 1

1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is 0

Image
Filter

Result

Smoothing

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is 0

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)

The Gaussian is a good general smoothing model
— for phenomena (that are the sum of other small effects)
— whenever the Central Limit Theorem applies

!13

Smoothing

Example 6: Smoothing with a Gaussian

!14

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

Forsyth & Ponce (2nd ed.)
Figure 4.2

Summary
— The correlation of and is:

— Visual interpretation: Superimpose the filter on the image at ,
perform an element-wise multiply, and sum up the values

— Convolution is like correlation except filter “flipped”

— Characterization Theorem: Any linear, spatially invariant operation can be
expressed as a convolution

!15

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5 I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5 if then correlation = convolution.F (X,Y) = F (�X,�Y)

Example 6: Smoothing with a Gaussian

!16

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

Forsyth & Ponce (2nd ed.)
Figure 4.2

Standard Deviation

Example 6: Smoothing with a Gaussian

!17

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

Forsyth & Ponce (2nd ed.)
Figure 4.2

!18

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

!19

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

With :

!20

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

With :

!21

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What happens if is larger?� = 1

With :

!22

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

What happens if is larger?� = 1

— More blur

With :

!23

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What happens if is larger?� = 1

What happens if is smaller?� = 1

With :

!24

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

What happens if is larger?� = 1

What happens if is smaller?� = 1

— Less blur

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and right)

!25

Example 6: Smoothing with a Gaussian

Box vs. Gaussian Filter

!26

7x7 Gaussian

7x7 box

original

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fun: How to get shadow effect?

!27

University of
British

Columbia

Adopted from: Ioannis (Yannis) Gkioulekas (CMU)

Fun: How to get shadow effect?

!28

Blur with a Gaussian kernel, then compose the blurred image with the original
(with some offset)

Adopted from: Ioannis (Yannis) Gkioulekas (CMU)

University of
British

Columbia

With :

!29

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What is the problem with this filter?

With :

!30

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What is the problem with this filter?

truncated too much

does not sum to 1

!31

σ σσσ σσσσ

68%

99.99%

99.7%

95%

Gaussian: Area Under the Curve

With :

!32

Example 6: Smoothing with a Gaussian

� = 1 0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

Better version of the Gaussian filter:

In general, you want the Gaussian filter to capture , for => 7x7 filter

— sums to 1 (normalized)
— captures ±2�

±3� � = 1

Lets talk about efficiency

!33

Efficient Implementation: Separability

A 2D function of x and y is separable if it can be written as the product of two
functions, one a function only of x and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:
— First, convolve each row with a 1D filter
— Then, convolve each column with a 1D filter
— Aside: or vice versa

The 2D Gaussian is the only (non trivial) 2D function that is both separable and
rotationally invariant.

!34

Separability: Box Filter Example

1 1 1
1 1 1
1 1 1

1

9

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

filter
F (X,Y) = F (X)F (Y) 0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0St

an
da

rd
 (3

x3
)

Separability: Box Filter Example

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 30 60 90 90 90 60 30
0 30 60 90 90 90 60 30
0 30 30 60 60 90 60 30
0 30 60 90 90 90 60 30
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
30 30 30 30 0 0 0 0
0 0 0 0 0 0 0 0

1 1 11

3

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

filter

1 1 1
1 1 1
1 1 1

1

9

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

filter
F (X,Y) = F (X)F (Y) 0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0

F (X,Y) = F (X)F (Y)

Se
pa

ra
bl

e
St

an
da

rd
 (3

x3
)

Separability: Box Filter Example

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 30 60 90 90 90 60 30
0 30 60 90 90 90 60 30
0 30 30 60 60 90 60 30
0 30 60 90 90 90 60 30
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
30 30 30 30 0 0 0 0
0 0 0 0 0 0 0 0

1 1 11

3

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

filter

0 10 20 30 30 30 20 10
0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0

1
1
1

1

3

filter

1 1 1
1 1 1
1 1 1

1

9

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

filter
F (X,Y) = F (X)F (Y) 0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0

I 0(X,Y)output

F (X,Y) = F (X)F (Y) F (X,Y) = F (X)F (Y)

Se
pa

ra
bl

e
St

an
da

rd
 (3

x3
)

!38

Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

!39

Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

function of x function of y

!40

Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

In this case the two functions are (identical) 1D Gaussians

function of x function of y

!41

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

Naive implementation of 2D Gaussian:

Efficient Implementation: Separability

!42

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

Naive implementation of 2D Gaussian:

Separable 2D Gaussian:

Efficient Implementation: Separability

Total: multiplications2m⇥ n2

!43

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

At each pixel, , there are multiplications
I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

2m

Naive implementation of 2D Gaussian:

Separable 2D Gaussian:

Efficient Implementation: Separability

The scaling constant, , ensures that the area of the filter is one

!44

Example 7: Smoothing with a Pillbox

Let the radius (i.e., half diameter) of the filter be

In a contentious domain, a 2D (circular) pillbox filter, , is defined as:

f(x, y) =

1

⇡r

2

⇢
1 if x

2
+ y

2  r

2

0 otherwise

f(x, y) =

1

⇡r

2

⇢
1 if x

2
+ y

2  r

2

0 otherwise

1

⇡r2

r

= +

Recall that the 2D Gaussian is the only (non trivial) 2D function that is both
separable and rotationally invariant.

A 2D pillbox is rotationally invariant but not separable.

There are occasions when we want to convolve an image with a 2D pillbox. Thus,
it worth exploring possibilities for efficient implementation.

!45

Example 7: Smoothing with a Pillbox

!46

Example 7: Smoothing with a Pillbox

= +

A 2D box filter can be expressed as the sum of a 2D pillbox and some “extra
corner bits”

= −

!47

Example 7: Smoothing with a Pillbox

Therefore, a 2D pillbox filter can be expressed as the difference of a 2D box
filter and those same “extra corner bits”

Implementing convolution with a 2D pillbox filter as the difference between
convolution with a box filter and convolution with the “extra corner bits” filter
allows us to take advantage of the separability of a box filter

Further, we can postpone scaling the output to a single, final step so that
convolution involves filters containing all 0’s and 1’s 
— This means the required convolutions can be implemented without any
multiplication at all

!48

Example 7: Smoothing with a Pillbox

= −

!49

Example 7: Smoothing with a Pillbox

Original 11 x 11 Pillbox

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

Therefore.

Interpretation: At the expense of two ln() and one exp() computations,
multiplication is reduced to admission

!50

z = xy

ln z = lnx+ ln y

z = exp

ln z

= exp

(ln x+ln y)

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

Therefore.

Interpretation: At the expense of two ln() and one exp() computations,
multiplication is reduced to admission

!51

z = xy

ln z = lnx+ ln y

z = exp

ln z

= exp

(ln x+ln y)

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

Therefore.

Interpretation: At the expense of two ln() and one exp() computations,
multiplication is reduced to admission

!52

z = xy

ln z = lnx+ ln y

z = exp

ln z

= exp

(ln x+ln y)

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

Therefore.

Interpretation: At the expense of two ln() and one exp() computations,
multiplication is reduced to admission

!53

z = xy

ln z = lnx+ ln y

z = exp

ln z

= exp

(ln x+ln y)

Speeding Up Rotation

Another analogy: 2D rotation of a point by an angle about the origin

The standard approach, in Euclidean coordinates, involves a matrix
multiplication

Suppose we transform to polar coordinates

Rotation becomes addition, at expense of one polar coordinate transform and
one inverse polar coordinate transform

!54


x

0

y

0

�
=


cos↵ � sin↵

sin↵ cos↵

� 
x

y

�

(x, y) ! (⇢, ✓) ! (⇢, ✓ + ↵) ! (x0
, y

0)

(x, y) ! (⇢, ✓) ! (⇢, ✓ + ↵) ! (x0
, y

0)

!55

Speeding Up Convolution (The Convolution Theorem)

Gonzales & Woods (3rd ed.) Figure 2.39

Similarly, some image processing operations become cheaper in a
transform domain

!56

Speeding Up Convolution (The Convolution Theorem)

Convolution Theorem:

Let

then

where , , and are Fourier transforms of ,

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

and

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication

Lets take a detour …

!57

What follows is for fun
(you will NOT be tested on this)

!58

Fourier Transform (you will NOT be tested on this)

!59

Fourier’s claim: Add enough of these to get any periodic signal you want!

Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

!60

Fourier’s claim: Add enough of these to get any periodic signal you want!

amplitude

angular
frequency

variable
phase

sinusoid

Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

??

!61

How would you generate this function?

= +

Fourier Transform (you will NOT be tested on this)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

?

!62

How would you generate this function?

?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!63

How would you generate this function?

? ?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!64

How would you generate this function?

? ?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!65

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

??

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!66

=

+? ?

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!67

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!68

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!69

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

How would you
express this

mathematically?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!70

=

square wave

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

infinite sum of sine waves

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

!71

Fourier’s claim: Add enough of these to get any periodic signal you want!

Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!72

Fourier Transform (you will NOT be tested on this)

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images

!73

amplitude phase

Fourier Transform (you will NOT be tested on this)

Forsyth & Ponce (2nd ed.) Figure 4.6

!74

amplitude phase

Fourier Transform (you will NOT be tested on this)

Forsyth & Ponce (2nd ed.) Figure 4.6

cheetah phase
with zebra
amplitude

zebra phase
with cheetah

amplitude

!75

Fourier Transform (you will NOT be tested on this)

Experiment: Where of you see the stripes?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

!76

Fourier Transform (you will NOT be tested on this)

Campbell-Robson contrast sensitivity curve

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What preceded was for fun
(you will NOT be tested on it)

!77

!78

Fourier Transform

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Preview of Part 3 of your homework

!79

Fourier Transform

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Preview of Part 3 of your homework

!80

Fourier Transform

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Preview of Part 3 of your homework

Low-pass Filtering = “Smoothing”

!81

1 1 1
1 1 1
1 1 1

1
9 = −

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Box Filter Pillbox Filter Gaussian Filter

Are all of these low-pass filters?

Low-pass Filtering = “Smoothing”

!82

1 1 1
1 1 1
1 1 1

1
9 = −

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Box Filter Pillbox Filter Gaussian Filter

Are all of these low-pass filters?

Low-pass filter: Low pass filter filters out all of the high
frequency content of the image, only low frequencies remain

Low-pass Filtering = “Smoothing”

!83

1 1 1
1 1 1
1 1 1

1
9 = −

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

Image

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Box Filter Pillbox Filter Gaussian Filter

Are all of these low-pass filters?

Low-pass filter: Low pass filter filters out all of the high
frequency content of the image, only low frequencies remain

After long detour …
lets go back to efficiency

!84

!85

Speeding Up Convolution (The Convolution Theorem)

Convolution Theorem:

Let

then

where , , and are Fourier transforms of ,

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

and

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication

Cost of FFT/IFFT for image:
Cost of FFT/IFFT for filter:
Cost of convolution:

!86

Speeding Up Convolution (The Convolution Theorem)

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

General implementation of convolution:

O(m2
logm)

O(n2
log n)

Convolution if FFT space:

O(n2) Note: not a function of filter size !!!

Linear Filters: Properties (recall Lecture 3)

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Let denote convolution. Let be a digital image

Superposition: Let and be digital filters

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Scaling: Let be digital filter and let be a scalar

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is linear if it satisfies both superposition and scaling
!87

— Convolution is symmetric. That is,

Linear Filters: Additional Properties

!88

Let denote convolution. Let be a digital image. Let F and G be
digital filters
⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

G⌦ (F ⌦ I(X,Y)) = (G⌦ F)⌦ I(X,Y)

(G⌦ F)⌦ I(X,Y) = (F ⌦G)⌦ I(X,Y)

— Convolution is associative. That is,

Convolving with filter F and then convolving the result with filter G can
be achieved in single step, namely convolving with filter G⌦ F = F ⌦G

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)

Note: Correlation, in general, is not associative.

(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)

Example: Two Box Filters

!89

3x3 Box 3x3 Box

filter = boxfilter(3)  
signal.correlate2d(filter, filter,′ full′)

!90

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

Treat one filter as padded “image”

3x3 Box

3x3 Box

Output

=
1

81
⌦

1

1

9
1

9

!91

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

Treat one filter as padded “image”

!92

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3

Treat one filter as padded “image”

!93

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3 2 1

2 4 6

Treat one filter as padded “image”

!94

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3 2 1

2 4 6 4 2

Treat one filter as padded “image”

3 6 9 6 3

2 4 6 4 2

1 2 3 2 1

!95

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3 2 1

2 4 6 4 2

Treat one filter as padded “image”

3 6 9 6 3

2 4 6 4 2

1 2 3 2 1

!96

3x3 Box 3x3 Box 3x3 Box

Example: Two Box Filters
filter = boxfilter(3)  
temp = signal.correlate2d(filter, filter,′ full′)
signal.correlate2d(filter, temp,′ full′)

Example: Separable Gaussian Filter

!97

⌦1 464 1
1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Example: Separable Gaussian Filter

!98

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4

6

4

1

1

16

1

=
1

256

Example: Separable Gaussian Filter

!99

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

4 16

Example: Separable Gaussian Filter

!100

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Example: Separable Gaussian Filter

!101

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Pre-Convolving Filters

!102

Convolving two filters of size and results in filter of size:m⇥m n⇥ n

⇣
n+ 2

jm
2

k⌘
⇥
⇣
n+ 2

jm
2

k⌘

m1 + 2

KX

k=2

jmk

2

k!
⇥

m1 + 2

KX

k=2

jmk

2

k!

More broadly for a set of filters of sizes the resulting filter will
have size:

mk ⇥mkK

Gaussian: An Additional Property

!103

G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)

G�(x) G

p
2�(x)

Let denote convolution. Let and be be two 1D Gaussians⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)

Convolution of two Gaussians is another Gaussian

Special case: Convolving with twice is equivalent to

Summary

We covered two additional linear filters: Gaussian, pillbox

Separability (of a 2D filter) allows for more efficient implementation (as two
1D filters)

The Convolution Theorem: In Fourier space, convolution can be reduced to
(complex) multiplication

!104

Menu for Today (January 16, 2020)
Topics:

— Gaussian and Pillbox filters
— Separability

Redings:

— Today’s Lecture: none
— Next Lecture: Forsyth & Ponce (2nd ed.) 4.4

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due January 28-th
— Today my office hours will start at 3:30pm (not 3pm as posted)

— The Convolution Theorem
— Non-linear filters

!105

