

CPSC 425: Computer Vision

Lecture 3: Image Filtering

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today (January 14, 2020)

Topics: Image Filtering (also topic for next week)

Image as a function

— Correlation / Convolution

— Linear filters

- Filter examples: Box, Gaussian

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5
- Next Lecture: none

Reminders:

- Complete Assignment 0 (optional, ungraded) due today
- Assignment 1: Image Filtering and Hybrid Images is out, due January 28th
- Likely moving of **midterm** from 25th to 27th (midterm will cover subset)
- Office hours posted, will start tomorrow

Developed by the French company **Varioptic**, the lenses consist of an oil-based and a water-based fluid sandwiched between glass discs. Electric charge causes the boundary between oil and water to change shape, altering the lens geometry and therefore the lens focal length

The intended applications are: auto-focus and image stabilization. No moving parts. Fast response. Minimal power consumption.

Video Source: https://www.youtube.com/watch?v=2c6lCdDFOY8

Developed by the French company **Varioptic**, the lenses consist of an oil-based and a water-based fluid sandwiched between glass discs. Electric charge causes the boundary between oil and water to change shape, altering the lens geometry and therefore the lens focal length

The intended applications are: auto-focus and image stabilization. No moving parts. Fast response. Minimal power consumption.

Video Source: https://www.youtube.com/watch?v=2c6lCdDFOY8

Electrostatic field between the column of water and the electron (other side of power supply attached to the pipe) — see full video for complete explanation

Video Source: https://www.youtube.com/watch?v=NjLJ77luBdM

Electrostatic field between the column of water and the electron (other side of power supply attached to the pipe) — see full video for complete explanation

Video Source: https://www.youtube.com/watch?v=NjLJ77luBdM

As one example, in 2010, **Cognex** signed a licence agreement with Varioptic to add auto-focus capability to it DataMan line of industrial ID readers (press release May 29, 2012)

Video Source: https://www.youtube.com/watch?v=EU8LXxip1NM

As one example, in 2010, **Cognex** signed a licence agreement with Varioptic to add auto-focus capability to it DataMan line of industrial ID readers (press release May 29, 2012)

Video Source: https://www.youtube.com/watch?v=EU8LXxip1NM

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF** $(\theta_i, \phi_i, \theta_v, \phi_v)$

Mirror surface: all incident light reflected in one directions $(\theta_v, \phi_v) = (\theta_r, \phi_r)$

At a **microscopic** level, the process is **stochastic** (e.g., photon bouncing/being emitted in a random direction for a Lambertian surface), which (in part) causes **noise** in images under very low light scenarios; other sources of noise:

- electronic circuits
- variation in the number of photons sensed (quantum efficiency)
- quantization noise

We take a "physics-based" approach to image formation

- Treat camera as an instrument that takes measurements of the 3D world

Basic abstraction is the pinhole camera

Lenses overcome limitations of the pinhole model while trying to preserve it as a useful abstraction

When **maximum accuracy** required, it is necessary to model additional details of each particular camera (and camera setting)

Aside: This is called camera calibration

Lecture 2: Re-cap Pinhole Camera Abstraction

Pinhole Camera Abstraction

3D object point
$$P=\begin{bmatrix} x\\y\\z \end{bmatrix}$$
 projects to 2D image point $P'=\begin{bmatrix} x'\\y' \end{bmatrix}$ where

Orthographic
$$x' = x$$
 $y' = y$

Camera Matrix

$$\mathbf{C} = \begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$P = \left[egin{array}{c} x \\ y \\ z \\ 1 \end{array}
ight]$$
 projects to 2D image point $P' = \left[egin{array}{c} x' \\ y' \\ 1 \end{array}
ight]$ where $P' = \mathbf{C}P$

Camera Matrix

$$x' = f' \frac{x}{z}$$
 $y' = f' \frac{y}{z}$

$$\mathbf{C} = \begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} f'x \\ f'y \\ z \end{bmatrix} = \begin{bmatrix} \frac{f'x}{z} \\ \frac{f'y}{z} \\ 1 \end{bmatrix}$$

$$P=egin{bmatrix} x \ y \ z \ 1 \ \end{bmatrix}$$

$$P = \left[egin{array}{c} x \\ y \\ z \end{array} \right]$$
 projects to 2D image point $P' = \left[egin{array}{c} x' \\ y' \\ 1 \end{array} \right]$ where $P' = \mathbf{C}P$

$$y'$$
 where

$$P' = \mathbf{C}P$$

Camera Matrix

$$\mathbf{C} = \left[egin{array}{cccccc} f' & 0 & 0 & 0 \ 0 & f' & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

Pixels are squared / lens is perfectly symmetric

Sensor and pinhole perfectly aligned

Coordinate system centered at the pinhole

$$P = \left[\begin{array}{c} x \\ y \\ z \\ 1 \end{array}\right] \text{ projects to 2D image point } P' = \left[\begin{array}{c} x' \\ y' \\ 1 \end{array}\right] \text{ where } P' = \mathbf{C}P$$

Camera Matrix

Pixels are squared / lens is perfectly symmetric

Sensor and pinhole perfectly aligned

Coordinate system centered at the pinhole

$$P = \left[\begin{array}{c} x \\ y \\ z \\ 1 \end{array}\right] \text{ projects to 2D image point } P' = \left[\begin{array}{c} x' \\ y' \\ 1 \end{array}\right] \text{ where } P' = \mathbf{C}P$$

Camera Matrix

$$\mathbf{C} = \left[egin{array}{ccccc} f_x' & 0 & 0 & c_x \ 0 & f_y' & 0 & c_y \ 0 & 0 & 1 & 0 \end{array}
ight]$$

Pixels are squared / lens is perfectly symmetric

Sensor and pinhole perfectly aligned

Coordinate system centered at the pinhole

$$P = \left[\begin{array}{c} x \\ y \\ z \\ 1 \end{array} \right] \text{ projects to 2D image point } P' = \left[\begin{array}{c} x' \\ y' \\ 1 \end{array} \right] \text{ where } \boxed{P' = \mathbf{C}P}$$

Camera Matrix

$$\mathbf{C} = \left[egin{array}{cccc} f_x' & 0 & 0 & c_x \ 0 & f_y' & 0 & c_y \ 0 & 0 & 1 & 0 \end{array}
ight] \mathbb{R}_{4 imes 4}$$

Pixels are squared / lens is perfectly symmetric

Sensor and pinhole perfectly aligned

Coordinate system centered at the pinhole

$$P = \left[egin{array}{c} x \\ y \\ z \\ 1 \end{array}
ight]$$
 projects to 2D image point $P' = \left[egin{array}{c} x' \\ y' \\ 1 \end{array}
ight]$ where $P' = \mathbf{C}P$

- If pinhole is **too big** then many directions are averaged, blurring the image
- If pinhole is **too small** then diffraction becomes a factor, also blurring the image
- Generally, pinhole cameras are **dark**, because only a very small set of rays from a particular scene point hits the image plane
- Pinhole cameras are **slow**, because only a very small amount of light from a particular scene point hits the image plane per unit time

Lecture 2: Re-cap Lenses

The role of a lens is to **capture more light** while preserving, as much as possible, the abstraction of an ideal pinhole camera.

Lecture 2: Re-cap Lenses

Lecture 2: Re-cap Snell's Law

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

Lecture 2: Re-cap Thin Lens Equation

Forsyth & Ponce (1st ed.) Figure 1.9

$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$

^{*} image credit: https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

Lecture 2: Re-cap Thin Lens Equation

Forsyth & Ponce (1st ed.) Figure 1.9

$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$

Another way of looking at the **focal length** of a lens. The incoming rays, parallel to the optical axis, **converge to a single point a distance f behind the lens**. This is where we want to place the image plane.

Chromatic aberration

- Index of refraction depends on wavelength, λ , of light
- Light of different colours follows different paths
- Therefore, not all colours can be in equal focus

Scattering at the lens surface

Some light is reflected at each lens surface

There are other geometric phenomena/distortions

- pincushion distortion
- barrel distortion
- etc

Human Eye

- The eye has an **iris** (like a camera)
- Focusing is done by changing shape of lens
- When the eye is properly focused, light from an object outside the eye is imaged on the **retina**
- The retina contains light receptors
 called rods and cones

pupil = pinhole / aperture

retina = film / digital sensor

Slide adopted from: Steve Seitz

Human Eye

- The eye has an **iris** (like a camera)
- Focusing is done by changing shape of lens
- When the eye is properly focused, light from an object outside the eye is imaged on the **retina**
- The retina contains light receptors
 called rods and cones

pupil = pinhole / aperture

retina = film / digital sensor

Two-types of Light Sensitive Receptors

Rods

75-150 million rod-shaped receptors **not** involved in color vision, gray-scale vision only operate at night highly sensitive, can responding to a single photon yield relatively poor spatial detail

Cones

6-7 million cone-shaped receptors color vision operate in high light less sensitive yield higher resolution

Human Eye

Density of rods and cones

Lecture 2: Summary

- We discussed a "physics-based" approach to image formation. Basic abstraction is the **pinhole camera**.
- Lenses overcome limitations of the pinhole model while trying to preserve it as a useful abstraction
- Projection equations: perspective, weak perspective, orthographic
- Thin lens equation
- Some "aberrations and distortions" persist (e.g. spherical aberration, vignetting)
- The human eye functions much like a camera

What is Computer Vision?

Compute vision, broadly speaking, is a research field aimed to enable computers to process and interpret visual data, as sighted humans can.

What is Computer Vision?

Compute vision, broadly speaking, is a research field aimed to enable computers to process and interpret visual data, as sighted humans can.

Image as a 2D Function

A (grayscale) image is a 2D function

grayscale image

Image as a 2D Function

A (grayscale) image is a 2D function

grayscale image

domain: $(X,Y) \in ([1,width],[1,hight])$

Image as a 2D Function

A (grayscale) image is a 2D function

grayscale image

What is the **range** of the image function?

domain: $(X,Y) \in ([1,width],[1,hight])$

Image as a 2D Function

A (grayscale) image is a 2D function

grayscale image

What is the **range** of the image function?

$$I(X,Y) \in [0,255] \in \mathbb{Z}$$

domain: $(X,Y) \in ([1,width],[1,hight])$

Since images are functions, we can perform operations on them, e.g., average

I(X,Y)

G(X,Y)

$$rac{I(X,Y)}{2} + rac{G(X,Y)}{2}$$

$$a = \frac{I(X,Y)}{2} + \frac{G(X,Y)}{2}$$

$$b = \frac{I(X,Y) + G(X,Y)}{2}$$

$$a = \frac{I(X,Y)}{2} + \frac{G(X,Y)}{2}$$

$$b = \frac{I(X,Y) + G(X,Y)}{2}$$

Question:

$$a = b$$

Red pixel in camera man image = 98 Red pixel in moon image = 200

$$\frac{98}{2} + \frac{200}{2} = 49 + 100 = 149$$

$\frac{98 + 200}{2} = \frac{\lfloor 298 \rfloor}{2} = \frac{255}{2} = 127$

Question:

$$a = b$$

It is often convenient to convert images to doubles when doing processing

In Python

```
from PIL import Image
img = Image.open('cameraman.png') (
import numpy as np
imgArr = np.asfarray(img)

# Or do this
import matplotlib.pyplot as plt
camera = plt.imread('cameraman.png');
```

What types of transformations can we do?

changes range of image function

changes domain of image function

What types of filtering can we do?

Point Operation

point processing

Neighborhood Operation

"filtering"

original

darken

lower contrast

non-linear lower contrast

I(X,Y)

invert

lighten

raise contrast

non-linear raise contrast

original

darken

lower contrast

non-linear lower contrast

I(X,Y)

I(X, Y) - 128

lighten

non-linear raise contrast

original

I(X,Y)

darken

I(X, Y) - 128

lower contrast

I(X,Y)

non-linear lower contrast

non-linear raise contrast

original

I(X,Y)

invert

darken

I(X, Y) - 128

lighten

lower contrast

 $\frac{I(X,Y)}{2}$

raise contrast

non-linear lower contrast

$$\left(\frac{I(X,Y)}{255}\right)^{1/3} \times 255$$

original

I(X,Y)

invert

255 - I(X, Y)

darken

I(X, Y) - 128

lighten

lower contrast

 $\frac{I(X,Y)}{2}$

raise contrast

non-linear lower contrast

$$\left(\frac{I(X,Y)}{255} \right)^{1/3} \times 255$$
 non-linear raise contrast

original

I(X,Y)

invert

255 - I(X, Y)

darken

I(X, Y) - 128

lighten

$$I(X, Y) + 128$$

lower contrast

 $\frac{I(X,Y)}{2}$

raise contrast

non-linear lower contrast

$$\left(\frac{I(X,Y)}{255}\right)^{1/3} \times 255$$

non-linear raise contrast

original

I(X,Y)

invert

255 - I(X, Y)

darken

I(X, Y) - 128

lighten

$$I(X, Y) + 128$$

lower contrast

 $\frac{I(X,Y)}{2}$

raise contrast

$$I(X,Y) \times 2$$

non-linear lower contrast

$$\left(\frac{I(X,Y)}{255}\right)^{1/3} \times 255$$

non-linear raise contrast

original

I(X,Y)

invert

255 - I(X, Y)

darken

I(X, Y) - 128

lighten

$$I(X, Y) + 128$$

lower contrast

 $\frac{I(X,Y)}{2}$

raise contrast

$$I(X,Y) \times 2$$

non-linear lower contrast

$$\left(\frac{I(X,Y)}{255} \right)^{1/3} \times 255$$
 non-linear raise contrast

$$\left(\frac{I(X,Y)}{255}\right)^2 \times 255$$

original

I(X,Y)

invert

255 - I(X, Y)

darken

I(X, Y) - 128

lighten

$$I(X,Y) + 128$$

 $\frac{I(X,Y)}{2}$

raise contrast

$$I(X,Y) \times 2$$

non-linear lower contrast

$$\left(\frac{I(X,Y)}{255}\right)^{1/3} \times 255$$

$$\left(\frac{I(X,Y)}{255}\right)^2 \times 255$$

What types of transformations can we do?

changes range of image function

changes domain of image function

What types of filtering can we do?

Point Operation

point processing

Neighborhood Operation

"filtering"

Let I(X,Y) be an $n \times n$ digital image (for convenience we let width = height)

Let F(X,Y) be another $m \times m$ digital image (our "filter" or "kernel")

For convenience we will assume m is odd. (Here, m=5)

Let
$$k = \left\lfloor \frac{m}{2} \right\rfloor$$

Compute a new image, I'(X,Y), as follows

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$= \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$

Intuition: each pixel in the output image is a linear combination of the same pixel and its neighboring pixels in the original image

For a give X and Y, superimpose the filter on the image centered at (X, Y)

For a give X and Y, superimpose the filter on the image centered at (X, Y)

Compute the new pixel value, I'(X,Y), as the sum of $m \times m$ values, where each value is the product of the original pixel value in I(X,Y) and the corresponding values in the filter

The computation is repeated for each (X,Y)

$$I'(X,Y) = \sum_{j=-k}^k \sum_{i=-k}^k F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

output

filter

output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

image (signal)

filter

output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

image (signal)

filter

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

image (signal)

filter

output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

image (signal)

filter

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

output

filter

j = -k i = -k

output

filter

j = -k i = -k

$$I'(X,Y) = \sum_{j=-k}^k \sum_{i=-k}^k F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k \ i=-k \ \text{filter} \qquad \text{image (signal)}$$

output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

image (signal)

filter

j = -k i = -k

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output image (signal)

Output
$$I'(X,Y)$$

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

0 10 20 30 30 30 30 20 10

10 10 10 10 0 0 0 0

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output image (signal)

For a give X and Y, superimpose the filter on the image centered at (X,Y)

Compute the new pixel value, I'(X,Y), as the sum of $m \times m$ values, where each value is the product of the original pixel value in I(X,Y) and the corresponding values in the filter

Let's do some accounting ...

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output filter image (signal)

Let's do some accounting ...

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output filter image (signal)

At each pixel, (X,Y), there are $m \times m$ multiplications

Let's do some accounting ...

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output filter image (signal)

At each pixel, (X,Y), there are $m\times m$ multiplications There are $n\times n$ pixels in (X,Y)

Let's do some accounting ...

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output filter image (signal)

At each pixel, (X,Y), there are $m\times m$ multiplications There are $n\times n$ pixels in (X,Y)

Total: $m^2 \times n^2$ multiplications

Let's do some accounting ...

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output image (signal)

At each pixel, (X,Y), there are $m \times m$ multiplications

There are

 $n \times n$ pixels in (X, Y)

Total:

 $m^2 \times n^2$ multiplications

When m is fixed, small constant, this is $\mathcal{O}(n^2)$. But when $m \approx n$ this is $\mathcal{O}(m^4)$.

Three standard ways to deal with boundaries:

1. **Ignore these locations:** Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns

Three standard ways to deal with boundaries:

- 1. **Ignore these locations:** Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
- 2. **Pad the image with zeros**: Return zero whenever a value of I is required at some position outside the defined limits of *X* and *Y*

Three standard ways to deal with boundaries:

- 1. **Ignore these locations:** Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
- 2. **Pad the image with zeros**: Return zero whenever a value of I is required at some position outside the defined limits of *X* and *Y*
- 3. **Assume periodicity**: The top row wraps around to the bottom row; the leftmost column wraps around to the rightmost column

A short exercise ...

Example 1: Warm up

0	0	0
0	1	0
0	0	0

Original

Filter

Result

Example 1: Warm up

Original

Filter

Result
(no change)

Example 2:

0	0	0
0	0	1
0	0	0

Original

Filter

Result

Example 2:

Original

Filter

Result
(sift left by 1 pixel)

Example 3:

Original

Filter (filter sums to 1)

Result

Example 3:

Original

Filter
(filter sums to 1)

Result
(blur with a box filter)

Example 4:

0	0	0	
0	2	0	
0	0	0	

Filter
(filter sums to 1)

Result

Example 4:

0	0	0
0	2	0
0	0	0

$$- \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Original

Filter
(filter sums to 1)

Result
(sharpening)

Example 4: Sharpening

Before

After

Example 4: Sharpening

Before

After

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

Definition: Convolution

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X-i,Y-j)$$

Definition: Correlation

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

Filter

Image

Definition: Correlation

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

Filter

Image

$$= 1a + 2b + 3c$$

 $+ 4d + 5e + 6f$
 $+ 7g + 8h + 9i$

Output

Definition: Correlation

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

Definition: Convolution

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X-i,Y-j)$$

а	b	С
d	Φ	f
g	h	i

Filter

Image

Definition: Correlation

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

Definition: Convolution

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X-i,Y-j)$$

а	b	С
d	Φ	f
g	h	i

Filter

Image

$$= 9a + 8b + 7c$$

 $+ 6d + 5e + 4f$
 $+ 3g + 2h + 1i$

Definition: Correlation

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

Definition: Convolution

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X-i,Y-j)$$

Filter (rotated by 180)

İ	Ч	б
J	Ф	р
Э	q	В

а	b	С
d	Ф	f
g	h	i

Filter

1	2	3
4	5	6
7	8	9

Image

= 9a + 8b + 7c+ 6d + 5e + 4f+ 3g + 2h + 1i

Definition: Correlation

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

Definition: Convolution

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X-i,Y-j)$$

$$= \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(-i,-j)I(X+i,Y+j)$$

Note: if F(X,Y) = F(-X,-Y) then correlation = convolution.

Preview: Why convolutions are important?

Who has heard of Convolutional Neural Networks (CNNs)?

Preview: Why convolutions are important?

Who has heard of Convolutional Neural Networks (CNNs)?

What about **Deep Learning**?

Preview: Why convolutions are important?

Who has heard of Convolutional Neural Networks (CNNs)?

What about **Deep Learning**?

Basic operations in CNNs are convolutions (with learned linear filters) followed by non-linear functions.

Note: This results in non-linear filters.

Let \otimes denote convolution. Let I(X,Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

$$(F_1+F_2)\otimes I(X,Y)=F_1\otimes I(X,Y)+F_2\otimes I(X,Y)$$

Let \otimes denote convolution. Let I(X,Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

$$(F_1+F_2)\otimes I(X,Y)=F_1\otimes I(X,Y)+F_2\otimes I(X,Y)$$

Scaling: Let F be digital filter and let k be a scalar

$$(kF)\otimes I(X,Y)=F\otimes (kI(X,Y))=k(F\otimes I(X,Y))$$

Let \otimes denote convolution. Let I(X,Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

$$(F_1+F_2)\otimes I(X,Y)=F_1\otimes I(X,Y)+F_2\otimes I(X,Y)$$

Scaling: Let F be digital filter and let k be a scalar

$$(kF)\otimes I(X,Y)=F\otimes (kI(X,Y))=k(F\otimes I(X,Y))$$

Shift Invariance: Output is local (i.e., no dependence on absolute position)

Linear Filters: Shift Invariance

Output does **not** depend on absolute position

Let \otimes denote convolution. Let I(X,Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

$$(F_1+F_2)\otimes I(X,Y)=F_1\otimes I(X,Y)+F_2\otimes I(X,Y)$$

Scaling: Let F be digital filter and let k be a scalar

$$(kF)\otimes I(X,Y)=F\otimes (kI(X,Y))=k(F\otimes I(X,Y))$$

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is linear if it satisfies both superposition and scaling

Linear Systems: Characterization Theorem

Any linear, shift invariant operation can be expressed as convolution

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Filter has equal positive values that some up to 1

Replaces each pixel with the average of itself and its local neighborhood

— Box filter is also referred to as average filter or mean filter

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and middle)

What happens if we increase the width (size) of the box filter?

Gonzales & Woods (3rd ed.) Figure 3.3

Menu for Today (January 14, 2020)

Topics: Image Filtering (also topic for next week)

— Image as a function

— Correlation / Convolution

Linear filters

- Filter examples: Box, Gaussian

Readings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5
- Next Lecture: none

Reminders:

- Assignment 0 (ungraded) due today, January 14
- Assignment 1: Image Filtering and Hybrid Images (is out January 14)