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BRITISH COLUMBIA

Neural Nets and CNNs (putting it all together



Menu for Today (april 7, 2020)

— Assignment 6: Deep Learning due Tuesday, April 7th
— On-line quiz due end of the day today
— Material for Final Prep will is available on Canvas (will post Quizzes, Midterm)

— Wil post Final Prep office hours today/tomorrow



Please Till out
Student Evaluations
(on Canvas)



Deep Learning Terminology
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* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)
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* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

generally kept fixed, requires some knowledge of the problem and NN to sensibly set
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* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

generally kept fixed, requires some knowledge of the problem and NN to sensibly set deeper = better
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* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

generally kept fixed, requires some knowledge of the problem and NN to sensibly set
* Loss function: objective function being optimized (softmax, cross entropy, etc.)
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* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

generally kept fixed, requires some knowledge of the problem and NN to sensibly set
* Loss function: objective function being optimized (softmax, cross entropy, etc.)

requires knowledge of the nature of the problem




Deep Learning Terminology

2

.&nmm - gg g{% %% g% Google’s “Inception” network
B B
TR Wt Lt s b
BT ROk 50 5 &
*higplhay "5 B &

i &

* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

generally kept fixed, requires some knowledge of the problem and NN to sensibly set
* Loss function: objective function being optimized (softmax, cross entropy, etc.)

requires knowledge of the nature of the problem

* Parameters: trainable parameters of the network, including weights/biases of
inear/fc layers, parameters of the activation functions, etc.
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* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

generally kept fixed, requires some knowledge of the problem and NN to sensibly set
* Loss function: objective function being optimized (softmax, cross entropy, etc.)

requires knowledge of the nature of the problem

* Parameters: trainable parameters of the network, including weights/biases of
inear/fc layers, parameters of the activation functions, etc. [t R RC PRORYE (=t
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* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

generally kept fixed, requires some knowledge of the problem and NN to sensibly set
* Loss function: objective function being optimized (softmax, cross entropy, etc.)

requires knowledge of the nature of the problem

* Parameters: trainable parameters of the network, including weights/biases of
inear/fc layers, parameters of the activation functions, etc. [t R RC PRORYE (=t

* Hyper-parameters: parameters, including for optimization, that are not optimized
directly as part of training e.9., learning rate, batch size, drop-out rate)
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* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

generally kept fixed, requires some knowledge of the problem and NN to sensibly set
* Loss function: objective function being optimized (softmax, cross entropy, etc.)

requires knowledge of the nature of the problem

* Parameters: trainable parameters of the network, including weights/biases of
inear/fc layers, parameters of the activation functions, etc. [t R RC PRORYE (=t

* Hyper-parameters: parameters, including for optimization, that are not optimized
directly as part of training e.9., learning rate, batch size, drop-out rate)




Multivariate Regression

Input: feature vector x € R" Output: output vector y € R™



Multivariate Regression
Input: feature vector x € R" Output: output vector y € R™

Neural Network (input + intermediate hidden layers) f(x;®©) : R — RF

with sigmoid activations: 0 < f(x;0) <1
with Tanh activations: -1 < f(x;0) <1
with ReLU activations: 0 < f(x;0)



Multivariate Regression
Input: feature vector x € R" Output: output vector y € R™

Neural Network (input + intermediate hidden layers) f(x;®©) : R — RF

with sigmoid activations: 0 < f(x;0) <1
with Tanh activations: -1 < f(x;0) <1
with ReLU activations: 0 < f(x;0)

Neural Network (output): linear layer

v =g(x;W,b) = Wf(x;0)+b:R¥ - R™



Multivariate Regression
Input: feature vector x € R" Output: output vector y € R™

Neural Network (input + intermediate hidden layers) f(x;®©) : R — RF

with sigmoid activations: 0 < f(x;0) <1
with Tanh activations: -1 < f(x;0) <1
with ReLU activations: 0 < f(x;0)

Neural Network (output): linear layer

v =g(x;W,b) = Wf(x;0)+b:R¥ - R™

Loss: L(y,y) =y =y



Binary Classification gernouli
Input: feature vector x € R"” Output: binary label ¥ € {0, 1}

Neural Network (input + intermediate hidden layers) f(x;0) : R" —» R

with sigmoid activations: 0 < f(x;0) <1



Binary Classification gernouli
Input: feature vector x € R"® Output: binary label ¥ € {0, 1}
Neural Network (input + intermediate hidden layers) f(x;0) : R" —» R

with sigmoid activations: 0 < f(x;0) <1

Neural Network (output): threshold hidden output (which is a sigmoid)

y=1[f(x;0) > 0.5]



Binary Classification gernouli
Input: feature vector x € R"® Output: binary label ¥ € {0, 1}
Neural Network (input + intermediate hidden layers) f(x;0) : R" —» R

with sigmoid activations: 0 < f(x;0) <1

Neural Network (output): threshold hidden output (which is a sigmoid)

y=1[f(x;0) > 0.5]

Problem: Not differentiable, probabilistic interpretation maybe desirable



Binary Classification gernouli
Input: feature vector x € R"® Output: binary label ¥ € {0, 1}
Neural Network (input + intermediate hidden layers) f(x;0) : R" —» R

with sigmoid activations: 0 < f(x;0) <1

Neural Network (output): interpret sigmoid output as probabillity

ply =1) = f(x;0)

can interpret the score as the log-odds of ¥y = 1 (a.k.a. the logits)



Binary Classification gernouli
Input: feature vector x € R"® Output: binary label ¥ € {0, 1}
Neural Network (input + intermediate hidden layers) f(x;0) : R" —» R

with sigmoid activations: 0 < f(x;0) <1

Neural Network (output): interpret sigmoid output as probabillity

ply =1) = f(x;0)

can interpret the score as the log-odds of ¥y = 1 (a.k.a. the logits)

Loss: similarity between two distributions



Binary Classification gernouli
Input: feature vector x € R"” Output: binary label ¥ € {0, 1}

Neural Network (input + intermediate hidden layers) f(x;0) : R" —» R

with sigmoid activations: 0 < f(x;0) <1

Neural Network (output): interpret sigmoid output as probabillity

ply =1) = f(x;0)




Binary Classification gernouli
Input: feature vector x € R"” Output: binary label ¥ € {0, 1}

Neural Network (input + intermediate hidden layers) f(x;0) : R" —» R

with sigmoid activations: 0 < f(x;0) <1

Neural Network (output): interpret sigmoid output as probabillity

Loss: L(y,y) = { _long(x; @)] Y _



Binary Classification gernouli
Input: feature vector x € R"” Output: binary label ¥ € {0, 1}

Neural Network (input + intermediate hidden layers) f(x;0) : R" —» R

with sigmoid activations: 0 < f(x;0) <1

Neural Network (output): interpret sigmoid output as probabillity

Loss: L(y,y) = { _long(x; @)] Y _



Binary Classification gernouli
Input: feature vector x € R"” Output: binary label ¥ € {0, 1}

Neural Network (input + intermediate hidden layers) f(x;®©) : R — RF

with ReLU activations: 0 < f(x;0)



Binary Classification gernouli
Input: feature vector x € R"” Output: binary label ¥ € {0, 1}

Neural Network (input + intermediate hidden layers) f(x;®©) : R — RF
with ReLU activations: 0 < f(x;0)

Neural Network (output): linear layer with one neuron and sigmoid activation



Multiclass Classification (e.g, ImageNet)

Input: feature vector x € R" Output: muticlass label y € {0,1}™

(one-hot encoding)



Multiclass Classification (e.g, ImageNet)

Input: feature vector x € R" Output: muticlass label y € {0,1}™

(one-hot encoding)

Neural Network (input + intermediate hidden layers) f(x;©) : R" — R™

with ReLU activations: 0 < f(x;0)



Multiclass Classification (e.g, ImageNet)

Input: feature vector x € R" Output: muticlass label y € {0,1}™

(one-hot encoding)

Neural Network (input + intermediate hidden layers) f(x;©) : R" — R™
with ReLU activations: 0 < f(x;0)

Neural Network (output): softmax function, where probabillity of class K is:

1) &P f(x;0)]
P =l = S e i 0);




Multiclass Classification (e.g, ImageNet)

Input: feature vector x € R" Output: muticlass label y € {0,1}™

(one-hot encoding)

Neural Network (input + intermediate hidden layers) f(x;©) : R" — R™
with ReLU activations: 0 < f(x;0)

Neural Network (output): softmax function, where probabillity of class K is:

L=1) = CXP [f(X; @)i]
P =l = S e i 0);

Loss:  L(y,y)=H(y,y)=— ) _vilogy;



Multiclass Classification (e.g, ImageNet)

Input: feature vector x € R" Output: muticlass label y € {0,1}™

(one-hot encoding)

Neural Network (input + intermediate hidden layers) f(x;©) : R" — R™
with ReLU activations: 0 < f(x;0)

Neural Network (output): softmax function, where probabillity of class K is:

1) &P f(x;0)]
P =l = S e i 0);

Loss:  L(y,y)=H(y,y) =—) vyilogy: = —logy;

Special case for multi-class single label



Deep Learning Terminology

g g % % % %} % Google’s “Inception” network

BE B Iy 1L
B0 B0 by gty g kg g o H0HE
g oF %} | o g 0

* Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

generally kept fixed, requires some knowledge of the problem and NN to sensibly set
* Loss function: objective function being optimized (softmax, cross entropy, etc.)

requires knowledge of the nature of the problem

Specification of neural architecture will define a computational graph.




Training

Initialize parameters of all layers

For a fixed number of iterations or until convergence
— Form mini-batch of examp\es (randomly chosen from a training dataset)

— Compute forward pass to make predictions for every example and

Compute the l0sSs (this involves recursively calling forward() for each intermediate layer along
computational graph)

— Compute backwards pass to compute the gradient of the loss with

respect to each parameter for each example (involves traversing computational graph in
reverse order calling backward() on intermediate nodes and composing intermediate gradients — chain rule)

— Update parameters of all layers, by taking a step in the negative
average gradient direction (computed over all examples in the mini-batch)

28



Inference / Prediction

Compute forward pass with optimized parameters on test examples

29



Monitoring Learning: Visualizing the (training) loss

Loss

25

00
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100

loss

low learning rate

high learning rate

good learning rate ul

epoch

* slide from Li, Karpathy, Johnson’s CS231n at Stanford



Monitoring Learning: Visualizing the (training) loss

0.80

Big gap = overfitting

075 |

¢ - Solution: increase regularization
NO gap = undercutting
Solution: increase model capacity
\/

050}

045}
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- | | | _— Vallidation accuracy SmaH gap — ideal
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* slide from Li, Karpathy, Johnson’s CS231n at Stanford



Convolutional Neural Networks
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Convolutional Layer: Closer Look at Spatial Dimensions

32 X 32 X 3 Image

o X 5 x 3 filter (W)

32 width

3 depth

activation map

28 height

convolve (slide) over all

spatial locations

28 width

1 depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer: 1x1 convolutions

50 X 56 x 64 Image

64 dept

56 heignt

56 width

32 filters of size, 1 x 1 x 64
——————————————————————————————————————

50 X 56 x 32 image

56 heignt

56 width

32 deptn

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Convolutional Neural Network (ConvNet)

3 depth

32 height

CONV,
Rel U

e.g. 6 5x5x3
filters

32 width

6 depth

28 neignt 24 neignt
CONV,
Rel U
e.g. 10 5x5x6
filters

28 width 24 \v|dth

10 cepth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Convolutional Layer Summary

Accepts a volume of size: W; x H; x D,



Convolutional Layer Summary

Accepts a volume of size: W; x H; x D,
Requires hyperparameters:
— Number of filters: K (for typical networks K € {32, 64,128, 256,512})
— Spatial extent of filters: F' (for a typical networks F' € {1, 3,5, ...})
— Stride of application: S (for a typical network S € {1, 2})
— Zero padding: P (for a typical network P € {0,1,2})



Convolutional Layer Summary

Accepts a volume of size: W; x H; x D,
Requires hyperparameters:
— Number of filters: K (for typical networks K € {32, 64,128, 256,512})
— Spatial extent of filters: F' (for a typical networks F' € {1, 3,5, ...})
— Stride of application: S (for a typical network S € {1, 2})
— Zero padding: P (for a typical network P € {0,1,2})

Produces a volume of size: W, x H, x D,



Convolutional Layer Summary

Accepts a volume of size: W; x H; x D,
Requires hyperparameters:
— Number of filters: K (for typical networks K € {32, 64,128, 256,512})
— Spatial extent of filters: F' (for a typical networks F' € {1, 3,5, ...})
— Stride of application: S (for a typical network S € {1, 2})
— Zero padding: P (for a typical network P € {0,1,2})
Produces a volume of size: W, x H, x D,
W, = (W; — F+2P)/S +1 H,=(H; — F+2P)/S +1 D,=K



Convolutional Layer Summary

Accepts a volume of size: W; x H; x D,
Requires hyperparameters:
— Number of filters: K (for typical networks K € {32, 64,128, 256,512})
— Spatial extent of filters: F' (for a typical networks F' € {1, 3,5, ...})
— Stride of application: S (for a typical network S € {1, 2})
— Zero padding: P (for a typical network P € {0,1,2})
Produces a volume of size: W, x H, x D,
W, = (W; — F+2P)/S +1 H,=(H; — F+2P)/S +1 D,

Number of total learnable parameters: (F' X F' x D;) x K + K



Convolutional Neural Networks
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CNNs: Reminder Fully Connected Layers

Input Activation
P W!x + b, where W e R10%3072

-_—> O
each neuron looks at the full

3072 Input volume 10
(32 x 32 x 3 Image -> stretches to 3072 x 1)

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Neural Networks
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Convolutional Neural Networks
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Convolutional Neural Networks
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Pooling Layer

* Makes representation smaller, more manageable and spatially invariant

* Operates over each activation map independently

224x224x64

/ / - 1/1 2x112x64
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4

> e 112
224 downsampling
112
224

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




Pooling Layer

* Makes representation smaller, more manageable and spatially invariant

* Operates over each activation map independently

224x224x64
/// 112x112x64

pool i y
)/ How many parameters”?’
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> e 112
224 downsampling
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224

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford
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Pooling Layer

* Makes representation smaller, more manageable and spatially invariant

* Operates over each activation map independently

224x224x64
/// 112x112x64

pool i y
)/ How many parameters”?’

A None!

> e 112
224 downsampling
112
224

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

y




Vlax Pooling

activation map

max pool with 2 x 2 filter

3 2 1 O and stride of 2 3 A

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Average Pooling

activation map

3.20 0.20

avg pool with 2 x 2 filter

3 2 1 O and stride of 2 D D



Pooling Layer Receptive Field

T convolutional filters have size KxK and stride 1, and pooling layer has pools of
Silze PxP, then each unit In the pooling layer depenos Jpon a patch (at the input of
the preceding conv. layer) of size: (P+K-1)x(P+K-1)
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* slide from Marc’Aurelio Renzato



Pooling Layer Receptive Field

T convolutional filters have size KxK and stride 1, and pooling layer has pools of
Size PxP, then each unit in the pooling layer depenos Jpon a patch (at the input of
the preceding conv. layer) of size: (P+K-1)x(P+K-1)

* slide from Marc’Aurelio Renzato



Pooling Layer Summary

Accepts a volume of size: W; x H; x D,
Requires hyperparameters:
— Spatial extent of filters: K
— Stride of application: F
Produces a volume of size: W, x H, X D,
Wo=W;—-F)/S+1 H,=(H;,—F)/S+1

Number of total learnable parameters: O



Convolutional Neural Networks
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Computer Vision Problems

Categorization Detection

Horse (X, y, w, h)
Horse (X, y, w, h)
Person (X, y, w, h)
Person (X, y, w, h)

Multi-class: Horse
Church

Toothbrush
Person

IMAGENET

Common Objects in Context

Multi-label: Horse
Church
Toothbrush

Person



Computer Vision Problems

Categorization Detection Segmentation

TR

o v Ny A
St AL ALY B

Multi-class: Horse Horse (x, y, w, h) Horse
Horse (X, vy, w, h) Person
Church
Toothbrush Person (X, vy, w, h)
Person Common Objects in Context
IMAGENET

Common Objects in Context

Multi-label: Horse
Church
Toothbrush

Person



Computer Vision Problems

Categorization Detection Segmentation Instance Segmentation
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Multi-class: Horse Horse (x, y, w, h) Horse
Horse (X, vy, w, h) Horse?
Church
Toothbrush Person (X, vy, w, h) Person
OOIIUS Person (X, vy, w, h) - Person?
Person Common Objects in Context
IMAGENET

Common Objects in Context

Multi-label: Horse
Church
Toothbrush

Person



Computer Vision Problems

Categorization

Multi-class: Horse
Church

Toothbrush
Person

IMAGENET

Multi-label: Horse
Church
Toothbrush

Person



Object Classification

Category Prediction

Dog No
Cat No
Y Couch No
Flowers NO
Leopard Yes

Problem: For each image predict which category it belongs to out of a fixed set



Object Classification

Category Prediction

§ Dog No

| Cat No

— Couch No

Flowers NO
Leopard Yes

Problem: For each image predict which category it belongs to out of a fixed set



Object Classification

Category Prediction

H Dog

| Cat —
— Couch B
Flowers

Leopard m—

0
Probability

Problem: For each image predict which category it belongs to out of a fixed set



Object Classification

[ 152 layers ]
A
\
\
\
\
\
\
\
[ 22 Iayers 19 layers
\ 6.7
3 57 I_ . I Iayers 8 layers shallow

ILSVRC'15  ILSVRC'14 ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet




Comparing Complexity

J Inception-v4
80 S 80 1 | : |
Inception-v3 ‘ ResNet-152
ResNet- 50‘ | VGG-16 VGG-19
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o § GoogLeNet
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O 65 1 S 65 1
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



COmpUter ViSiOn PrOblemS (no language for now)

Categorization Detection Segmentation Instance Segmentation
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Multi-class: Horse Horse (x, y, w, h) Horse
Horse (X, vy, w, h) Horse?
Church
Toothbrush Person (X, vy, w, h) Person
OOIIUS Person (X, vy, w, h) - Person?
Person Common Objects in Context
IMAGENET

Common Objects in Context

Multi-label: Horse
Church
Toothbrush

Person



COmpUter ViSiOn PrOblemS (no language for now)

Segmentation

Common Objects in Context



emantic Segmentation

Label every pixel with a

category label without
differentiating instances

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Semantic Segmentation: Sliding Window Farabet et al, TPAMI 2013

| Pinheiro et al, ICML 2014 |

Extract patches Classify center pixel with CNN

7’ S
3 §]D—s con
3 G[D—s con
ol - :ﬂ—» Grass

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



emantic Segmentation: Sliding Window  Farabet et al, TPAMI 2013]

| Pinheiro et al, ICML 2014 |

Extract patches Classify center pixel with CNN

7’

Sl .. || gy G OW

ﬁl j—) Cow

ol - j—) Grass

VERY Inefficient, no reuse of computations for overlapping patches

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers to make
oredictions for all pixels at once!
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Input Image

-

Class Scores Predicted Labels

3XHxW CxHxW HxW

Convolutions
DxHxW

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers to make
oredictions for all pixels at once!

B

-

Input Image Class Scores Predicted Labels

3XHxW CxHxW HxW

Convolutions
DxHxW

Problem: Convolutions at the original image scale will be very expensive

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers with
downsampling and upsampling inside the network!

Med-res: Med-res:
Do x H/4 x \W/4 Do x H/4 x \W/4

Low-res:
Input Image Dsx H/4 x W/4 Predicted Labels

3w Hx W High-res: High-res: H x W
Dy x H/2 x W/2 Dy x H/2 x W/2

[ Long et al, CVPR 2015 |
[ Noh et al, ICCV 2015 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers with
downsampling and upsampling inside the network!

Med-res: Med-res:
Do x H/4 x \W/4 Do x H/4 x \W/4

Low-res:
Input Image 1 Dy x H/4 x W/4 Predicted Labels
3w Hx W High-res: High-res: H x W
Dy x H/2 x W/2 Dy x H/2 x W/2
Downsampling = Pooling Upsampling = 777

[ Long et al, CVPR 2015 |
[ Noh et al, ICCV 2015 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



COmpUter ViSiOn PrOblemS (no language for now)

Categorization Detection Segmentation Instance Segmentation
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Multi-class: Horse Horse (x, y, w, h) Horse
Horse (X, vy, w, h) Horse?
Church
Toothbrush Person (X, vy, w, h) Person
OOIIUS Person (X, vy, w, h) - Person?
Person Common Objects in Context
IMAGENET

Common Objects in Context

Multi-label: Horse
Church
Toothbrush

Person



COmpUter ViSiOn PrOblemS (no language for now)

Detection

Horse (X, y, w, h)
Horse (X, y, w, h)
Person (X, vy, w, h)
Person (X, y, w, h)

Common Objects in Context



Object Detection as Regression Problem

'IH=+ ol - —)  CAT (X, Yy, W ,h)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Regression Problem

— CAT (X, y, W ,h)
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* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Object Detection as Regression Problem

'IH=+ ol - —)  CAT (X, Yy, W ,h)

Xy, w,
Xy, w,
Xy, w,
Xy, w,
Xy, w,
Xy, w,
Xy, w,

DD

D)
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D)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Classification Problem

Category Prediction

Dog NO

Cat No

rr-l— [ - —yp Couch No
j Flowers NO

Background Yes

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Classification Problem

Category Prediction
Dog NO

] Cat No

! _rl_ S .. || = Couch No

il Il Flowers NO
Background Yes

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Classification Problem

Category Prediction

Dog Yes
Cat No
rr-l— [ - —yp Couch No
J Flowers No
Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Classification Problem

Category Prediction
Dog Yes

] Cat No

! _rl_ il - || = Couch No
il Il Flowers NO
Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Classification Problem

Category Prediction

Dog NO

Cat Yes
rr-l— [ - —yp Couch No
J Flowers NO
Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Classification Problem

Problem: Need to apply CNN to many patches in each image

Category Prediction

Dog NO

Cat Yes
rr-l— [ - —yp Couch No
J Flowers NO
Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



A—.—..
| Alexe et al, TPAMI 20°

Region PFODOS&‘S (older idea in vision) [ Uilkings et al, IJCV 20°

[ Cheng et al, CVPR 201
[ Zitnick and Dollar, ECCV 201

Find image regions that are likely contain objects (any object at all)

B~ B WN

- typically works by looking at histogram distributions, region aspect ratio, closed contours, coherent color

Relatively fast to run (Selective Search gives 1000 region proposals in a few seconds on a CPU)

Goal: Get “true” object regions to be in as few top K proposals as possible

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford




| Girshick et al, CVPR 2014 |

Input Image

* image from Ross Girshick



| Girshick et al, CVPR 2014 |

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



| Girshick et al, CVPR 2014 |

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



ConvN

ConvN
et

4

[ Girshick et al, CVPR 2014 |

Forward each region
through a CNN

L ! /" Warped image regions

Regions of Interest from

a proposal method (~2k)

Input Image

* image from Ross Girshick



SVMs

SVMs
SVMs
ConvN
ConvN
et

ConvN
et

4

[ Girshick et al, CVPR 2014 |

Classify regions with SVM

Forward each region
through a CNN

4 g /" Warped image regions

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



R-CNN

Linear Regression for bounding box offsets

Bbox reg

SVMs

Bbox reg

Bbox reg

SVMs

ConvN

ConvN

et

4

[ Girshick et al, CVPR 2014 |

Classify regions with SVM

Forward each region
through a CNN

£ ! 7/ Warped image regions

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



R-CNN

R-CNN (Regions with CNN features) algorithm:
— Extract promising candidate regions using an object proposals algorithm

— Resize each proposal window to the size of the input layer of a trained
convolutional neural network

— Input each resized image patch to the convolutional neural network

Implementation detail: Instead of using the classitication scores of the
network directly, the output of the final fully-connected layer can be used as an
input feature to a trained support vector machine (SVM)

84



Summary

Common types of layers:

1. Convolutional Layer
— Parameters define a set of learnable filters

2. Pooling Layer
— Performs a downsampling along the spatial dimensions

3. Fully-Connected Layer
— ASs In a regular neural network

Each layer accepts an input 3D volume and transforms it to an output 3D
volume through a differentiable function

89



Summary

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule

A convolutional neural network assumes Iinputs are images, and constrains
the network architecture to reduce the number of parameters

A convolutional layer applies a set of learnable filters
A pooling layer performs spatial downsampling
A fully-connected layer Is the same as in a regular neural network

Convolutional neural networks can be seen as learning a hierarchy of filters

380



Thank you!



