
Lecture 24: Neural Nets and CNNs (putting it all together)

CPSC 425: Computer Vision 

!1



Menu for Today (April 7, 2020)

Reminders: 
— Assignment 6: Deep Learning due Tuesday, April 7th 
— On-line quiz due end of the day today 
— Material for Final Prep will is available on Canvas (will post Quizzes, Midterm) 
— Will post Final Prep office hours today/tomorrow 



Please fill out  
Student Evaluations  

(on Canvas)
!3



Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph)

Google’s “Inception” network



Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set 



Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set deeper = better



Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph) 

• Loss function: objective function being optimized (softmax, cross entropy, etc.) 

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set deeper = better



Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph) 

• Loss function: objective function being optimized (softmax, cross entropy, etc.) 

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set 

requires knowledge of the nature of the problem

deeper = better



Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph) 

• Loss function: objective function being optimized (softmax, cross entropy, etc.) 

• Parameters: trainable parameters of the network,  including weights/biases of 
linear/fc layers, parameters of the activation functions, etc.

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set 

requires knowledge of the nature of the problem

deeper = better



Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph) 

• Loss function: objective function being optimized (softmax, cross entropy, etc.) 

• Parameters: trainable parameters of the network,  including weights/biases of 
linear/fc layers, parameters of the activation functions, etc.

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set 

optimized using SGD or variants 

requires knowledge of the nature of the problem

deeper = better



Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph) 

• Loss function: objective function being optimized (softmax, cross entropy, etc.) 

• Parameters: trainable parameters of the network,  including weights/biases of 
linear/fc layers, parameters of the activation functions, etc. 
• Hyper-parameters: parameters, including for optimization, that are not optimized 

directly as part of training (e.g., learning rate, batch size, drop-out rate)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set 

optimized using SGD or variants 

requires knowledge of the nature of the problem

deeper = better



Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph) 

• Loss function: objective function being optimized (softmax, cross entropy, etc.) 

• Parameters: trainable parameters of the network,  including weights/biases of 
linear/fc layers, parameters of the activation functions, etc. 
• Hyper-parameters: parameters, including for optimization, that are not optimized 

directly as part of training (e.g., learning rate, batch size, drop-out rate)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set 

optimized using SGD or variants 

grid search

requires knowledge of the nature of the problem

deeper = better



Multivariate Regression 
Input: feature vector Output: output vector x 2 Rn y 2 Rm



Multivariate Regression 
Input: feature vector Output: output vector x 2 Rn y 2 Rm

Neural Network (input + intermediate hidden layers) f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; � 1  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)

with sigmoid activations:
with Tanh activations:
with ReLU activations:



Multivariate Regression 
Input: feature vector Output: output vector x 2 Rn y 2 Rm

Neural Network (input + intermediate hidden layers)

Neural Network (output): linear layer

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; � 1  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)

with sigmoid activations:
with Tanh activations:
with ReLU activations:

ŷ = g(x;W,b) = Wf(x;⇥) + b : Rk ! Rm



Multivariate Regression 
Input: feature vector Output: output vector x 2 Rn y 2 Rm

Neural Network (input + intermediate hidden layers)

Neural Network (output): linear layer

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; � 1  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)

with sigmoid activations:
with Tanh activations:
with ReLU activations:

Loss: 

ŷ = g(x;W,b) = Wf(x;⇥) + b : Rk ! Rm

L(y, ŷ) = ||y � ŷ||2



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers) f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): threshold hidden output (which is a sigmoid)

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

ŷ = 1[f(x;⇥) > 0.5]

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): threshold hidden output (which is a sigmoid)

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

ŷ = 1[f(x;⇥) > 0.5]

Problem: Not differentiable, probabilistic interpretation maybe desirable 

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

can interpret the score as the log-odds of            (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

Loss: similarity between two distributions 

can interpret the score as the log-odds of            (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

Loss: L(y, ŷ) = �y log[f(x;⇥)]� (1� y) log[1� f(x;⇥)]

can interpret the score as the log-odds of            (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

p(y = 1) = f(x;⇥)

Loss: L(y, ŷ) =
⇢

�log[1� f(x;⇥)] y = 0
�log[f(x;⇥)] y = 1

can interpret the score as the log-odds of            (a.k.a. the logits)y = 1

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): interpret sigmoid output as probability

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1with sigmoid activations:

y 2 {0, 1}

Minimizing this loss is the same as maximizing log likelihood of data

p(y = 1) = f(x;⇥)

Loss: L(y, ŷ) =
⇢

�log[1� f(x;⇥)] y = 0
�log[f(x;⇥)] y = 1

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers) f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

y 2 {0, 1}

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

Binary Classification (Bernoulli)



Input: feature vector Output: binary labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Neural Network (output): linear layer with one neuron and sigmoid activation

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)  1

y 2 {0, 1}

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

Binary Classification (Bernoulli)



Input: feature vector Output: muticlass labelx 2 Rn

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

(one-hot encoding)



Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm



Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =

exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j ]

Neural Network (output): softmax function, where probability of class k is:

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm



Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =

exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j ]

Neural Network (output): softmax function, where probability of class k is:

L(y, ˆy) = H(y, ˆy) = �
X

i

yi log ˆyi = � log

ˆyi

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

(one-hot encoding)

f(x;⇥) : Rn ! Rm

Loss:



Input: feature vector Output: muticlass labelx 2 Rn

Neural Network (input + intermediate hidden layers)

Multiclass Classification (e.g, ImageNet)
y 2 {0, 1}m

p(yk = 1) =

exp [f(x;⇥)i]PC
j=1 exp [f(x;⇥)j ]

Neural Network (output): softmax function, where probability of class k is:

L(y, ˆy) = H(y, ˆy) = �
X

i

yi log ˆyi = � log

ˆyi

f(x;⇥) : Rn ! Rk; 0  f(x;⇥)with ReLU activations:

Special case for multi-class single label

(one-hot encoding)

f(x;⇥) : Rn ! Rm

Loss:



Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph) 

• Loss function: objective function being optimized (softmax, cross entropy, etc.) 

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set 

requires knowledge of the nature of the problem

deeper = better

Specification of neural architecture will define a computational graph. 



Training

Initialize parameters of all layers 
For a fixed number of iterations or until convergence 

— Form mini-batch of examples (randomly chosen from a training dataset) 

— Compute forward pass to make predictions for every example and 
compute the loss (this involves recursively calling forward() for each intermediate layer along 
computational graph) 
— Compute backwards pass to compute the gradient of the loss with 
respect to each parameter for each example (involves traversing computational graph in 
reverse order calling backward() on intermediate nodes and composing intermediate gradients — chain rule) 
— Update parameters of all layers, by taking a step in the negative 
average gradient direction (computed over all examples in the mini-batch) 

!28



Inference / Prediction 

Compute forward pass with optimized parameters on test examples 

!29



Monitoring Learning: Visualizing the (training) loss

* slide from Li, Karpathy, Johnson’s CS231n at Stanford



Monitoring Learning: Visualizing the (training) loss

Big gap = overfitting 

Solution: increase regularization

No gap = undercutting

Solution: increase model capacity

Small gap = ideal

* slide from Li, Karpathy, Johnson’s CS231n at Stanford



Convolutional Neural Networks

VGG-16 Network



Convolutional Layer: Closer Look at Spatial Dimensions

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all 
spatial locations

5 x 5 x 3 filter (      )
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map



Convolutional Layer: 1x1 convolutions 

56 width

64 depth

56 x 56 x 64 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

32 filters of size, 1 x 1 x 64

56 height

56 x 56 x 32 image 

56 width

32 depth

56 height



CONV, 
ReLU 
e.g. 6 5x5x3 
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV, 
ReLU 
e.g. 10 5x5x6 
filters

CONV, 
ReLU

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer Summary 

Accepts a volume of size: Wi ⇥Hi ⇥Di



Convolutional Layer Summary 

Accepts a volume of size: 
Requires hyperparameters: 
  — Number of filters:       (for typical networks                                          )  
  — Spatial extent of filters:     (for a typical networks                         )   
  — Stride of application:      (for a typical network                 )  
  — Zero padding:      (for a typical network                     ) 

Wi ⇥Hi ⇥Di

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P



Convolutional Layer Summary 

Accepts a volume of size: 
Requires hyperparameters: 
  — Number of filters:       (for typical networks                                          )  
  — Spatial extent of filters:     (for a typical networks                         )   
  — Stride of application:      (for a typical network                 )  
  — Zero padding:      (for a typical network                     )  
Produces a volume of size:  

Wi ⇥Hi ⇥Di

W
o

⇥H
o

⇥D
o

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P



Convolutional Layer Summary 

Accepts a volume of size: 
Requires hyperparameters: 
  — Number of filters:       (for typical networks                                          )  
  — Spatial extent of filters:     (for a typical networks                         )   
  — Stride of application:      (for a typical network                 )  
  — Zero padding:      (for a typical network                     )  
Produces a volume of size:   

Wi ⇥Hi ⇥Di

W
o

⇥H
o

⇥D
o

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

W
o

= (W
i

� F + 2P )/S + 1 H
o

= (H
i

� F + 2P )/S + 1 D
o

= K



Convolutional Layer Summary 

Accepts a volume of size: 
Requires hyperparameters: 
  — Number of filters:       (for typical networks                                          )  
  — Spatial extent of filters:     (for a typical networks                         )   
  — Stride of application:      (for a typical network                 )  
  — Zero padding:      (for a typical network                     )  
Produces a volume of size:   

Number of total learnable parameters:

Wi ⇥Hi ⇥Di

W
o

⇥H
o

⇥D
o

K K 2 {32, 64, 128, 256, 512}

F 2 {1, 3, 5, ...}F

S 2 {1, 2}

P 2 {0, 1, 2}

S

P

W
o

= (W
i

� F + 2P )/S + 1 H
o

= (H
i

� F + 2P )/S + 1 D
o

= K

(F ⇥ F ⇥Di)⇥K +K



Convolutional Neural Networks

VGG-16 Network



CNNs: Reminder Fully Connected Layers

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Input Activation

3072 10
(32 x 32 x 3 image -> stretches to 3072 x 1)

W

T
x+ b,where W 2 R10⇥3072

each neuron looks at the full 
input volume



Convolutional Neural Networks

VGG-16 Network



Convolutional Neural Networks

VGG-16 Network



Convolutional Neural Networks

VGG-16 Network



Pooling Layer
• Makes representation smaller, more manageable and spatially invariant 
• Operates over each activation map independently 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Pooling Layer
• Makes representation smaller, more manageable and spatially invariant 
• Operates over each activation map independently 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?



Pooling Layer
• Makes representation smaller, more manageable and spatially invariant 
• Operates over each activation map independently 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?

None!



Max Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4
max pool with 2 x 2 filter 

and stride of 2

activation map 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Average Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

3.25 5.25

2 2
avg pool with 2 x 2 filter 

and stride of 2

activation map 



Pooling Layer Receptive Field

* slide from Marc’Aurelio Renzato 

If convolutional filters have size KxK and stride 1, and pooling layer has pools of 
size PxP, then each unit in the pooling layer depends upon a patch (at the input of 
the preceding conv. layer) of size: (P+K-1)x(P+K-1)



Pooling Layer Receptive Field
If convolutional filters have size KxK and stride 1, and pooling layer has pools of 
size PxP, then each unit in the pooling layer depends upon a patch (at the input of 
the preceding conv. layer) of size: (P+K-1)x(P+K-1)

* slide from Marc’Aurelio Renzato 



Pooling Layer Summary 

Accepts a volume of size: 
Requires hyperparameters: 
  — Spatial extent of filters:      
  — Stride of application:       
Produces a volume of size:   

Number of total learnable parameters: 0

Wi ⇥Hi ⇥Di

W
o

⇥H
o

⇥D
o

K

F

W
o

= (W
i

� F )/S + 1 H
o

= (H
i

� F )/S + 1 D
o

= D
i



Convolutional Neural Networks

VGG-16 Network



Computer Vision Problems



Categorization

Computer Vision Problems



Multi-class: Horse
Church
Toothbrush
Person

Categorization

Computer Vision Problems



Multi-class: Horse
Church
Toothbrush
Person

Multi-label: Horse
Church
Toothbrush
Person

Categorization

Computer Vision Problems



Detection

Horse (x, y, w, h) 
Horse (x, y, w, h) 
Person (x, y, w, h) 
Person (x, y, w, h)

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Computer Vision Problems



Detection

Horse (x, y, w, h) 
Horse (x, y, w, h) 
Person (x, y, w, h) 
Person (x, y, w, h)

Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse 
Person

Computer Vision Problems



Computer Vision Problems

Detection

Horse (x, y, w, h) 
Horse (x, y, w, h) 
Person (x, y, w, h) 
Person (x, y, w, h)

Segmentation Instance Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse 
Person

Horse1 
Horse2 
Person1 
Person2



Computer Vision Problems

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization



Object Classification

Dog 
Cat 
Couch 
Flowers 
Leopard 
…

No 
No 
No 
No 
Yes 
…

Category    Prediction

Problem: For each image predict which category it belongs to out of a fixed set 



Object Classification

Dog 
Cat 
Couch 
Flowers 
Leopard 
…

No 
No 
No 
No 
Yes 
…

Category    Prediction

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Problem: For each image predict which category it belongs to out of a fixed set 



Object Classification

Dog 
Cat 
Couch 
Flowers 
Leopard 
…

Category    Prediction

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

0 1
Probability

Problem: For each image predict which category it belongs to out of a fixed set 



Object Classification



Comparing Complexity

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h) 
Horse (x, y, w, h) 
Person (x, y, w, h) 
Person (x, y, w, h)

Segmentation Instance Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse 
Person

Horse1 
Horse2 
Person1 
Person2



Computer Vision Problems (no language for now)

Segmentation

Horse 
Person



Semantic Segmentation

Cow

Grass

Sky
Tre

es

Grass

Cat

Sky Trees

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Label every pixel with a 
category label (without 
differentiating instances)



Semantic Segmentation: Sliding Window

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Classify center pixel with CNNExtract patches

Cow

Cow

Grass

[ Farabet et al, TPAMI 2013 ] 
[ Pinheiro et al, ICML 2014 ]



Semantic Segmentation: Sliding Window

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Classify center pixel with CNNExtract patches

Cow

Cow

Grass

[ Farabet et al, TPAMI 2013 ] 
[ Pinheiro et al, ICML 2014 ]

Problem: VERY inefficient, no reuse of computations for overlapping patches



Semantic Segmentation: Fully Convolutional CNNs

CONV, 
ReLU

CONV, 
ReLU

CONV, 
ReLU

Argmax

Input Image

Convolutions

Class Scores Predicted Labels

C x H x W H x W

D x H x W

3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers to make 
predictions for all pixels at once! 



Semantic Segmentation: Fully Convolutional CNNs

CONV, 
ReLU

CONV, 
ReLU

CONV, 
ReLU

Argmax

Input Image

Convolutions

Class Scores Predicted Labels

C x H x W H x W

D x H x W

3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers to make 
predictions for all pixels at once! 

Problem: Convolutions at the original image scale will be very expensive



Semantic Segmentation: Fully Convolutional CNNs

Input Image Predicted Labels

H x W3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers with 
downsampling and upsampling inside the network! 

High-res: 
D1 x H/2 x W/2

High-res: 
D1 x H/2 x W/2

Med-res: 
D2 x H/4 x W/4

Med-res: 
D2 x H/4 x W/4

Low-res: 
D3 x H/4 x W/4

[ Long et al, CVPR 2015 ] 
[ Noh et al, ICCV 2015 ]



Semantic Segmentation: Fully Convolutional CNNs

Input Image Predicted Labels

H x W3 x H x W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Design a network as a number of convolutional layers with 
downsampling and upsampling inside the network! 

High-res: 
D1 x H/2 x W/2

High-res: 
D1 x H/2 x W/2

Med-res: 
D2 x H/4 x W/4

Med-res: 
D2 x H/4 x W/4

Low-res: 
D3 x H/4 x W/4

[ Long et al, CVPR 2015 ] 
[ Noh et al, ICCV 2015 ]

Downsampling = Pooling Upsampling = ???



Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h) 
Horse (x, y, w, h) 
Person (x, y, w, h) 
Person (x, y, w, h)

Segmentation Instance Segmentation

Multi-class:

Multi-label:

Horse
Church
Toothbrush
Person

Horse
Church
Toothbrush
Person

Categorization

Horse 
Person

Horse1 
Horse2 
Person1 
Person2



Computer Vision Problems (no language for now)

Detection

Horse (x, y, w, h) 
Horse (x, y, w, h) 
Person (x, y, w, h) 
Person (x, y, w, h)



Object Detection as Regression Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

CAT (x, y, w ,h)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Regression Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

CAT (x, y, w ,h)

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

DUCK (x, y, w ,h) 
DUCK (x, y, w ,h) 
DUCK (x, y, w ,h) 
DUCK (x, y, w ,h) 
DUCK (x, y, w ,h) 
DUCK (x, y, w ,h) 
DUCK (x, y, w ,h) 
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Regression Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

CAT (x, y, w ,h)

Problem: each image needs a different number of outputs 

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

DUCK (x, y, w ,h) 
DUCK (x, y, w ,h) 
DUCK (x, y, w ,h) 
DUCK (x, y, w ,h) 
DUCK (x, y, w ,h) 
DUCK (x, y, w ,h) 
DUCK (x, y, w ,h) 
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Classification Problem 

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Dog 
Cat 
Couch 
Flowers 
Background 
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

No 
No 
No 
No 
Yes 
…

Category    Prediction

Apply CNN to many different crops in the image and (classification) CNN 
classifies each patch as object or background



Object Detection as Classification Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Dog 
Cat 
Couch 
Flowers 
Background 
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

No 
No 
No 
No 
Yes 
…

Category    Prediction

Apply CNN to many different crops in the image and (classification) CNN 
classifies each patch as object or background



Object Detection as Classification Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Dog 
Cat 
Couch 
Flowers 
Background 
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Yes 
No 
No 
No 
No 
…

Category    Prediction

Apply CNN to many different crops in the image and (classification) CNN 
classifies each patch as object or background



Object Detection as Classification Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Dog 
Cat 
Couch 
Flowers 
Background 
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Yes 
No 
No 
No 
No 
…

Category    Prediction

Apply CNN to many different crops in the image and (classification) CNN 
classifies each patch as object or background



Object Detection as Classification Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Dog 
Cat 
Couch 
Flowers 
Background 
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

No 
Yes 
No 
No 
No 
…

Category    Prediction

Apply CNN to many different crops in the image and (classification) CNN 
classifies each patch as object or background



Object Detection as Classification Problem

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Dog 
Cat 
Couch 
Flowers 
Background 
…

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

No 
Yes 
No 
No 
No 
…

Category    Prediction

Apply CNN to many different crops in the image and (classification) CNN 
classifies each patch as object or background

Problem: Need to apply CNN to many patches in each image



Region Proposals (older idea in vision)

Find image regions that are likely contain objects (any object at all) 
- typically works by looking at histogram distributions, region aspect ratio, closed contours, coherent color 

Relatively fast to run (Selective Search gives 1000 region proposals in a few seconds on a CPU)

[ Alexe et al, TPAMI 2012 ] 
[ Uijkings et al, IJCV 2013 ] 
[ Cheng et al, CVPR 2014 ] 

[ Zitnick and Dollar, ECCV 2014 ]

Goal: Get “true” object regions to be in as few top K proposals as possible 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image

Regions of Interest from 
a proposal method (~2k)



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image

Regions of Interest from 
a proposal method (~2k)

Warped image regions



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image

Regions of Interest from 
a proposal method (~2k)

Warped image regions

Forward each region 
through a CNN



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image

Regions of Interest from 
a proposal method (~2k)

Warped image regions

Forward each region 
through a CNN

Classify regions with SVM



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image

Regions of Interest from 
a proposal method (~2k)

Warped image regions

Forward each region 
through a CNN

Classify regions with SVM

Linear Regression for bounding box offsets



R-CNN (Regions with CNN features) algorithm:  
— Extract promising candidate regions using an object proposals algorithm  
— Resize each proposal window to the size of the input layer of a trained    
convolutional neural network  
— Input each resized image patch to the convolutional neural network  

Implementation detail: Instead of using the classification scores of the 
network directly, the output of the final fully-connected layer can be used as an 
input feature to a trained support vector machine (SVM)  

!84

R-CNN



Summary
Common types of layers:  

	 1.  Convolutional Layer 
— Parameters define a set of learnable filters  

	 2.  Pooling Layer 
— Performs a downsampling along the spatial dimensions  

	 3.  Fully-Connected Layer 
— As in a regular neural network  

Each layer accepts an input 3D volume and transforms it to an output 3D 
volume through a differentiable function 

!85



Summary

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule  

A convolutional neural network assumes inputs are images, and constrains 
the network architecture to reduce the number of parameters  

A convolutional layer applies a set of learnable filters 

A pooling layer performs spatial downsampling 

A fully-connected layer is the same as in a regular neural network  

Convolutional neural networks can be seen as learning a hierarchy of filters 

!86



Thank you!

!87


