CPSC 425: Computer Vision

Lecture 24: Neural Nets and CNNs (putting it all together)
Menu for Today (April 7, 2020)

Reminders:

– **Assignment 6**: Deep Learning due **Tuesday, April 7th**
– **On-line quiz** due end of the day **today**
– **Material for Final Prep** will is available on Canvas (will post Quizzes, Midterm)
– Will post Final Prep **office hours** today/tomorrow
Please fill out Student Evaluations (on Canvas)
Deep Learning **Terminology**

- **Network structure**: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

Google’s “Inception” network
Deep Learning Terminology

• **Network structure:** number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

 generally kept fixed, requires some knowledge of the problem and NN to sensibly set
• **Network structure:** number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

- generally kept fixed, requires some knowledge of the problem and NN to sensibly set
- deeper = better

Google’s “Inception” network
Deep Learning **Terminology**

- **Network structure:** number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

 generally kept fixed, requires some knowledge of the problem and NN to sensibly set
 deeper = better

- **Loss function:** objective function being optimized (softmax, cross entropy, etc.)
Deep Learning **Terminology**

- **Network structure**: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)

 generally kept fixed, requires some knowledge of the problem and NN to sensibly set deeper = better

- **Loss function**: objective function being optimized (softmax, cross entropy, etc.)

 requires knowledge of the nature of the problem
Deep Learning **Terminology**

- **Network structure**: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)
 - generally kept fixed, requires some knowledge of the problem and NN to sensibly set
 - deeper = better

- **Loss function**: objective function being optimized (softmax, cross entropy, etc.)
 - requires knowledge of the nature of the problem

- **Parameters**: trainable parameters of the network, including weights/biases of linear/fc layers, parameters of the activation functions, etc.
Deep Learning Terminology

- **Network structure**: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)
 - generally kept fixed, requires some knowledge of the problem and NN to sensibly set
 - deeper = better

- **Loss function**: objective function being optimized (softmax, cross entropy, etc.)
 - requires knowledge of the nature of the problem

- **Parameters**: trainable parameters of the network, including weights/biases of linear/fc layers, parameters of the activation functions, etc.
 - optimized using SGD or variants
Deep Learning Terminology

- **Network structure**: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)
 - generally kept fixed, requires some knowledge of the problem and NN to sensibly set
 - deeper = better

- **Loss function**: objective function being optimized (softmax, cross entropy, etc.)
 - requires knowledge of the nature of the problem

- **Parameters**: trainable parameters of the network, including weights/biases of linear/fc layers, parameters of the activation functions, etc.
 - optimized using SGD or variants

- **Hyper-parameters**: parameters, including for optimization, that are not optimized directly as part of training (e.g., learning rate, batch size, drop-out rate)
Deep Learning **Terminology**

- **Network structure**: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)
 - generally kept fixed, requires some knowledge of the problem and NN to sensibly set
 - deeper = better

- **Loss function**: objective function being optimized (softmax, cross entropy, etc.)
 - requires knowledge of the nature of the problem

- **Parameters**: trainable parameters of the network, including weights/biases of linear/fc layers, parameters of the activation functions, etc.
 - optimized using SGD or variants

- **Hyper-parameters**: parameters, including for optimization, that are not optimized directly as part of training (e.g., learning rate, batch size, drop-out rate)
 - grid search

Google’s “Inception” network
Multivariate Regression

Input: feature vector \(x \in \mathbb{R}^n \)

Output: output vector \(y \in \mathbb{R}^m \)
Multivariate Regression

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$ \hspace{1cm} **Output:** output vector $\mathbf{y} \in \mathbb{R}^m$

Neural Network (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \rightarrow \mathbb{R}^k$

- with **sigmoid** activations: $0 \leq f(\mathbf{x}; \Theta) \leq 1$
- with **Tanh** activations: $-1 \leq f(\mathbf{x}; \Theta) \leq 1$
- with **ReLU** activations: $0 \leq f(\mathbf{x}; \Theta)$
Multivariate Regression

Input: feature vector \(x \in \mathbb{R}^n \)
Output: output vector \(y \in \mathbb{R}^m \)

Neural Network (input + intermediate hidden layers) \(f(x; \Theta) : \mathbb{R}^n \rightarrow \mathbb{R}^k \)

- with **sigmoid** activations: \(0 \leq f(x; \Theta) \leq 1 \)
- with **Tanh** activations: \(-1 \leq f(x; \Theta) \leq 1 \)
- with **ReLU** activations: \(0 \leq f(x; \Theta) \)

Neural Network (output): linear layer

\[
\hat{y} = g(x; W, b) = W f(x; \Theta) + b : \mathbb{R}^k \rightarrow \mathbb{R}^m
\]
Multivariate Regression

Input: feature vector $x \in \mathbb{R}^n$
Output: output vector $y \in \mathbb{R}^m$

Neural Network (input + intermediate hidden layers) $f(x; \Theta) : \mathbb{R}^n \rightarrow \mathbb{R}^k$

with **sigmoid** activations: $0 \leq f(x; \Theta) \leq 1$

with **Tanh** activations: $-1 \leq f(x; \Theta) \leq 1$

with **ReLU** activations: $0 \leq f(x; \Theta)$

Neural Network (output): linear layer

$$\hat{y} = g(x; W, b) = W f(x; \Theta) + b : \mathbb{R}^k \rightarrow \mathbb{R}^m$$

Loss:

$$\mathcal{L}(y, \hat{y}) = ||y - \hat{y}||^2$$
Binary Classification (Bernoulli)

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

Output: binary label $y \in \{0, 1\}$

Neural Network (input + intermediate hidden layers)
$f(\mathbf{x}; \Theta) : \mathbb{R}^n \rightarrow \mathbb{R}$
with **sigmoid** activations:
$0 \leq f(\mathbf{x}; \Theta) \leq 1$
Binary Classification (Bernoulli)

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

Output: binary label $y \in \{0, 1\}$

Neural Network (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \rightarrow \mathbb{R}$

with **sigmoid** activations: $0 \leq f(\mathbf{x}; \Theta) \leq 1$

Neural Network (output): threshold hidden output (which is a sigmoid)

$$\hat{y} = 1[f(\mathbf{x}; \Theta) > 0.5]$$
Binary Classification (Bernoulli)

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

Output: binary label $y \in \{0, 1\}$

Neural Network (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \rightarrow \mathbb{R}$

with *sigmoid* activations: $0 \leq f(\mathbf{x}; \Theta) \leq 1$

Neural Network (output): threshold hidden output (which is a sigmoid)

$$\hat{y} = 1[f(\mathbf{x}; \Theta) > 0.5]$$

Problem: Not differentiable, probabilistic interpretation maybe desirable
Binary Classification (Bernoulli)

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

Output: binary label $y \in \{0, 1\}$

Neural Network (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \rightarrow \mathbb{R}$

with **sigmoid** activations: $0 \leq f(\mathbf{x}; \Theta) \leq 1$

Neural Network (output): interpret sigmoid output as probability

$$p(y = 1) = f(\mathbf{x}; \Theta)$$

...can interpret the score as the log-odds of $y = 1$ (a.k.a. the **logits**).
Binary Classification (Bernoulli)

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

Output: binary label $y \in \{0, 1\}$

Neural Network (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}$

with sigmoid activations: $0 \leq f(\mathbf{x}; \Theta) \leq 1$

Neural Network (output): interpret sigmoid output as probability

$$p(y = 1) = f(\mathbf{x}; \Theta)$$

can interpret the score as the log-odds of $y = 1$ (a.k.a. the logits)

Loss: similarity between two distributions
Binary Classification (Bernoulli)

Input: feature vector \(\mathbf{x} \in \mathbb{R}^n \)

Output: binary label \(y \in \{0, 1\} \)

Neural Network (input + intermediate hidden layers): \(f(\mathbf{x}; \Theta) : \mathbb{R}^n \rightarrow \mathbb{R} \)

with **sigmoid** activations: \(0 \leq f(\mathbf{x}; \Theta) \leq 1 \)

Neural Network (output): interpret sigmoid output as probability

\[
p(y = 1) = f(\mathbf{x}; \Theta)
\]

can interpret the score as the log-odds of \(y = 1 \) (a.k.a. the **logits**)

Loss:

\[
\mathcal{L}(y, \hat{y}) = -y \log[f(\mathbf{x}; \Theta)] - (1 - y) \log[1 - f(\mathbf{x}; \Theta)]
\]
Binary Classification (Bernoulli)

Input: feature vector $x \in \mathbb{R}^n$

Output: binary label $y \in \{0, 1\}$

Neural Network (input + intermediate hidden layers) $f(x; \Theta) : \mathbb{R}^n \rightarrow \mathbb{R}$

with **sigmoid** activations: $0 \leq f(x; \Theta) \leq 1$

Neural Network (output): interpret sigmoid output as probability

$$p(y = 1) = f(x; \Theta)$$

can interpret the score as the log-odds of $y = 1$ (a.k.a. the **logits**)

Loss:

$$\mathcal{L}(y, \hat{y}) = \begin{cases}
-\log[1 - f(x; \Theta)] & y = 0 \\
-\log[f(x; \Theta)] & y = 1
\end{cases}$$
Binary Classification (Bernoulli)

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

Output: binary label $y \in \{0, 1\}$

Neural Network (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \rightarrow \mathbb{R}$

with **sigmoid** activations: $0 \leq f(\mathbf{x}; \Theta) \leq 1$

Neural Network (output): interpret sigmoid output as probability

$$p(y = 1) = f(\mathbf{x}; \Theta)$$

Minimizing this **loss** is the same as maximizing **log likelihood** of data

Loss:

$$\mathcal{L}(y, \hat{y}) = \begin{cases}
-\log[1 - f(\mathbf{x}; \Theta)] & y = 0 \\
-\log[f(\mathbf{x}; \Theta)] & y = 1
\end{cases}$$
Binary Classification (Bernoulli)

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$ \quad **Output:** binary label $y \in \{0, 1\}$

Neural Network (input + intermediate hidden layers) $f(\mathbf{x}; \Theta) : \mathbb{R}^n \to \mathbb{R}^k$

with **ReLU** activations: $0 \leq f(\mathbf{x}; \Theta)$
Binary Classification (Bernoulli)

Input: feature vector $x \in \mathbb{R}^n$
Output: binary label $y \in \{0, 1\}$

Neural Network (input + intermediate hidden layers)
$f(x; \Theta) : \mathbb{R}^n \rightarrow \mathbb{R}^k$

with **ReLU** activations:

$0 \leq f(x; \Theta)$

Neural Network (output): linear layer with one neuron and sigmoid activation
Multiclass Classification (e.g., ImageNet)

Input: feature vector $\mathbf{x} \in \mathbb{R}^n$

Output: multiclass label $\mathbf{y} \in \{0, 1\}^m$

(one-hot encoding)
Multiclass Classification (e.g., ImageNet)

Input: feature vector \(x \in \mathbb{R}^n \)

Output: muticlass label \(y \in \{0, 1\}^m \)

(one-hot encoding)

Neural Network (input + intermediate hidden layers) \(f(x; \Theta) : \mathbb{R}^n \to \mathbb{R}^m \)

with **ReLU** activations: \(0 \leq f(x; \Theta) \)
Multiclass Classification (e.g., ImageNet)

Input: feature vector \(\mathbf{x} \in \mathbb{R}^n \)

Output: multiclass label \(\mathbf{y} \in \{0, 1\}^m \) (one-hot encoding)

Neural Network (input + intermediate hidden layers) \(f(x; \Theta) : \mathbb{R}^n \rightarrow \mathbb{R}^m \)

with **ReLU** activations: \(0 \leq f(x; \Theta) \)

Neural Network (output): **softmax** function, where probability of class \(k \) is:

\[
p(y_k = 1) = \frac{\exp [f(x; \Theta)_i]}{\sum_{j=1}^{C} \exp [f(x; \Theta)_j]}
\]
Multiclass Classification (e.g., ImageNet)

Input: feature vector \(\mathbf{x} \in \mathbb{R}^n \)

Output: multiclass label \(\mathbf{y} \in \{0, 1\}^m \) (one-hot encoding)

Neural Network (input + intermediate hidden layers) \(f(\mathbf{x}; \Theta) : \mathbb{R}^n \rightarrow \mathbb{R}^m \)

with **ReLU** activations: \(0 \leq f(\mathbf{x}; \Theta) \)

Neural Network (output): **softmax** function, where probability of class \(k \) is:

\[
p(y_k = 1) = \frac{\exp [f(\mathbf{x}; \Theta)_i]}{\sum_{j=1}^{C} \exp [f(\mathbf{x}; \Theta)_j]}
\]

Loss:

\[
\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = H(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{i} y_i \log \hat{y}_i
\]
Multiclass Classification (e.g., ImageNet)

Input: feature vector $x \in \mathbb{R}^n$

Output: muticlass label $y \in \{0, 1\}^m$
(one-hot encoding)

Neural Network (input + intermediate hidden layers) $f(x; \Theta) : \mathbb{R}^n \rightarrow \mathbb{R}^m$

with **ReLU** activations: $0 \leq f(x; \Theta)$

Neural Network (output): **softmax** function, where probability of class k is:

$$p(y_k = 1) = \frac{\exp[f(x; \Theta)_i]}{\sum_{j=1}^{C} \exp[f(x; \Theta)_j]}$$

Loss: $\mathcal{L}(y, \hat{y}) = H(y, \hat{y}) = - \sum_i y_i \log \hat{y}_i = - \log \hat{y}_i$

Special case for multi-class single label
Deep Learning **Terminology**

- **Network structure**: number and types of layers, forms of activation functions, dimensionality of each layer and connections (defines computational graph)
 - Generally kept fixed, requires some knowledge of the problem and NN to sensibly set.
 - Deeper = better
- **Loss function**: objective function being optimized (softmax, cross entropy, etc.)
 - Requires knowledge of the nature of the problem

Specification of neural architecture will define a **computational** graph.
Training

Initialize parameters of all layers

For a fixed number of iterations or until convergence

- Form **mini-batch** of examples (randomly chosen from a training dataset)
- Compute **forward** pass to make predictions for every example and compute the loss (this involves recursively calling forward() for each intermediate layer along computational graph)
- Compute **backwards** pass to compute the gradient of the loss with respect to each parameter for each example (involves traversing computational graph in reverse order calling backward() on intermediate nodes and composing intermediate gradients — chain rule)
- **Update parameters** of all layers, by taking a step in the negative average gradient direction (computed over all examples in the mini-batch)
Inference / Prediction

Compute **forward** pass with **optimized** parameters on test examples
Monitoring Learning: Visualizing the (training) loss

* slide from Li, Karpathy, Johnson's CS231n at Stanford
Monitoring Learning: Visualizing the (training) loss

Big gap = overfitting

Solution: increase regularization

No gap = undercutting

Solution: increase model capacity

Small gap = **ideal**

* slide from Li, Karpathy, Johnson's CS231n at Stanford
Convolutional Neural Networks

VGG-16 Network
Convolutional Layer: Closer Look at **Spatial Dimensions**

32 x 32 x 3 image

5 x 5 x 3 filter (\(W\))

Convolve (slide) over all spatial locations

activation map

- 3 depth
- 32 width

convolve \((W \times X + b)\)

- 28 width
- 1 depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, **cs231n Stanford**
Convolutional Layer: **1x1 convolutions**

56 x 56 x 64 image

32 filters of size, 1 x 1 x 64

56 x 56 x 32 image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Convolutional Neural Network (ConvNet)

- **CONV, ReLU**
- e.g. 6 $5\times 5\times 3$ filters
- 32 width
- 3 depth

- **CONV, ReLU**
- e.g. 10 $5\times 5\times 6$ filters
- 28 width
- 6 depth

- **CONV, ReLU**
- 24 width
- 10 depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Convolutional Layer **Summary**

Accepts a volume of size: $W_i \times H_i \times D_i$
Convolutional Layer **Summary**

Accepts a volume of size: $W_i \times H_i \times D_i$

Requires hyperparameters:

- Number of filters: K (for typical networks $K \in \{32, 64, 128, 256, 512\}$)
- Spatial extent of filters: F (for a typical networks $F \in \{1, 3, 5, \ldots\}$)
- Stride of application: S (for a typical network $S \in \{1, 2\}$)
- Zero padding: P (for a typical network $P \in \{0, 1, 2\}$)
Convolutional Layer **Summary**

Accepts a volume of size: $W_i \times H_i \times D_i$

Requires hyperparameters:

- Number of filters: K (for typical networks $K \in \{32, 64, 128, 256, 512\}$)
- Spatial extent of filters: F (for a typical networks $F \in \{1, 3, 5, \ldots\}$)
- Stride of application: S (for a typical network $S \in \{1, 2\}$)
- Zero padding: P (for a typical network $P \in \{0, 1, 2\}$)

Produces a volume of size: $W_o \times H_o \times D_o$
Convolutional Layer **Summary**

Accepts a volume of size: $W_i \times H_i \times D_i$

Requires hyperparameters:
- Number of filters: K (for typical networks $K \in \{32, 64, 128, 256, 512\}$)
- Spatial extent of filters: F (for a typical networks $F \in \{1, 3, 5, \ldots\}$)
- Stride of application: S (for a typical network $S \in \{1, 2\}$)
- Zero padding: P (for a typical network $P \in \{0, 1, 2\}$)

Produces a volume of size: $W_o \times H_o \times D_o$

$$W_o = (W_i - F + 2P)/S + 1 \quad H_o = (H_i - F + 2P)/S + 1 \quad D_o = K$$
Convolutional Layer Summary

Accepts a volume of size: \(W_i \times H_i \times D_i \)

Requires hyperparameters:

- Number of filters: \(K \) (for typical networks \(K \in \{32, 64, 128, 256, 512\} \))
- Spatial extent of filters: \(F \) (for a typical networks \(F \in \{1, 3, 5, \ldots\} \))
- Stride of application: \(S \) (for a typical network \(S \in \{1, 2\} \))
- Zero padding: \(P \) (for a typical network \(P \in \{0, 1, 2\} \))

Produces a volume of size: \(W_o \times H_o \times D_o \)

\[
W_o = (W_i - F + 2P)/S + 1 \\
H_o = (H_i - F + 2P)/S + 1 \\
D_o = K
\]

Number of total learnable parameters: \((F \times F \times D_i) \times K + K\)
Convolutional Neural Networks

VGG-16 Network
CNNs: Reminder Fully Connected Layers

\[W^T x + b, \text{ where } W \in \mathbb{R}^{10 \times 3072} \]

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, *cs231n Stanford*
Convolutional Neural Networks

VGG-16 Network
Convolutional Neural Networks

VGG-16 Network
Convolutional Neural Networks

VGG-16 Network
Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?
Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

How many parameters?

None!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Max Pooling

activation map

```
1 1 2 4
5 6 7 8
3 2 1 0
1 2 3 4
```

max pool with 2 x 2 filter and stride of 2

```
6 8
3 4
```

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Average **Pooling**

Activation Map

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

avg pool with 2 x 2 filter and stride of 2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.25</td>
<td>5.25</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Pooling Layer **Receptive Field**

If convolutional filters have size $K \times K$ and stride 1, and pooling layer has pools of size $P \times P$, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size: $(P+K-1) \times (P+K-1)$
If convolutional filters have size $K \times K$ and stride 1, and pooling layer has pools of size $P \times P$, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size: $(P+K-1) \times (P+K-1)$
Pooling Layer **Summary**

Accepts a volume of size: $W_i \times H_i \times D_i$

Requires hyperparameters:

- Spatial extent of filters: K
- Stride of application: F

Produces a volume of size: $W_o \times H_o \times D_o$

$$W_o = (W_i - F)/S + 1 \quad \quad H_o = (H_i - F)/S + 1 \quad \quad D_o = D_i$$

Number of total learnable parameters: 0
Convolutional Neural Networks

VGG-16 Network
Computer Vision Problems
Computer Vision Problems

Categorization
Computer Vision Problems

Categorization

Multi-class: Horse
 Church
 Toothbrush
 Person

IMAGENET
Categorization

Multi-class: Horse
 Church
 Toothbrush
 Person

Multi-label: Horse
 Church
 Toothbrush
 Person
Computer Vision Problems

Categorization

Multi-class:
- Horse
- Church
- Toothbrush
- Person

Detection

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)

Multi-label:
- Horse
- Church
- Toothbrush
- Person

IMAGENET

COCO
Common Objects in Context
Computer Vision Problems

Categorization

Detection

Segmentation

Multi-class:

Horse
Church
Toothbrush
Person

Multi-label:

Horse
Church
Toothbrush
Person

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)

IMAGENET

COCO
Common Objects in Context
Computer Vision Problems

Categorization

Detection

Segmentation

Instance Segmentation

Multi-class:
Horse
Church
Toothbrush
Person

Multi-label:
Horse
Church
Toothbrush
Person

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)

Horse
Person

Horse1
Horse2
Person1
Person2
Computer Vision Problems

Categorization

Multi-class: Horse
 Church
 Toothbrush
 Person

Multi-label: Horse
 Church
 Toothbrush
 Person
Object Classification

Problem: For each image predict which category it belongs to out of a fixed set

<table>
<thead>
<tr>
<th>Category</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog</td>
<td>No</td>
</tr>
<tr>
<td>Cat</td>
<td>No</td>
</tr>
<tr>
<td>Couch</td>
<td>No</td>
</tr>
<tr>
<td>Flowers</td>
<td>No</td>
</tr>
<tr>
<td>Leopard</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Problem: For each image predict which category it belongs to out of a fixed set.
Problem: For each image predict which category it belongs to out of a fixed set
Object Classification

- ILSVRC'15: ResNet (3.57 layers)
- ILSVRC'14: GoogleNet (6.7 layers), VGG (7.3 layers)
- ILSVRC'13: 8 layers
- ILSVRC'12: AlexNet (16.4 layers)
- ILSVRC'11: Shallow (25.8 layers)
- ILSVRC'10: Shallow (28.2 layers)
Comparing Complexity

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Computer Vision Problems (no language for now)

Categorization

Detection

Segmentation

Instance Segmentation

Multi-class: Horse
Church
Toothbrush
Person

Multi-label: Horse
Church
Toothbrush
Person

IMAGENET

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)

Horse
Person

Horse1
Horse2
Person1
Person2
Computer Vision Problems (no language for now)

Segmentation

Horse
Person
Semantic **Segmentation**

Label *every pixel* with a category label (without differentiating instances)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Semantic **Segmentation**: Sliding Window

Extract **patches**

Classify center pixel with CNN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, **cs231n Stanford**
Semantic Segmentation: Sliding Window

Problem: VERY inefficient, no reuse of computations for overlapping patches

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Semantic **Segmentation**: Fully Convolutional CNNs

Design a network as a number of convolutional layers to make predictions for all pixels at once!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Semantic **Segmentation**: Fully Convolutional CNNs

Design a network as a number of convolutional layers to make predictions for all pixels at once!

Problem: Convolutions at the original image scale will be very expensive

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, [cs231n Stanford](http://cs231n.stanford.edu/)
Semantic **Segmentation**: Fully Convolutional CNNs

Design a network as a number of convolutional layers with **downsampling** and **upsampling** inside the network!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Semantic **Segmentation**: Fully Convolutional CNNs

Design a network as a number of convolutional layers with **downsampling** and **upsampling** inside the network!

- **Input Image**: $3 \times H \times W$
- **Predicted Labels**: $H \times W$

*slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

- **Downsampling** = Pooling
- **Upsampling** = ???

[Long et al, CVPR 2015]
[Noh et al, ICCV 2015]
Computer **Vision Problems** (no language for now)

Categorization

Multi-class:
- Horse
- Church
- Toothbrush
- Person

Detection

Multi-label:
- Horse
- Church
- Toothbrush
- Person

Segmentation

Instance Segmentation

Multi-class:
- Horse
- Church
- Toothbrush
- Person

Multi-label:
- Horse
- Church
- Toothbrush
- Person

IMAGENET

COCO

Common Objects in Context
Computer **Vision Problems** (no language for now)

Detection

Horse (x, y, w, h)
Horse (x, y, w, h)
Person (x, y, w, h)
Person (x, y, w, h)
Object **Detection** as Regression Problem

![Image of a cat]

\[\mathbf{w}_0 \]
\[\mathbf{w}_1 \]
\[\mathbf{w}_2 \]
\[\cdots \]
\[\mathbf{w}_{N-1} \]

LSTM

Attributes
- **Visual Attributes by MIL**
- **Visual representation by DCNN**
- **CAT (x, y, w, h)**

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, [cs231n Stanford](http://cs231n.stanford.edu/)*
Object **Detection** as Regression Problem

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, **cs231n Stanford**
Object **Detection** as Regression Problem

Problem: each image needs a different number of outputs

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Object **Detection** as Classification Problem

Apply CNN to many different crops in the image and (classification) CNN classifies each patch as object or background.

Category	**Prediction**
Dog | No
Cat | No
Couch | No
Flowers | No
Background | Yes
... | ...
Object **Detection** as Classification Problem

Apply CNN to many different crops in the image and (classification) CNN classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, **cs231n Stanford**
Object Detection as Classification Problem

Apply CNN to many different crops in the image and (classification) CNN classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Object **Detection** as Classification Problem

Apply CNN to many different crops in the image and (classification) CNN classifies each patch as object or background.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, **cs231n Stanford**
Object Detection as Classification Problem

Apply CNN to many different crops in the image and (classification) CNN classifies each patch as object or background.

Category Prediction
Dog No
Cat Yes
Couch No
Flowers No
Background No
… …

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Object **Detection** as Classification Problem

Problem: Need to apply CNN to **many** patches in each image

Apply CNN to many different crops in the image and (classification) CNN classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, *cs231n Stanford*
Region Proposals (older idea in vision)

Find image regions that are likely contain objects (any object at all)
- typically works by looking at histogram distributions, region aspect ratio, closed contours, coherent color

Relatively fast to run (Selective Search gives 1000 region proposals in a few seconds on a CPU)

Goal: Get “true” object regions to be in as few top K proposals as possible

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
R-CNN

[Girshick et al, CVPR 2014]

* image from Ross Girshick
R-CNN

[Girshick et al, CVPR 2014]

Regions of Interest from a proposal method (~2k)

* image from Ross Girshick

Input Image
R-CNN

Regions of Interest from a proposal method (~2k)

Warped image regions

Input Image

[R-CNN: Girshick et al., CVPR 2014]

* image from Ross Girshick
R-CNN

Input Image

Regions of Interest from a proposal method (~2k)

Warped image regions

Forward each region through a CNN

ConvNet

ConvNet

ConvNet

* image from Ross Girshick

[Girshick et al, CVPR 2014]
R-CNN

Classify regions with SVM

Forward each region through a CNN

Warped image regions

Regions of Interest from a proposal method (~2k)

Input Image

[Girshick et al, CVPR 2014]

* image from Ross Girshick
R-CNN

Linear Regression for bounding box offsets

Classify regions with SVM

Forward each region through a **CNN**

Warped image regions

Regions of Interest from a proposal method (~2k)

Input Image

* image from Ross Girshick
R-CNN (Regions with CNN features) algorithm:
- Extract promising candidate regions using an object proposals algorithm
- Resize each proposal window to the size of the input layer of a trained convolutional neural network
- Input each resized image patch to the convolutional neural network

Implementation detail: Instead of using the classification scores of the network directly, the output of the final fully-connected layer can be used as an input feature to a trained support vector machine (SVM)
Summary

Common types of layers:

1. **Convolutional** Layer
 — Parameters define a set of learnable filters

2. **Pooling** Layer
 — Performs a downsampling along the spatial dimensions

3. **Fully-Connected** Layer
 — As in a regular neural network

Each layer accepts an input 3D volume and transforms it to an output 3D volume through a differentiable function
The parameters of a neural network are learned using backpropagation, which computes gradients via recursive application of the chain rule.

A convolutional neural network assumes inputs are images, and constrains the network architecture to reduce the number of parameters.

A convolutional layer applies a set of learnable filters.

A pooling layer performs spatial downsampling.

A fully-connected layer is the same as in a regular neural network.

Convolutional neural networks can be seen as learning a hierarchy of filters.
Thank you!