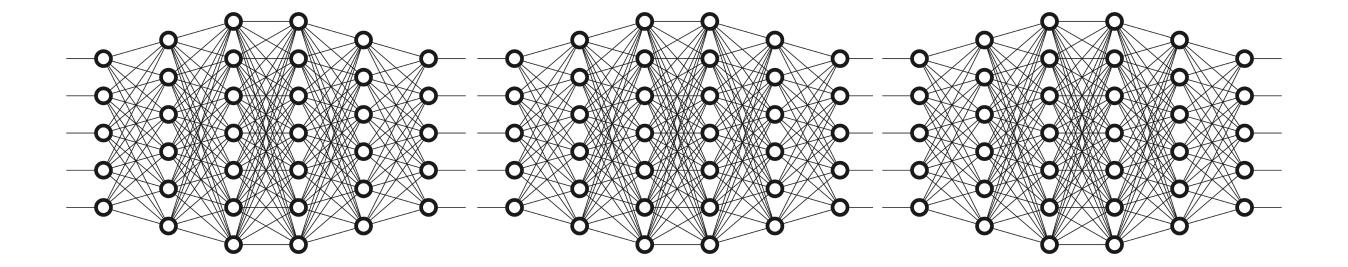


CPSC 425: Computer Vision



Lecture 23: Neural Networks (cont), CNNs

Menu for Today (April 2, 2020)

Topics:

- Backpropagation
- Convolutional Layers

- Pooling Layer
- R-CNN

Redings:

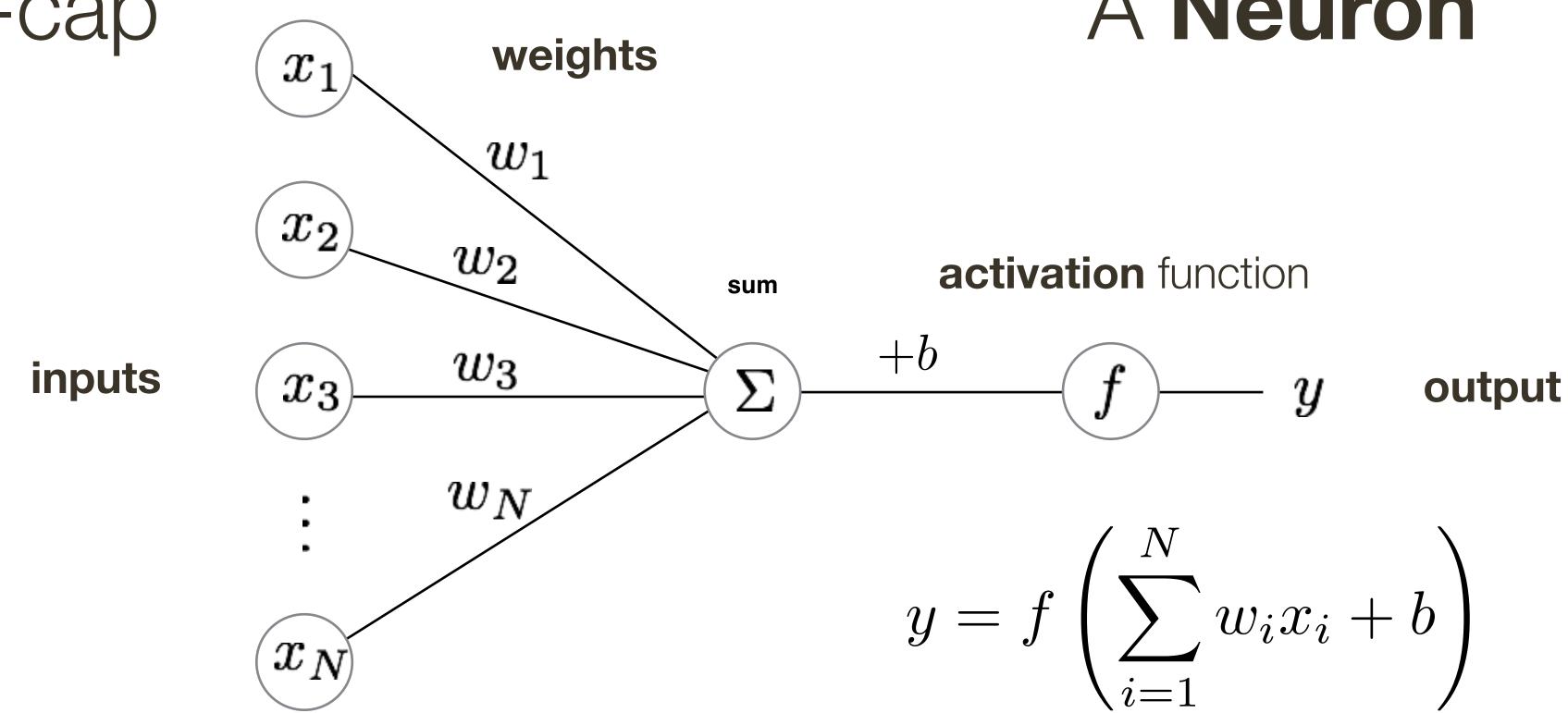
- Today's Lecture: N/A
- Next Lecture: N/A

Reminders:

Assignment 6: Deep Learning due Tuesday, April 7th

Please fill out Student Evaluations (on Canvas)

A Neuron



- The basic unit of computation in a neural network is a neuron.
- A neuron accepts some number of input signals, computes their weighted sum, and applies an activation function (or non-linearity) to the sum.
- Common activation functions include sigmoid and rectified linear unit (ReLU)

Neural Network

A neural network comprises neurons connected in an acyclic graph. The outputs of neurons can become inputs to other neurons. Neural networks typically contain multiple layers of neurons.

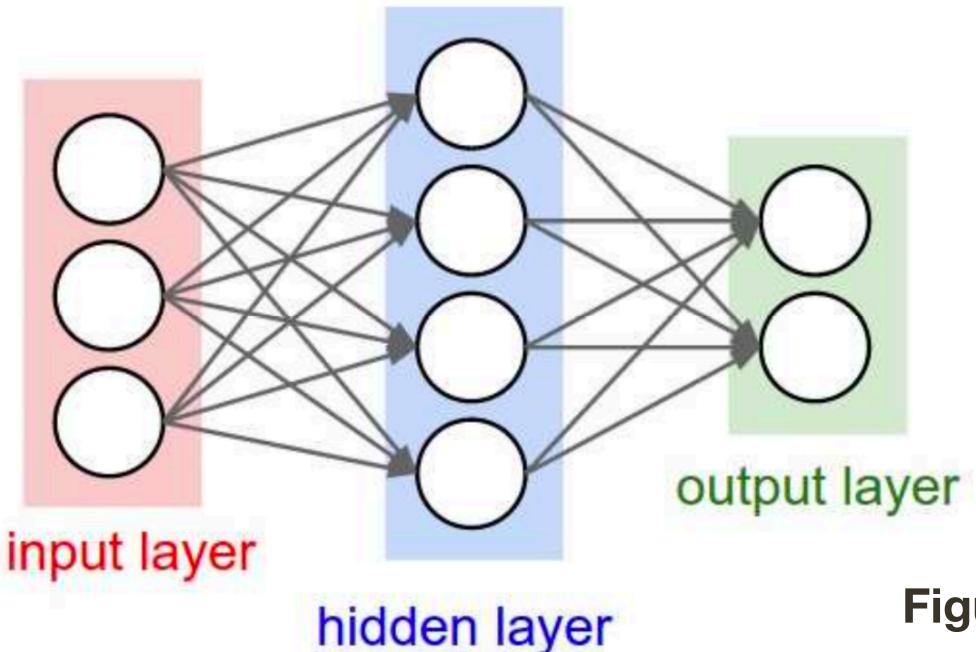
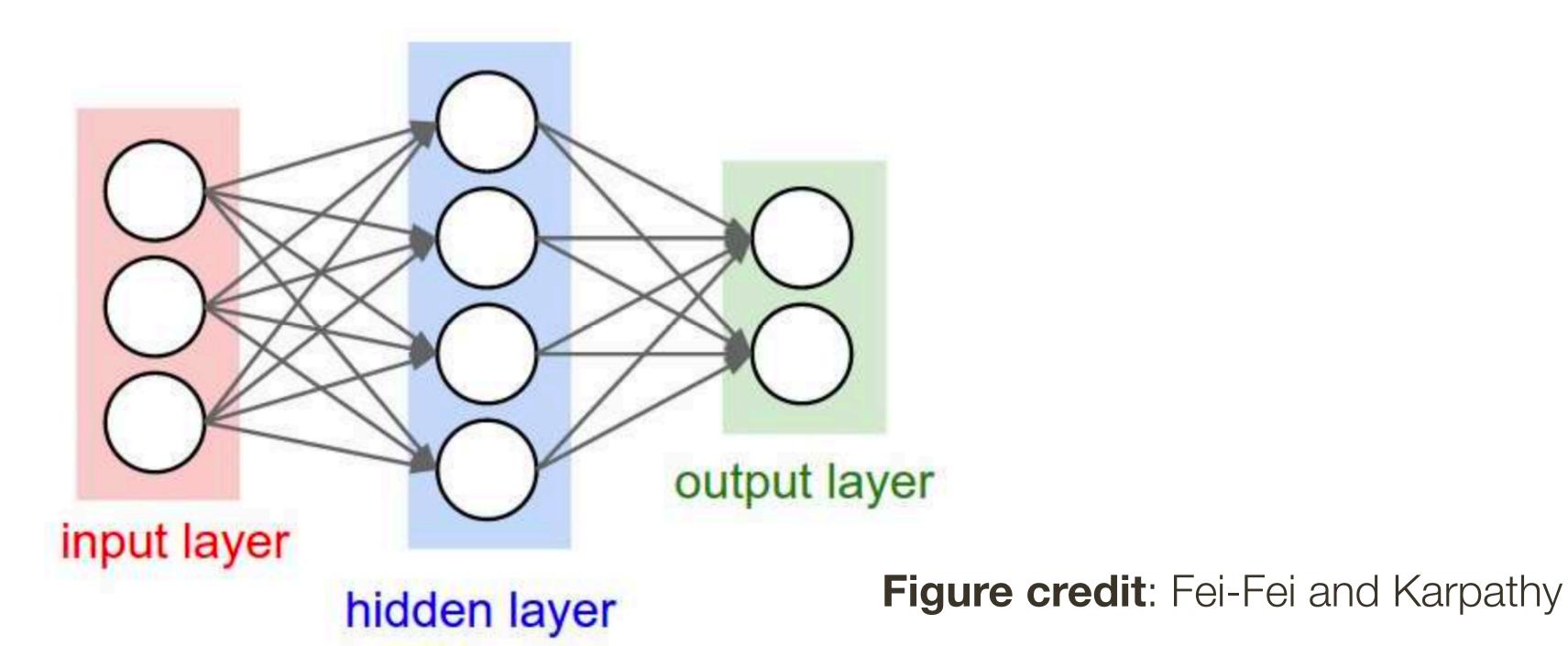


Figure credit: Fei-Fei and Karpathy

Example of a neural network with three inputs, a single hidden layer of four neurons, and an output layer of two neurons

Neural Network

Note: each neuron will have its own vector of weights and a bias, its easier to think of all neurons in a layer as a single entity with a matrix of weights (size = number of inputs x number of neurons) and a vector of biases (size = number of neurons)



Neural Network

Note: each neuron will have its own vector of weights and a bias, its easier to think of all neurons in a layer as a single entity with a matrix of weights (size = number of inputs x number of neurons) and a vector of biases (size = number of neurons)

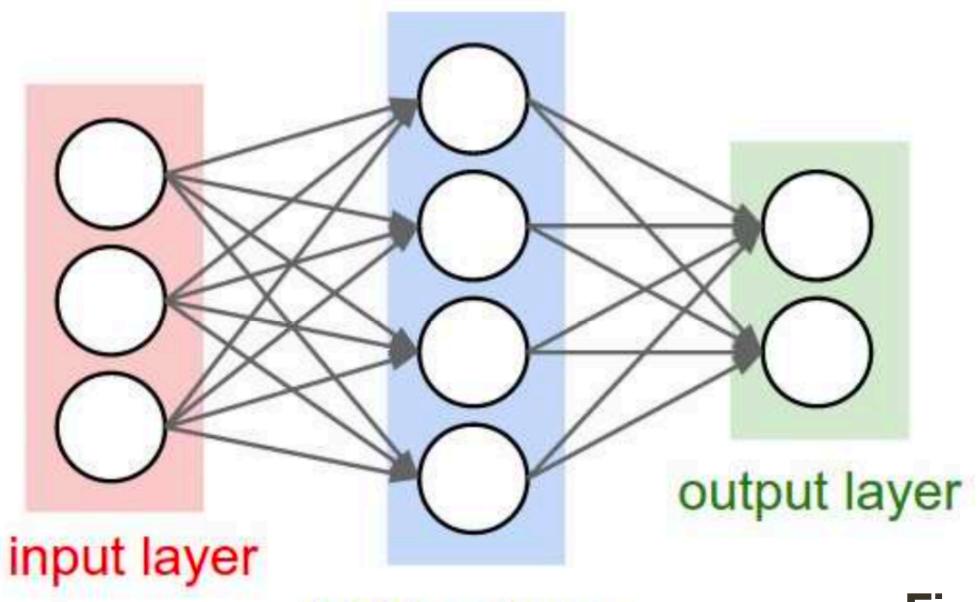
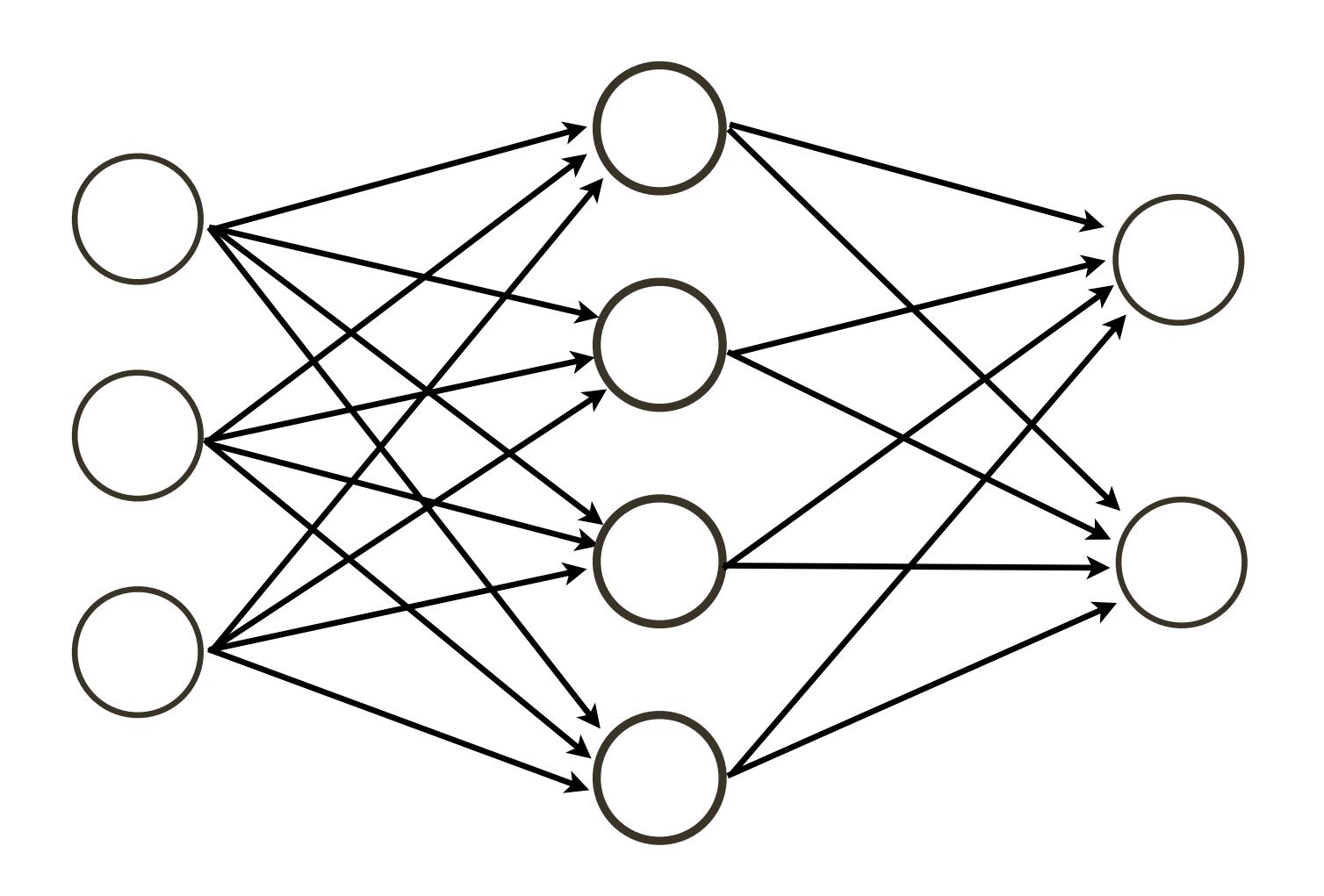


Figure credit: Fei-Fei and Karpathy

$$\mathbf{\hat{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$$

Why can't we have linear activation functions? Why have non-linear activations?



$$\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$$

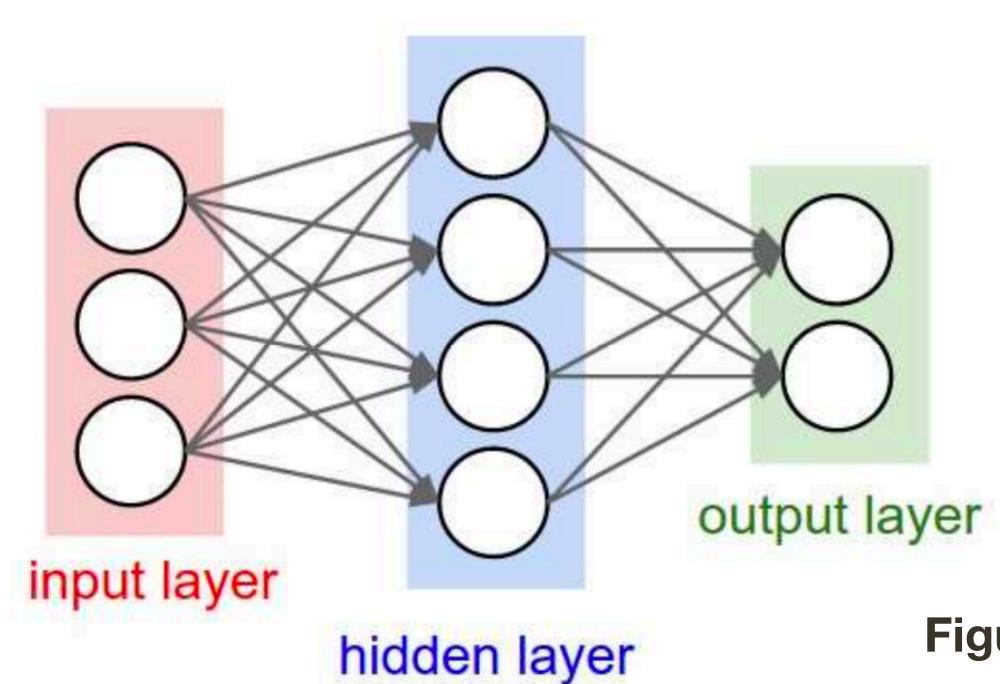


Figure credit: Fei-Fei and Karpathy

$$\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$$
$$= \mathbf{W}_2^{(2 \times 4)} \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)}$$

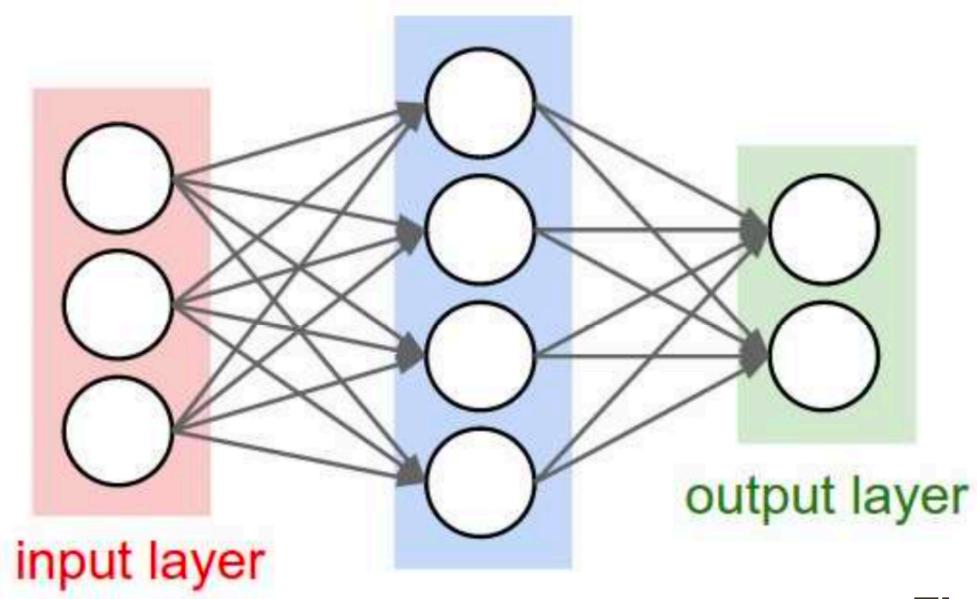


Figure credit: Fei-Fei and Karpathy

$$\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$$

$$= \mathbf{W}_2^{(2 \times 4)} \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)}$$

$$= \mathbf{W}_2^{(2 \times 4)} \mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{W}_2^{(2 \times 4)} \mathbf{b}_1^{(4)} + \mathbf{b}_2^{(2)}$$

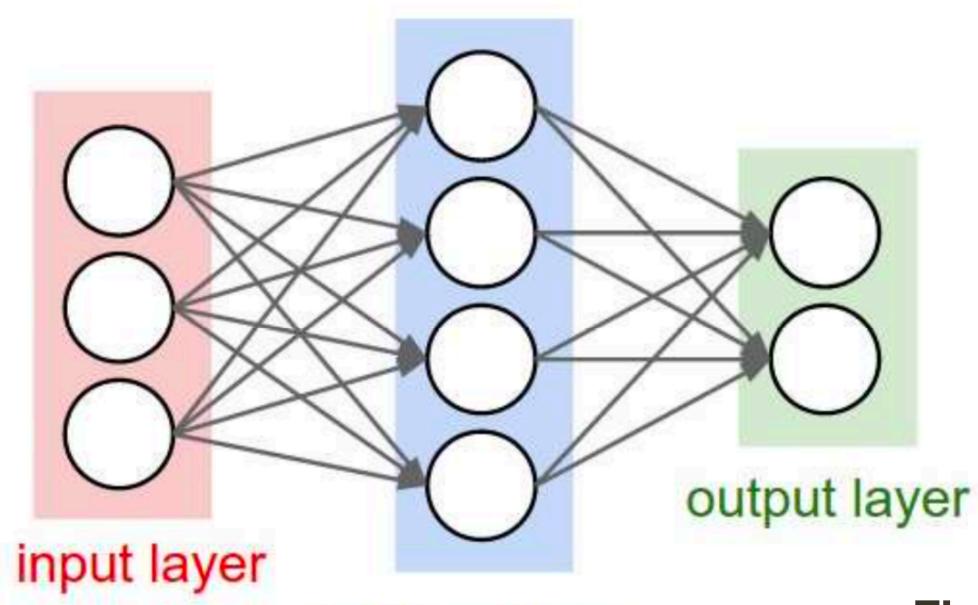


Figure credit: Fei-Fei and Karpathy

$$\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{b}_{1}, \mathbf{b}_{2}) = \sigma \left(\mathbf{W}_{2}^{(2 \times 4)} \sigma \left(\mathbf{W}_{1}^{(4 \times 3)} \mathbf{x} + \mathbf{b}_{1}^{(4)} \right) + \mathbf{b}_{2}^{(2)} \right) \\
= \mathbf{W}_{2}^{(2 \times 4)} \left(\mathbf{W}_{1}^{(4 \times 3)} \mathbf{x} + \mathbf{b}_{1}^{(4)} \right) + \mathbf{b}_{2}^{(2)} \\
= \mathbf{W}_{2}^{(2 \times 4)} \mathbf{W}_{1}^{(4 \times 3)} \mathbf{x} + \mathbf{W}_{2}^{(2 \times 4)} \mathbf{b}_{1}^{(4)} + \mathbf{b}_{2}^{(2)} \\
= \mathbf{W}_{2}^{(2 \times 3)} \mathbf{W}_{1}^{(4 \times 3)} \mathbf{x} + \mathbf{W}_{2}^{(2 \times 4)} \mathbf{b}_{1}^{(4)} + \mathbf{b}_{2}^{(2)}$$

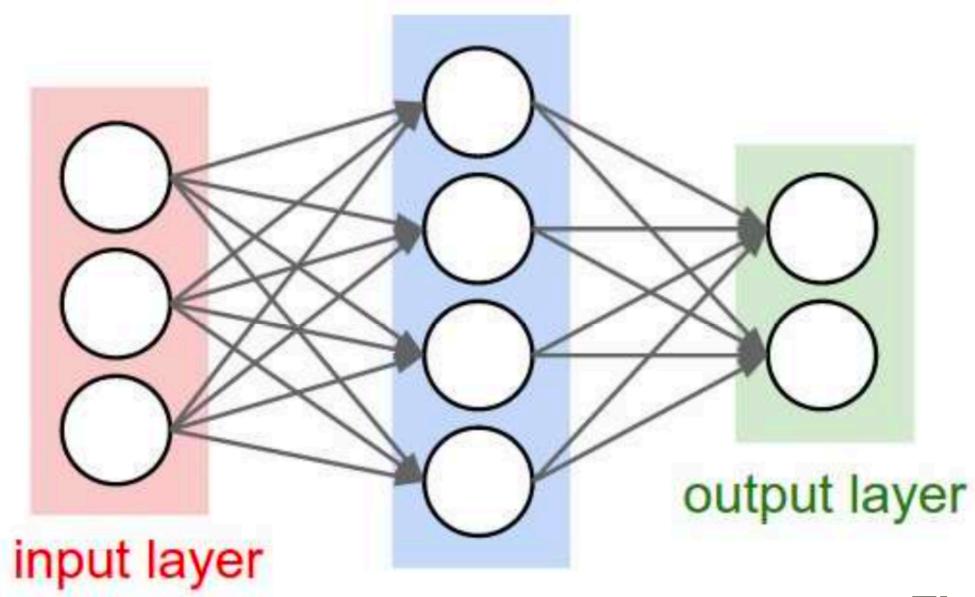


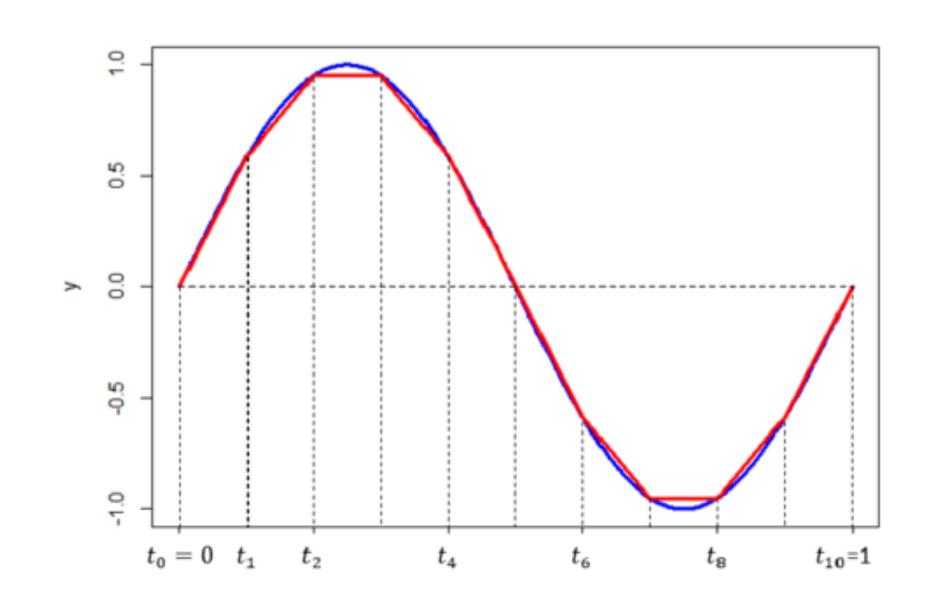
Figure credit: Fei-Fei and Karpathy

Non-linear activation is required to provably make the Neural Net a universal function approximator

Intuition: with ReLU activation, we effectively get a linear spline approximation to any function.

Optimization of neural net parameters = finding slops and transitions of linear pieces

The quality of approximation depends on the number of linear segments



Number of linear segments for large input dimension: $\Omega(2^{\frac{2}{3}Ln})$

Light Theory: Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate any continuous function with compact support to arbitrary accuracy, when the width goes to infinity.

[Hornik et al., 1989]

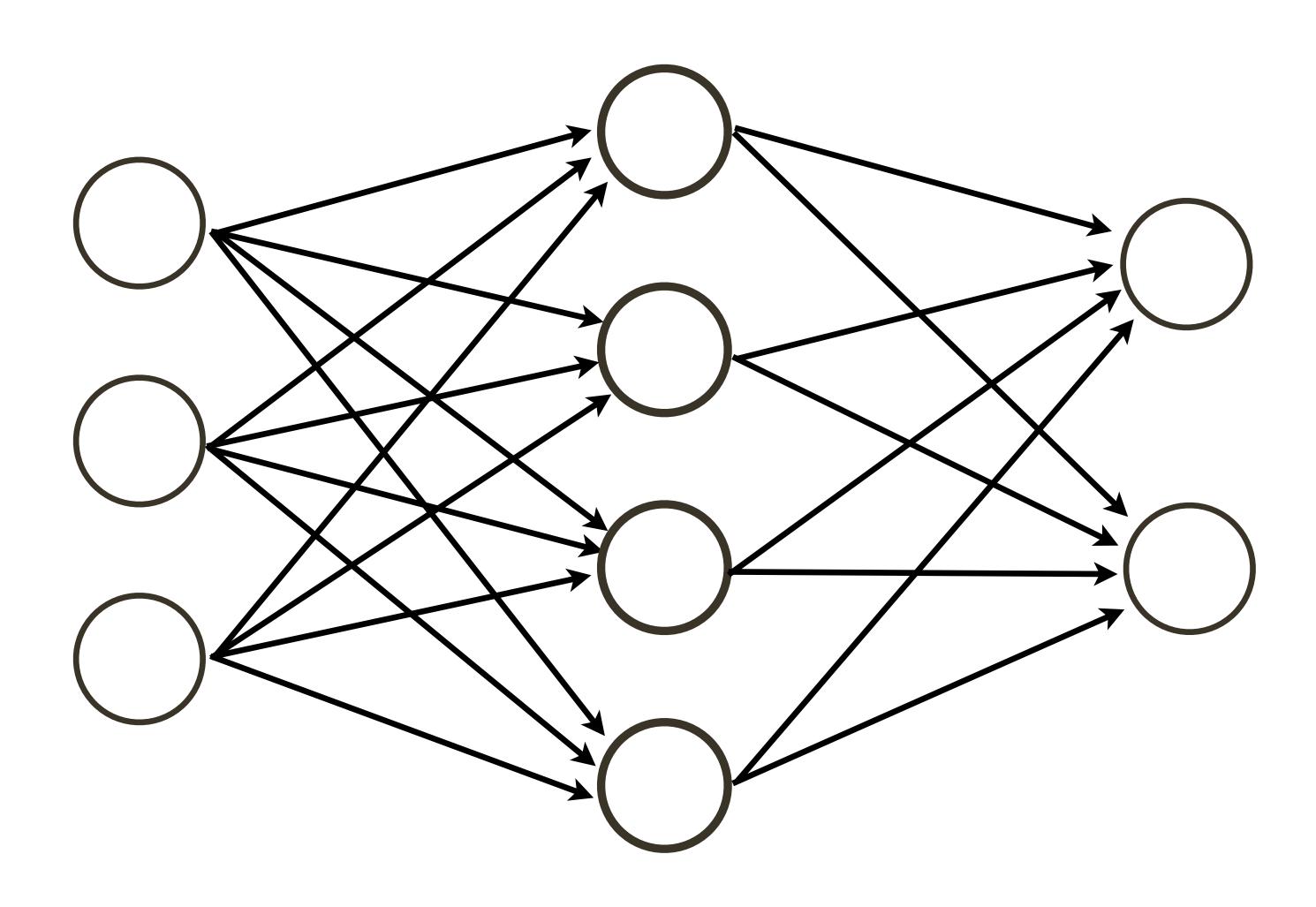
Universal Approximation Theorem (revised): A network of infinite depth with a hidden layer of size d+1 neurons, where d is the dimension of the input space, can approximate any continuous function.

[Lu et al., NIPS 2017]

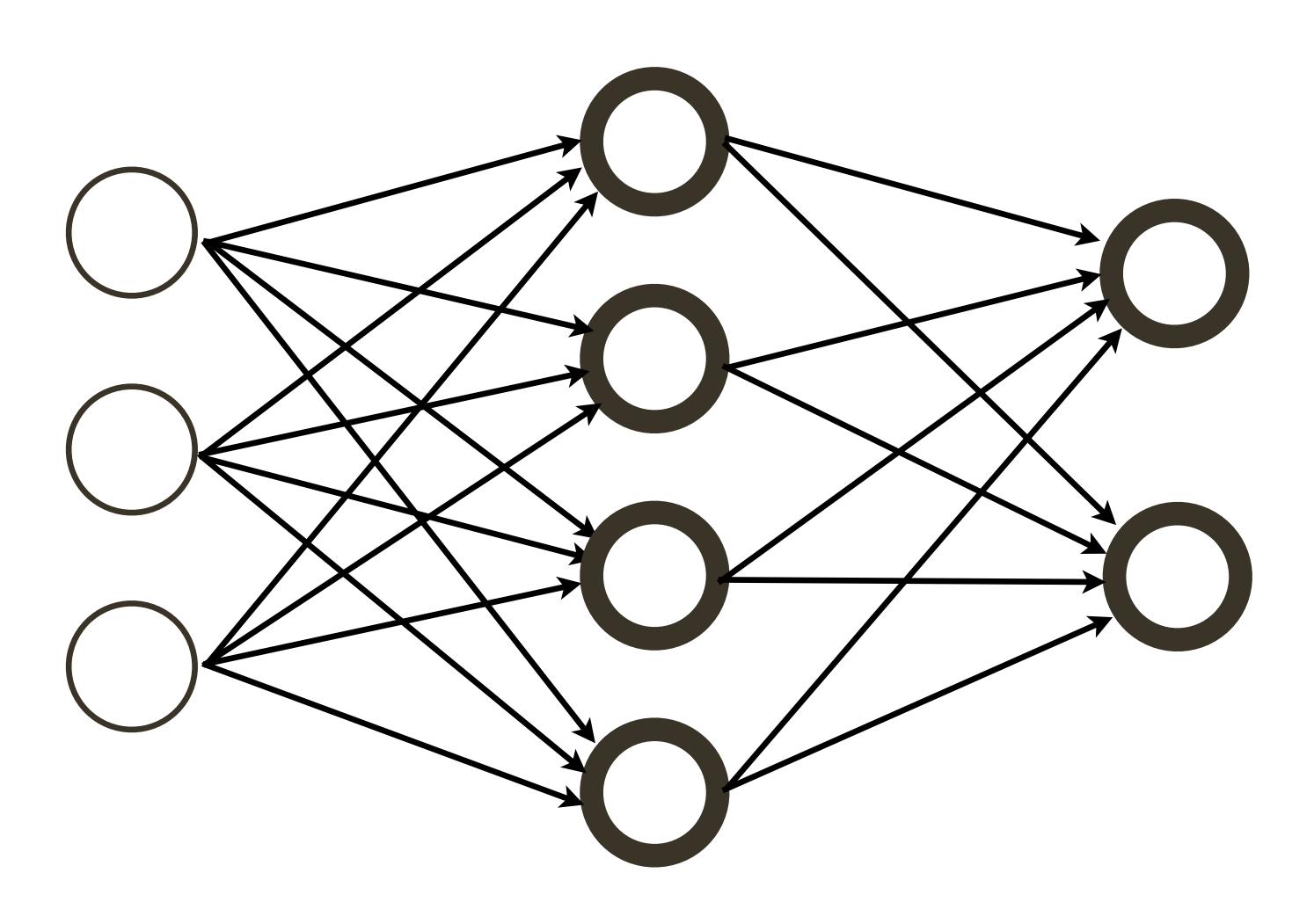
Universal Approximation Theorem (further revised): ResNet with a single hidden unit and infinite depth can approximate any continuous function.

[Lin and Jegelka, NIPS 2018]

How many neurons?



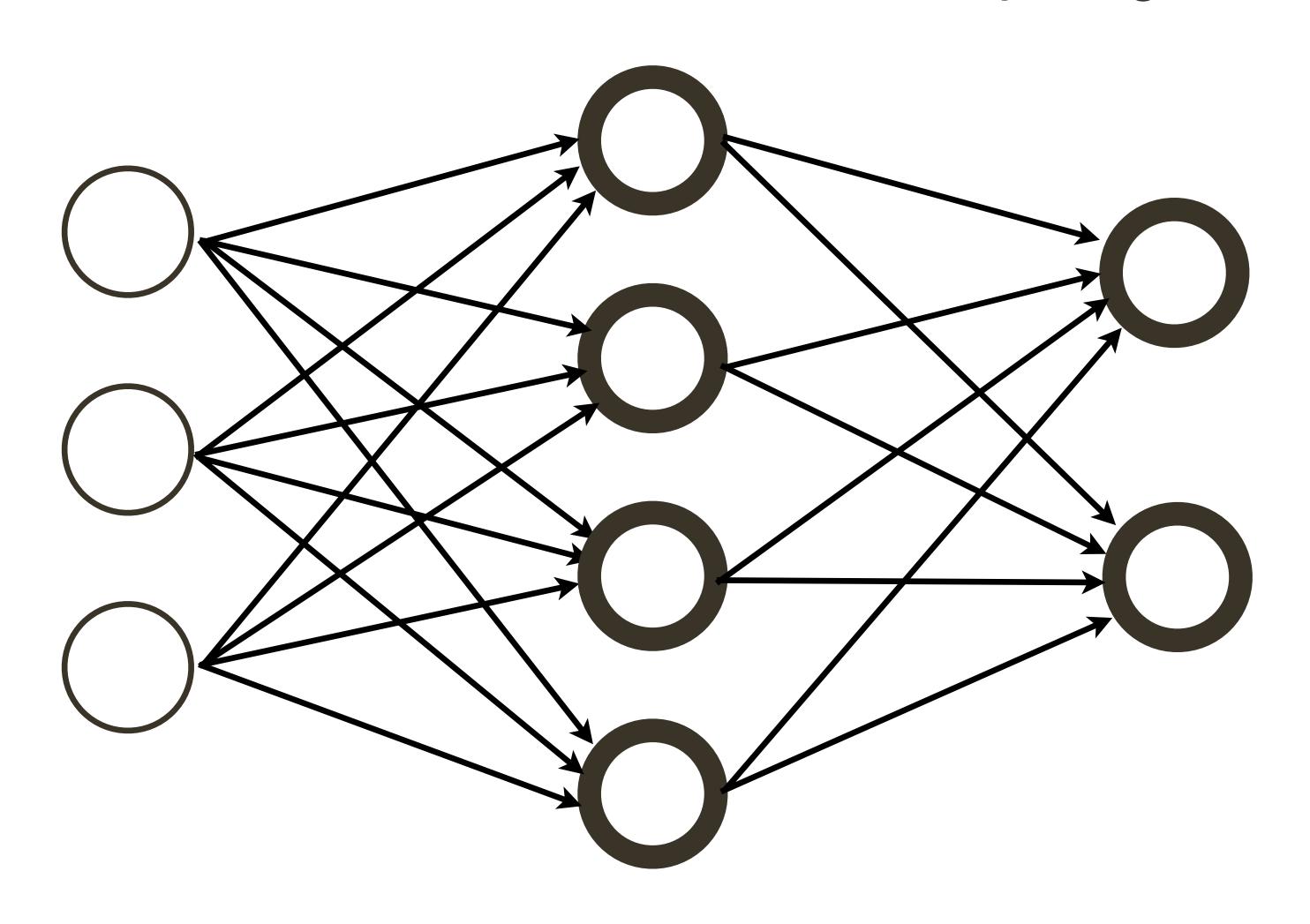
How many neurons? 4+2=6



How many neurons? 4+2=6

$$4+2 = 6$$

How many weights?



How many neurons? 4+2=6

$$4+2 = 6$$

How many weights?

$$(3 \times 4) + (4 \times 2) = 20$$

How many neurons? 4+2=6

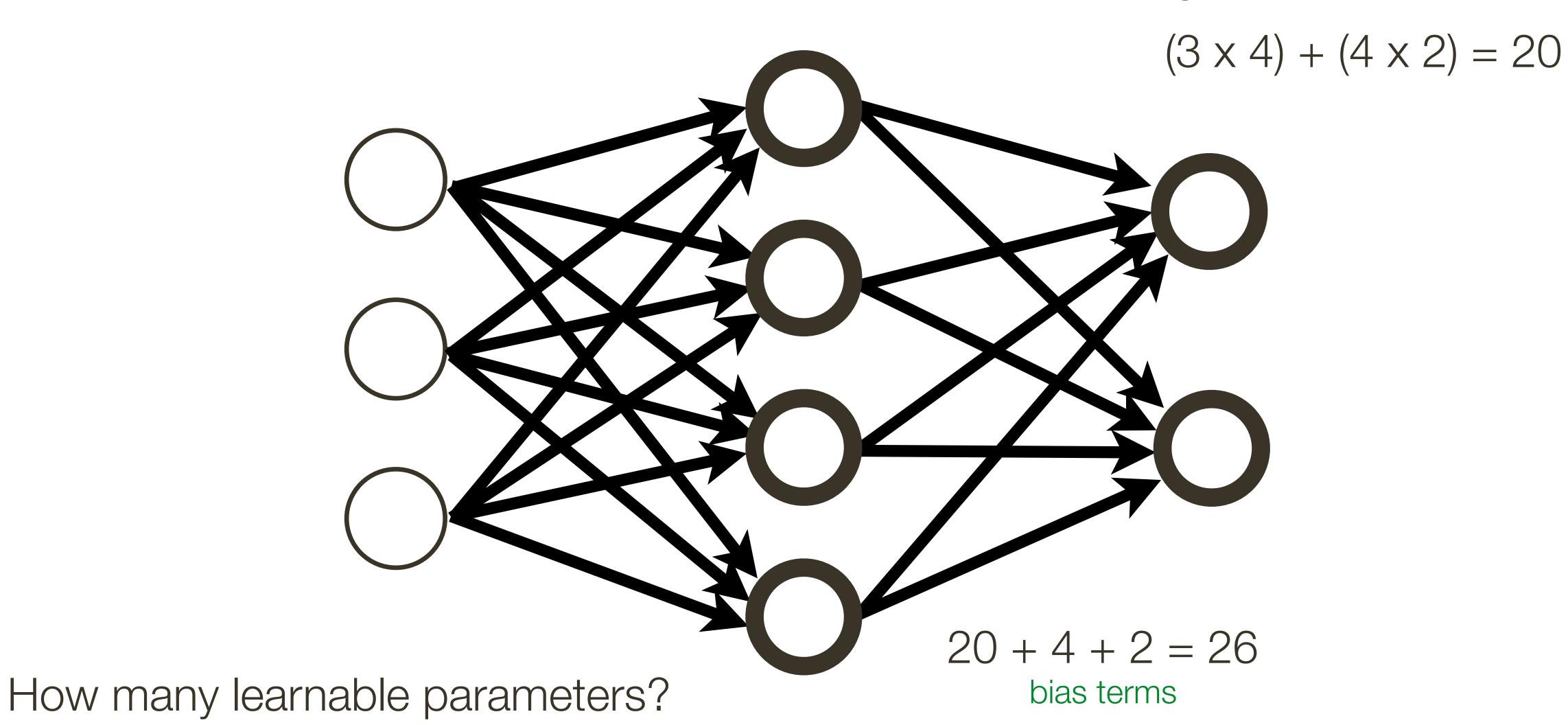
How many weights?

$$(3 \times 4) + (4 \times 2) = 20$$

How many learnable parameters?

How many neurons? 4+2=6

How many weights?



Modern **convolutional neural networks** contain 10-20 layers and on the order of 100 million parameters

Training a neural network requires estimating a large number of parameters

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

$$f$$
 $c_1 = -2.85$
 $c_2 = 0.86$
 $c_3 = 0.28$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

$$c_1 = -2.85$$
 $c_2 = 0.86$
 $c_3 = 0.28$
 $c_{10} = -2.85$
 $c_{20} = 0.058$
 $c_{20} = 0.28$
 $c_{20} = 0.28$
 $c_{20} = 0.28$
 $c_{20} = 0.28$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

$$c_1 = -2.85$$

$$c_2 = 0.86$$

$$c_3 = 0.28$$

$$c_{10} = -2.85$$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

$$c_1 = -2.85$$

$$c_2 = 0.86$$

$$c_3 = 0.28$$

$$c_{10} = 0.28$$

$$c_{10} = 0.058$$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

softmax function multi-class classifier

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

$$c_1 = -2.85$$

$$c_2 = 0.86$$

$$c_3 = 0.28$$

$$c_{10} = 0.28$$

$$c_{10} = 0.058$$

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:
$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

$$c_1 = -2.85$$

$$c_2 = 0.86$$

$$c_3 = 0.28$$

$$c_1 = -2.85$$

$$0.058$$

$$0.058$$

$$0.016$$

$$0.016$$

$$0.0353$$

$$0.353$$

$$0.353$$

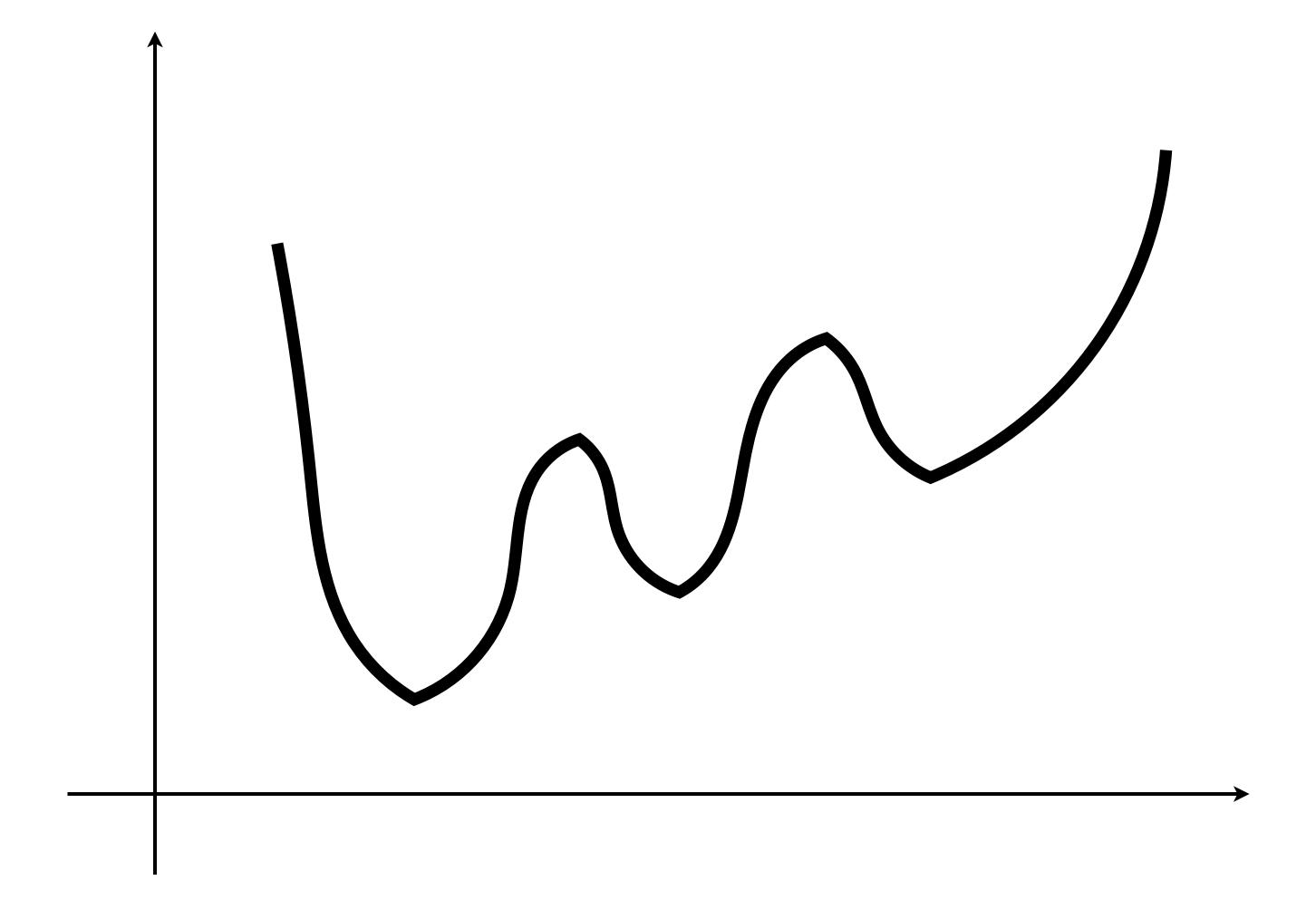
Normalize to one of the content of the cont

When training a neural network, the final output will be some loss (error) function

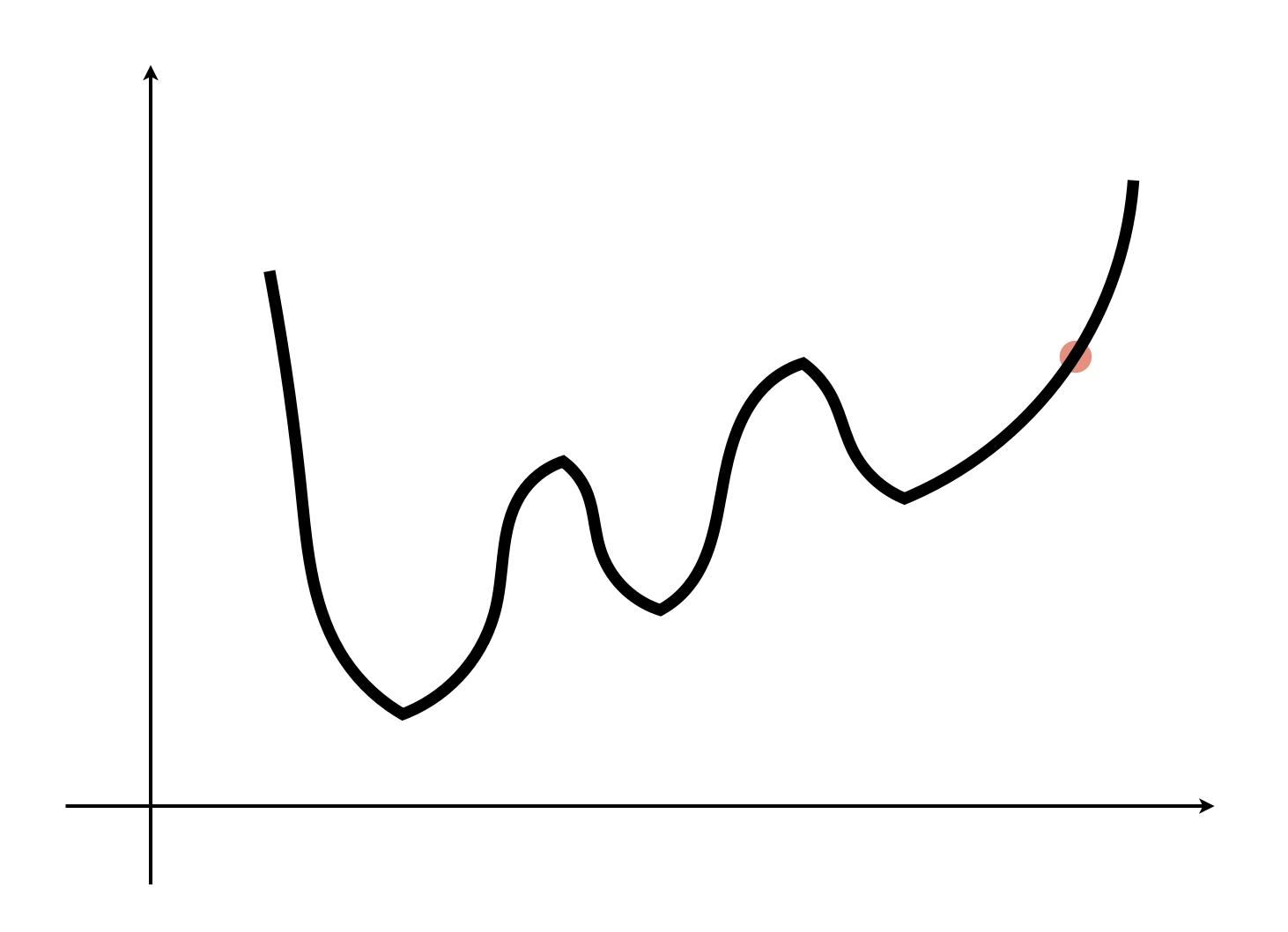
- e.g. cross-entropy loss:
$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$

which defines loss for i-th training example with true class index y_i ; and f_j is the j-th element of the vector of class scores coming from neural net.

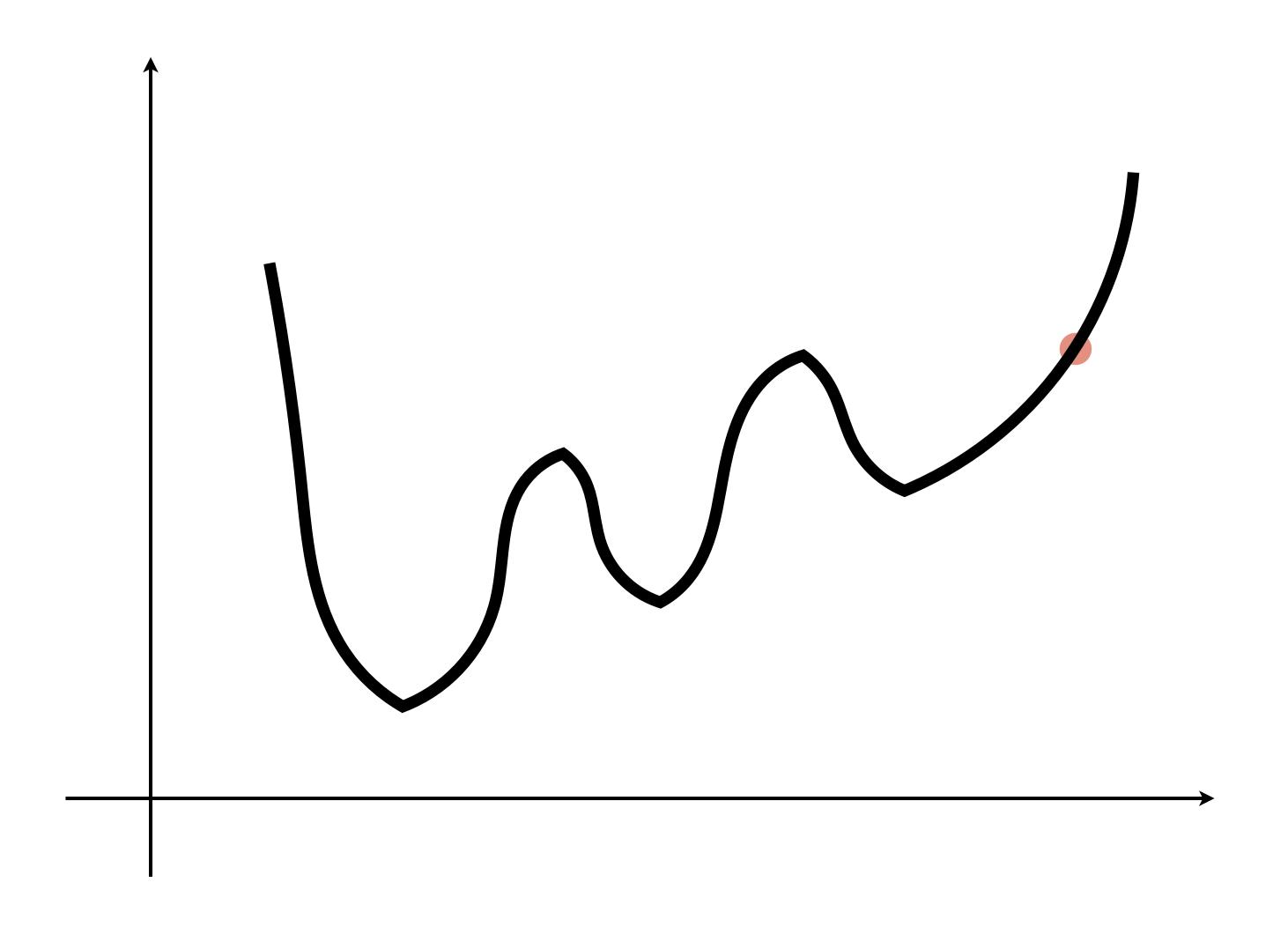
We want to compute the **gradient** of the loss with respect to the network parameters so that we can incrementally adjust the network parameters



1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$



1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

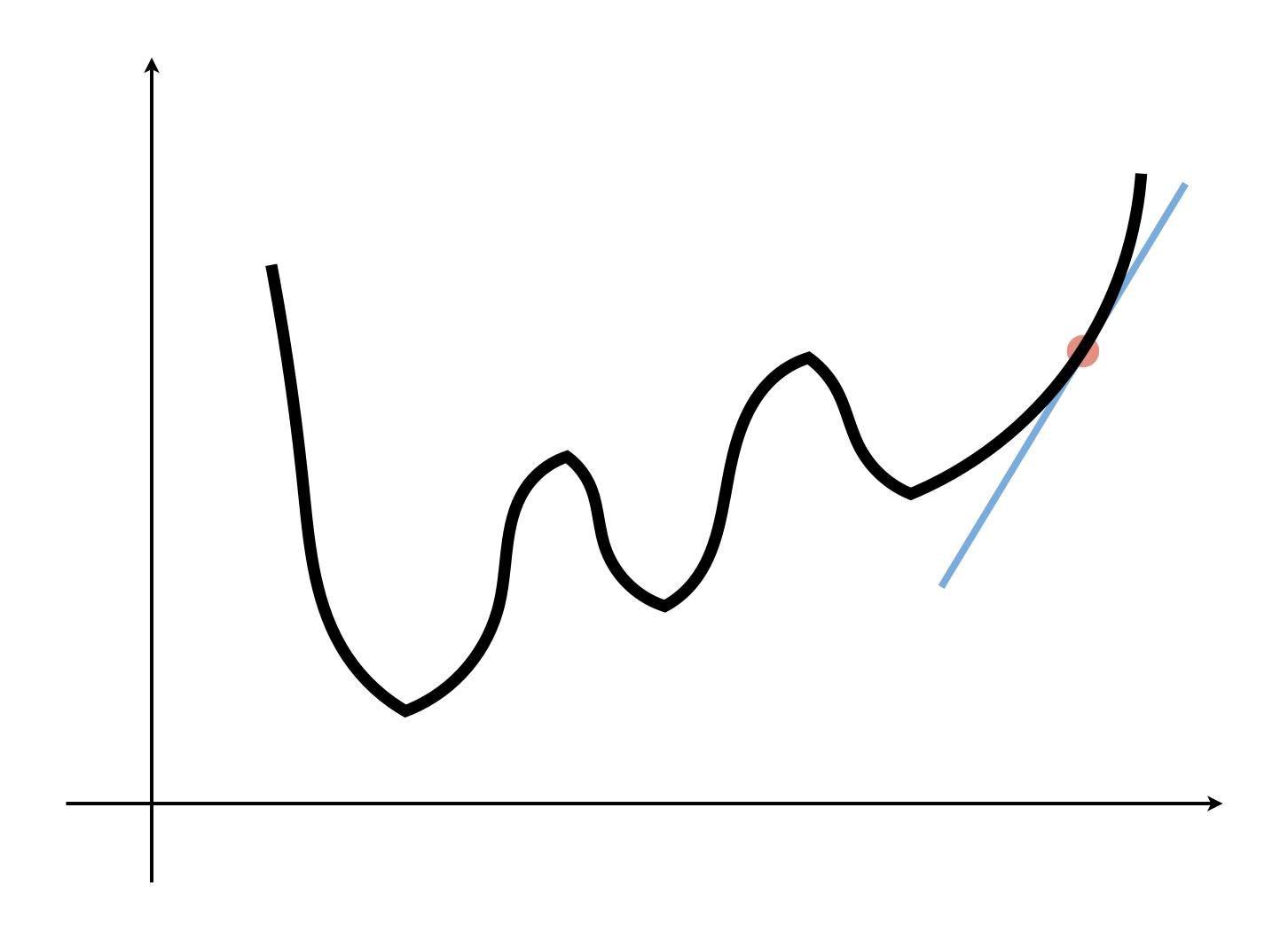


1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k=0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\left.
abla \left. \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

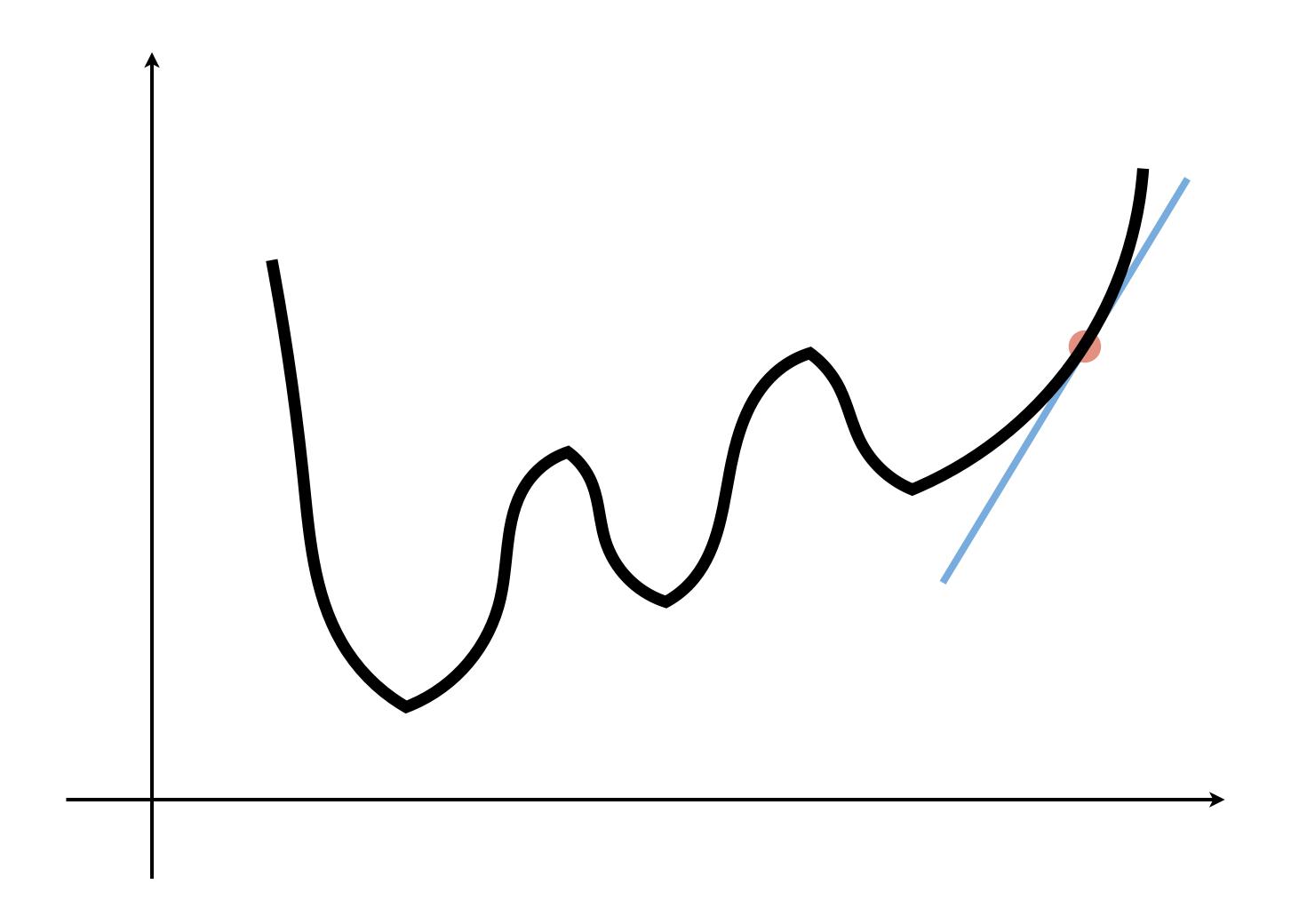


1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k=0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\left.
abla \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$



1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k=0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

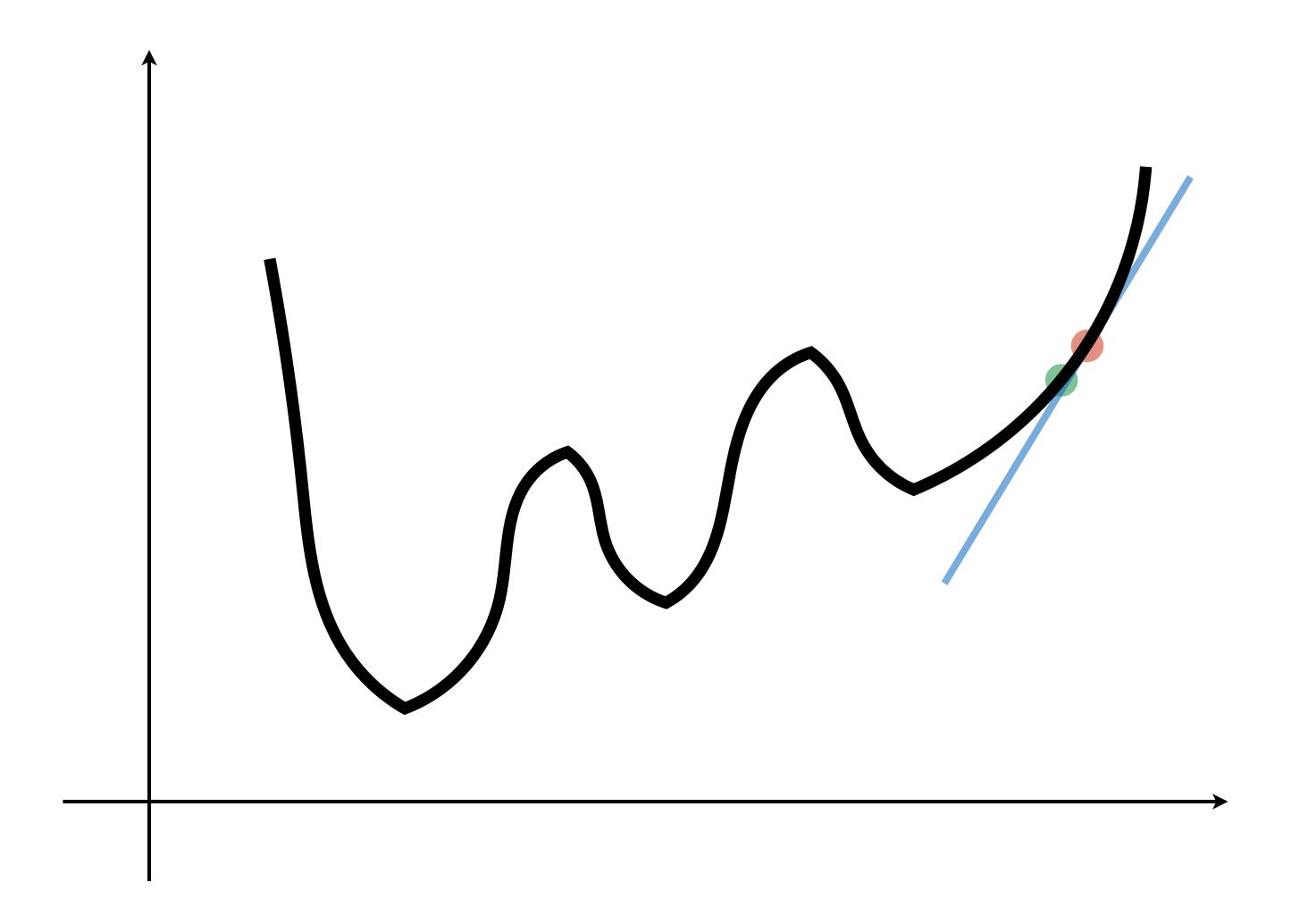
$$\left.
abla \, \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

3. Re-estimate the parameters

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{b}_{k+1} = \mathbf{b}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

Gradient Descent



1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k=0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

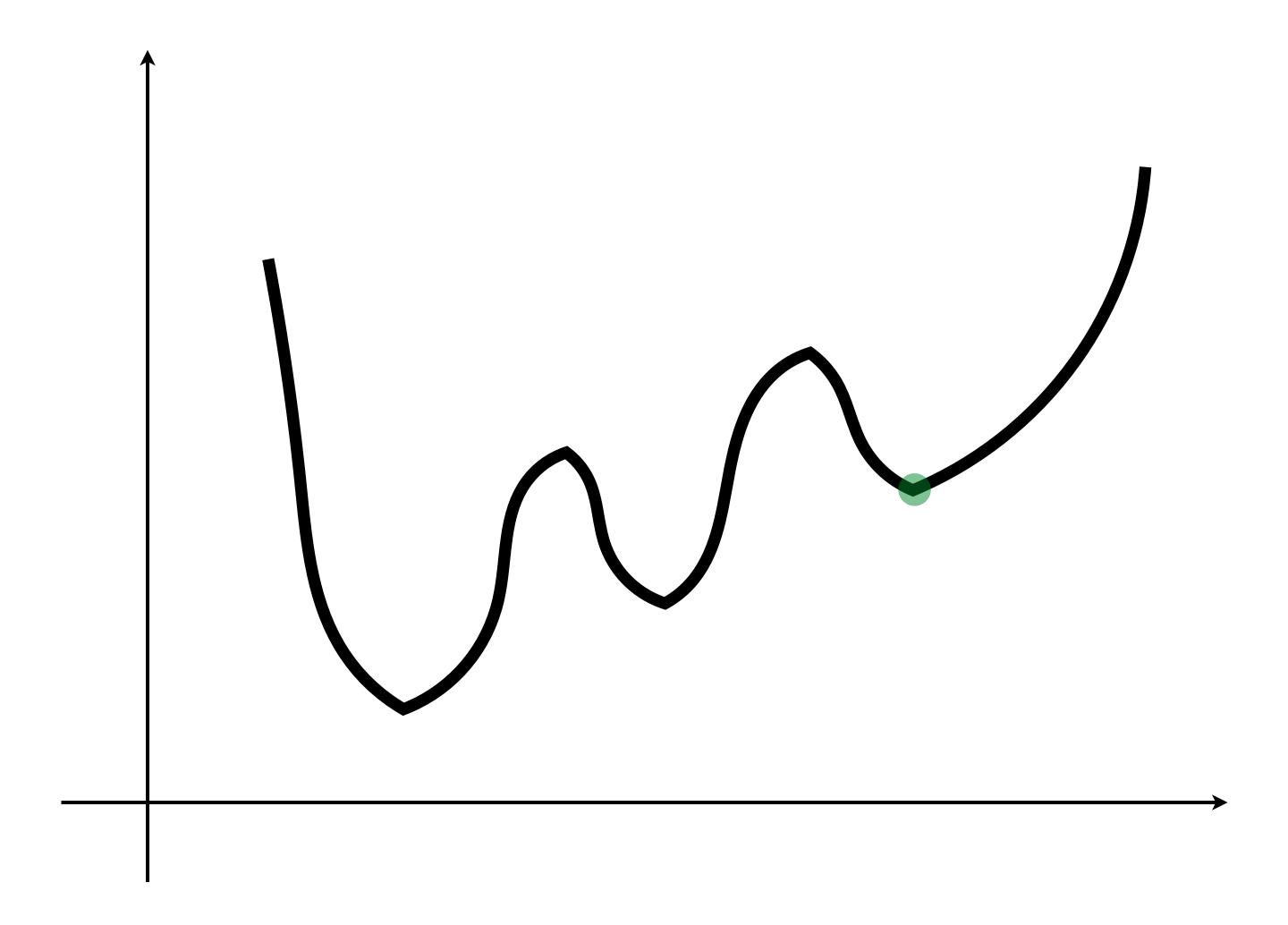
$$\left.
abla \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

3. Re-estimate the parameters

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{b}_{k+1} = \mathbf{b}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

Gradient Descent



1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k=0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

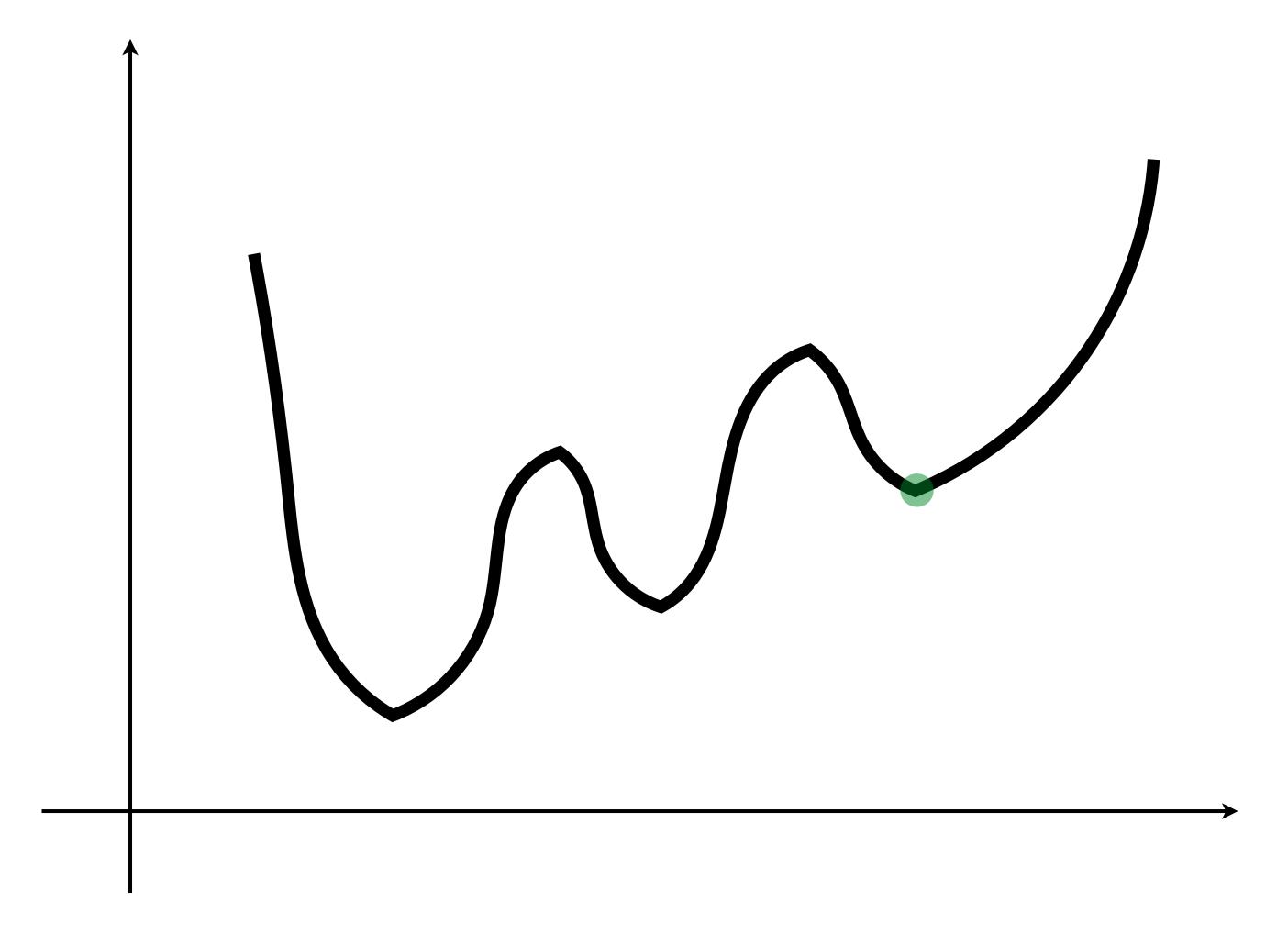
$$\left.
abla \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

3. Re-estimate the parameters

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{b}_{k+1} = \mathbf{b}_k - \lambda \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

Gradient Descent



 λ - is the learning rate

1. Start from random value of $\mathbf{W}_0, \mathbf{b}_0$

For k = 0 to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\nabla \left. \mathcal{L}(\mathbf{W}, \mathbf{b}) \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

3. Re-estimate the parameters

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \underline{\lambda} \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

$$\mathbf{b}_{k+1} = \mathbf{b}_k - \underline{\lambda} \left. \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{b}} \right|_{\mathbf{W} = \mathbf{W}_k, \mathbf{b} = \mathbf{b}_k}$$

Re-cap

Neural Network

Loss:

$$\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = ||\mathbf{y} - \hat{\mathbf{y}}|| = ||\mathbf{y} - f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2)||$$

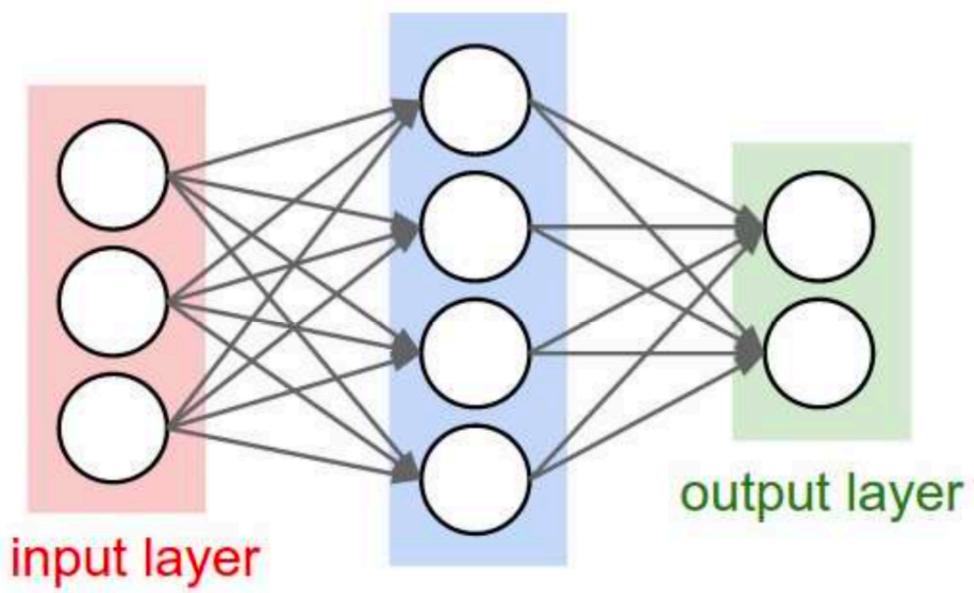


Figure credit: Fei-Fei and Karpathy

$$\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$$

hidden layer

Re-cap

Neural Network

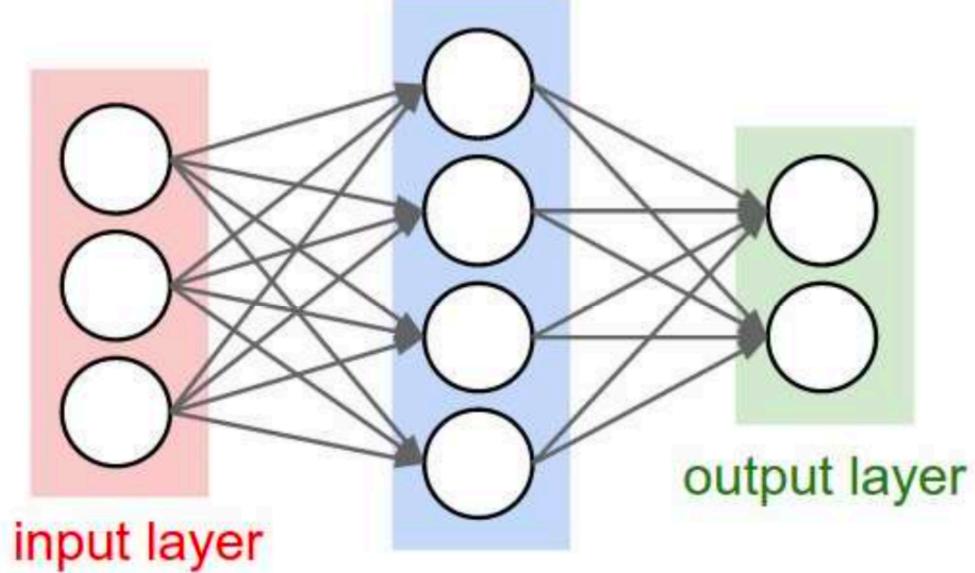
Loss:

$$\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = ||\mathbf{y} - \hat{\mathbf{y}}|| = ||\mathbf{y} - f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2)||$$

Gradient Descent

$$\mathbf{W}_{1,i,j} = \mathbf{W}_{1,i,j} - \lambda \frac{\partial \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})}{\partial \mathbf{W}_{1,i,j}}$$

$$\mathbf{b}_{1,i} = \mathbf{b}_{1,i} - \lambda \frac{\partial \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})}{\partial \mathbf{b}_{1,i}}$$



hidden layer

Figure credit: Fei-Fei and Karpathy

$$\hat{\mathbf{y}} = f(\mathbf{x}, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = \sigma \left(\mathbf{W}_2^{(2 \times 4)} \sigma \left(\mathbf{W}_1^{(4 \times 3)} \mathbf{x} + \mathbf{b}_1^{(4)} \right) + \mathbf{b}_2^{(2)} \right)$$

The parameters of a neural network are learned using **backpropagation**, which computes gradients via recursive application of the **chain rule** from calculus

The parameters of a neural network are learned using **backpropagation**, which computes gradients via recursive application of the **chain rule** from calculus

Suppose f(x,y)=xy. What is the partial derivative of f with respect to x? What is the partial derivative of f with respect to y?

The parameters of a neural network are learned using **backpropagation**, which computes gradients via recursive application of the **chain rule** from calculus

Suppose f(x,y)=xy. What is the partial derivative of f with respect to x? What is the partial derivative of f with respect to y?

$$\frac{\partial f}{\partial x} = y$$

$$\frac{\partial f}{\partial y} = x$$

Suppose f(x,y) = x + y. What is the partial derivative of f with respect to x? What is the partial derivative of f with respect to y?

Suppose f(x,y) = x + y. What is the partial derivative of f with respect to x? What is the partial derivative of f with respect to y?

$$\frac{\partial f}{\partial x} = 1$$

$$\frac{\partial f}{\partial y} = 1$$

A trickier example: $f(x,y) = \max(x,y)$

A trickier example: $f(x,y) = \max(x,y)$

$$\frac{\partial f}{\partial x} = \mathbf{1}(x \ge y) \qquad \qquad \frac{\partial f}{\partial y} = \mathbf{1}(y \ge x)$$

That is, the (sub)gradient is 1 on the input that is larger, and 0 on the other input

— For example, say x = 4, y = 2. Increasing y by a tiny amount does not change the value of f (f will still be 4), hence the gradient on y is zero.

We can compose more complicated functions and compute their gradients by applying the **chain rule** from calculus

We can compose more complicated functions and compute their gradients by applying the **chain rule** from calculus

Suppose f(x, y, z) = (x + y)z. What are the partial derivatives of f with respect to x? y? z?

We can compose more complicated functions and compute their gradients by applying the **chain rule** from calculus

Suppose f(x, y, z) = (x + y)z. What are the partial derivatives of f with respect to x? y? z?

For illustration we break this expression into q = x + y and f = qz. This is a sum and a product, and we have just seen how to compute partial derivatives for these.

We can compose more complicated functions and compute their gradients by applying the **chain rule** from calculus

Suppose f(x, y, z) = (x + y)z. What are the partial derivatives of f with respect to x? y? z?

For illustration we break this expression into q = x + y and f = qz. This is a sum and a product, and we have just seen how to compute partial derivatives for these.

By the chain rule

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = z \cdot 1 = z$$

We can compose more complicated functions and compute their gradients by applying the **chain rule** from calculus

Suppose f(x, y, z) = (x + y)z. What are the partial derivatives of f with respect to x? y? z?

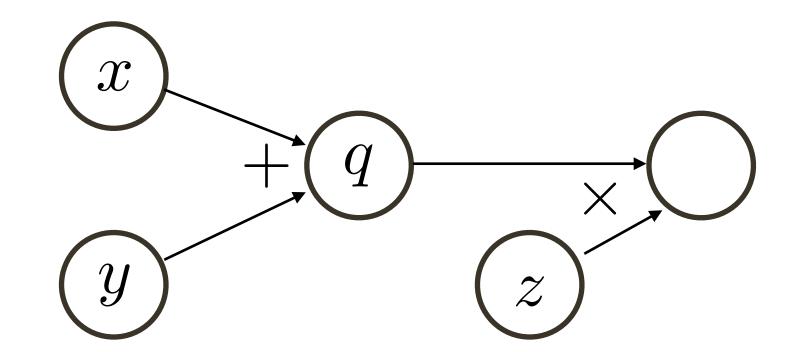
For illustration we break this expression into q = x + y and f = qz. This is a sum and a product, and we have just seen how to compute partial derivatives for these.

By the chain rule

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = z \cdot 1 = z \qquad \qquad \frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y} = z \cdot 1 = z \qquad \qquad \frac{\partial f}{\partial z} = q$$

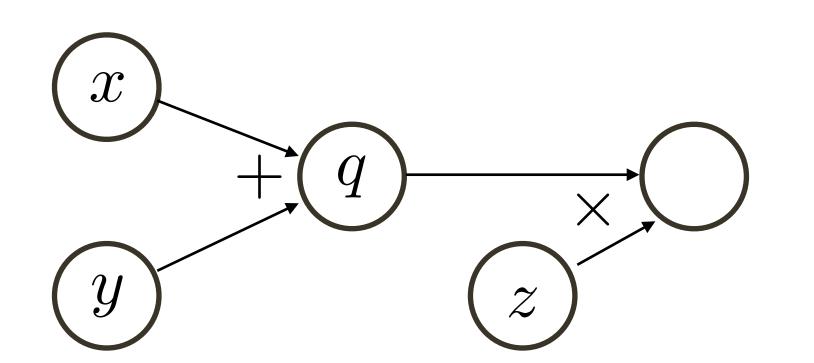
$$f(x, y, z) = (x + y)z$$

$$f(x, y, z) = (x + y)z$$



Computational graph (a DAG) with variable ordering from topological sort, where each **node** is an input, intermediate, or output variable

$$f(x, y, z) = (x + y)z$$



Computational graph (a DAG) with variable ordering from topological sort, where each **node** is an input, intermediate, or output variable

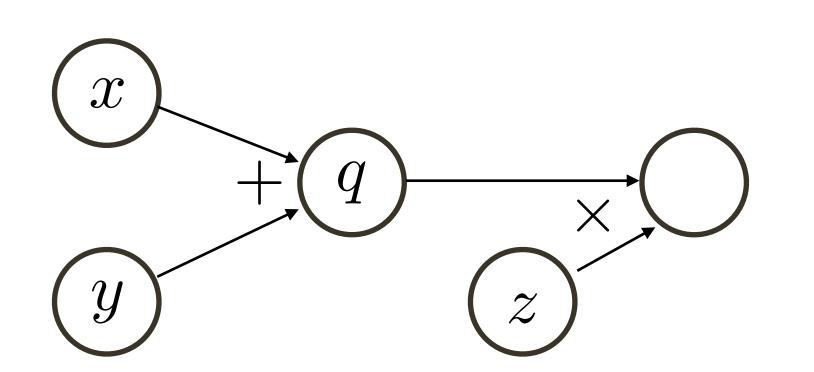
Suppose the network input is: (x, y, z) = (-2, 5, -4)

Then:
$$q = x + y = 3$$
 $f = qz = -12$

$$f = qz = -12$$

(forward pass)

$$f(x, y, z) = (x + y)z$$



Suppose the network input is: (x, y, z) = (-2, 5, -4)

Then:
$$q = x + y = 3$$
 $f = qz = -12$

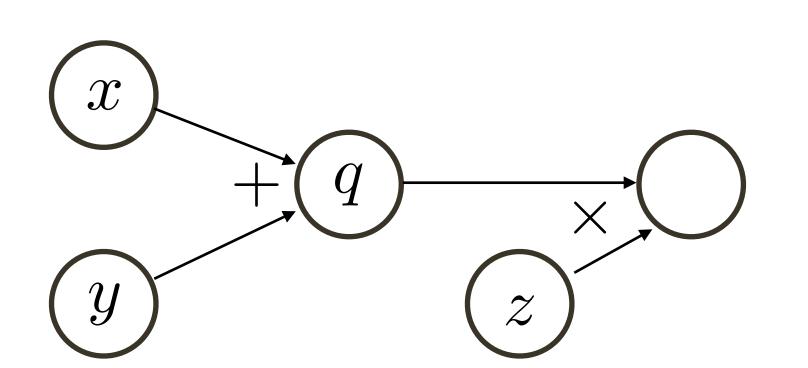
$$f = qz = -12$$

(forward pass)

$$\frac{\partial f}{\partial q} = z = -4$$

(backward pass)

$$f(x, y, z) = (x + y)z$$



$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = \frac{\partial f}{\partial q} \cdot 1$$

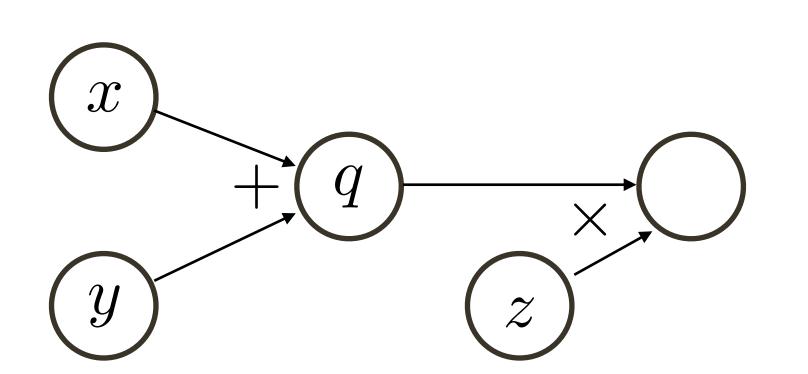
Suppose the network input is: (x, y, z) = (-2, 5, -4)

Then:
$$q = x + y = 3$$
 $f = qz = -12$ (forward pass)

$$\frac{\partial f}{\partial q} = z = -4$$

(backward pass)

$$f(x, y, z) = (x + y)z$$



$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = \frac{\partial f}{\partial q} \cdot 1$$

Suppose the network input is: (x, y, z) = (-2, 5, -4)

Then:
$$q = x + y = 3$$
 $f = qz = -12$

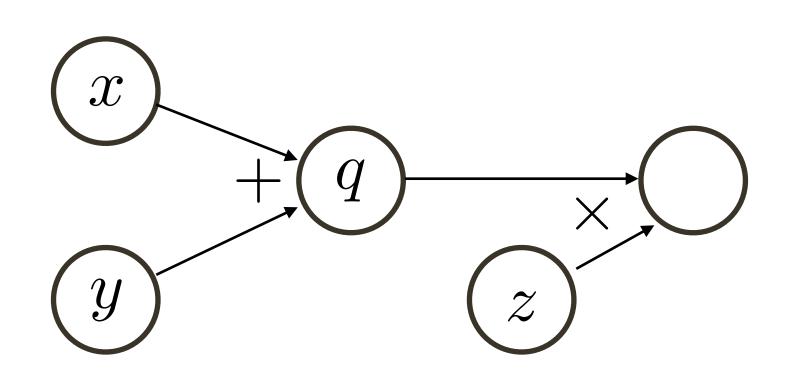
$$f = qz = -12$$

(forward pass)

$$\frac{\partial f}{\partial q} = z = -4 \qquad \frac{\partial f}{\partial x} = -$$

(backward pass)

$$f(x, y, z) = (x + y)z$$



$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = \frac{\partial f}{\partial q} \cdot 1 \qquad \qquad \frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y} = \frac{\partial f}{\partial q} \cdot 1 \qquad \qquad \frac{\partial f}{\partial z} = q$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y} = \frac{\partial f}{\partial q} \cdot 1$$

$$\frac{\partial f}{\partial z} = q$$

Suppose the network input is: (x, y, z) = (-2, 5, -4)

Then:
$$q = x + y = 3$$
 $f = qz = -12$ (forward pass)

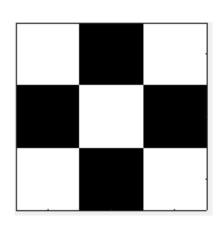
$$f = qz = -12$$

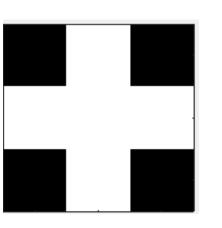
$$\frac{\partial f}{\partial q} = z = -4$$
 $\frac{\partial f}{\partial x} = -4$ $\frac{\partial f}{\partial y} = -4$ $\frac{\partial f}{\partial z} = 3$ (backward pass)

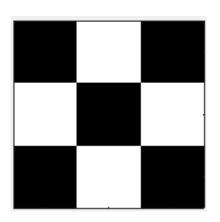
$$\frac{\partial f}{\partial x} = -4$$

$$\frac{\partial f}{\partial y} = -4$$

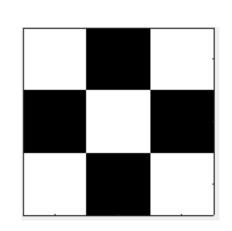
$$\frac{\partial f}{\partial z} = 3$$

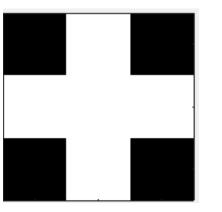


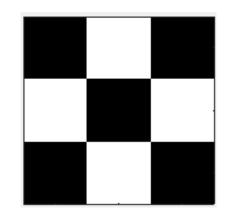




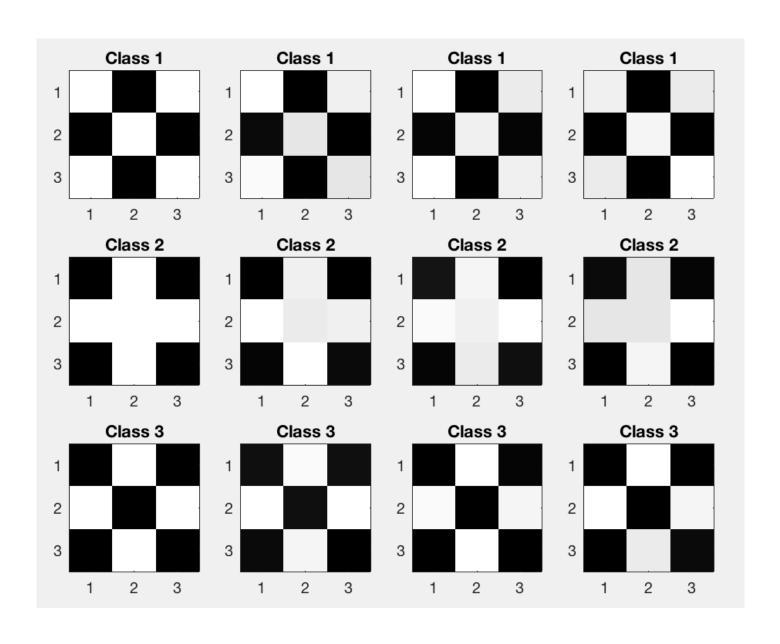
Lets create a neural network that will be able to differentiate (classify) these patterns of simple 3x3 pixel images

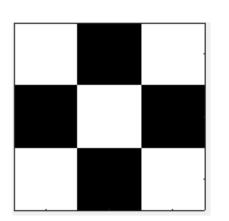


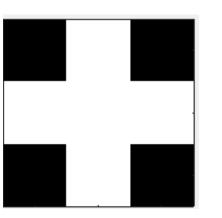


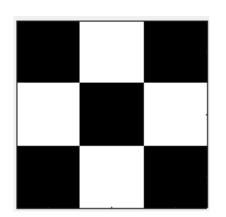


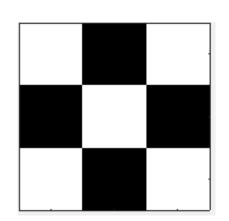
We will need some labeled data

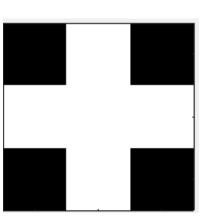


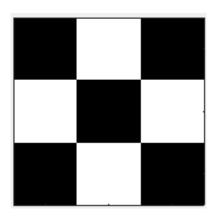


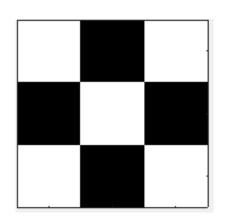


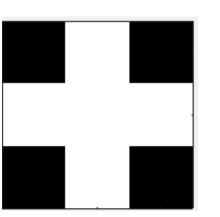


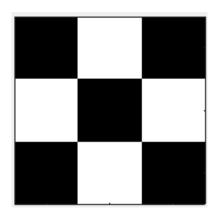


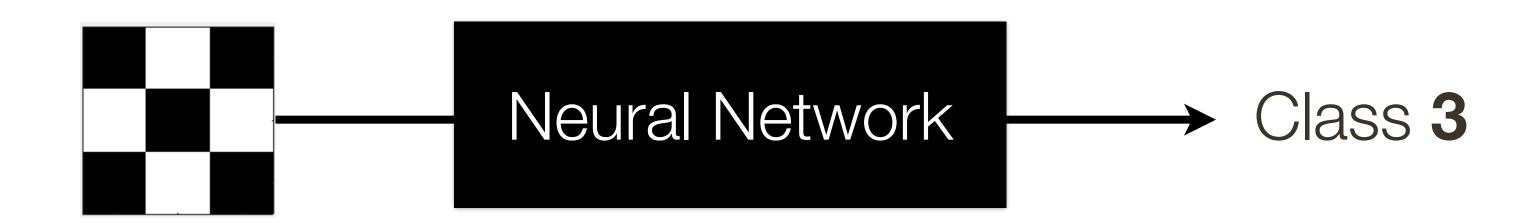




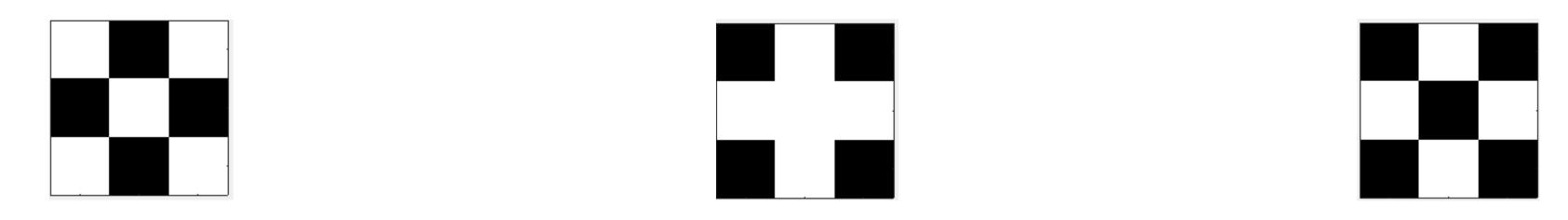




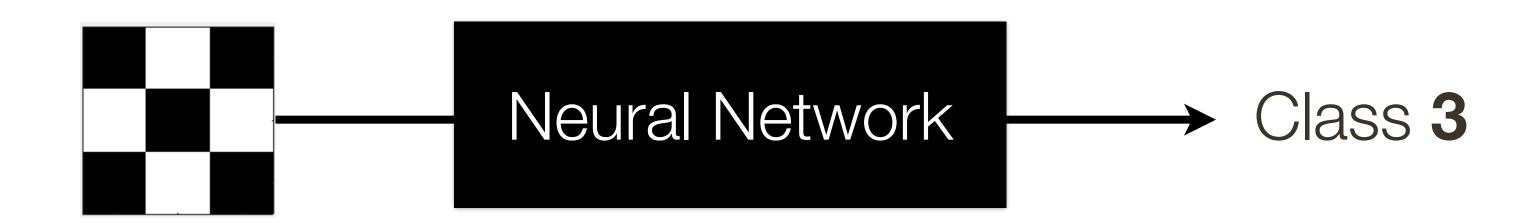




Lets create a neural network that will be able to differentiate (classify) these patterns of simple 3x3 pixel images

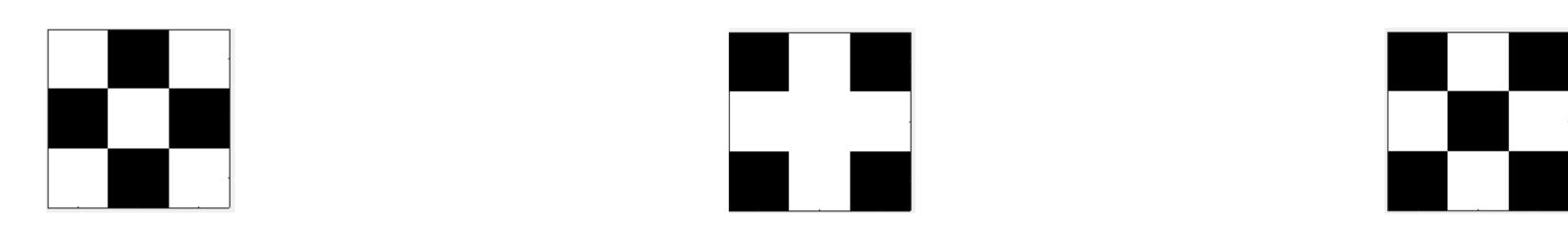


What do we need to do?

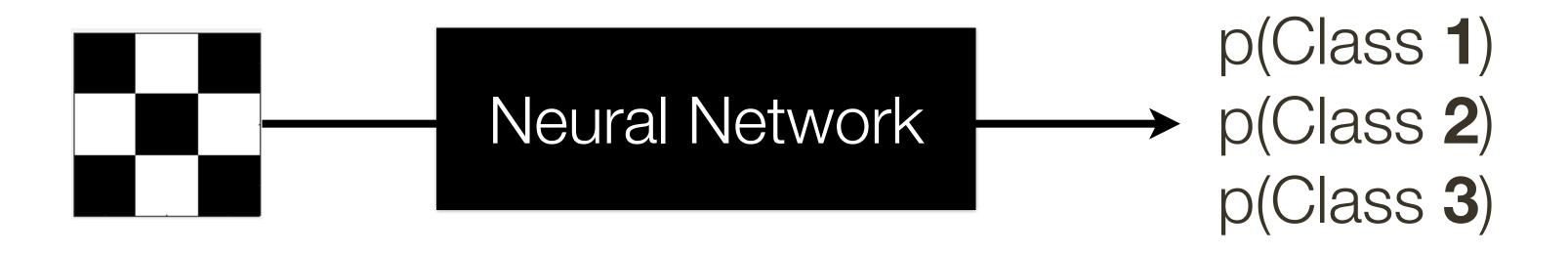


First, lets re-formulate the problem

Lets create a neural network that will be able to differentiate (classify) these patterns of simple 3x3 pixel images

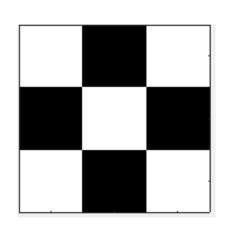


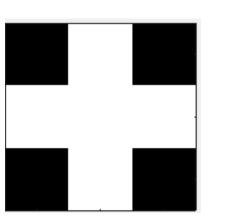
What do we need to do?

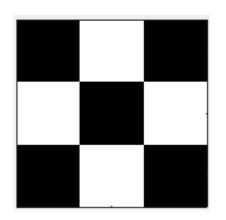


First, lets re-formulate the problem

Lets create a neural network that will be able to differentiate (classify) these patterns of simple 3x3 pixel images



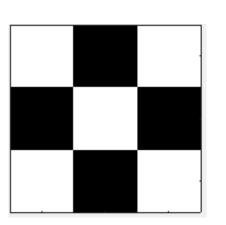


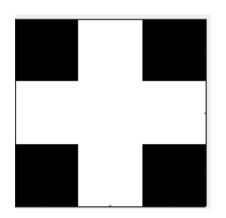


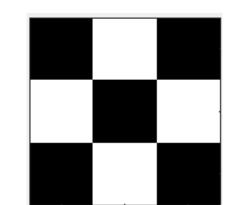
Now, lets build a **network!**

How many inputs should the network have? How neuron outputs?

Lets create a neural network that will be able to differentiate (classify) these patterns of simple 3x3 pixel images

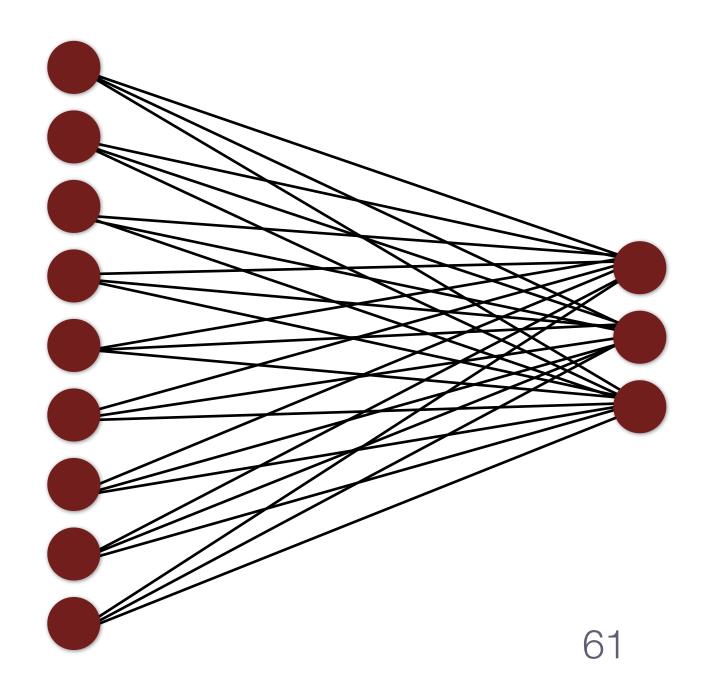




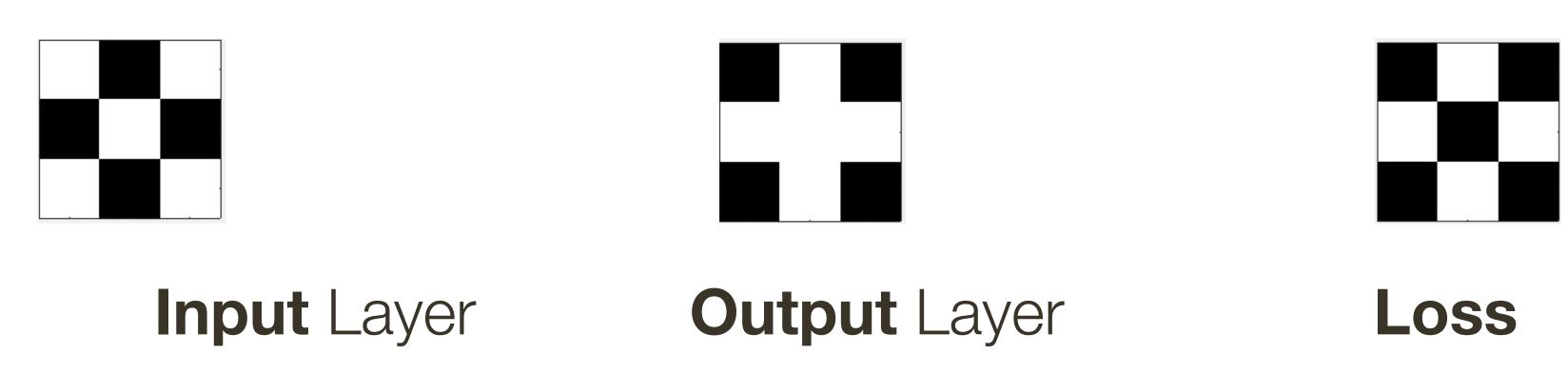


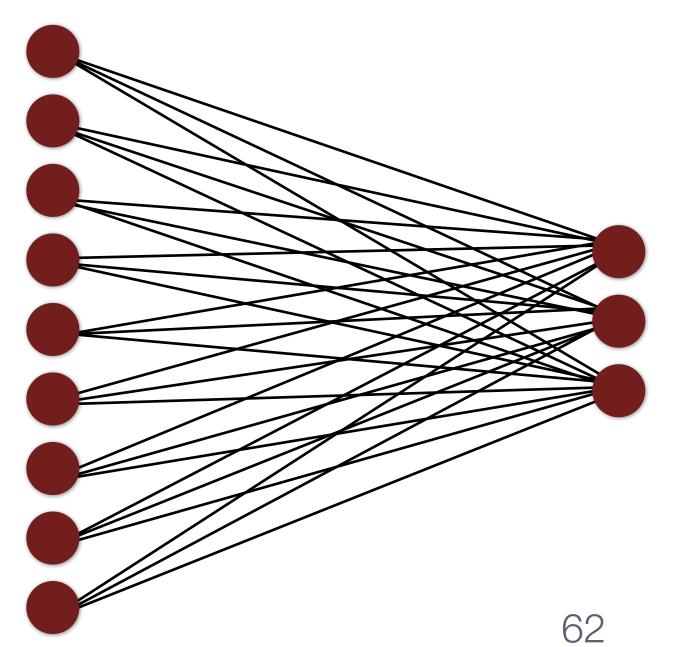
Input Layer

Output Layer

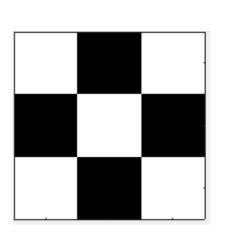


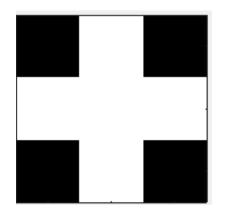
What else is missing for us to train it?

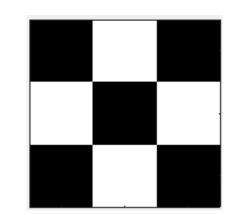




$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}}\right)$$



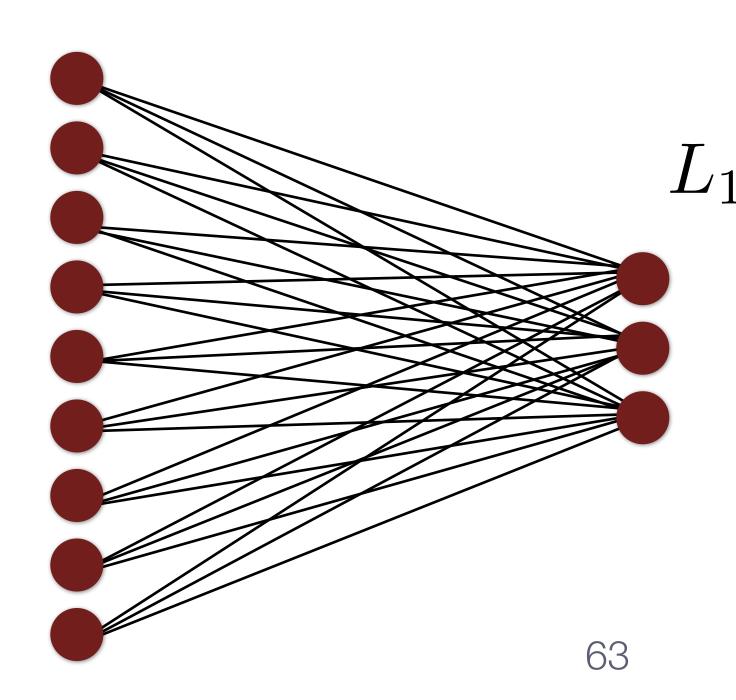




Input Layer

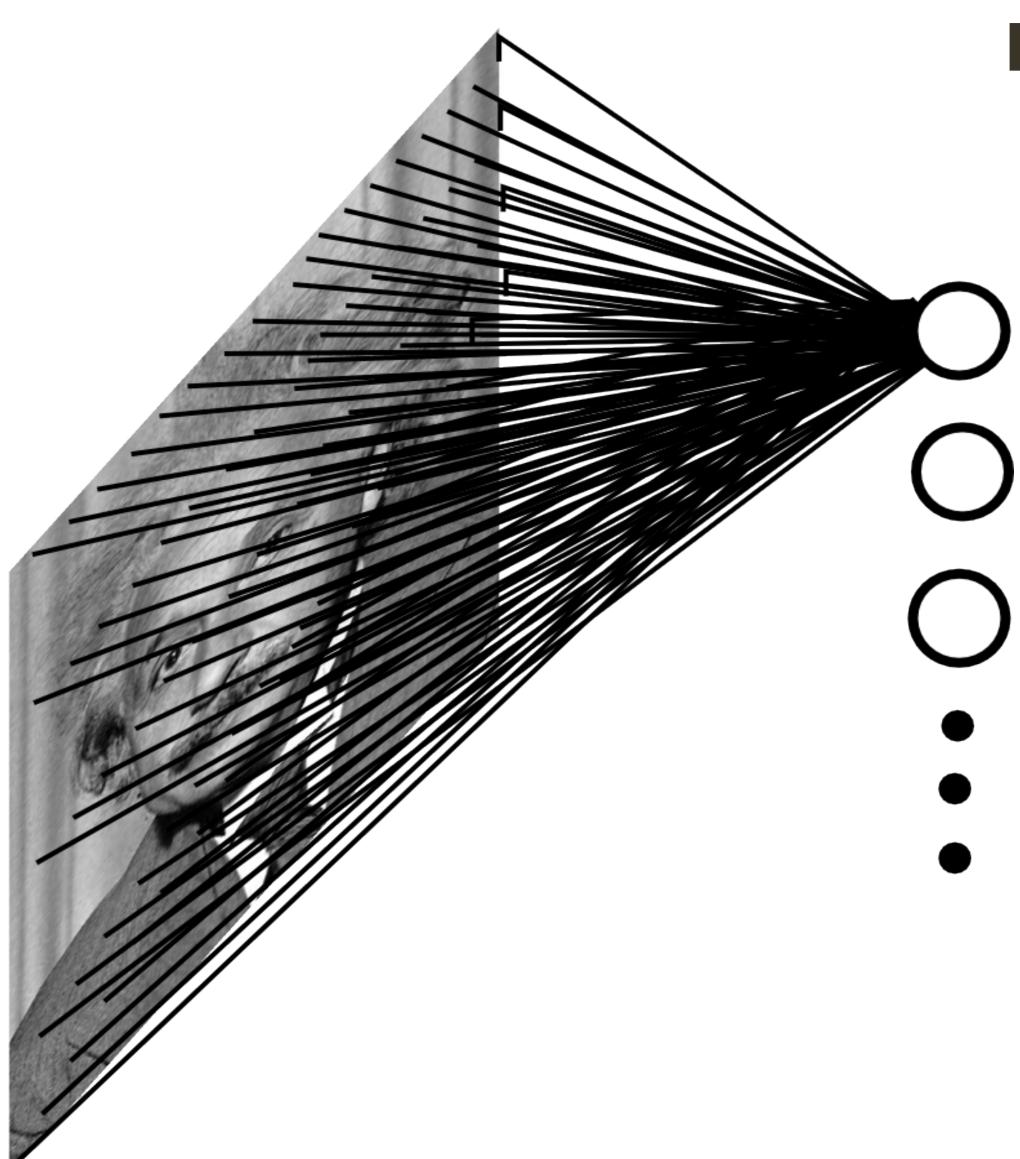
Output Layer

Loss



$$L_{1} = -log \left(\frac{e^{\sum_{i=1}^{9} \sigma(w_{1,i}x_{i} + b_{1})}}{\sum_{j=1}^{3} e^{\sum_{i=1}^{9} \sigma(w_{1,i}x_{i} + b_{1})}} \right)$$

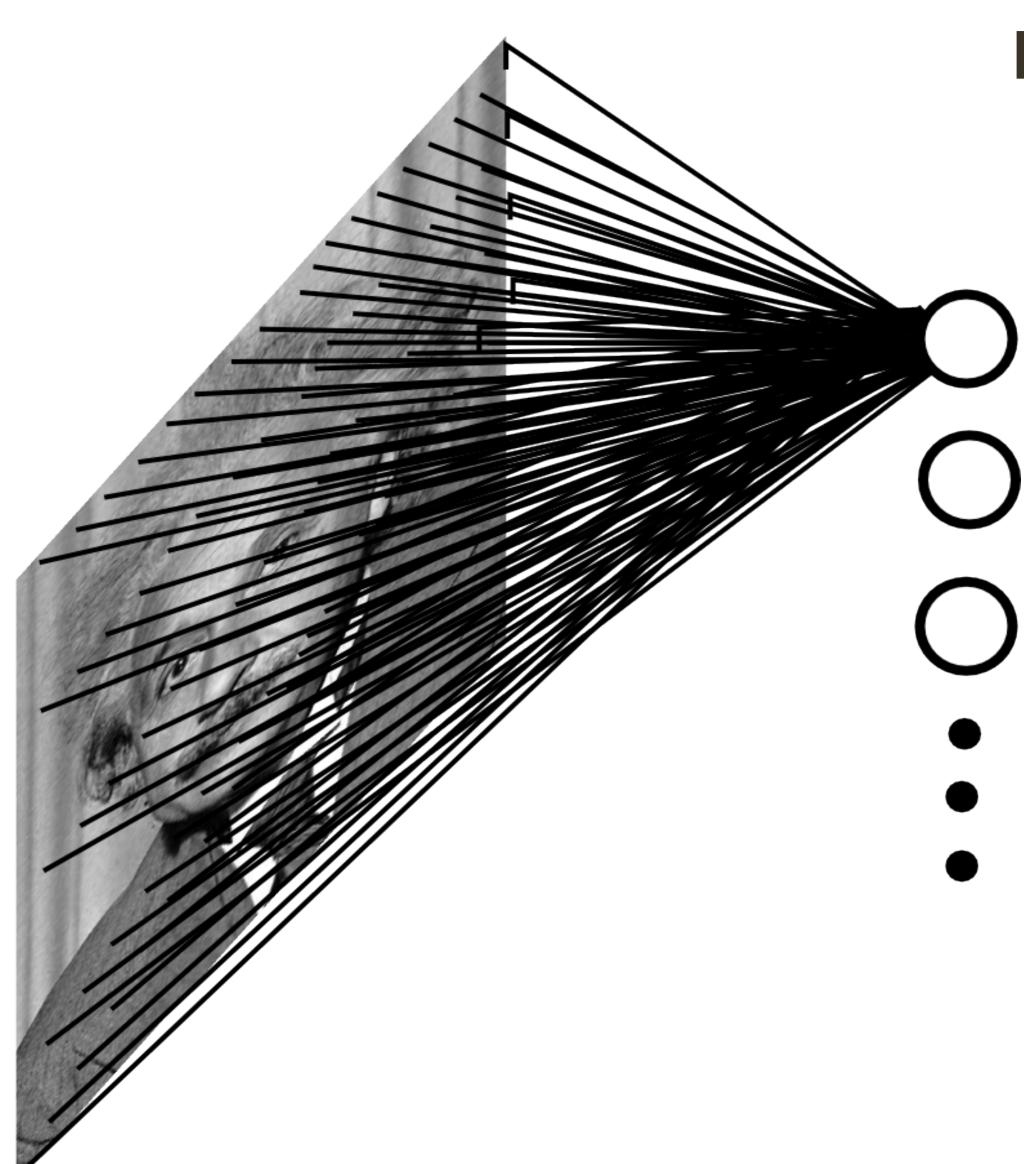
Fully Connected Layer



Example: 200 x 200 image (small)

x 40K hidden units

Fully Connected Layer

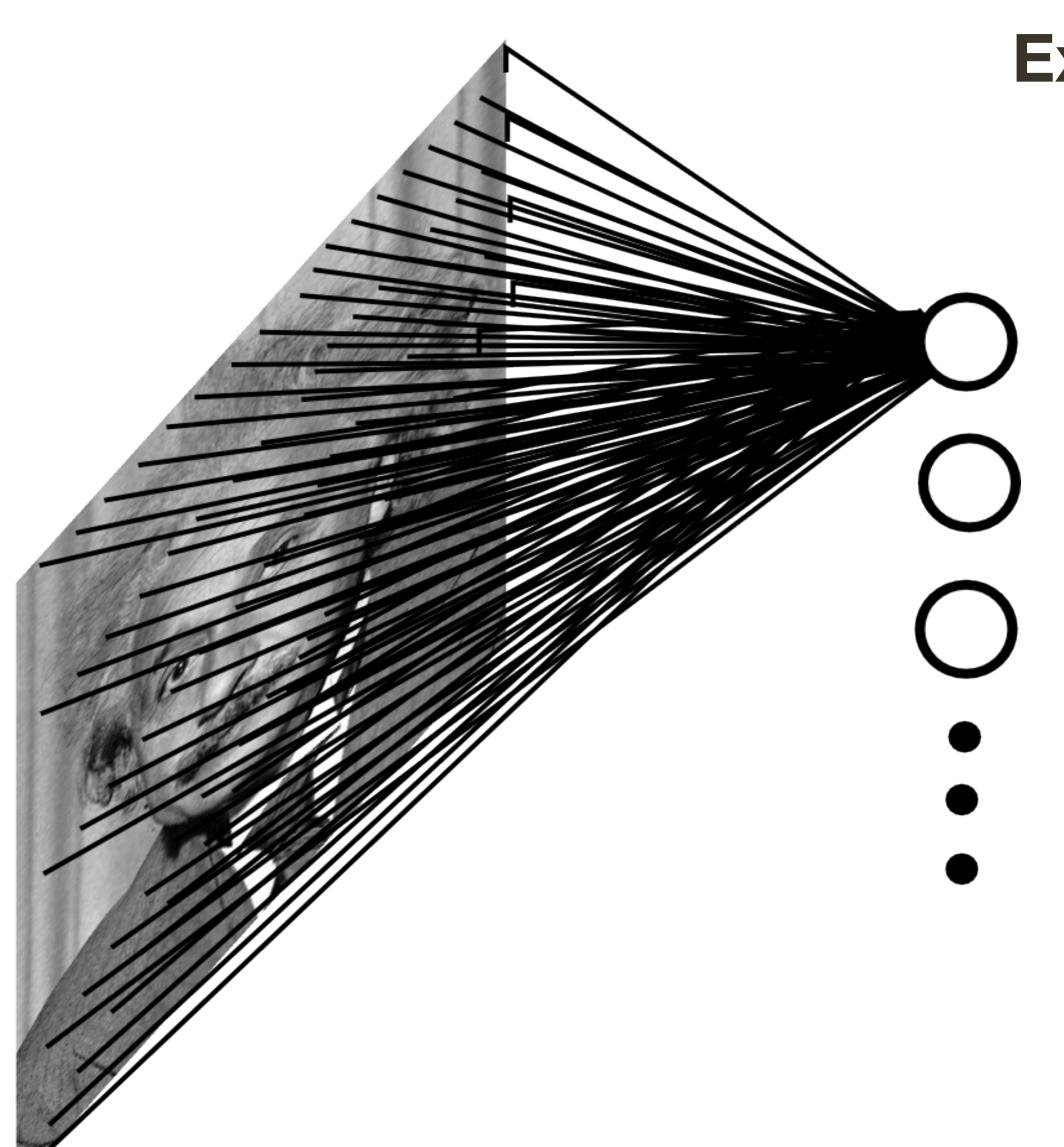


Example: 200 x 200 image (small)

x 40K hidden units

= ~ 2 Billion parameters (for one layer!)

Fully Connected Layer



Example: 200 x 200 image (small)

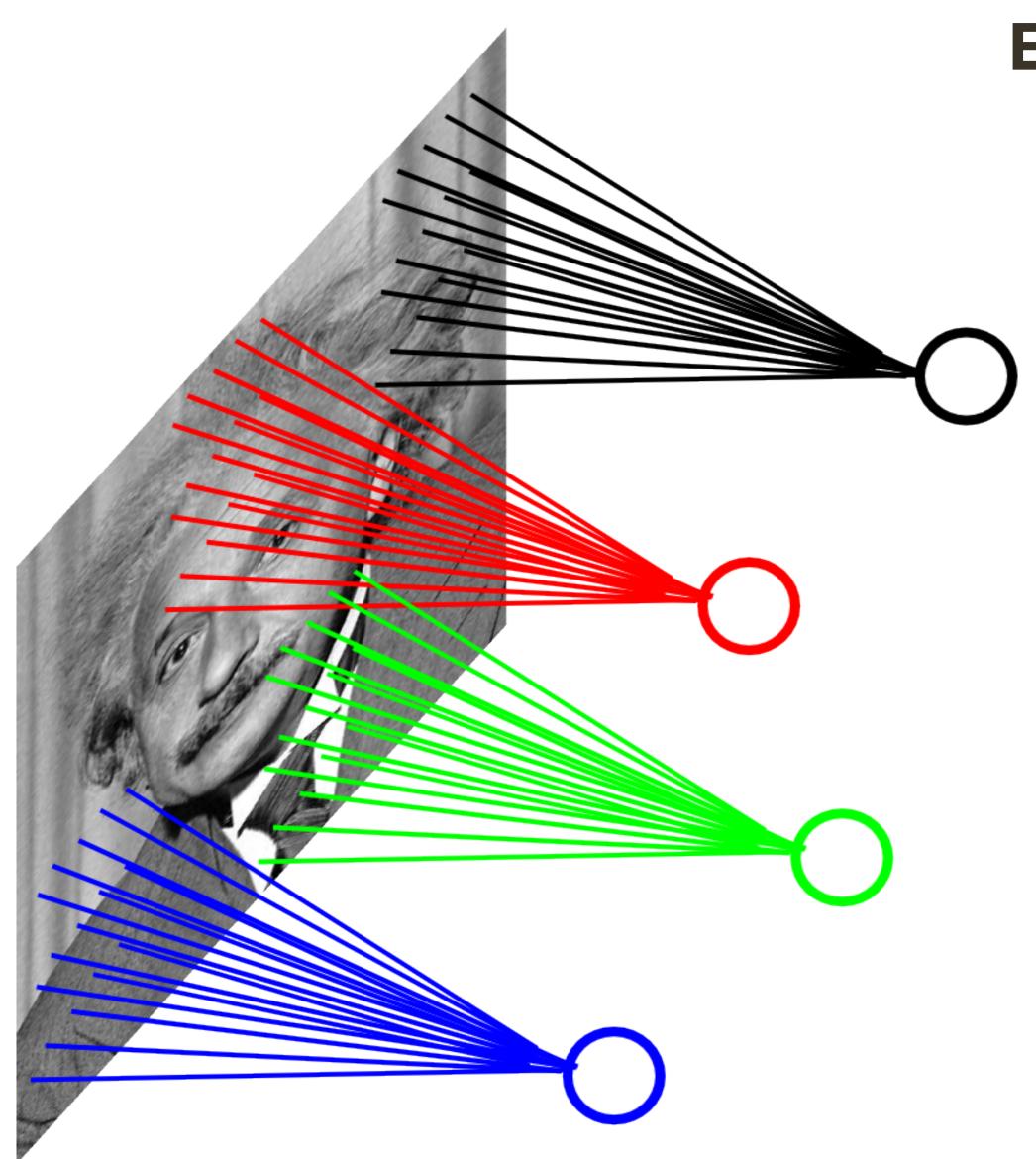
x 40K hidden units

= ~ 2 Billion parameters (for one layer!)

Spatial correlations are generally local

Waste of resources + we don't have enough data to train networks this large

Locally Connected Layer



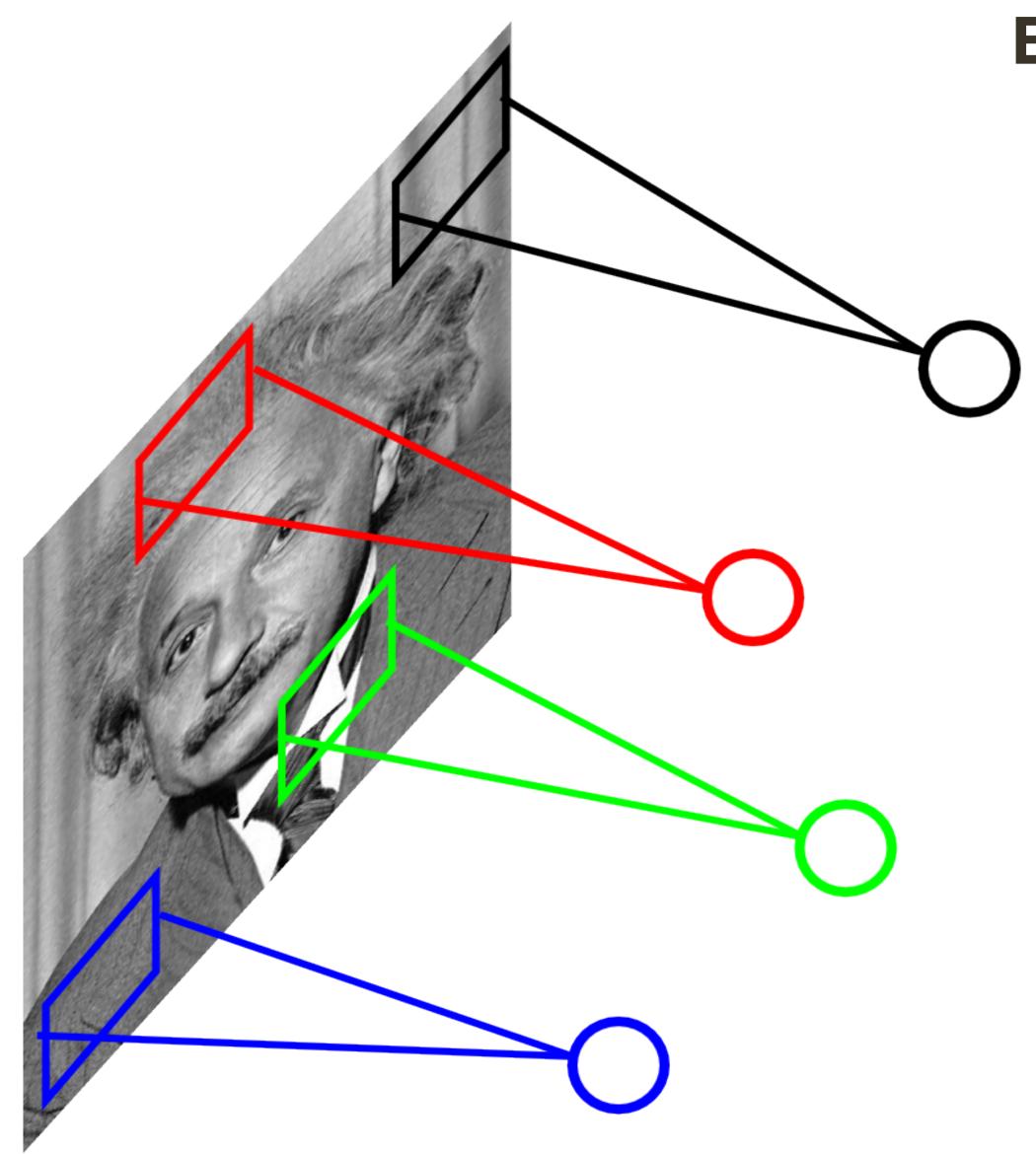
Example: 200 x 200 image (small)

x 40K hidden units

Filter size: 10×10

= ~ 4 Million parameters

Locally Connected Layer



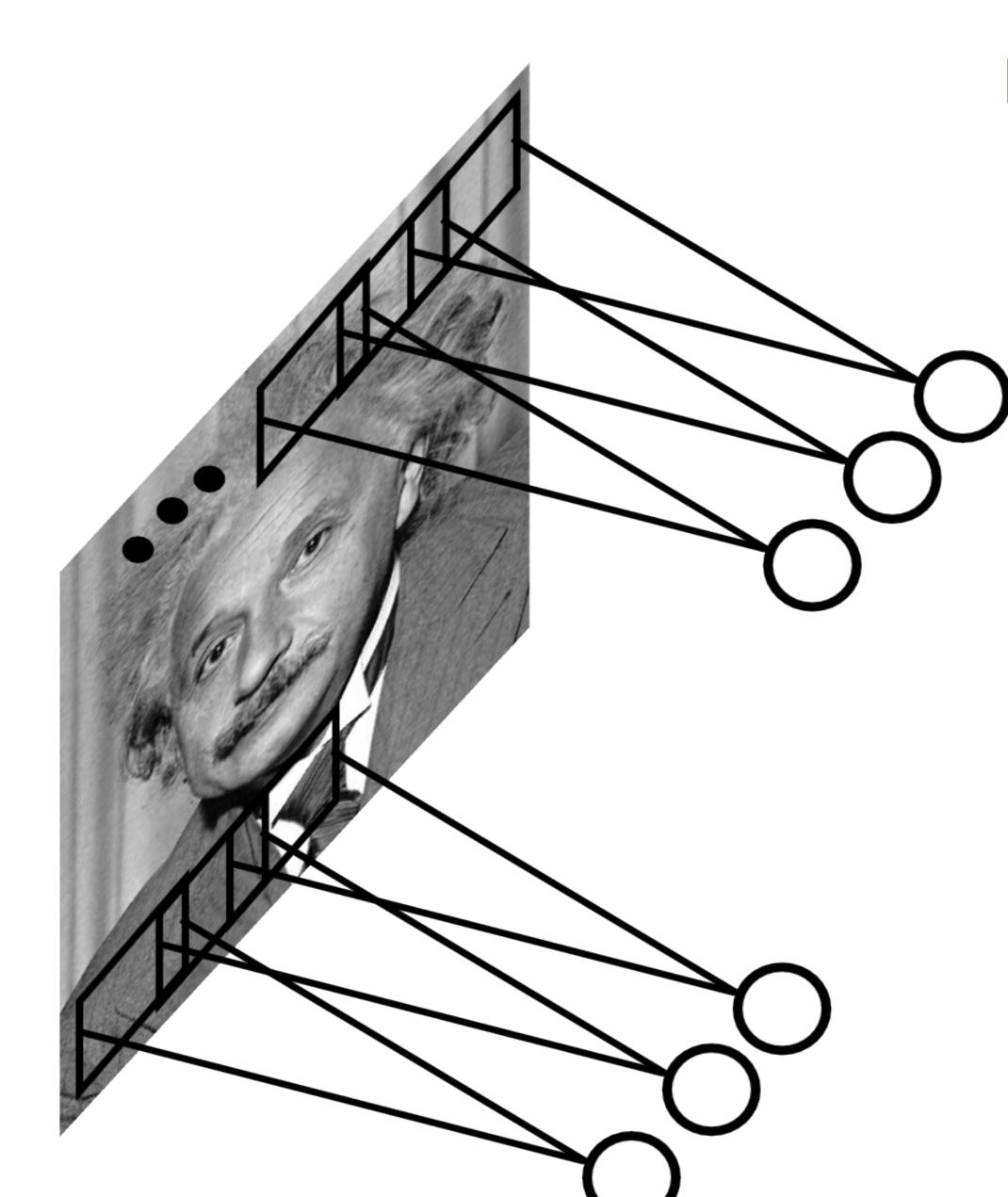
Example: 200 x 200 image (small)

x 40K hidden units

Filter size: 10×10

= ~ 4 Million parameters

Stationarity — statistics is similar at different locations



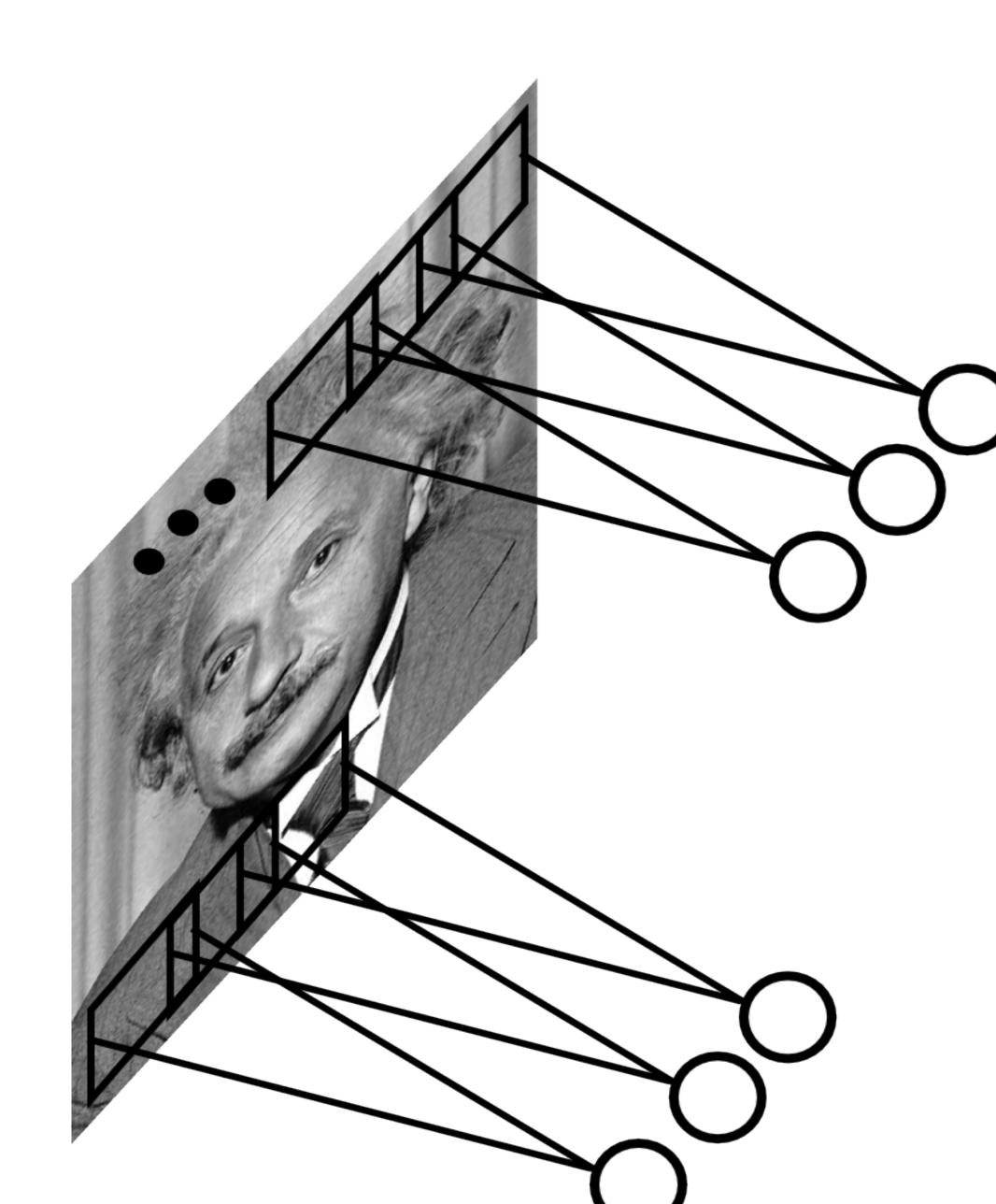
Example: 200 x 200 image (small)

x 40K hidden units

Filter size: 10×10

= ~ 4 Million parameters

Share the same parameters across the locations (assuming input is stationary)



Example: 200 x 200 image (small)

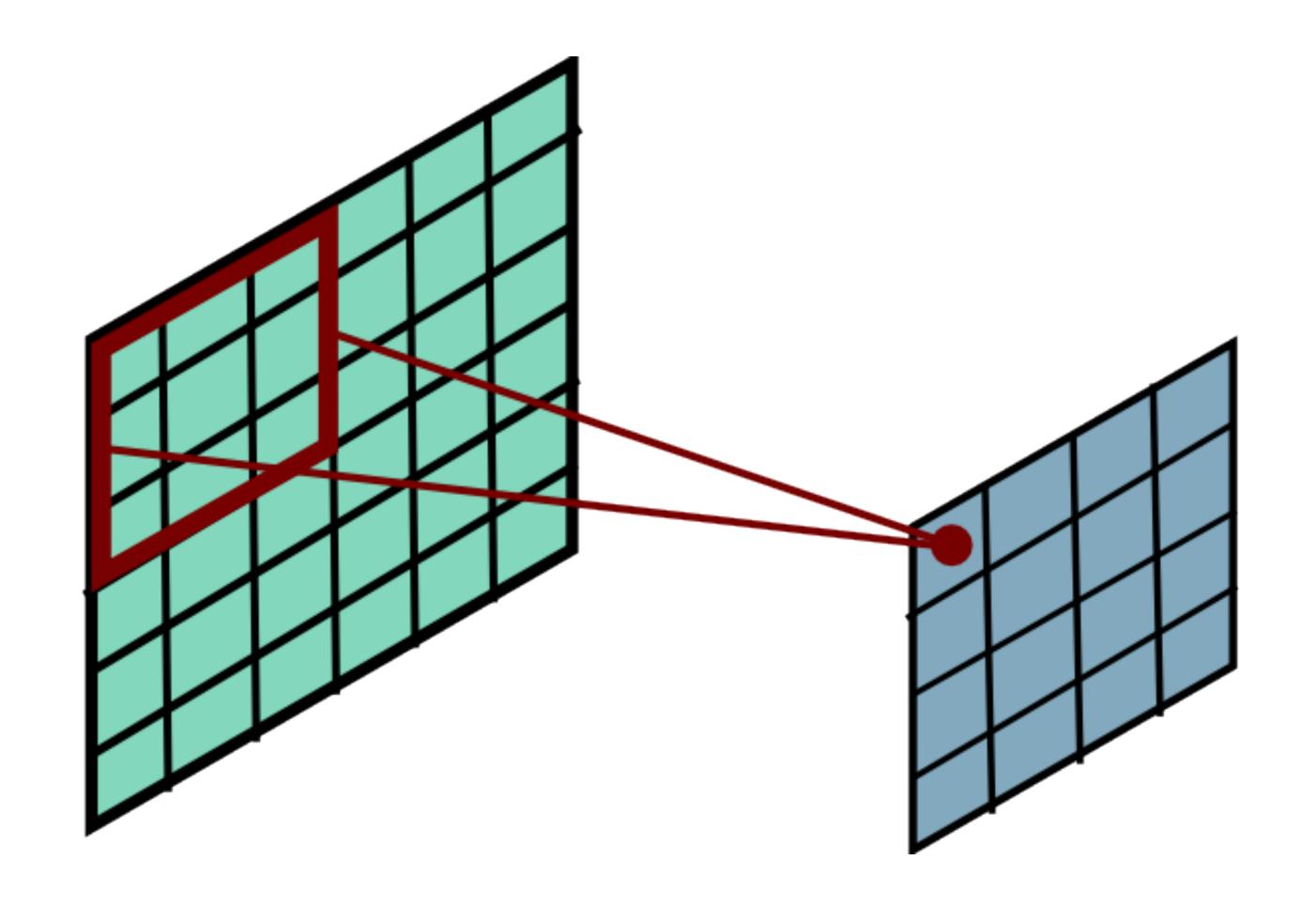
x 40K hidden units

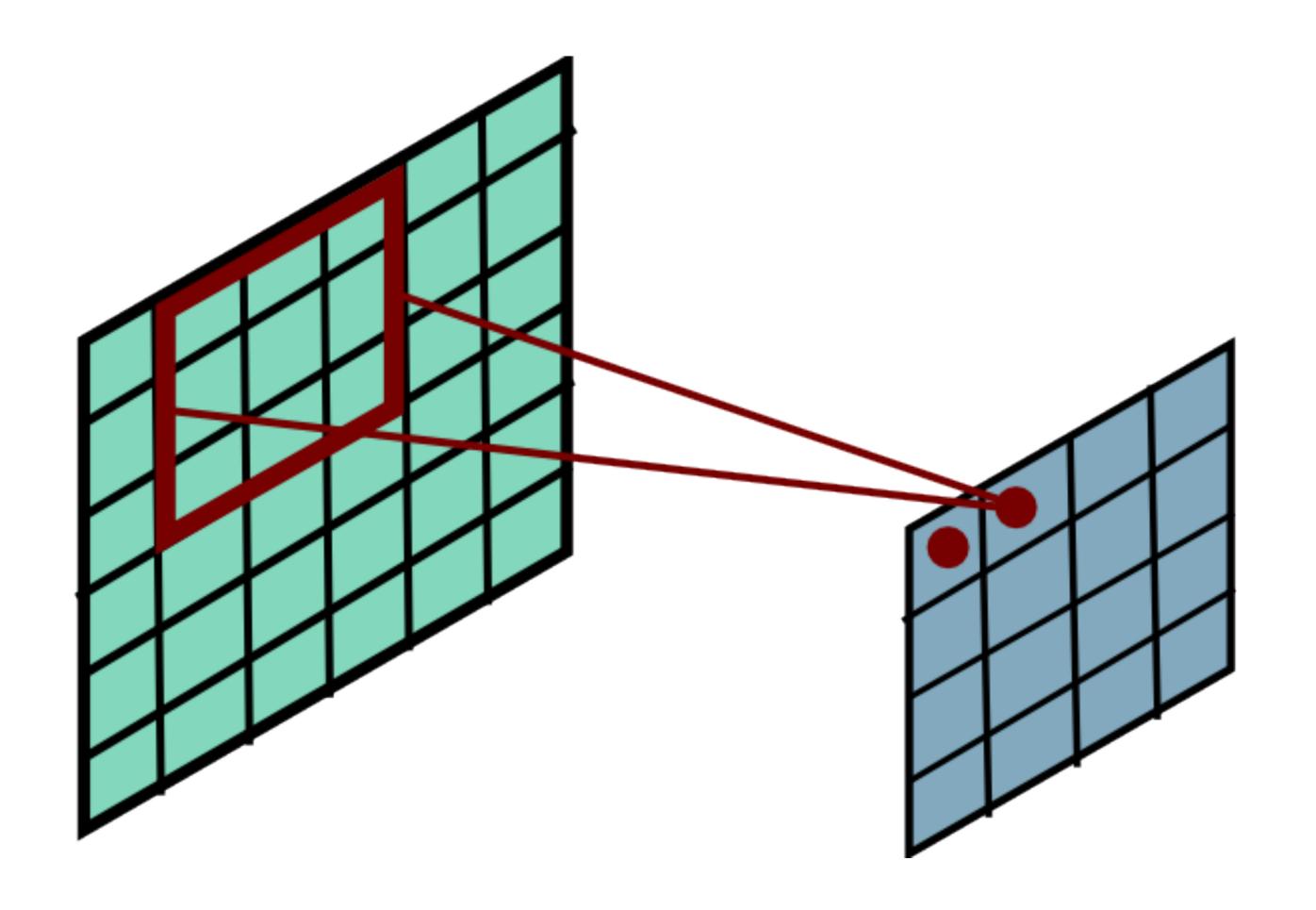
Filter size: 10×10

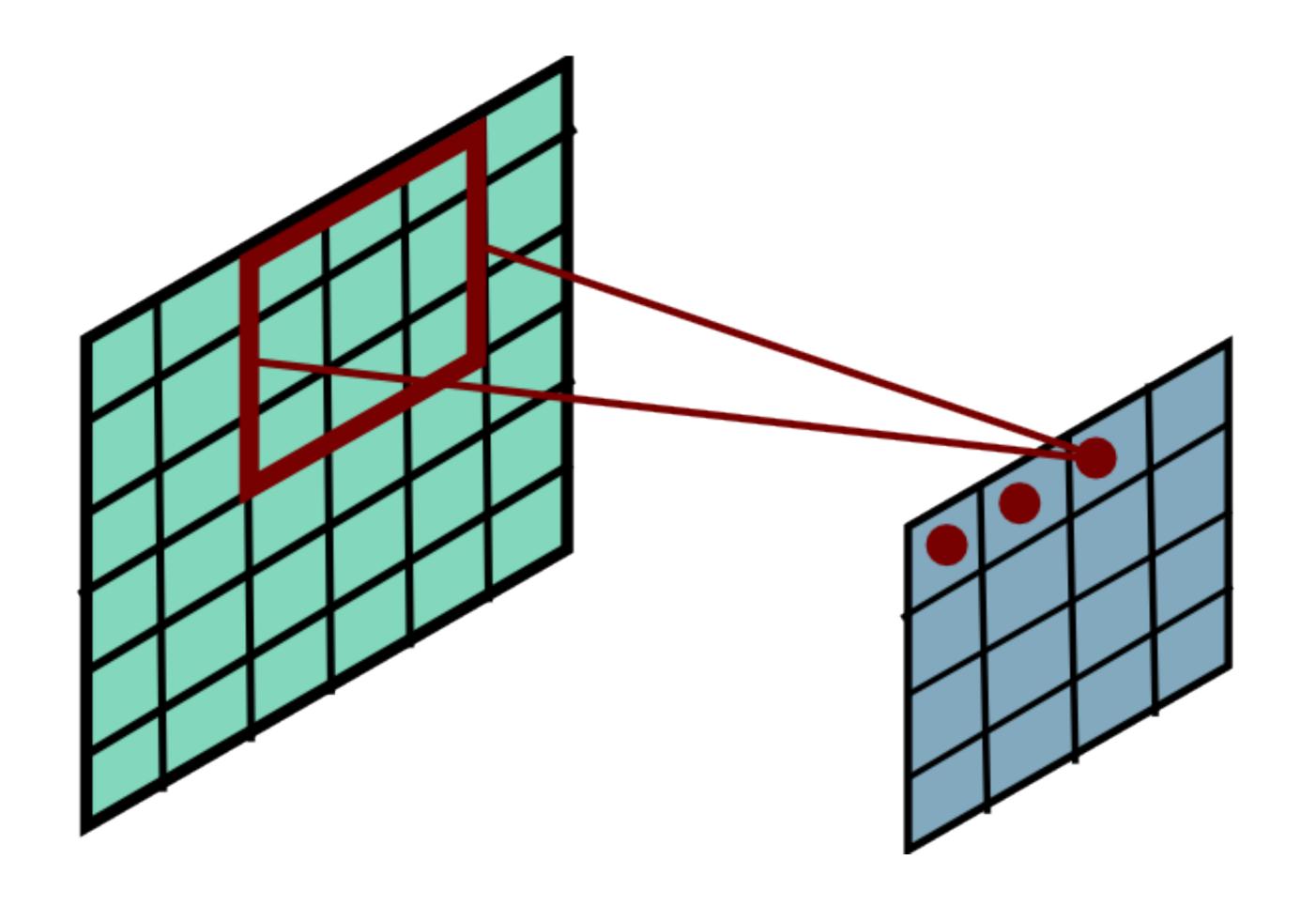
= ~ 4 Million parameters

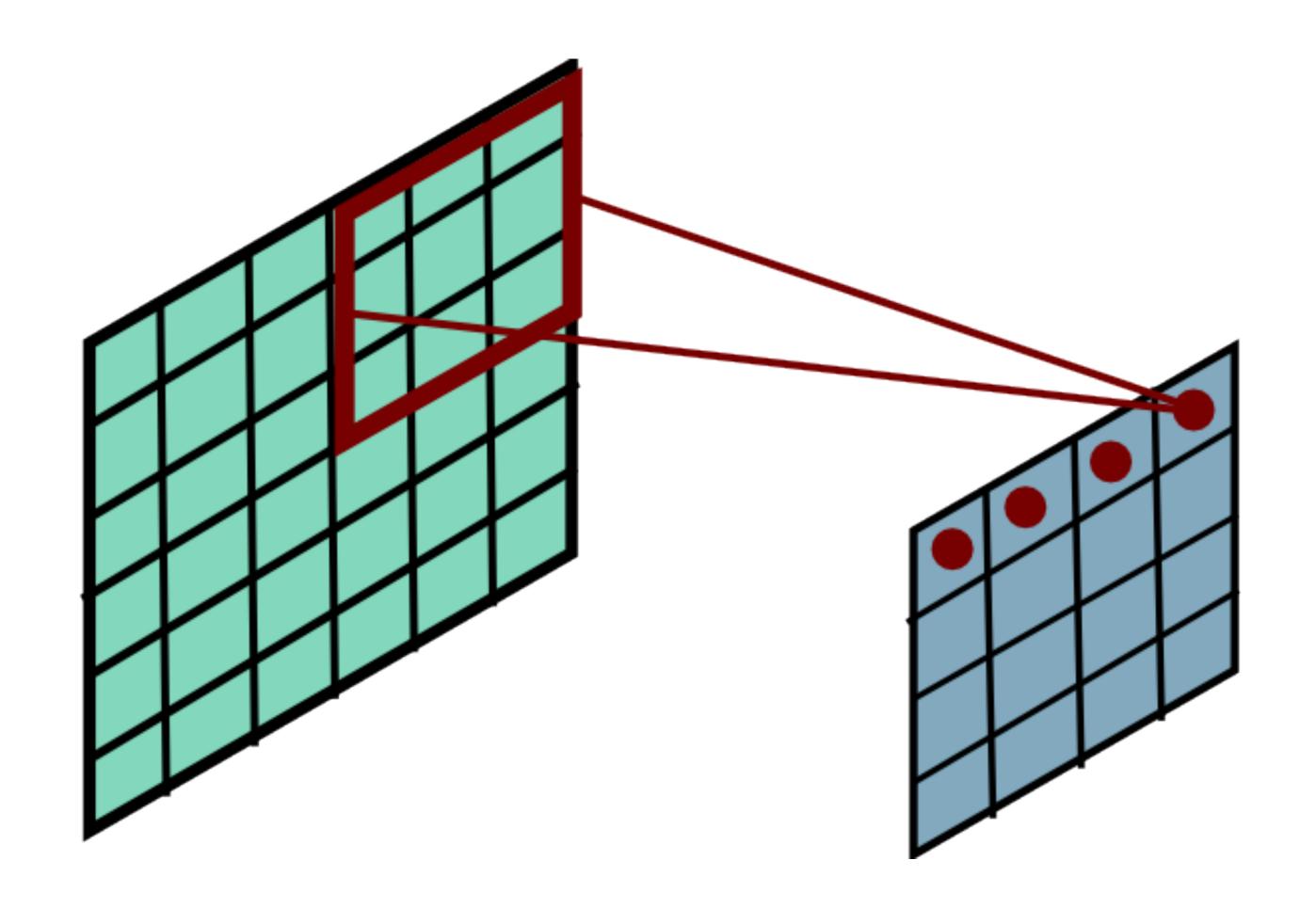
= 100 parameters

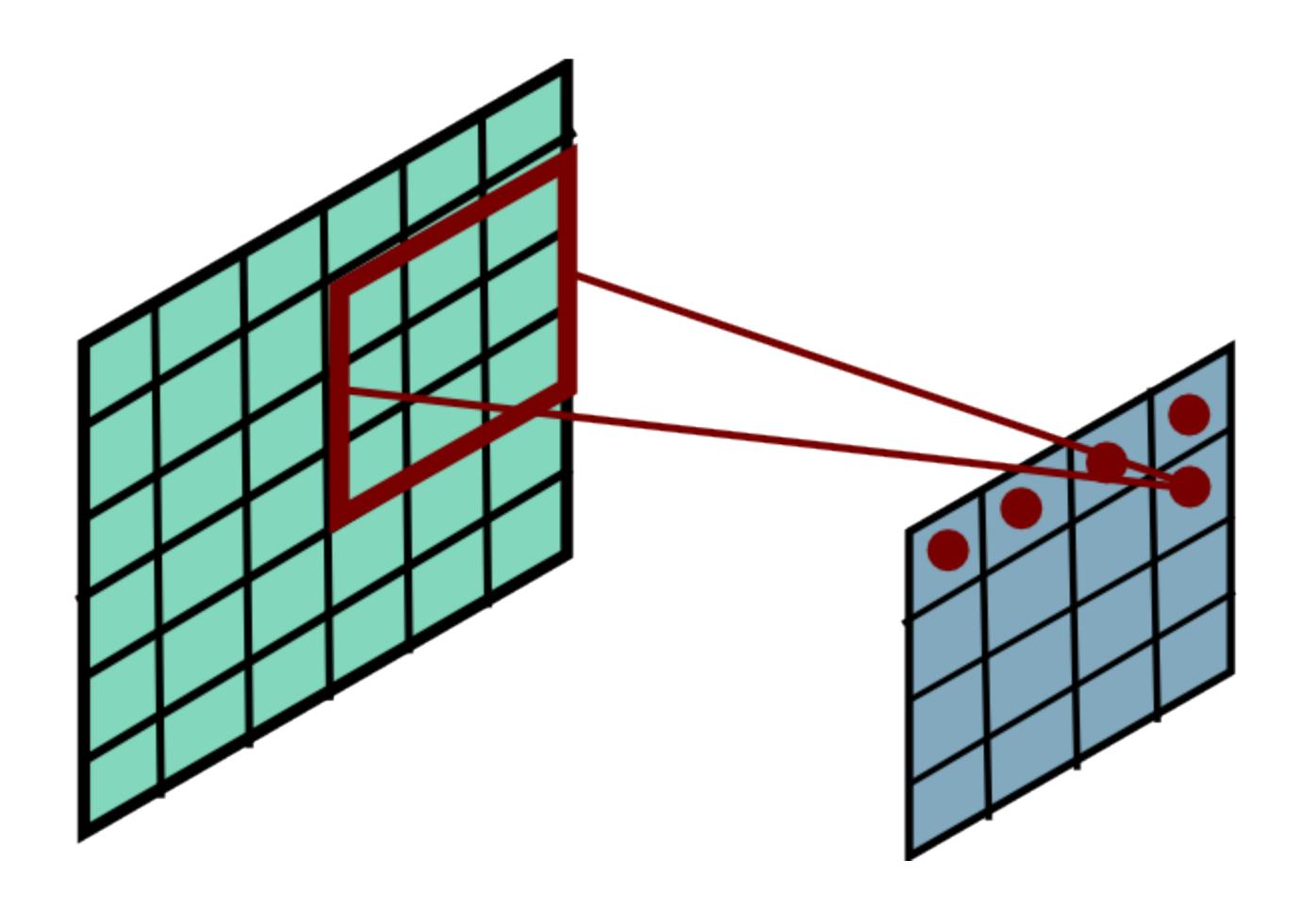
Share the same parameters across the locations (assuming input is stationary)

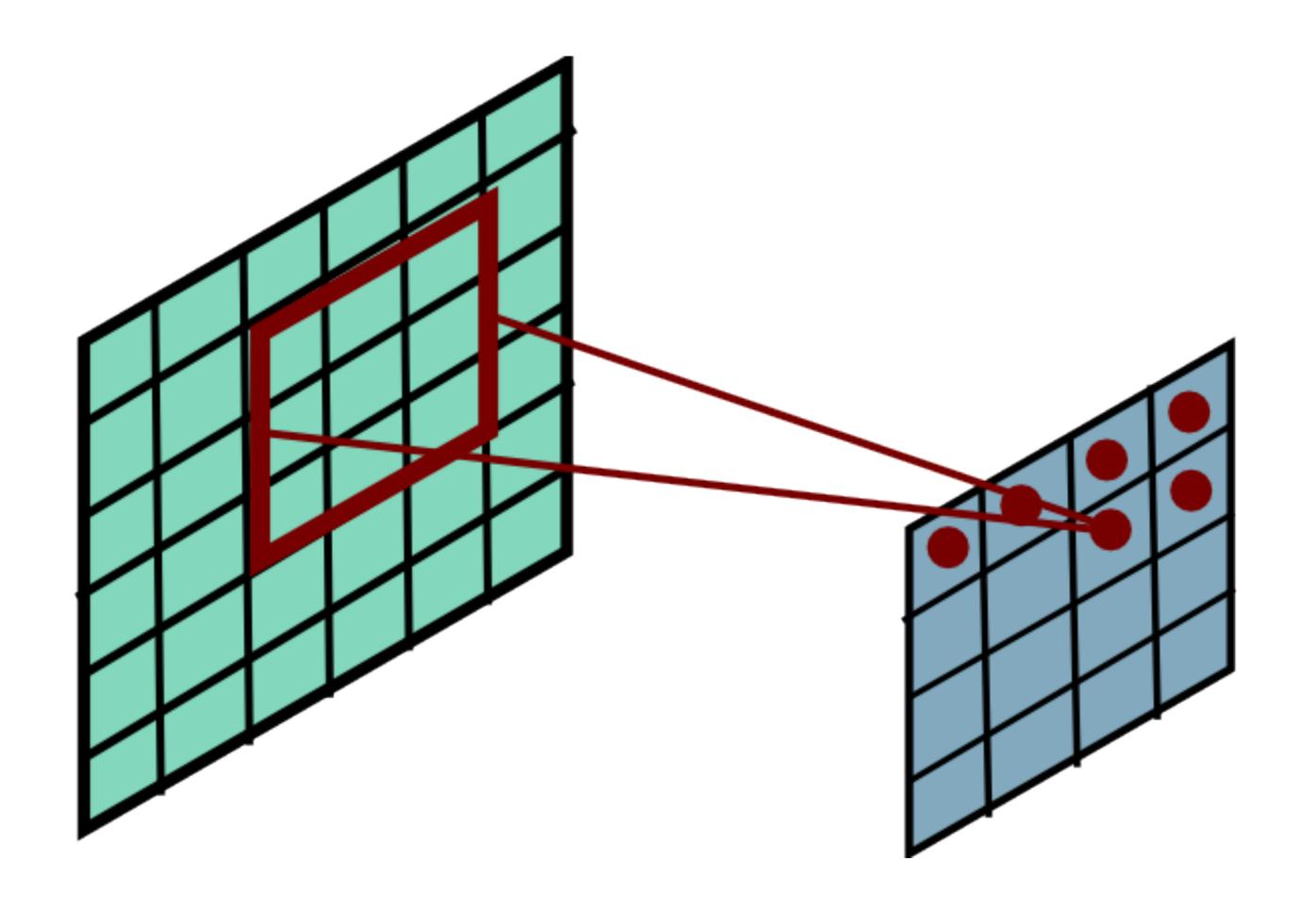


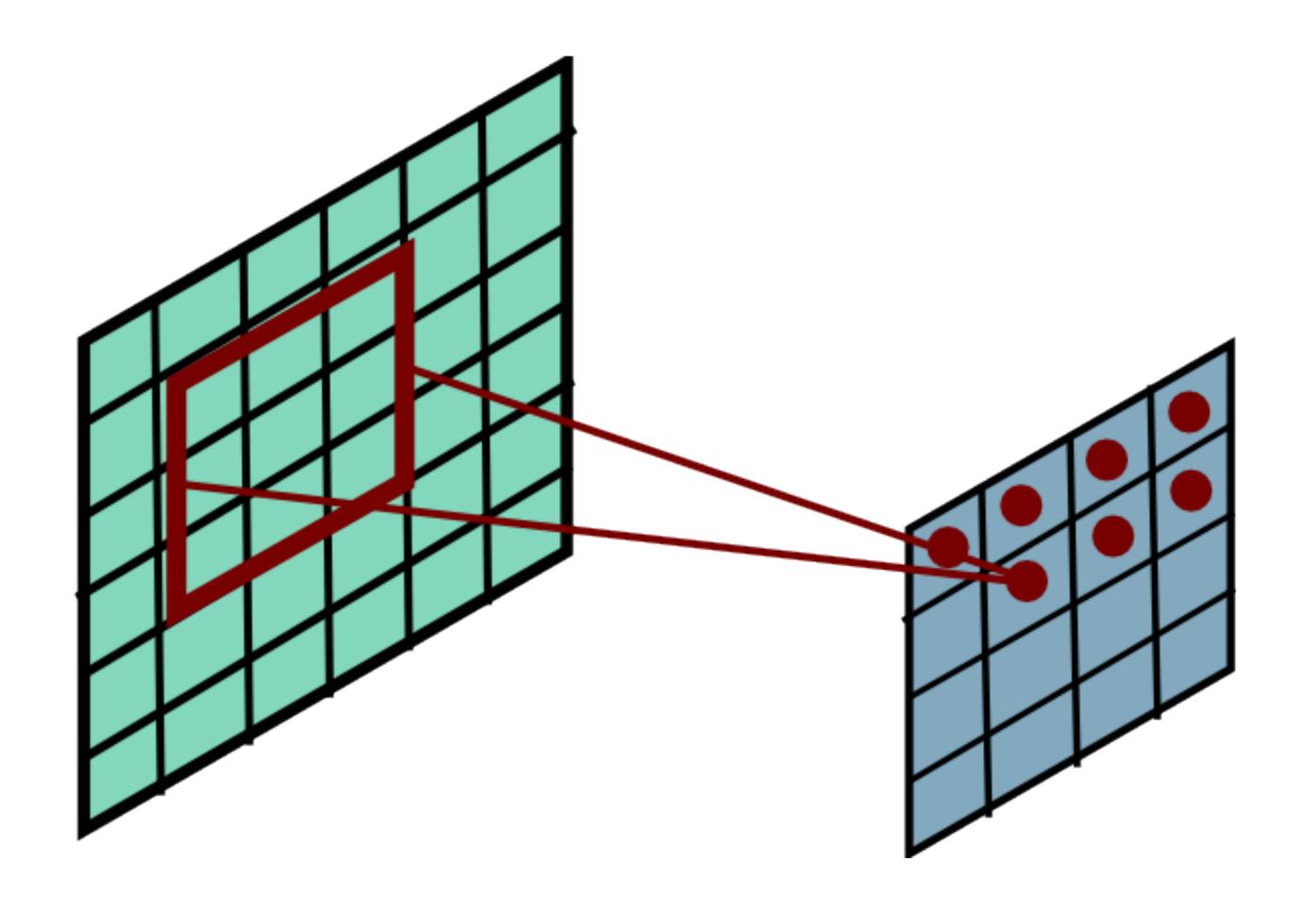


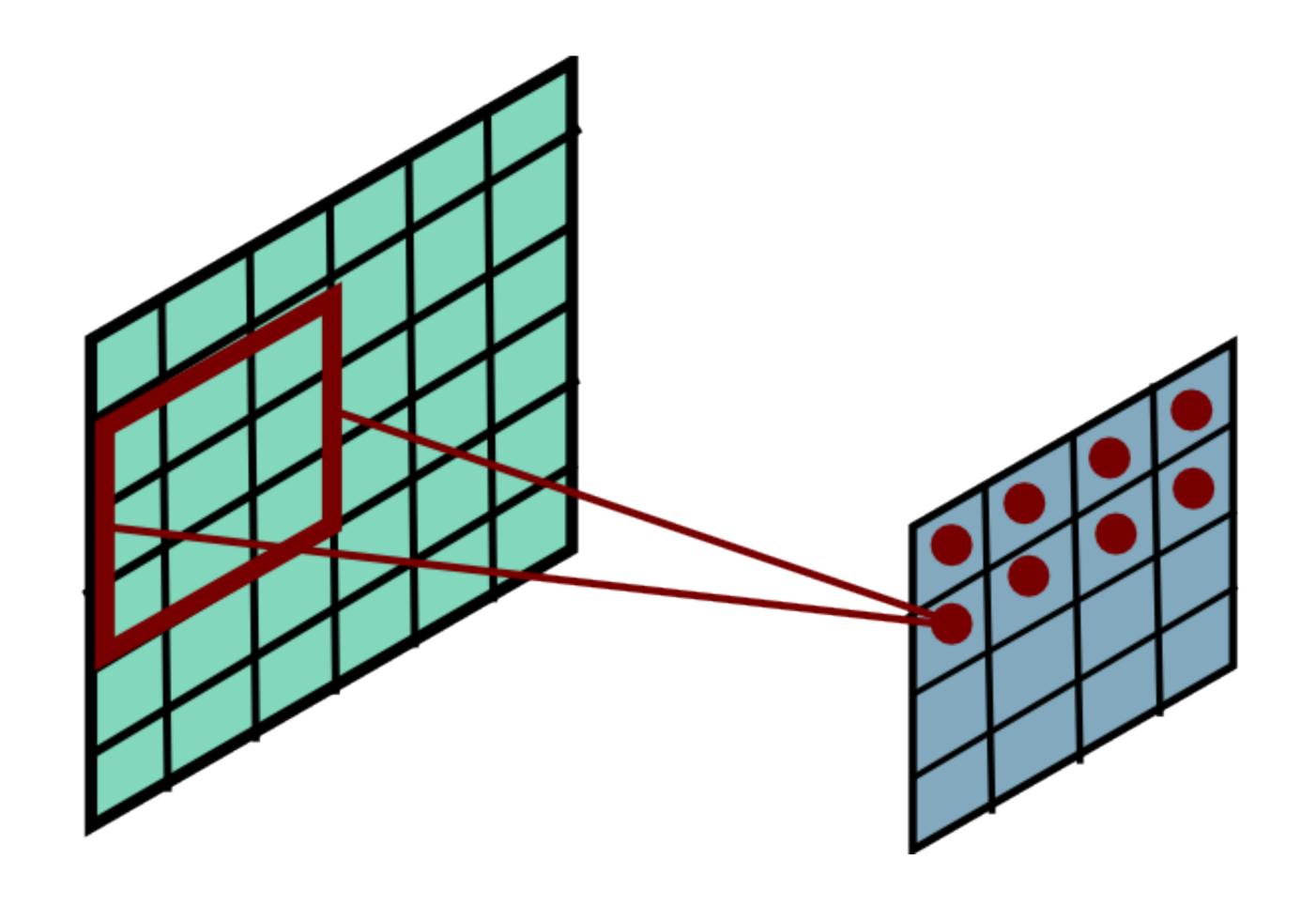


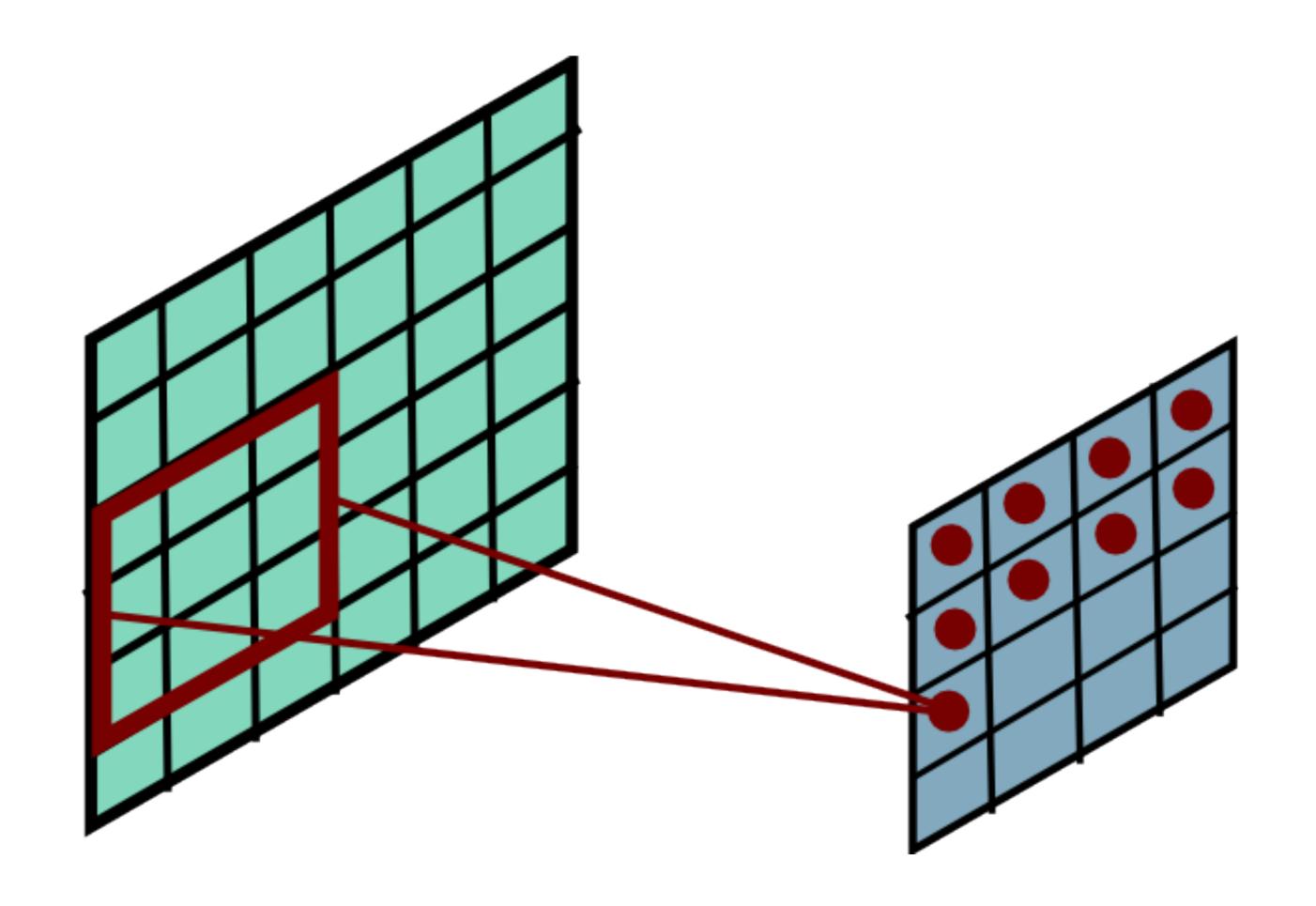


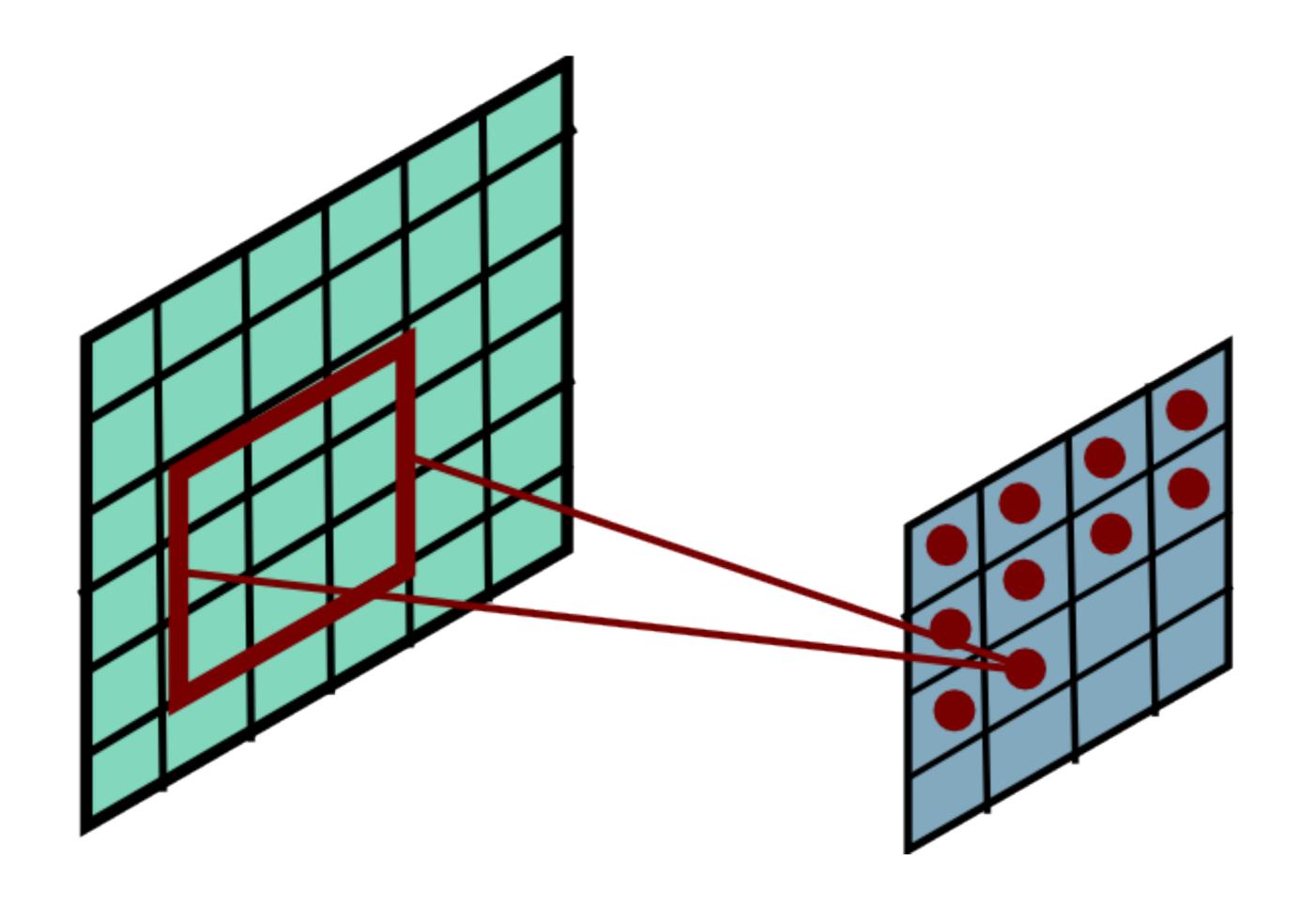


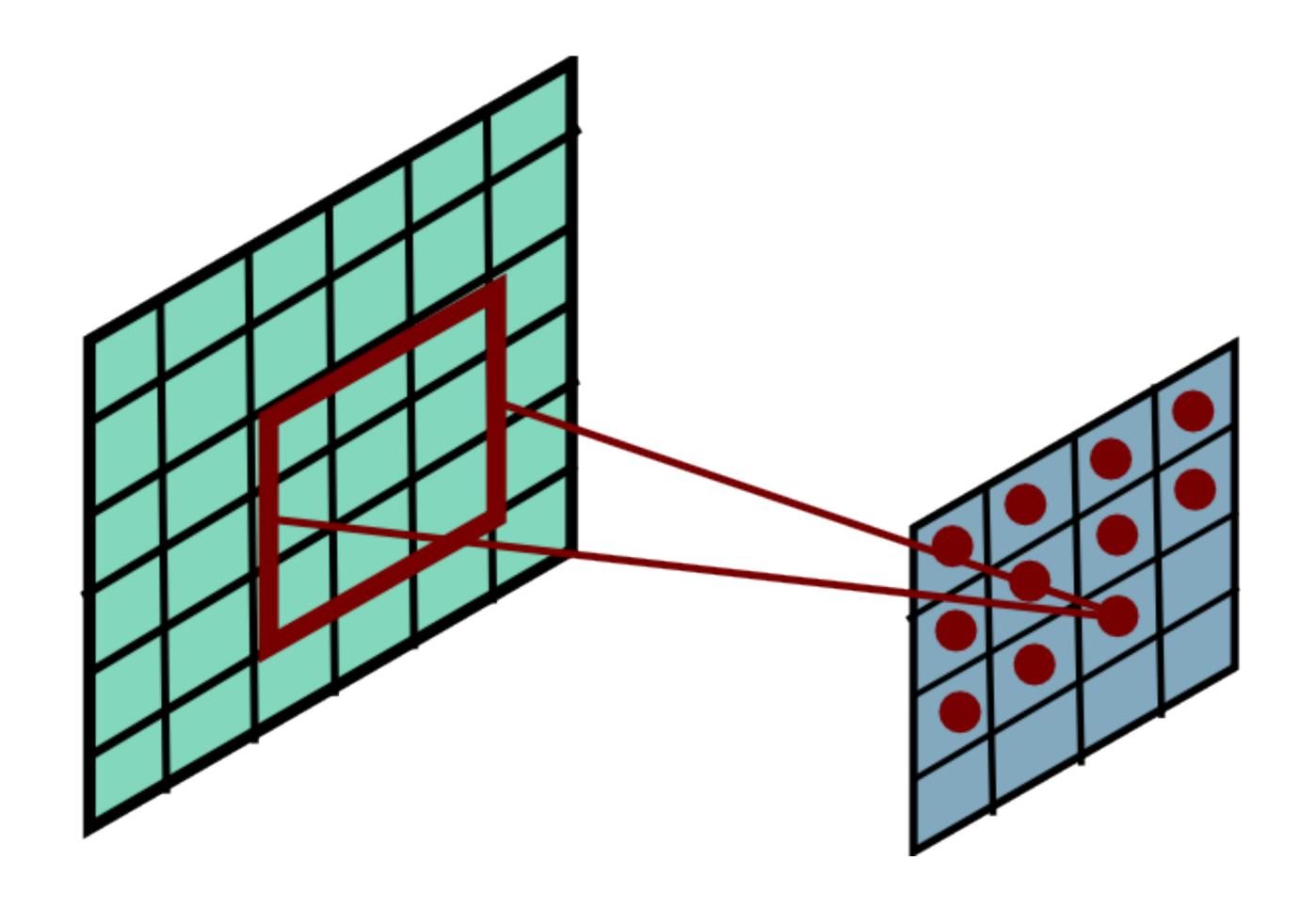


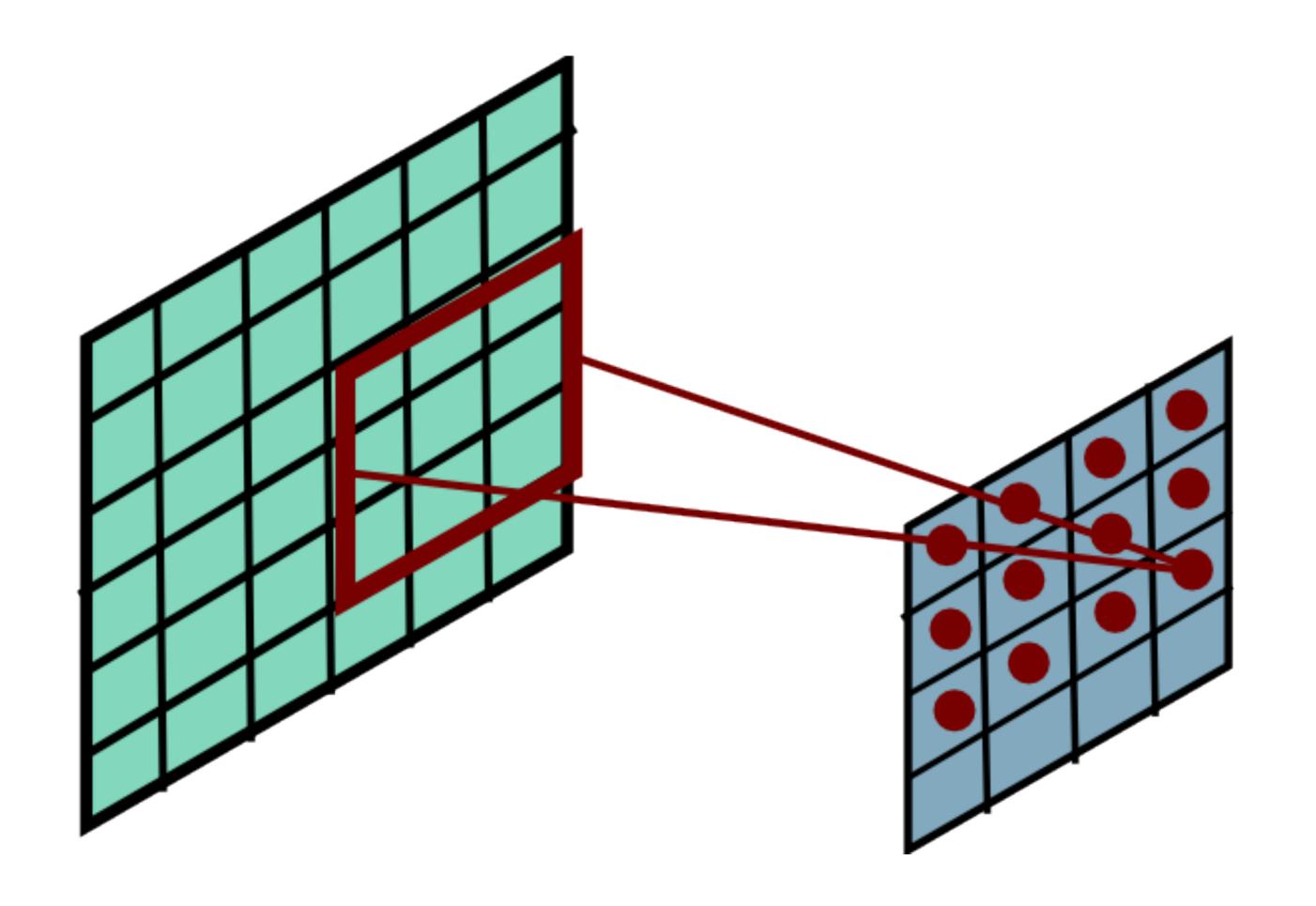


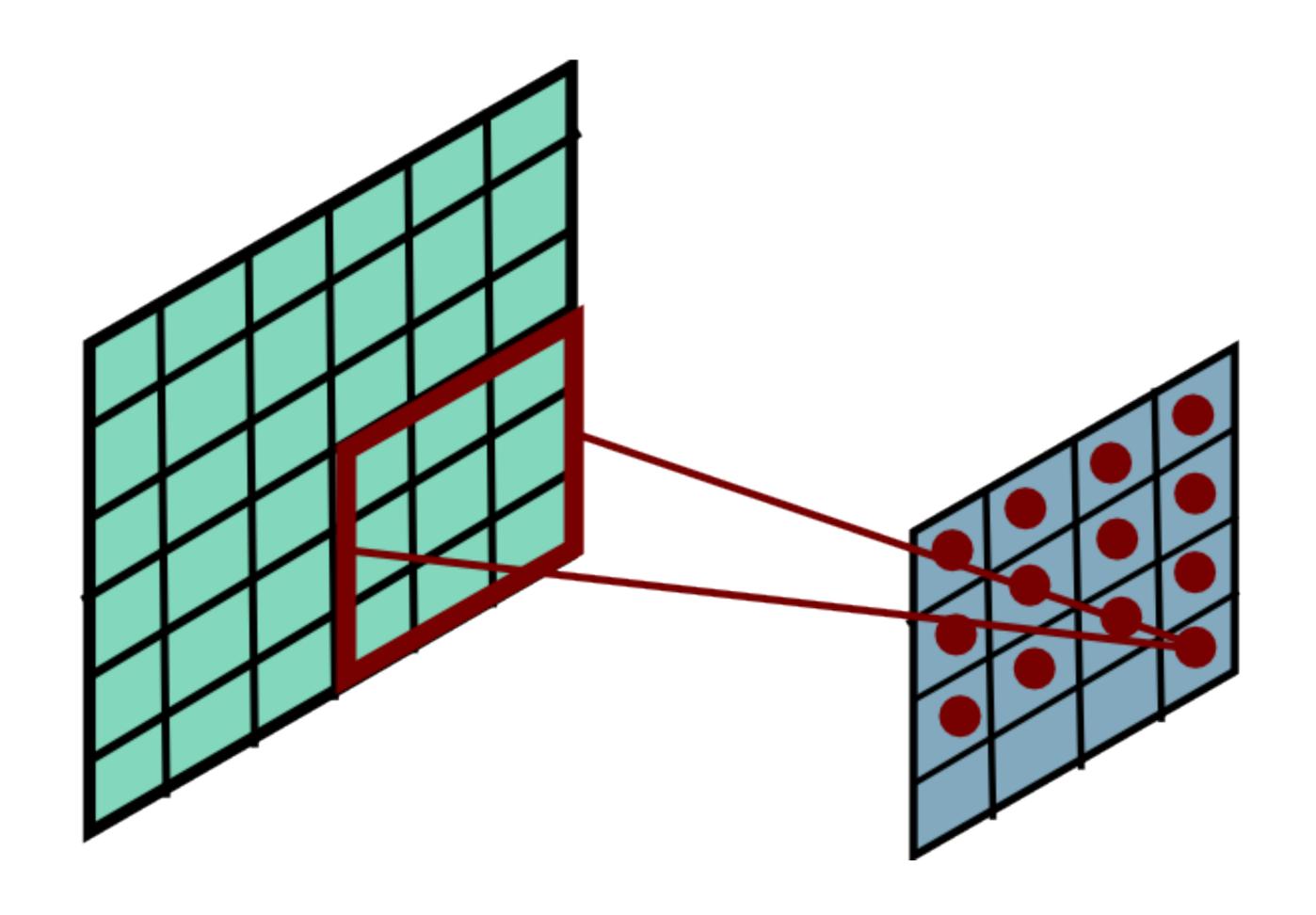


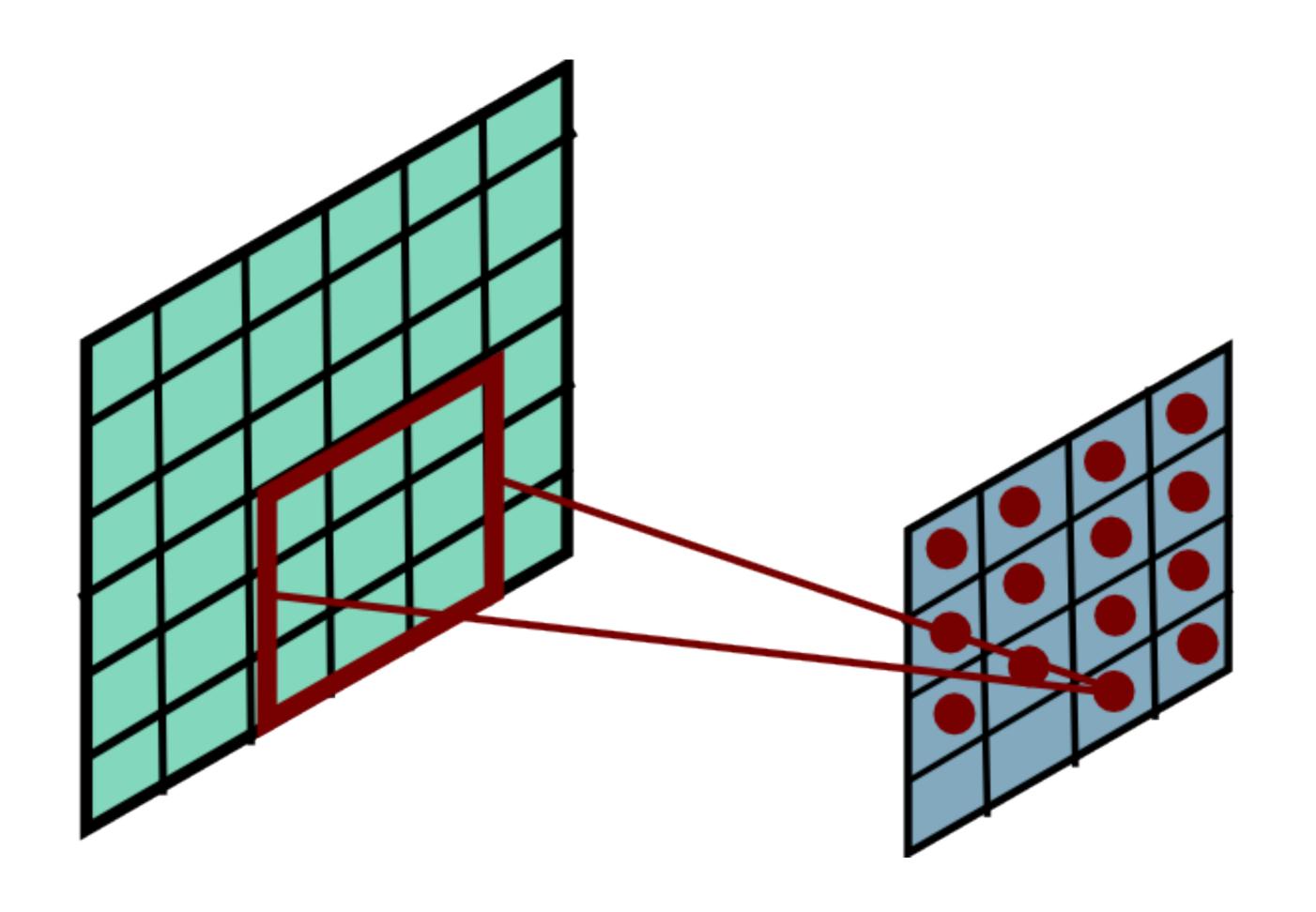


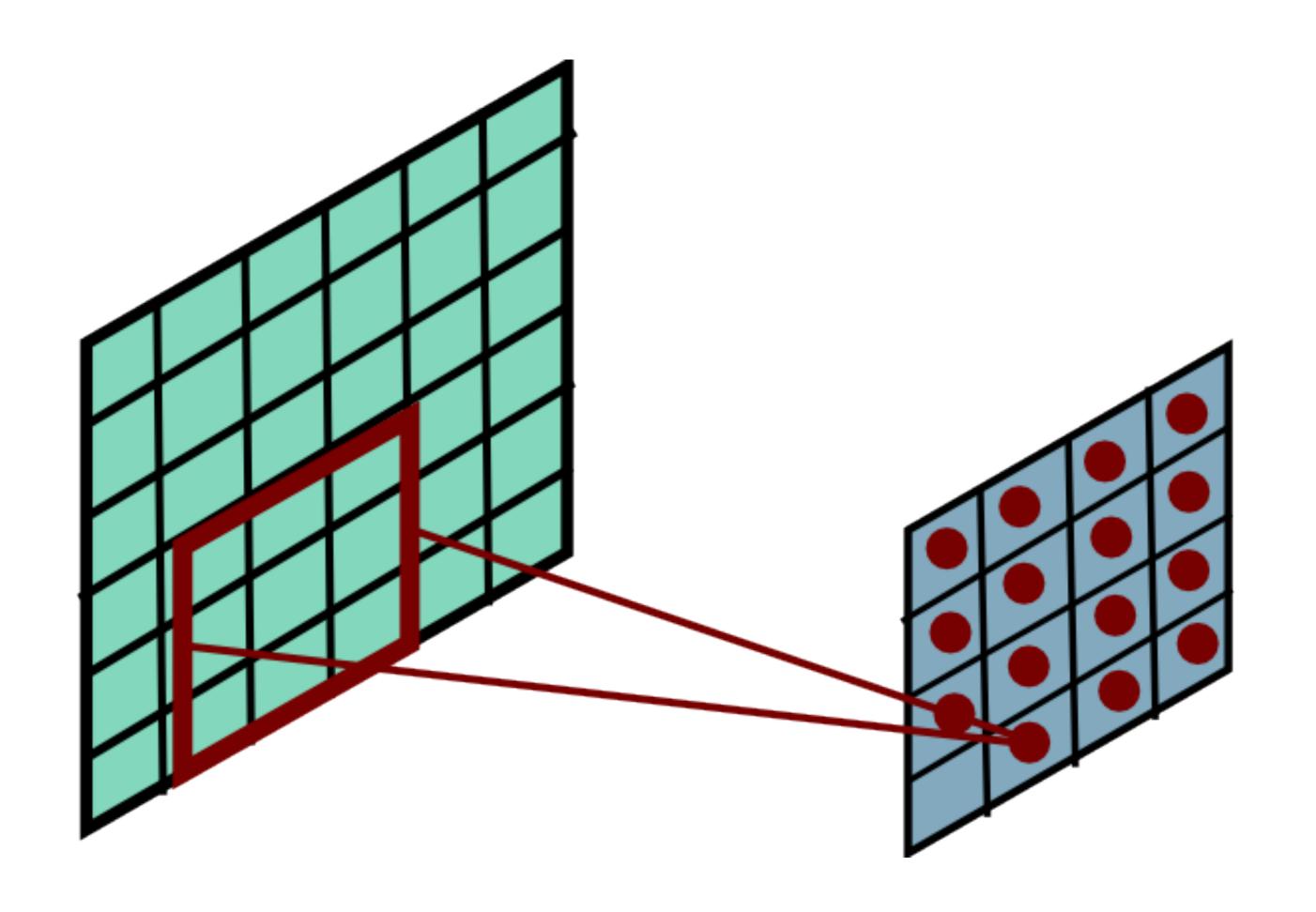


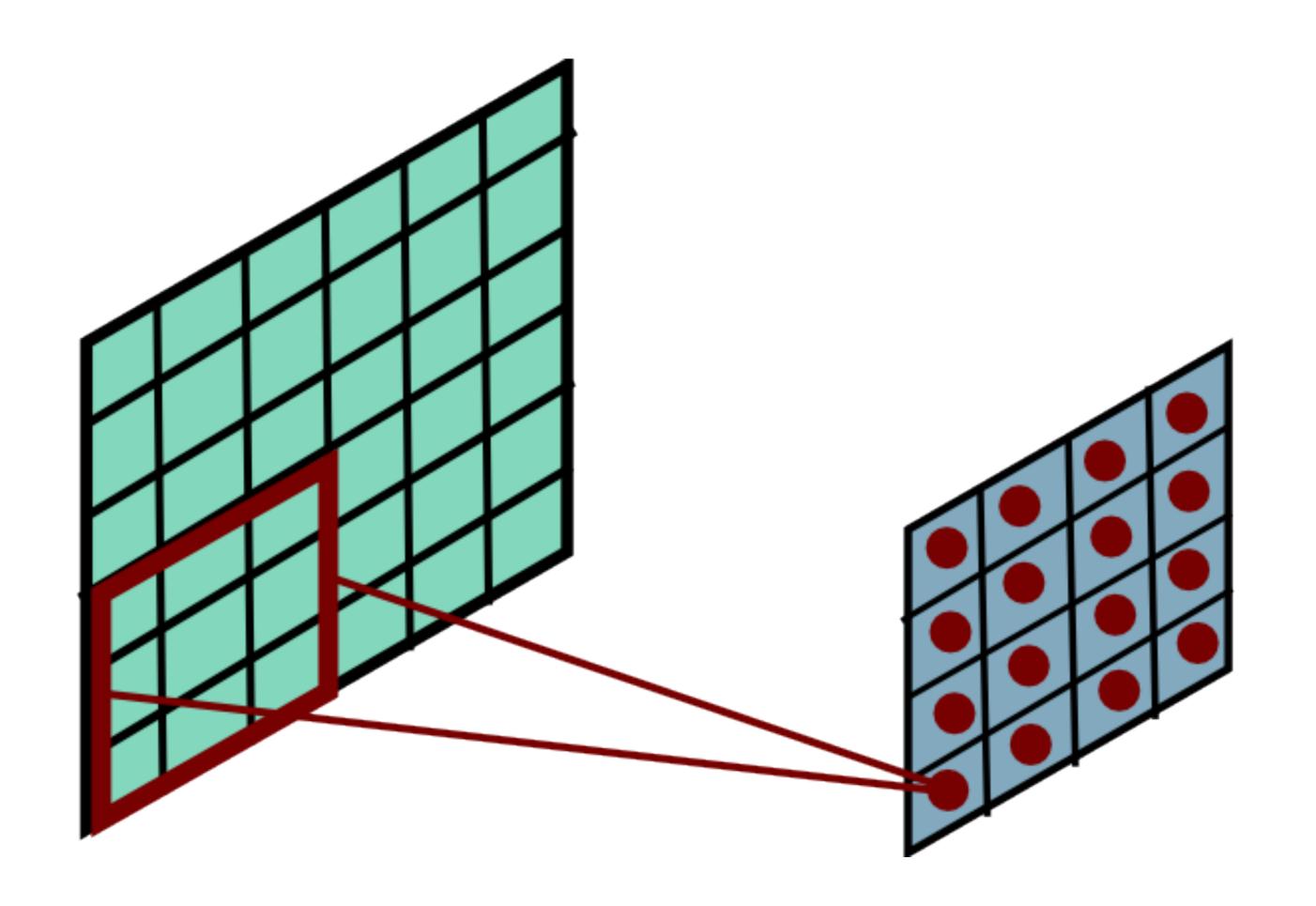




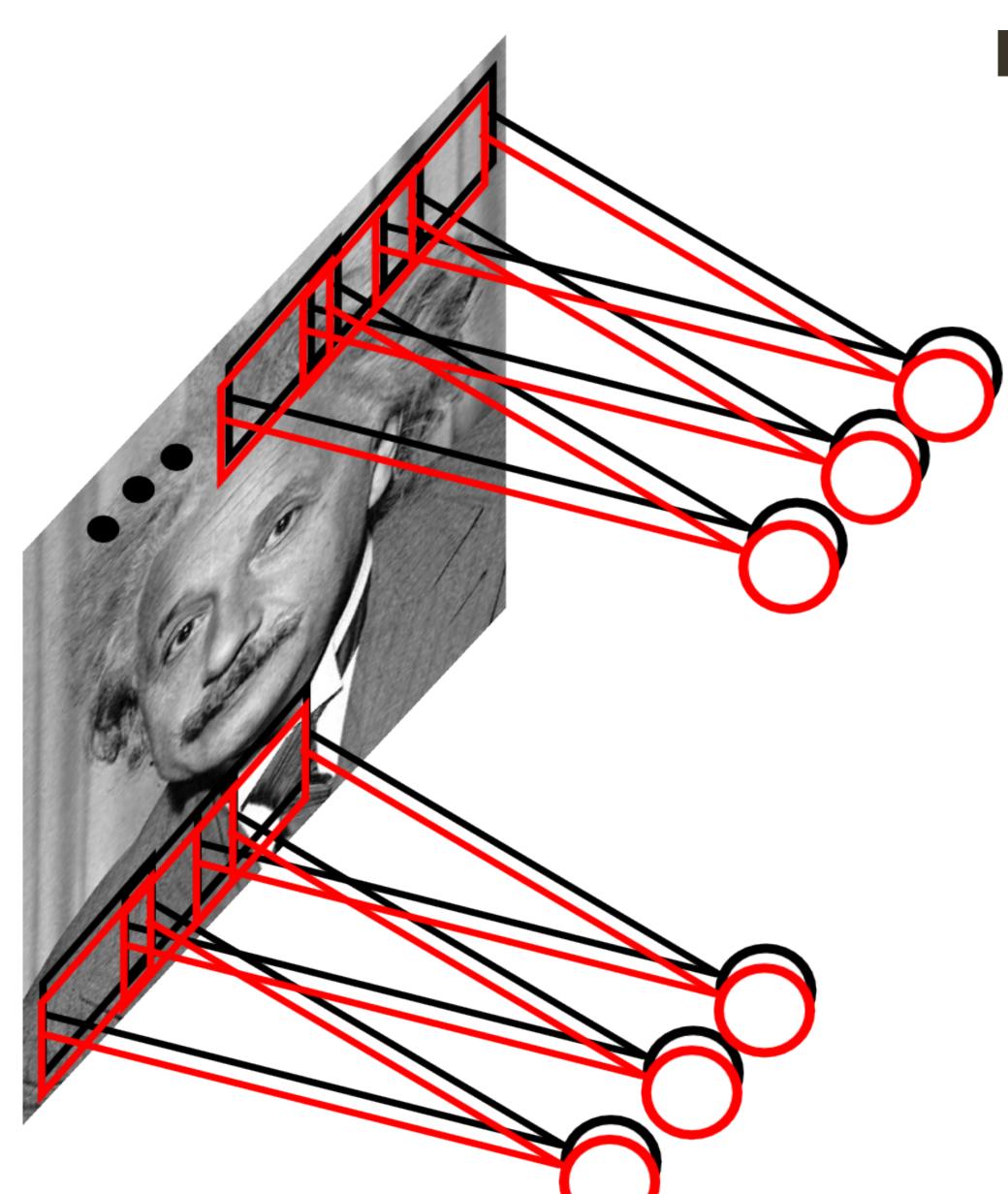








$$\star \begin{bmatrix} 0.11 & 0.11 & 0.11 \\ 0.11 & 0.11 & 0.11 \\ 0.11 & 0.11 & 0.11 \end{bmatrix} \longrightarrow$$



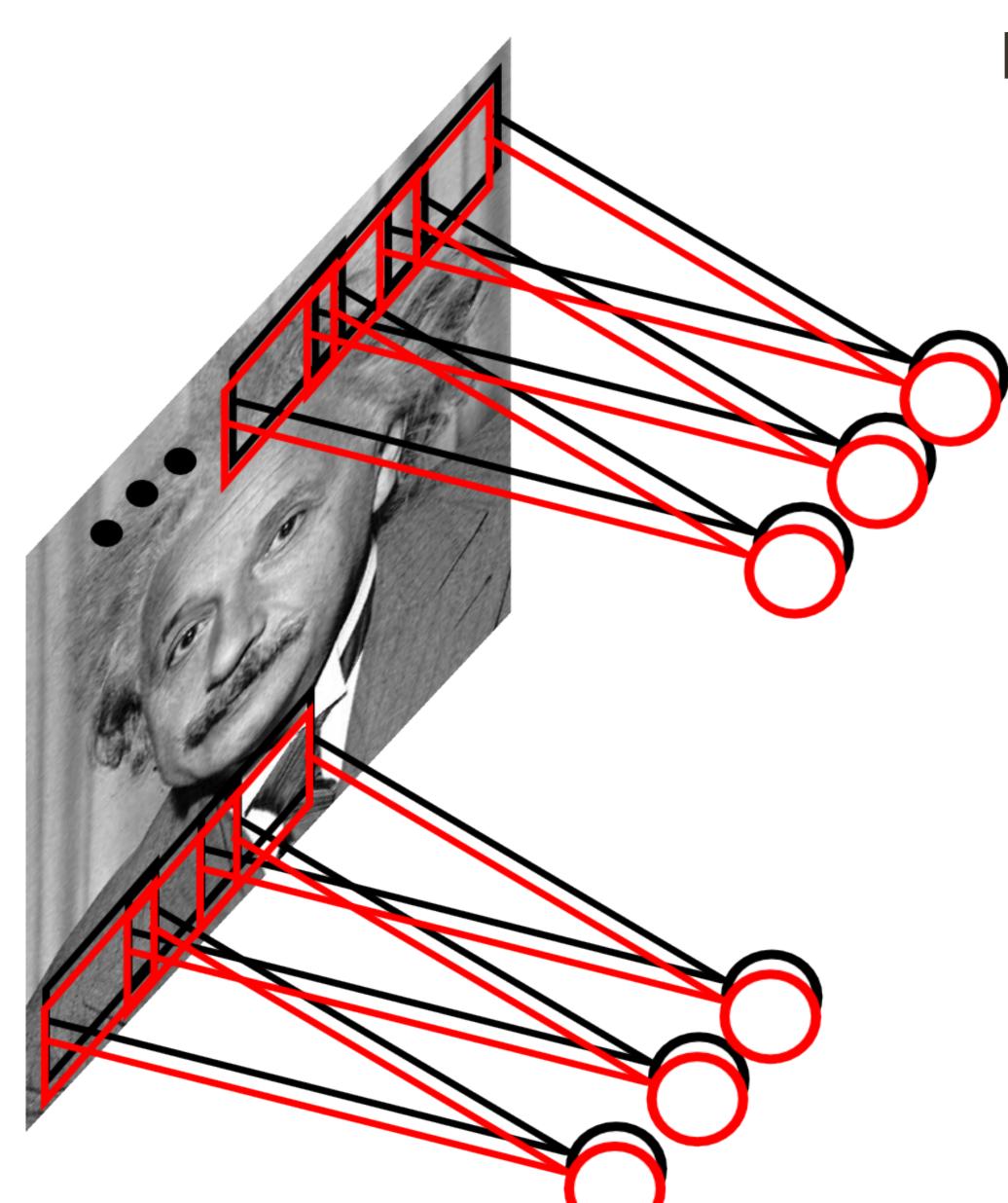
Example: 200 x 200 image (small)

x 40K hidden units

Filter size: 10 x 10

of filters: 20

Learn multiple filters



Example: 200 x 200 image (small)

x 40K hidden units

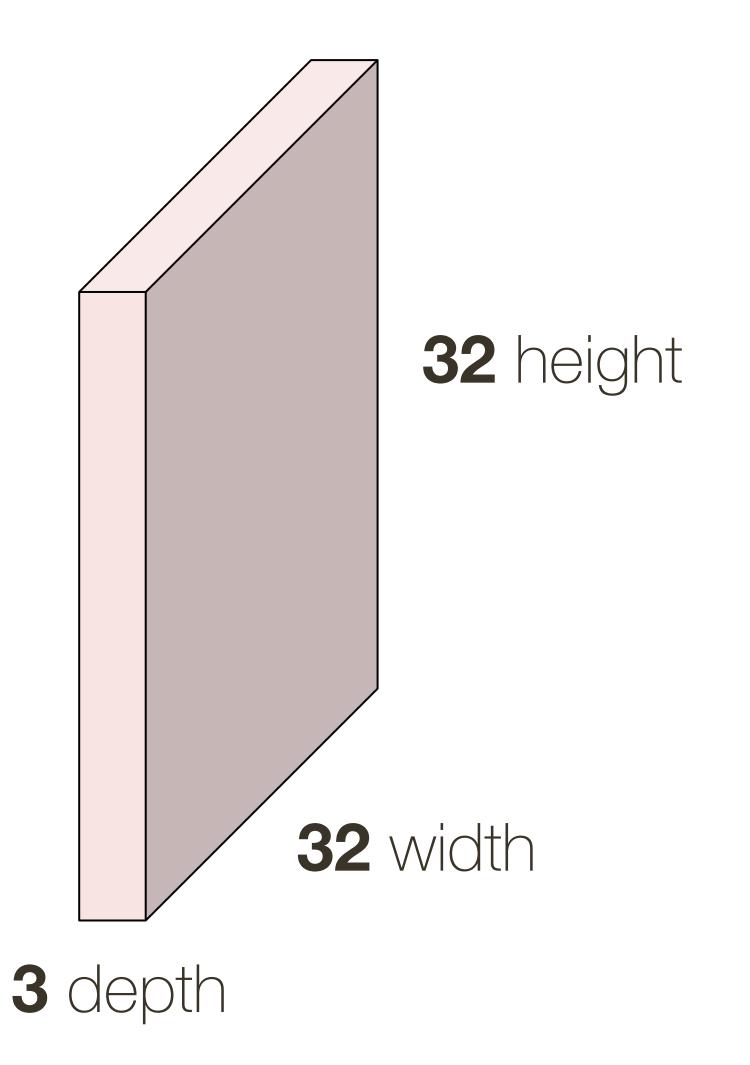
Filter size: 10 x 10

of filters: 20

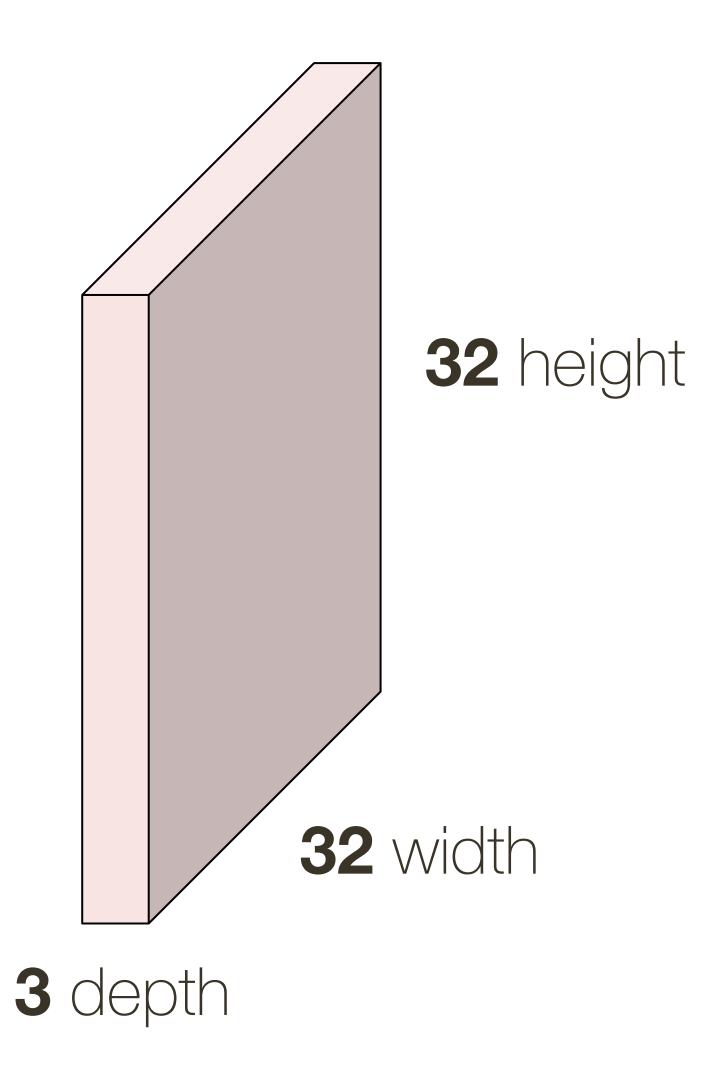
= 2000 parameters

Learn multiple filters

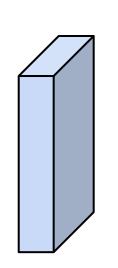
32 x 32 x 3 image (note the image preserves spatial structure)



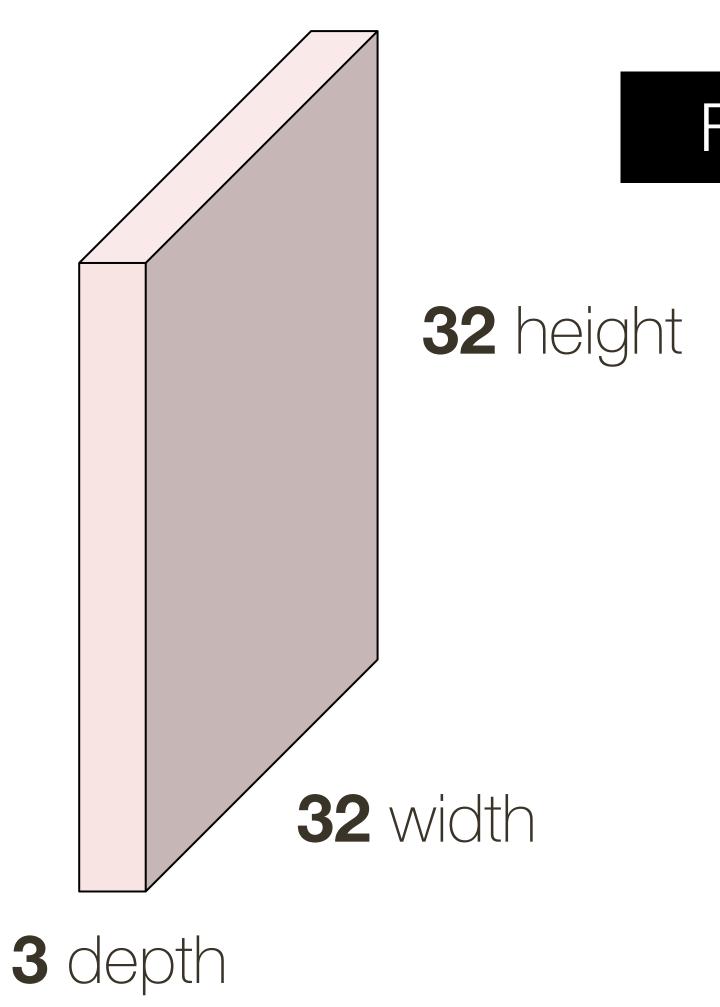
32 x 32 x 3 image



5 x 5 x 3 filter

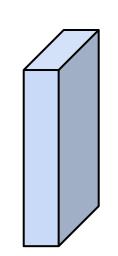


Convolve the filter with the image (i.e., "slide over the image spatially, computing dot products")



Filters always extend the full depth of the input volume

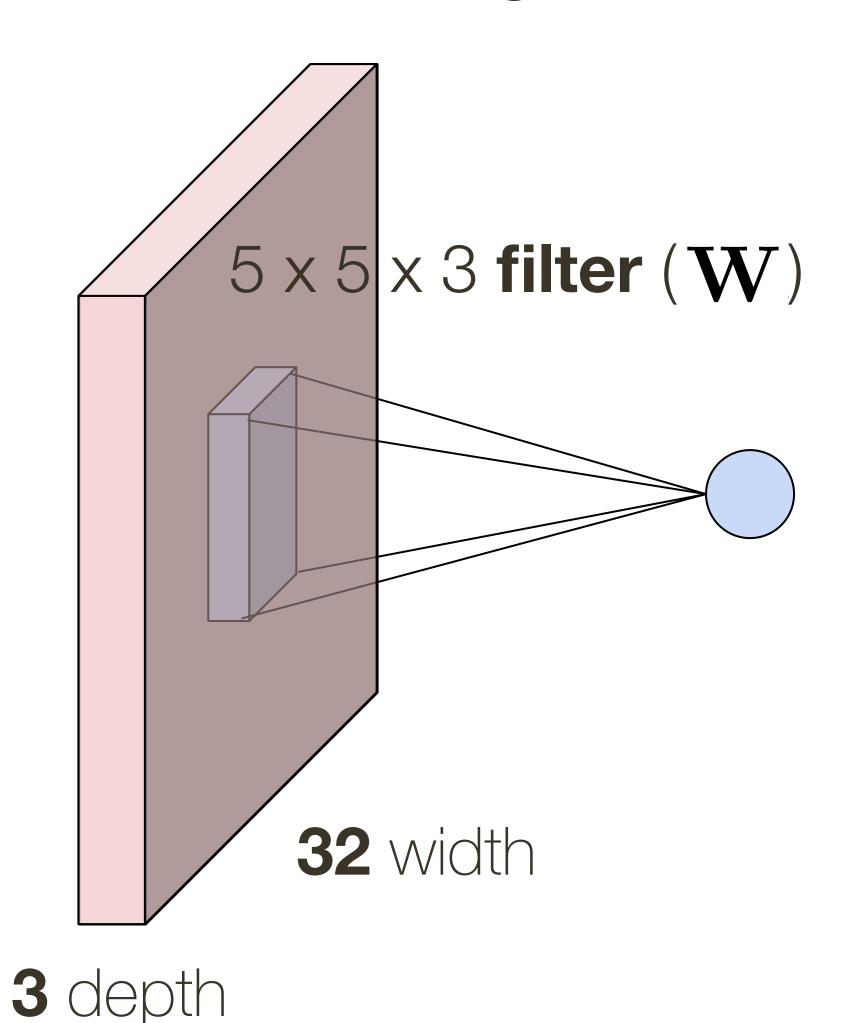
5 x 5 x 3 filter



Convolve the filter with the image (i.e., "slide over the image spatially, computing dot products"

^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

32 x 32 x 3 image

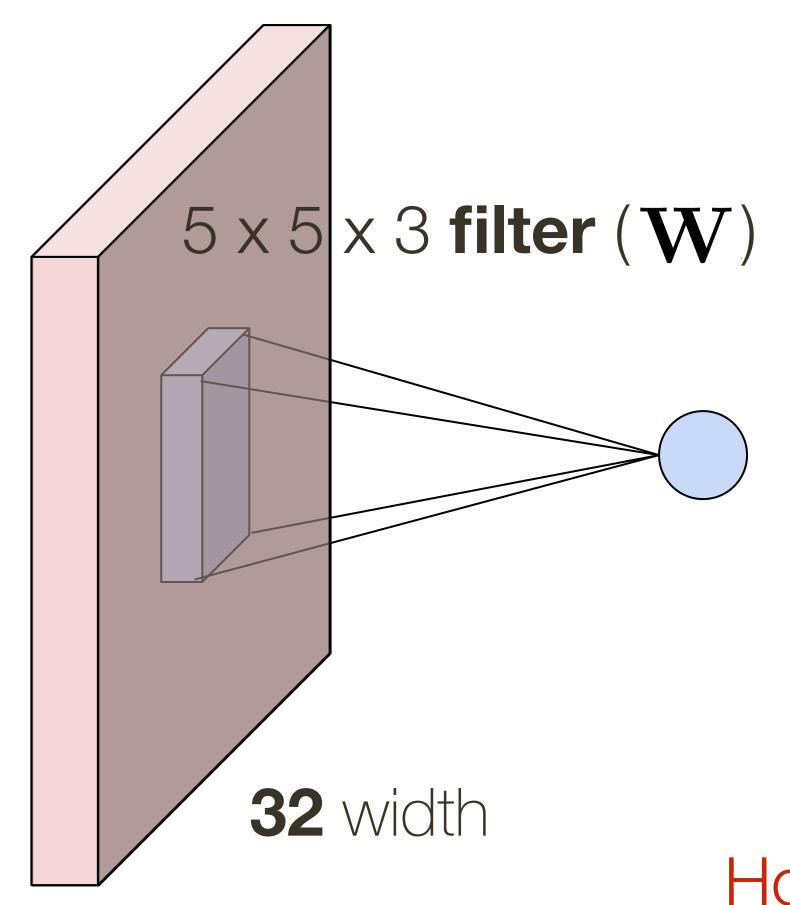


1 number: the result of taking a dot product between the filter and a small 5 x 5 x 3 part of the image

$$\mathbf{W}^T \mathbf{x} + b$$
, where $\mathbf{W}, \mathbf{x} \in \mathbb{R}^{75}$

^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

32 x 32 x 3 image



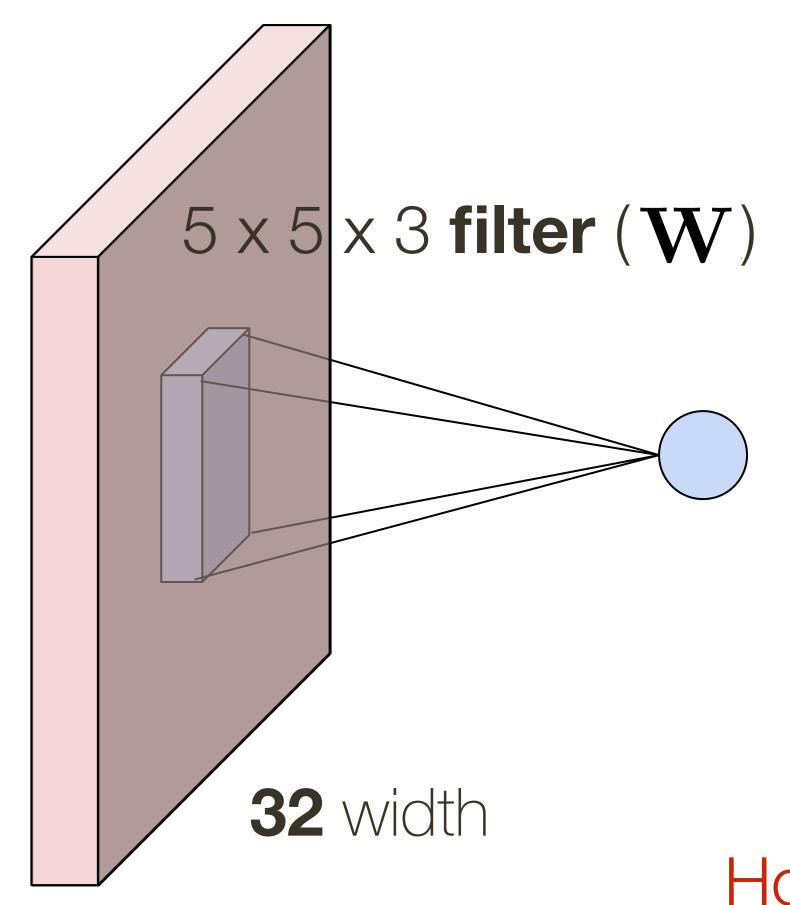
1 number: the result of taking a dot product between the filter and a small $5 \times 5 \times 3$ part of the image

$$\mathbf{W}^T \mathbf{x} + b$$
, where $\mathbf{W}, \mathbf{x} \in \mathbb{R}^{75}$

How many parameters does the layer have?

³ depth

32 x 32 x 3 image

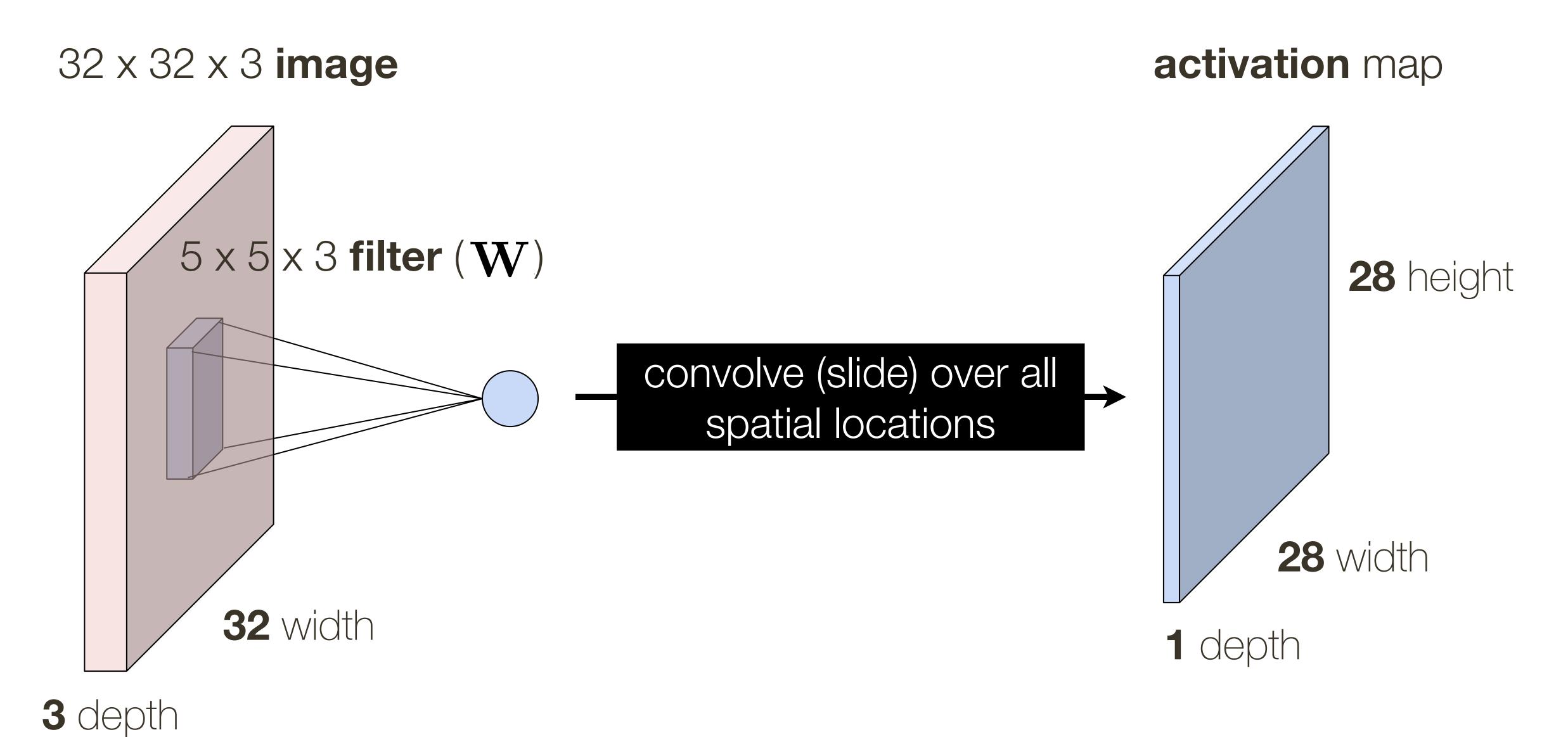


1 number: the result of taking a dot product between the filter and a small $5 \times 5 \times 3$ part of the image

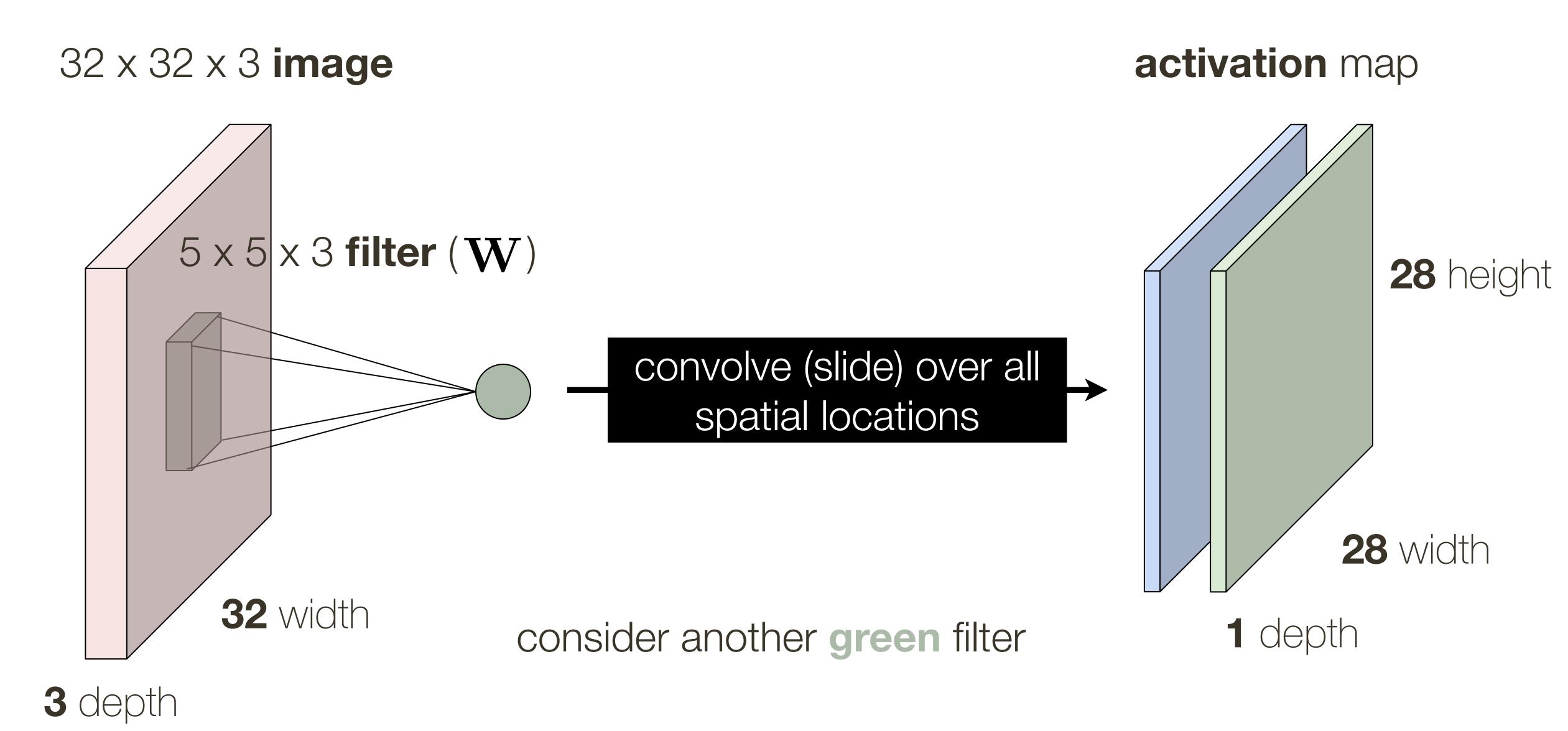
$$\mathbf{W}^T \mathbf{x} + b$$
, where $\mathbf{W}, \mathbf{x} \in \mathbb{R}^{75}$

How many parameters does the layer have? 76

3 depth

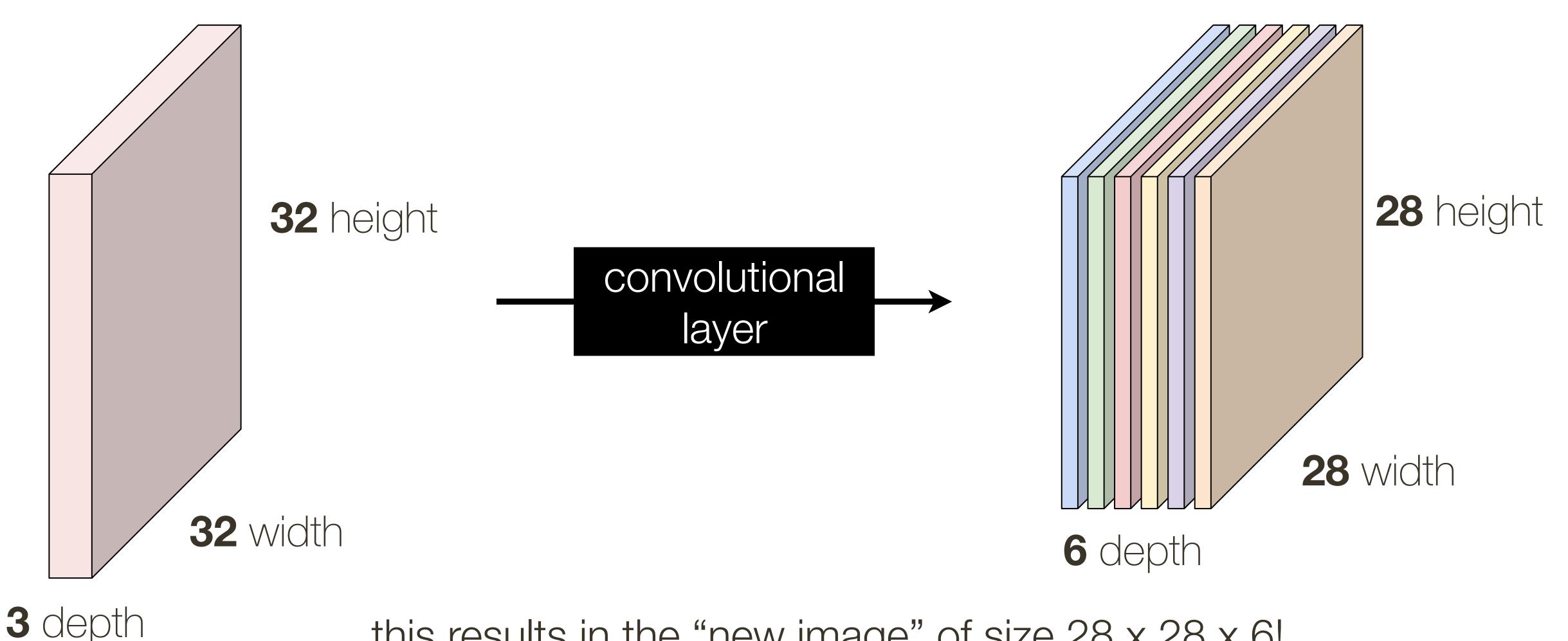


^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

If we have 6 5x5 filter, we'll get 6 separate activation maps: activation map



this results in the "new image" of size 28 x 28 x 6!

The number of neurons in a layer is determined by depth and stride parameter

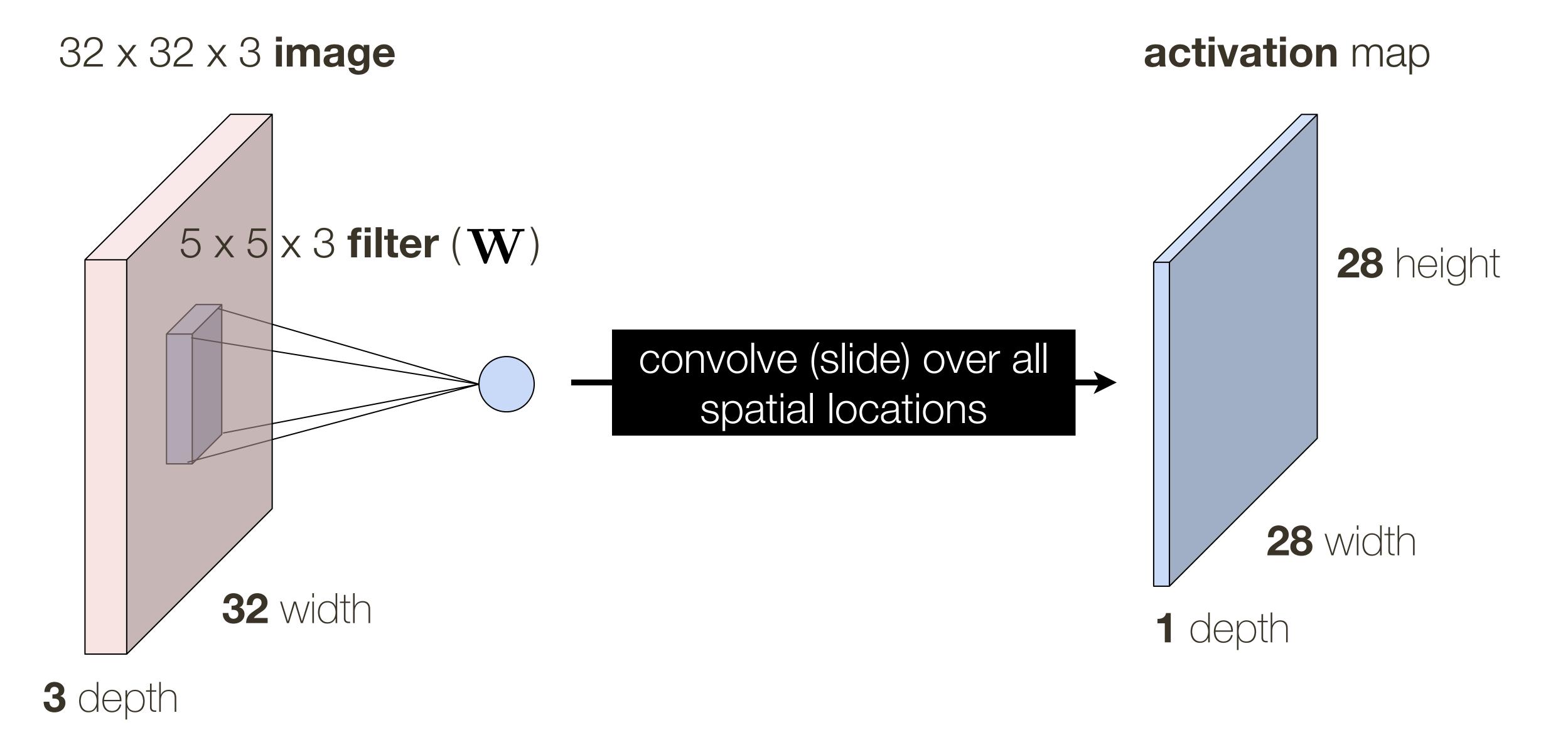
also affected by zero-padding

Depth: Controls number of neurons that connect to the same region of the input layer

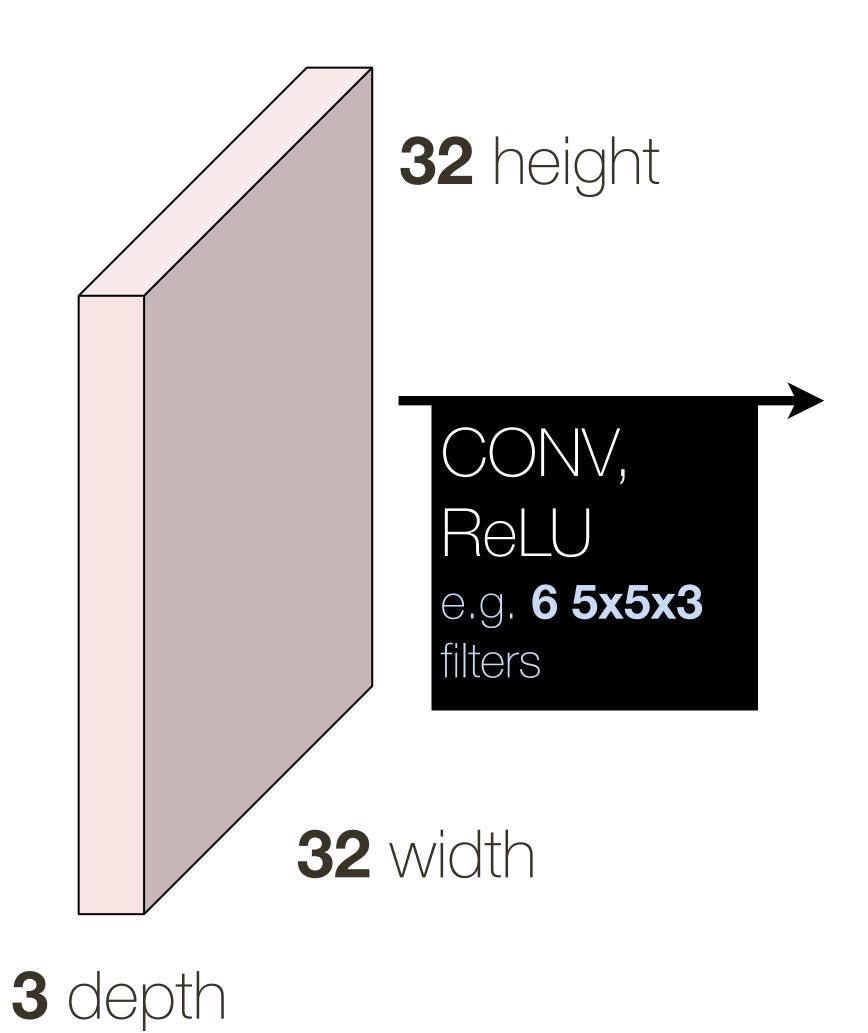
— a set of neurons connected to the same region is called a depth column

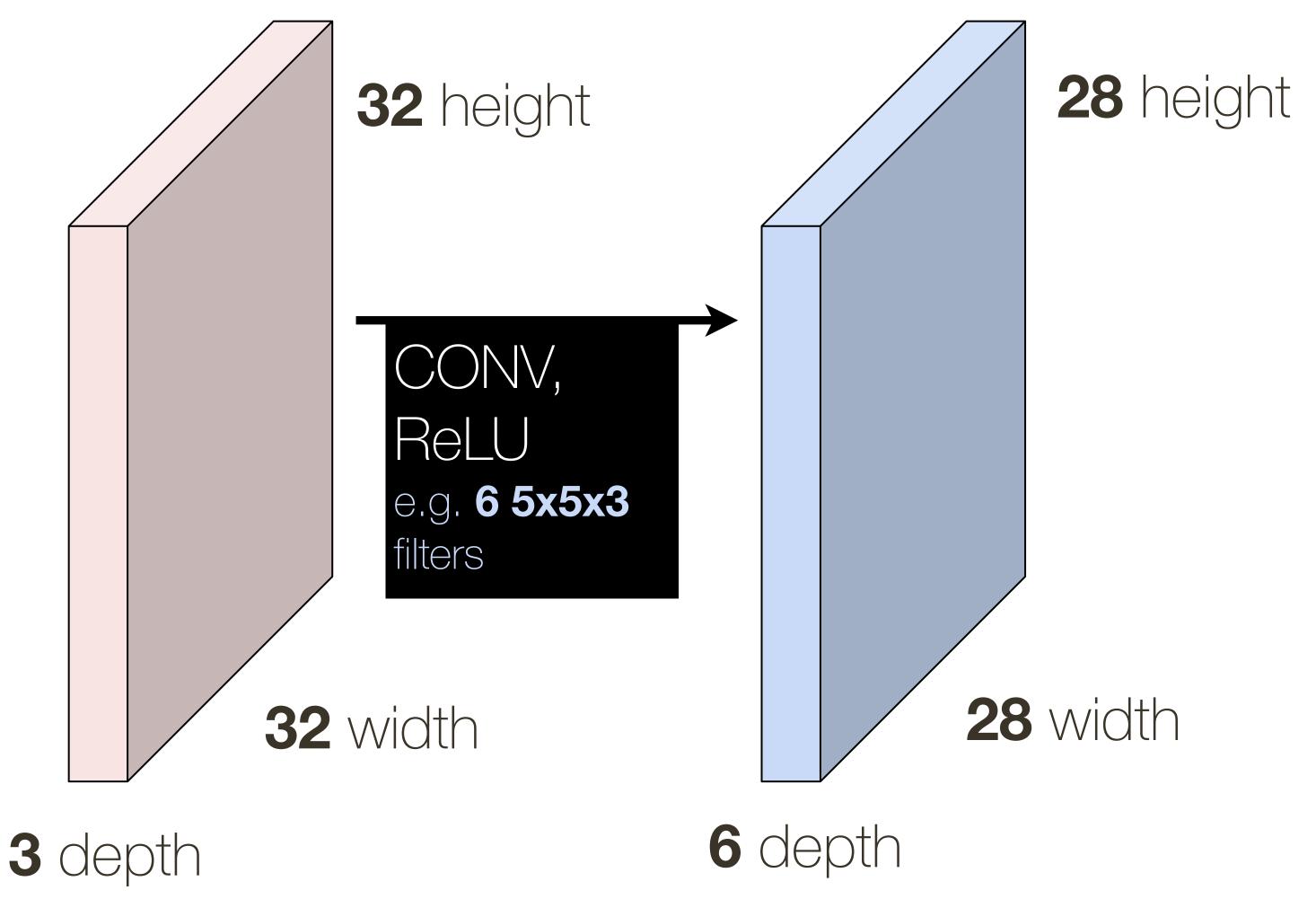
Stride: Controls spatial density. How far apart are depth columns?

Convolutional Layer: Closer Look at Spatial Dimensions

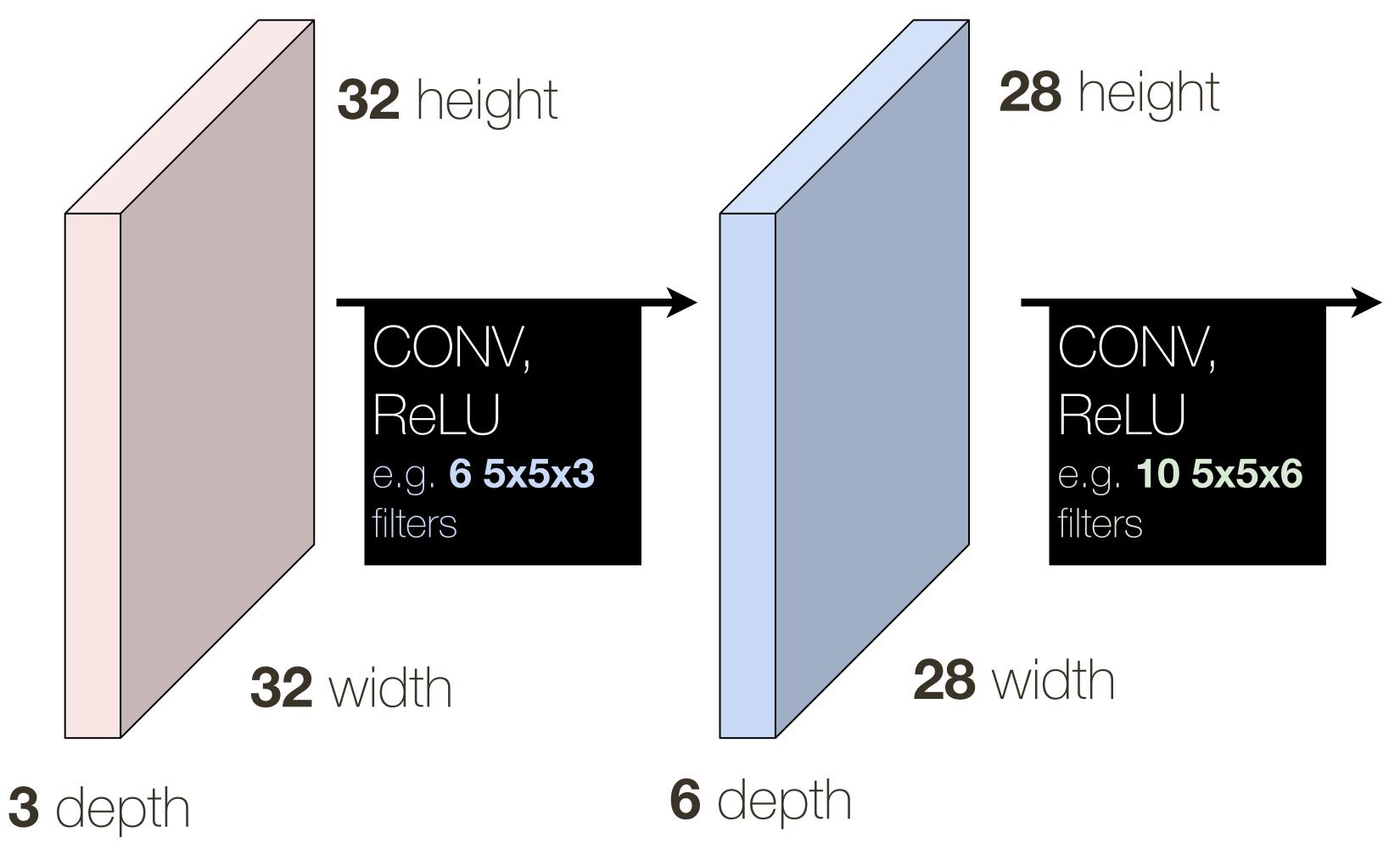


^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

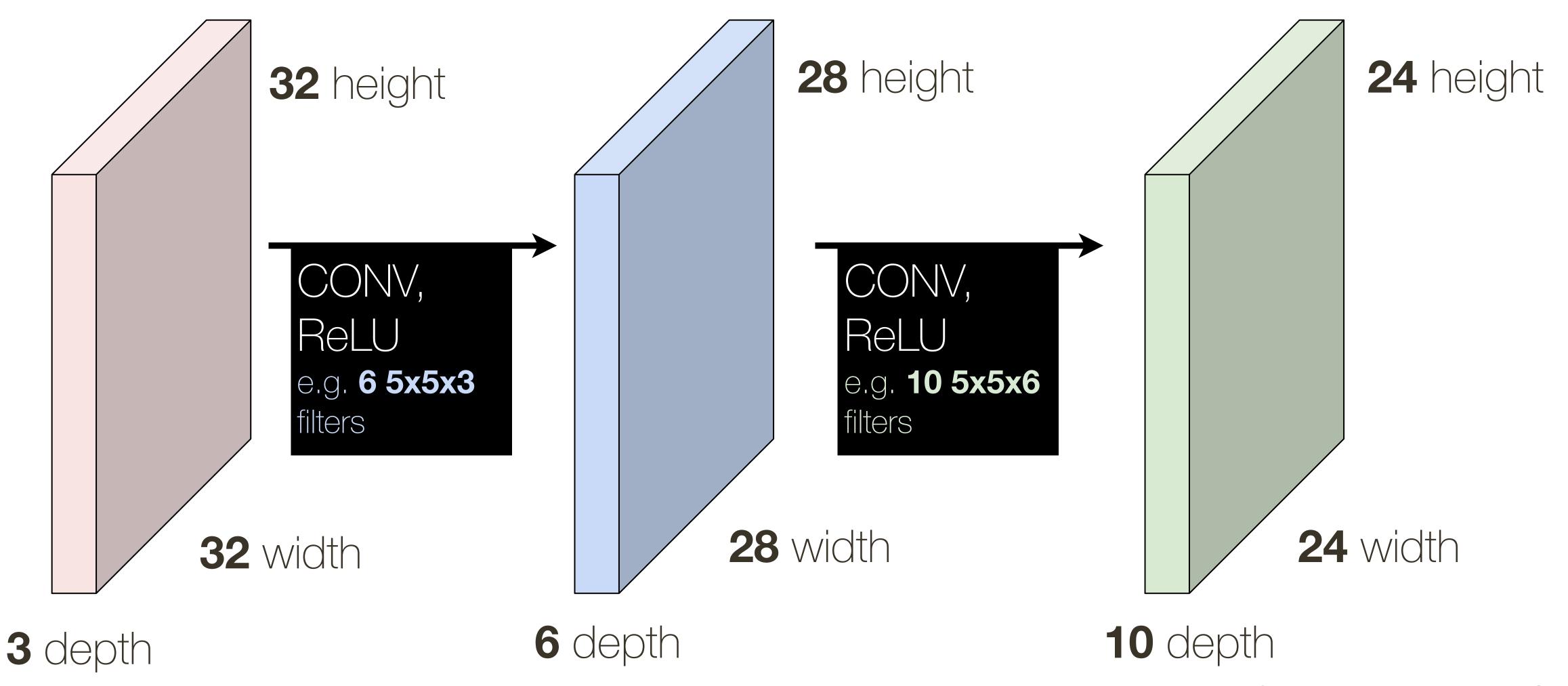




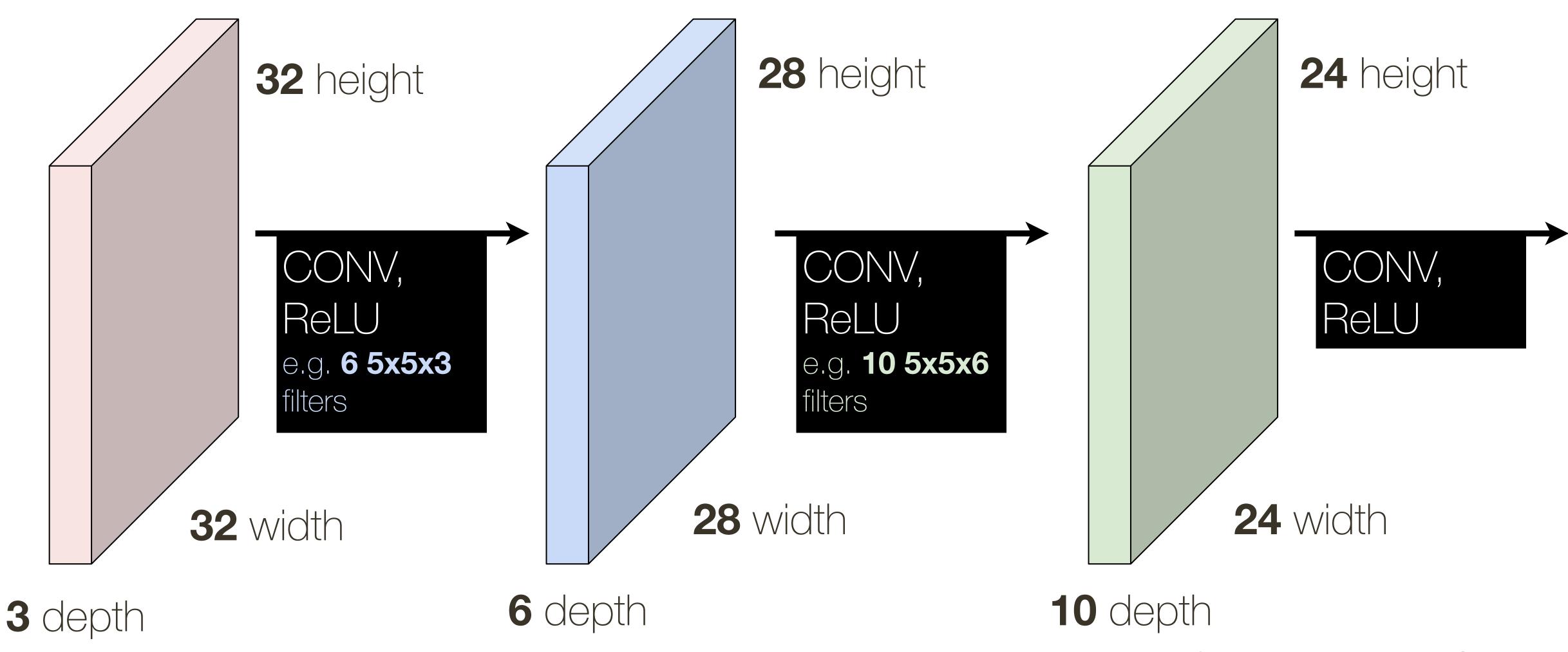
^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

With padding we can achieve no shrinking (32 -> 28 -> 24); shrinking quickly (which happens with larger filters) doesn't work well in practice



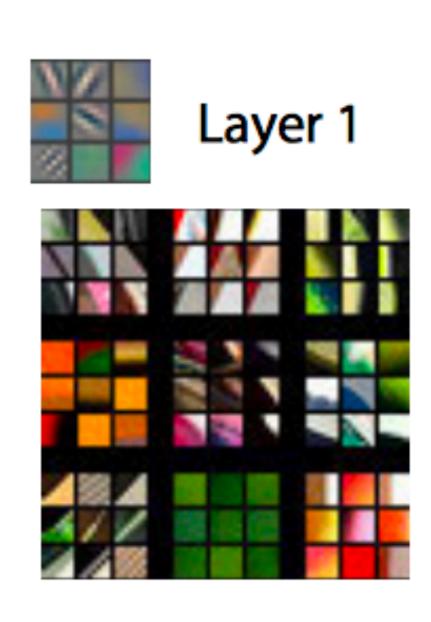
^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

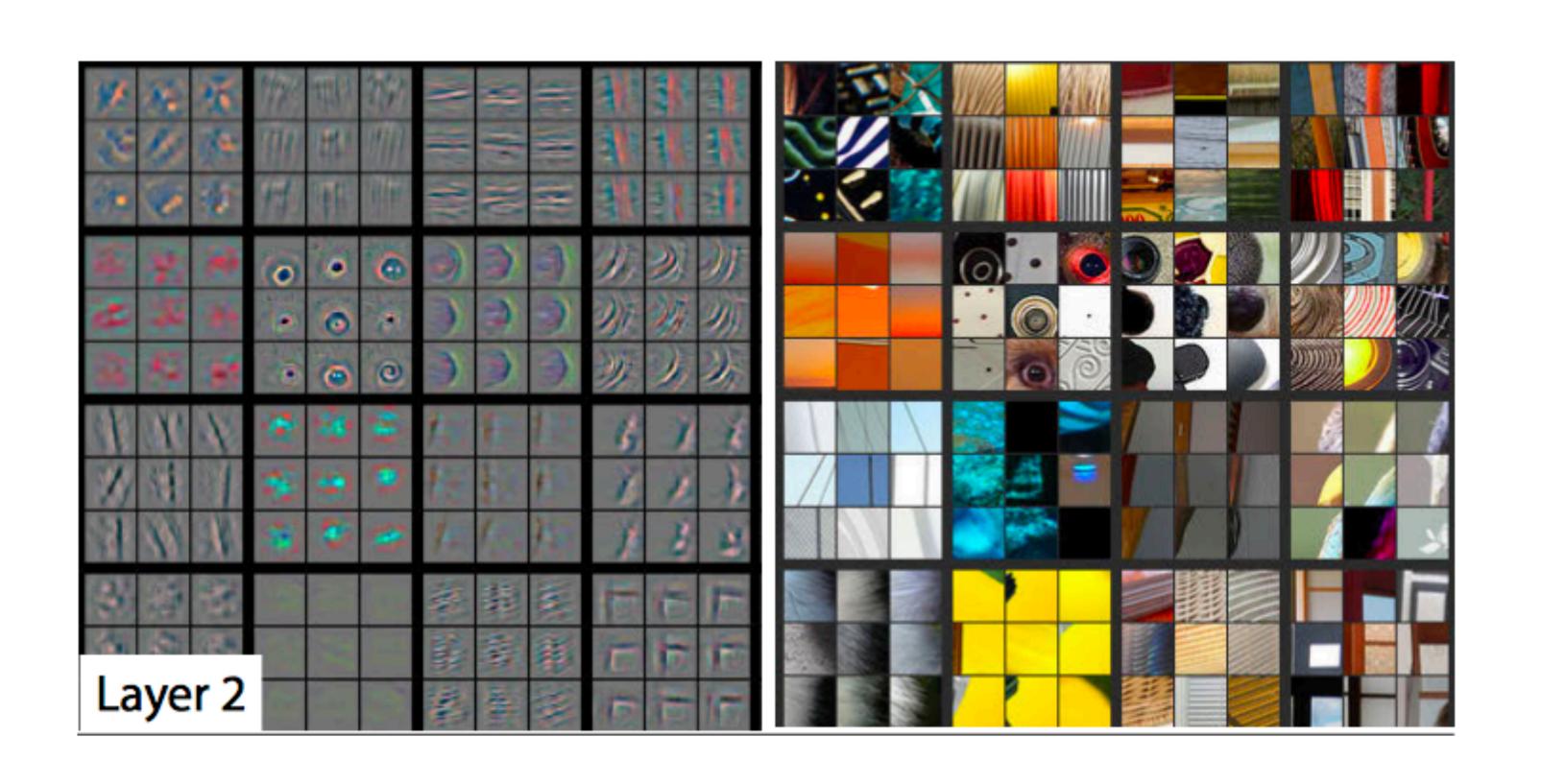
Convolutional neural networks can be seen as learning a hierarchy of filters.

As we go deeper in the network, filters learn and respond to increasingly specialized structures

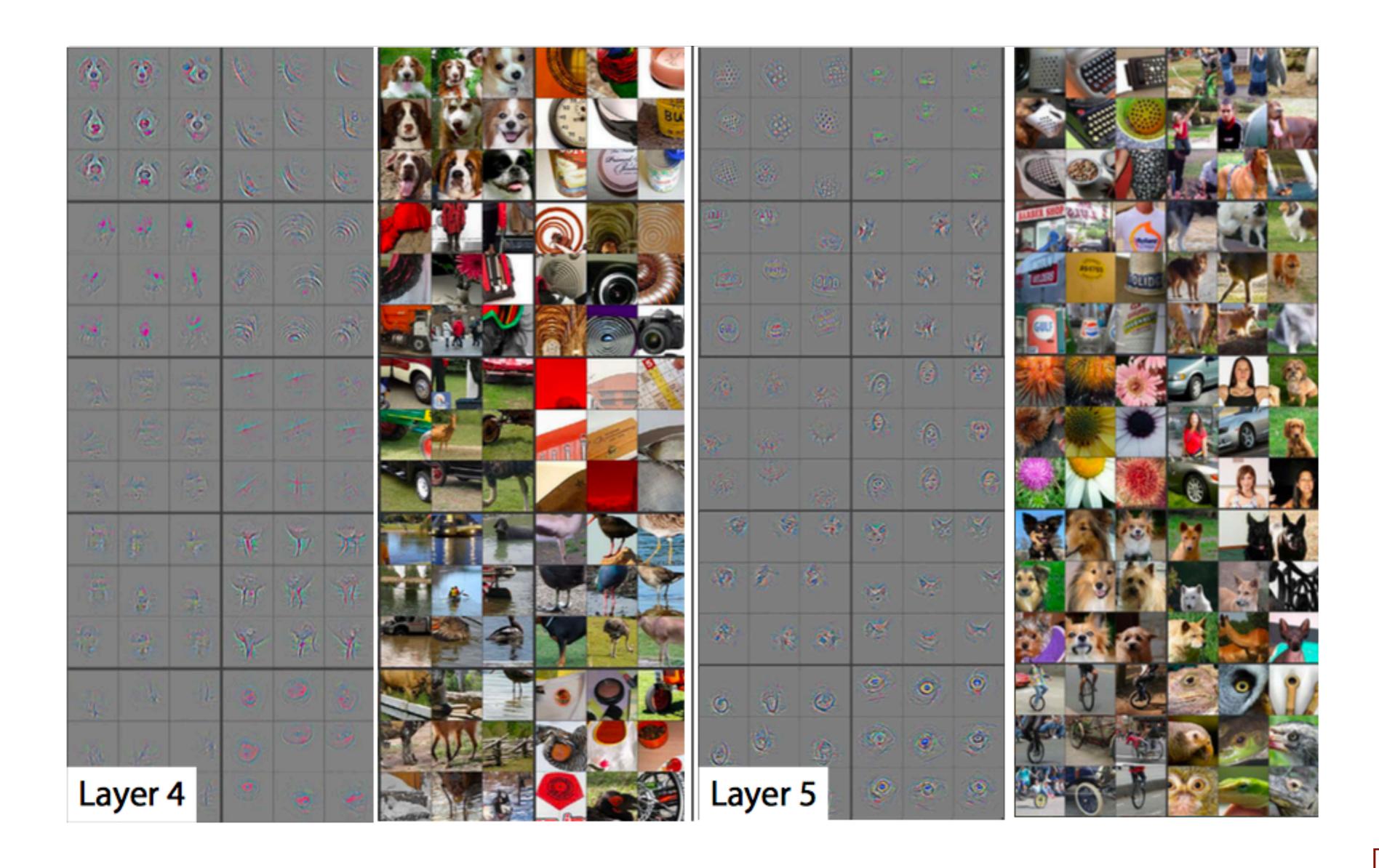
— The first layers may contain simple orientation filters, middle layers may respond to common substructures, and final layers may respond to entire objects

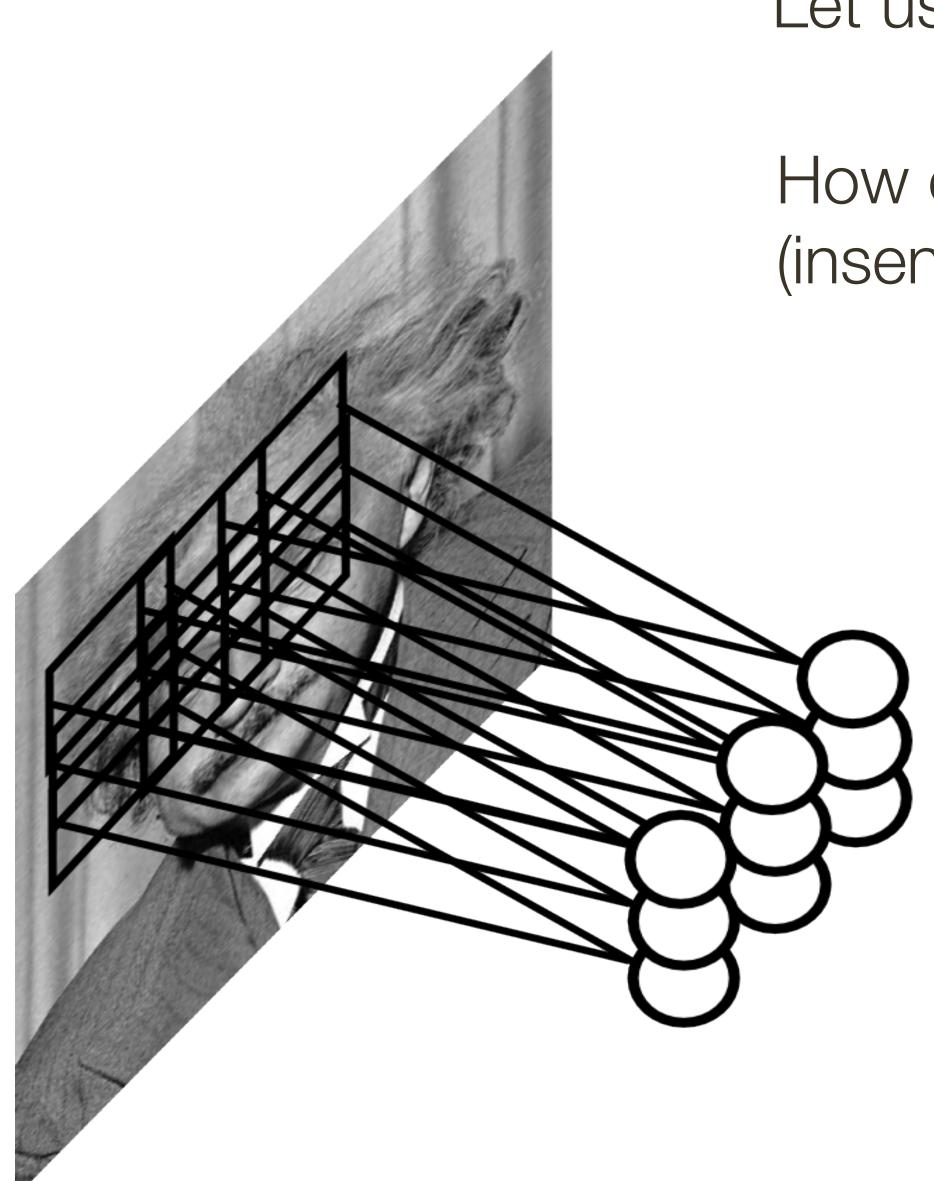
What filters do networks learn?





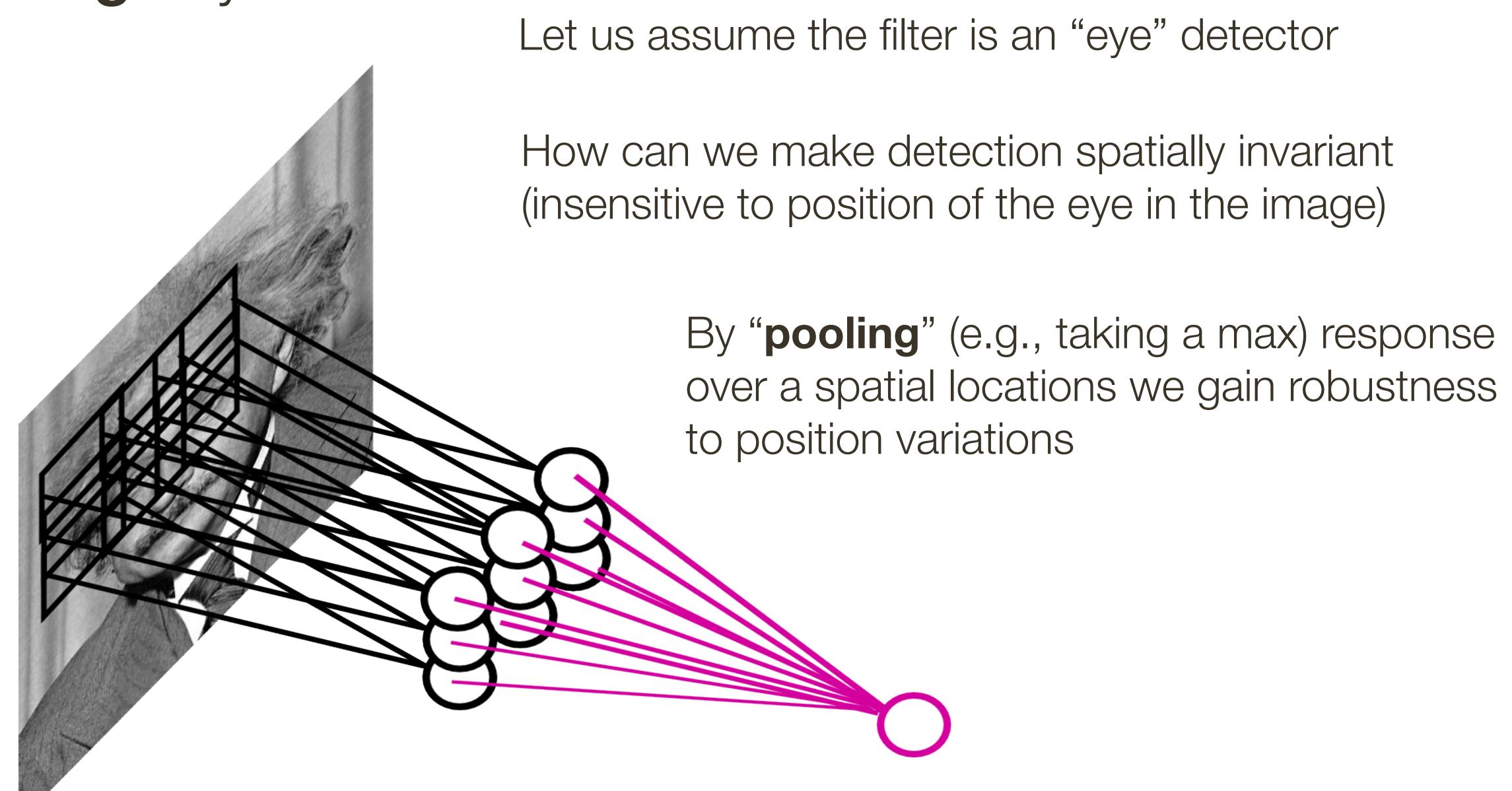
What filters do networks learn?



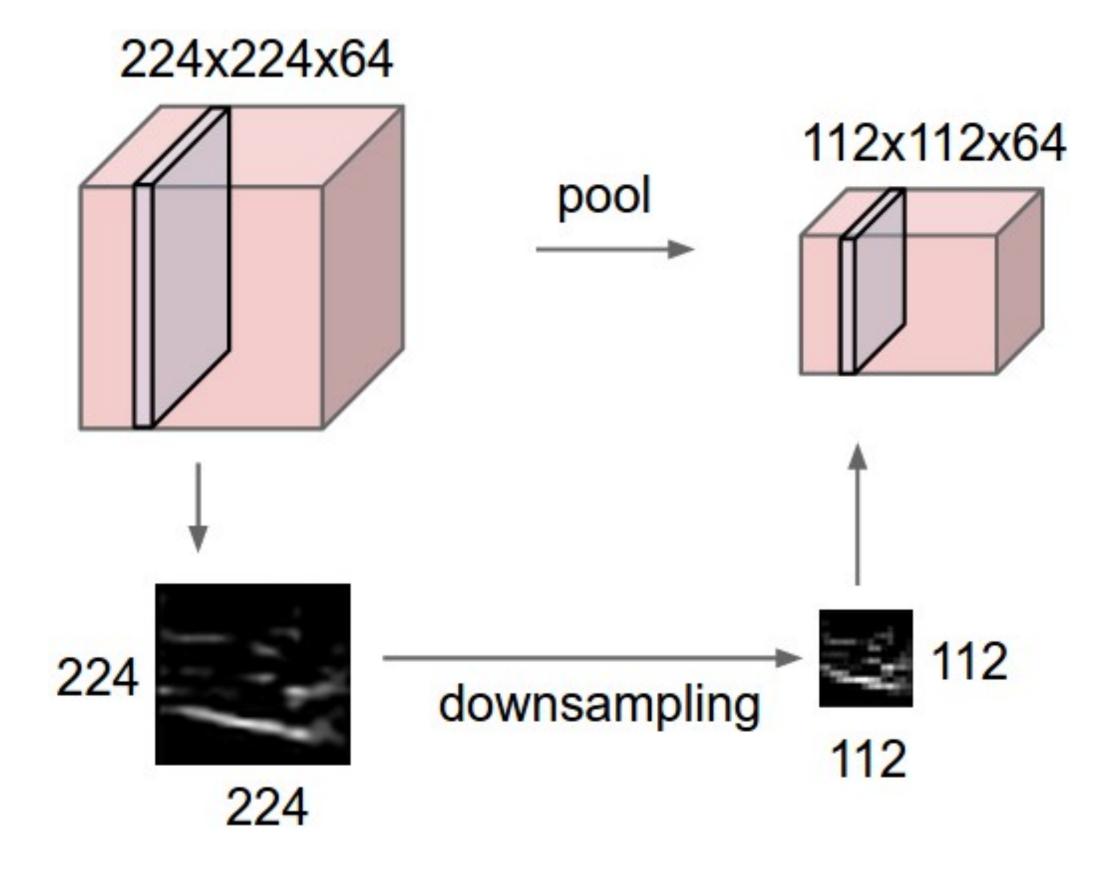


Let us assume the filter is an "eye" detector

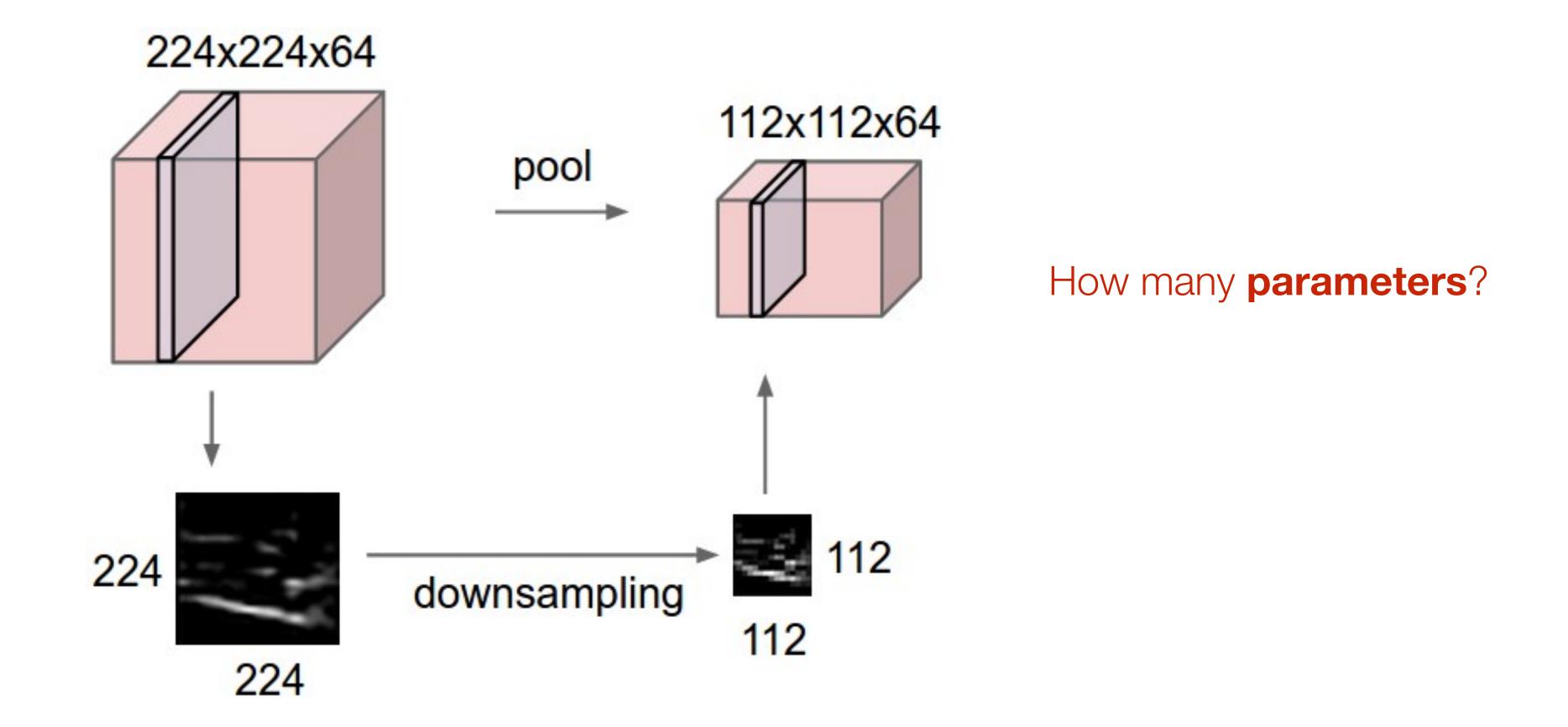
How can we make detection spatially invariant (insensitive to position of the eye in the image)



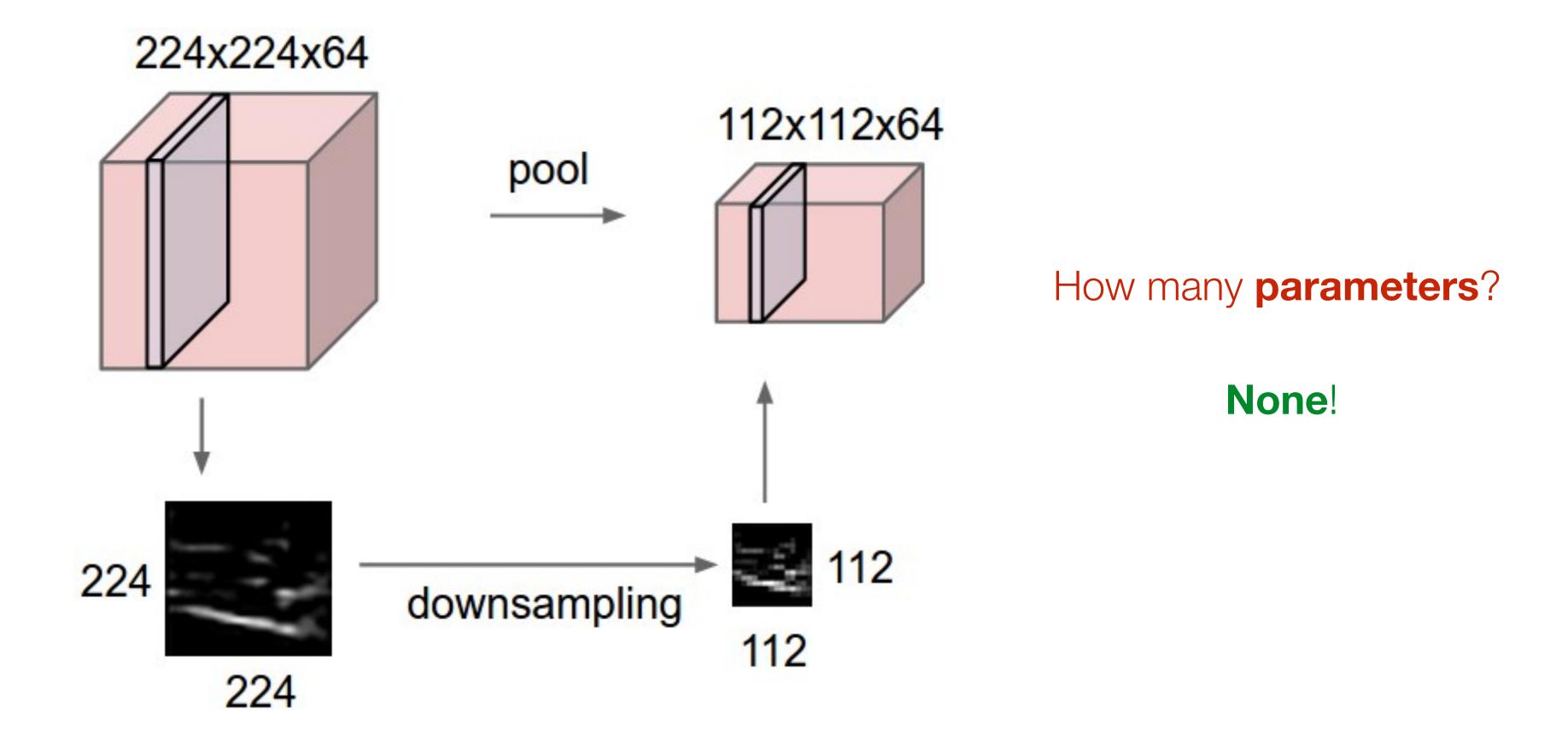
- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently



- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently

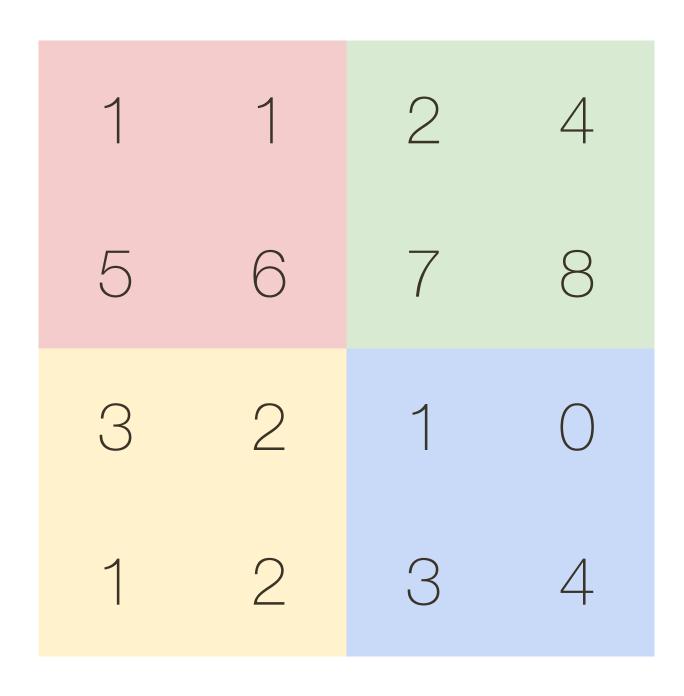


- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently



Max Pooling

activation map

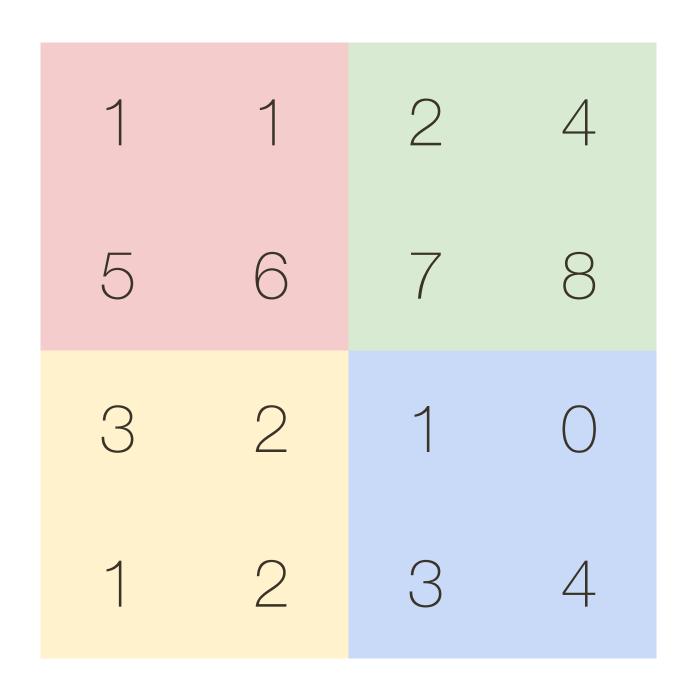


max pool with 2 x 2 filter and stride of 2

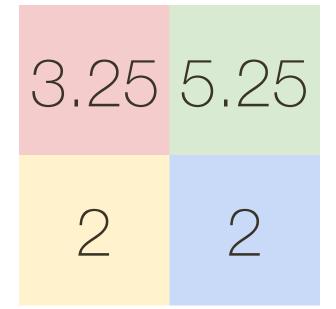


Average Pooling

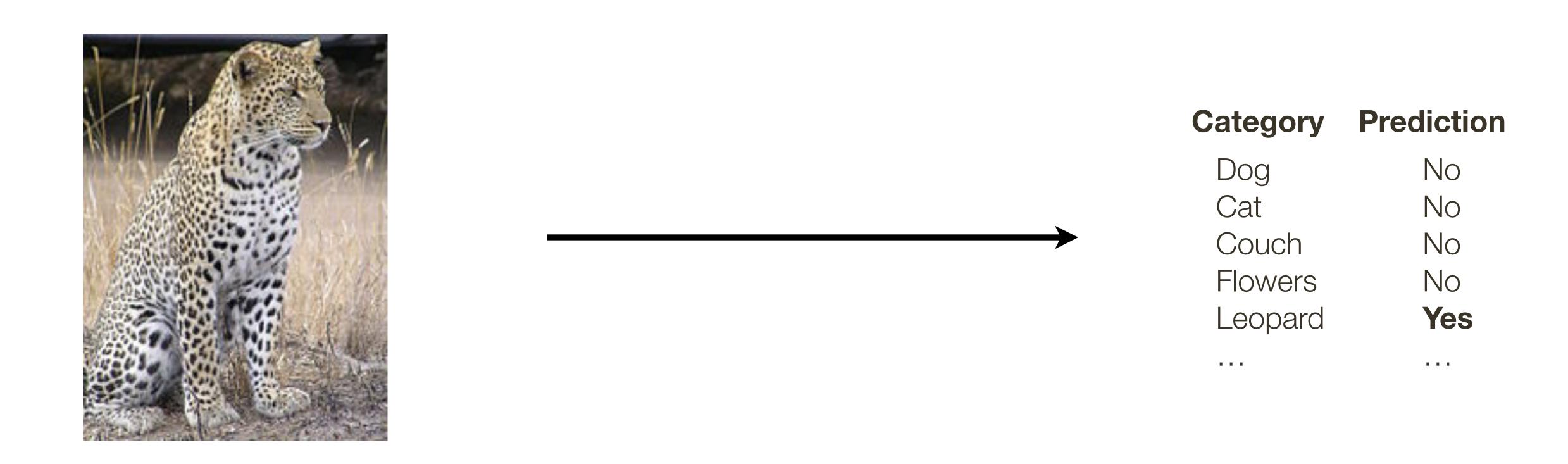
activation map



avg pool with 2 x 2 filter and stride of 2

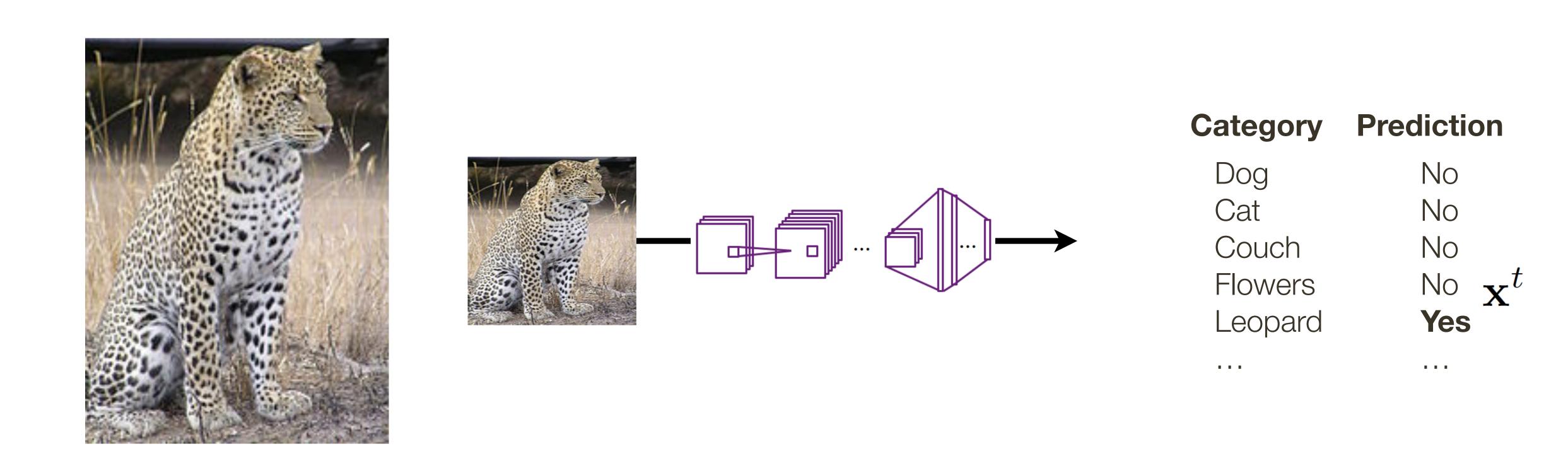


Object Classification



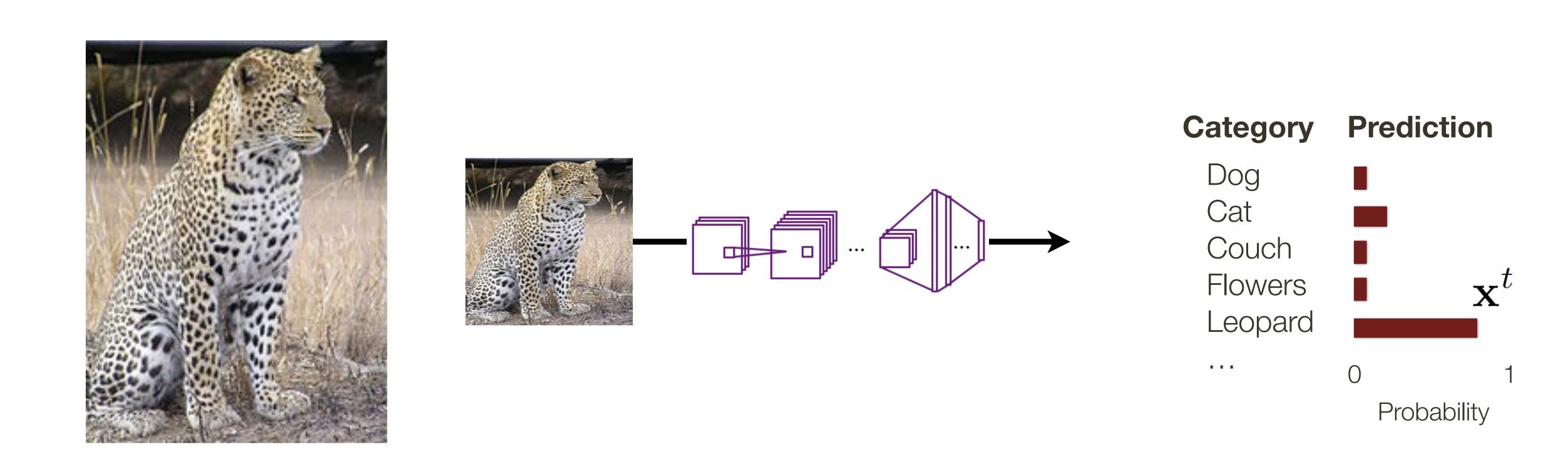
Problem: For each image predict which category it belongs to out of a fixed set

Object Classification



Problem: For each image predict which category it belongs to out of a fixed set

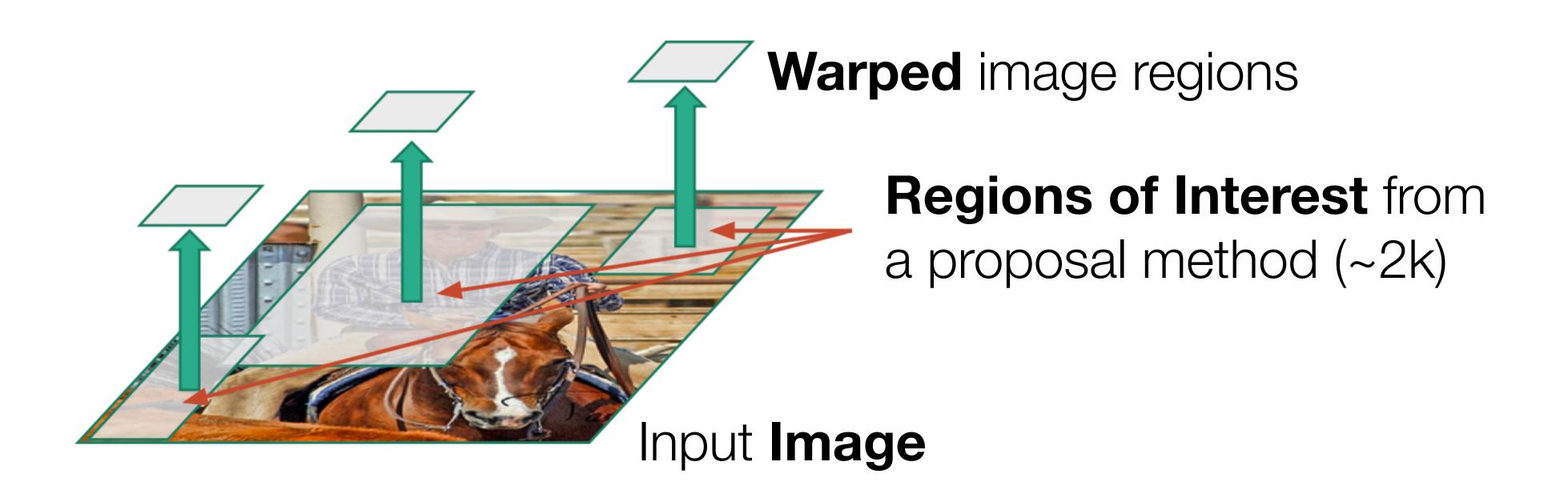
Object Classification

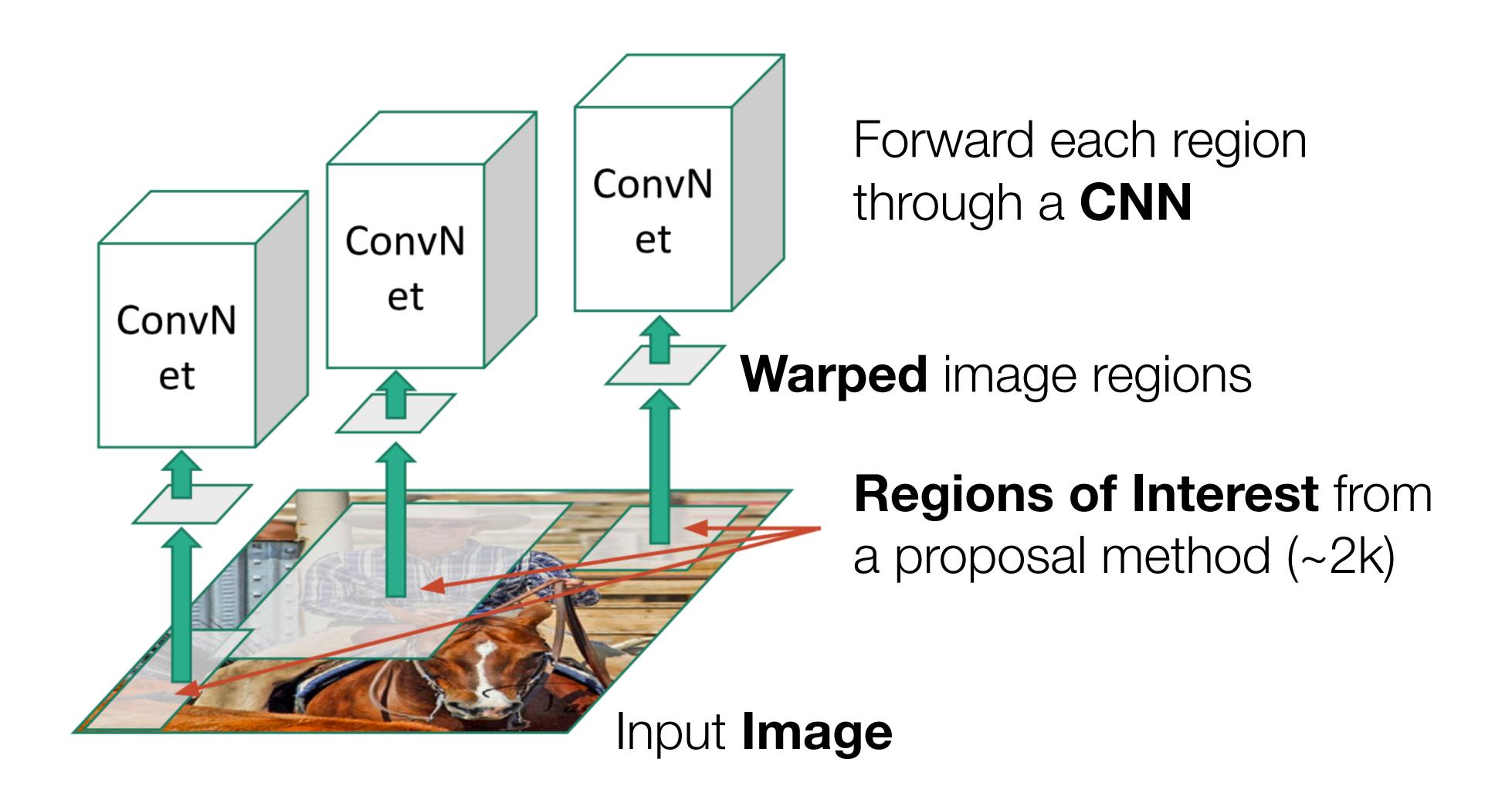


Problem: For each image predict which category it belongs to out of a fixed set

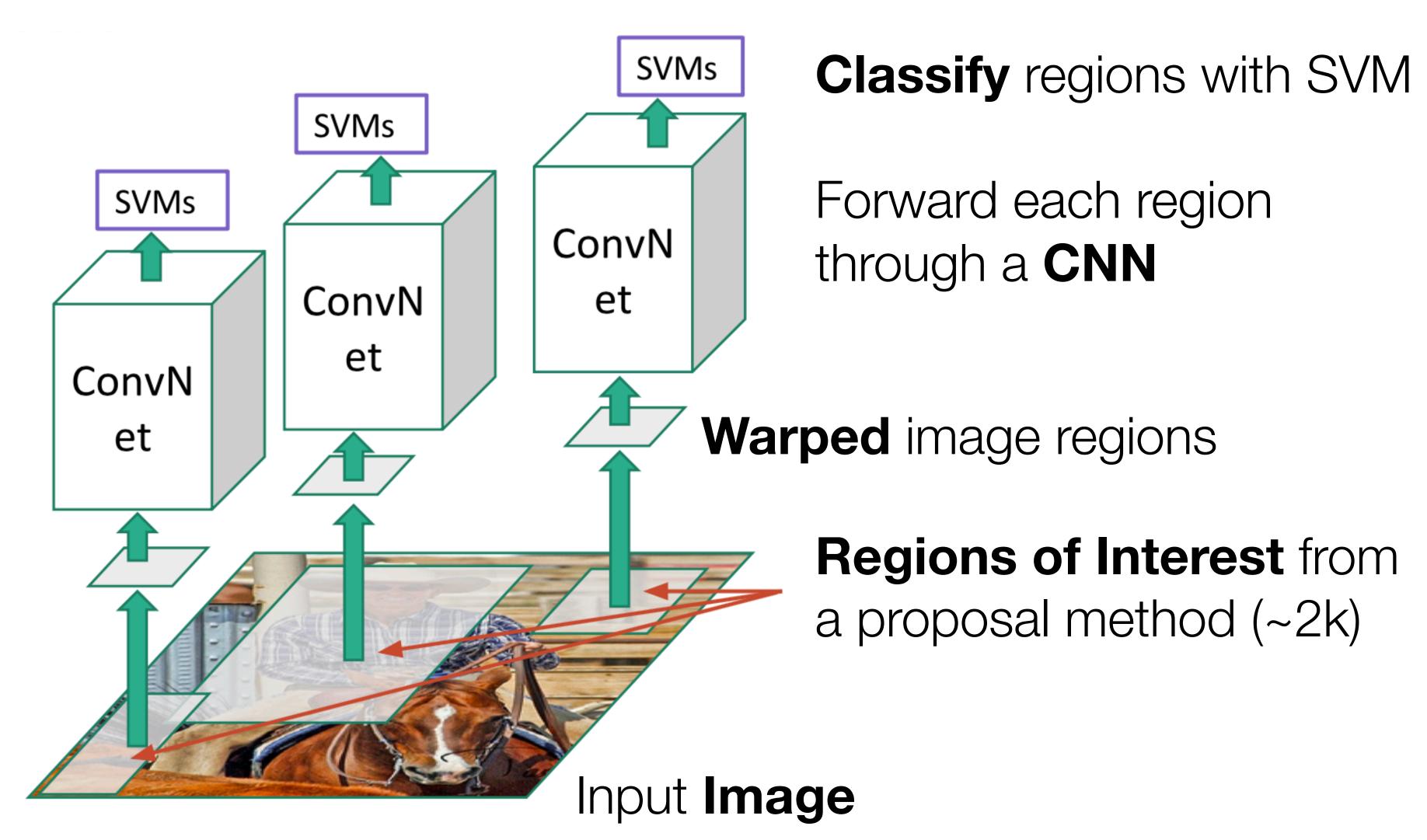
R-CNN

[Girshick et al, CVPR 2014]





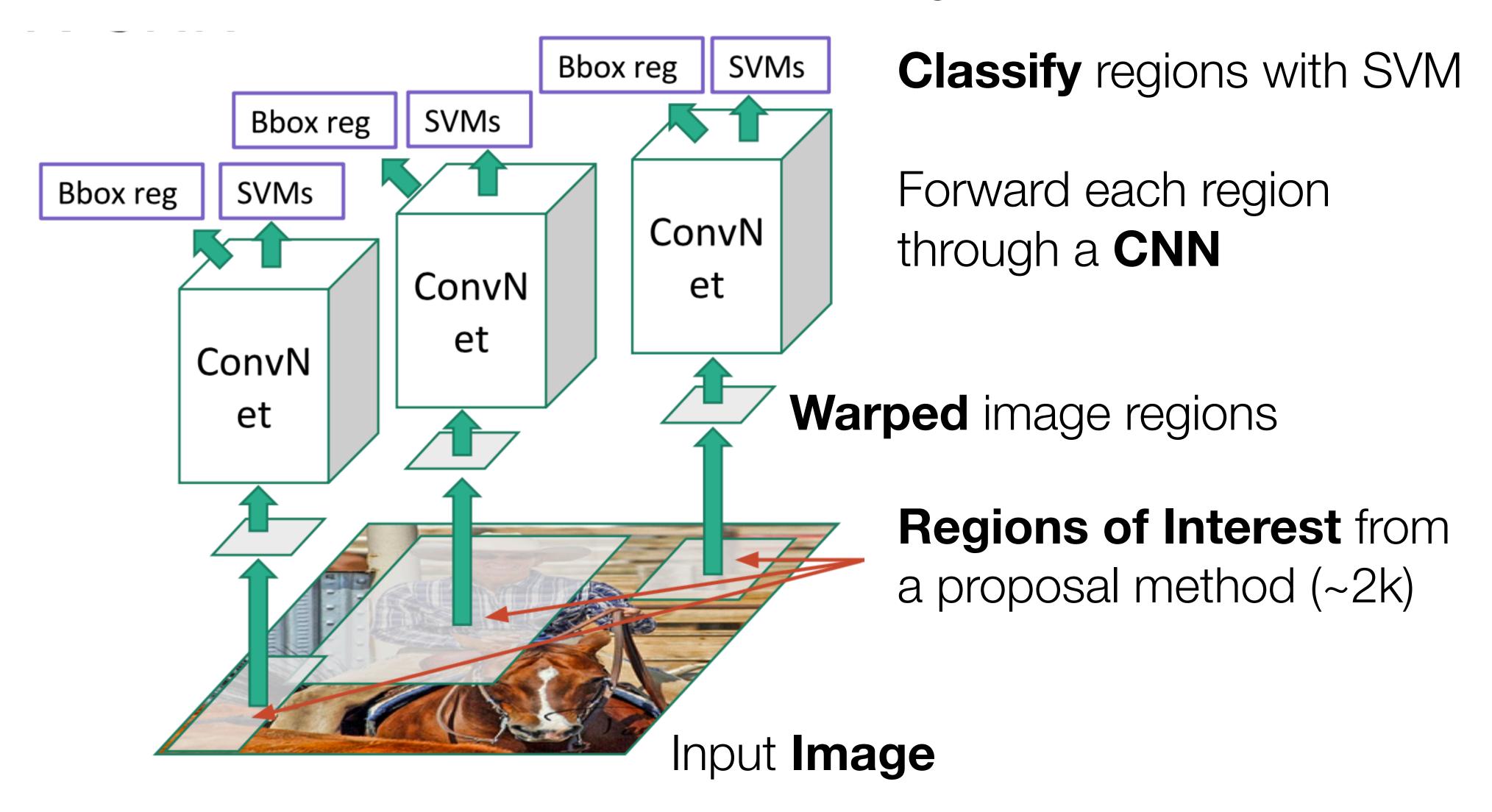
[Girshick et al, CVPR 2014]



R-CNN

Linear Regression for bounding box offsets

[Girshick et al, CVPR 2014]



R-CNN

R-CNN (Regions with CNN features) algorithm:

- Extract promising candidate regions using an object proposals algorithm
- Resize each proposal window to the size of the input layer of a trained convolutional neural network
- Input each resized image patch to the convolutional neural network

Implementation detail: Instead of using the classification scores of the network directly, the output of the final fully-connected layer can be used as an input feature to a trained support vector machine (SVM)

Summary

The parameters of a neural network are learned using **backpropagation**, which computes gradients via recursive application of the chain rule

A convolutional neural network assumes inputs are images, and constrains the network architecture to reduce the number of parameters

A convolutional layer applies a set of learnable filters

A pooling layer performs spatial downsampling

A fully-connected layer is the same as in a regular neural network

Convolutional neural networks can be seen as learning a hierarchy of filters

Please fill out Student Evaluations (on Canvas)