THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 21: Object Detection (cont.)



Menu for Today (march 26, 2020)

Topics:
— Detformable part models — Grouping
— Object Proposals — Image Segmentation

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 15.1, 15.2, 17.2
— Next Lecture: Deep Learning (N/A)

Reminders:

— Assignment 5. Scene Recognition with Bag of Words due March 31st

— Assignment 6: Deep Learning will be available March 31st
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Lecture 20: Re-cap — Boosting

Final classifieris
a combination of weak
classifiers

Figure credit: Paul Viola



Lecture 20: Re-cap — Sliding Window

Train an image classifier as described previously. ‘Slide” a fixed-sized
detection window across the image and evaluate the classifier on each
Wl ﬂdOW. Is there a car?

Image credit: KITTI Vision Benchmark
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Lecture 20: Re-cap — Sliding Window

Train an image classifier as described previously. ‘Slide” a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

This Is a search over location
— We have to search over scale as well
— We may also have to search over aspect ratios
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Example: Face Detection

The Viola-Jones face detector Is a classic sliding window detector that learns
both efficient features and a classifier

A Key strategy Is to use features that are fast to evaluate to reject most
windows early

The Viola-dones detector computes ‘rectangular’ tfeatures within each window
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Example: Face Detection

A ‘rectangular’ feature is computed by summing up pixel values within
rectangular regions and then differencing those region sums

a.k.a. Harr Wavelets

Figure credit: P. Viola and M. Jones, 2001
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Example: Face Detection

(x,,1) (x,,1) (x;,0)  (x,,0)  (x5,0)  (x,0)

Training Dataset: . e (x,
ouess: [ |14 WG W XE B e

Faces Not-faces

20 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

Evaluate a Harr Wavelet filter on each training example
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Example: Face Detection

Evaluate a Harr Wavelet filter on each training example
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We can build a simple classifier by just selecting a threshold on the filter response
(e.g. Harr filter response > 0.6 = face; Harr filter response <= 0.6 = not face)

Note: it is easy to find an optimal threshold. Just

requires linear search over training example responses.

00 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

Evaluate a Harr Wavelet filter on each training example
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Example: Face Detection

Evaluate a Harr Wavelet filter on each training example
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Example: Face Detection

Evaluate a Harr Wavelet filter on each training example
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' PR R

Faces Not-faces

Note: we can easily compare different Harr Wavelet features under their individual

best thresholds to see is the most informative (has highest classification)

o5 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection
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Many possible rectangular features (180,000+ were used in the original paper)
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Figure credit: B. Freeman
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Example: Face Detection

Evaluate a Harr Wavelet filter on each training example

() (o) (5,00 (x,,0) (3%5,0) (6, 0)

' PR R

Faces Not-faces

Note: we can easily compare different Harr Wavelet features under their individual

best thresholds to see is the most informative (has highest classification)

However, No one feature Is likely to be good enough

o7 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

Use boosting to both select the informative features and form the classifier.
Each round chooses a weak classifier that simply compares a single rectangular
feature against a threshold

Figure credit: P. Viola and M. Jones, 2001
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Example: Face Detection

1. Select best filter/threshold combination

W, .
.1

a. Normalize the weights | “ " W 1 if £.(x)> 6.

j=1""tJ hj(x):<

\O otherwise

b. For each feature, j £ :Ziw,. hj(x,.)—y,-

c. Choose the classifier, h, with the lowest error .

[

2. Re-weight examples
t+lz IBt G :Bt: gt

29 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

1. Select best filter/threshold combination

w

a. Normalize the weights
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We start with all sample weights = 1
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Example: Face Detection

1. Select best filter/threshold combination

W, .

.1 (
Z}:] tsj

Wt,i
n
W

a. Normalize the weights 1 if £.(x)> 6.

\O otherwise

h(x) =+

b. For each feature, j £ =Ziwi hj(xl-)—y,-

weighed sum of miss-classified

training examples

Note: the second term is O/1
— O predicted label and true label are same
— 1 predicted label and true label are different (error)

31 Image Credit: loannis (Yannis) Gkioulekas (CMU)
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Example: Face Detection

Case 1: Classification for the sample i is correct
Wit14 — Wi o7

Case 2: Classification for the sample i is incorrect

Witl: — Wt

2. Re-weight examples
t+lz IBt e P, = o

34 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection

Case 1: Classification for the sample i is correct
Wit14 — Wi o7

Case 2: Classification for the sample i is incorrect

Witl: — Wt

Note: the Beta Is < 1

2. Re-weight examples

\h (x;)—i] g,

t+l )1

35 Image Credit: loannis (Yannis) Gkioulekas (CMU)
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Example: Face Detection

Viola & Jones algorithm

3. I'he final strong classifier Is

| T | T |
1 a,h,(x)2 EZ _a,| o ,=log—

h(x) = p

0 otherwise

The final strong classifier is a weighted linear combination of the T weak
classifiers where the weights are inversely proportional to the training errors

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection Summary

Train cascade of
classifiers with

AdaBoost

Selected features,
thresholds, and weights

Non-faces

Figure credit: K. Grauman
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Example: Face Detection Summary

Train cascade of
classifiers with

AdaBoost

Main Issue: Efficiency

Selected features,
thresholds, and weights

Non-faces

Figure credit: K. Grauman
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Example: Face Detection

Observations:

— On average only 0.01% of all sub-windows are positive (faces)

— Equal computation time is spent on all sulb-window

— Shouldn’t we spend most time only on potentially positive sub-windows"?
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Example: Face Detection

Observations:

— On average only 0.01% of all sub-windows are positive (faces)

— Equal computation time is spent on all sub-window

— Shouldn’t we spend most time only on potentially positive sub-windows?

A simple 2-feature classifier can achieve almost 100% detection

rate (0% false negatives) with 50% false positive rate
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Example: Face Detection

Observations:

— On average only 0.01% of all sub-windows are positive (faces)

— Equal computation time is spent on all sub-window

— Shouldn’t we spend most time only on potentially positive sub-windows?

A simple 2-feature classifier can achieve almost 100% detection

rate (0% false negatives) with 50% false positive rate

Solution:

— A simple 2-feature classifier can act as a 1st layer of a series to filter out
most negative (clearly non-face) windows

— 2nd layer with 10 features can tackle “harder” negative-windows which
survived the 1st layer, and so on...
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Cascading Classifiers

T I T
IMAGE . ,
SUB-WINDOW @ * FACE
lp lF F

NON-FACE NON-FACE NON-FACE Figure credit: P. Viola

To make detection faster, features can be reordered by increasing complexity

of evaluation and the thresholds adjusted so that the early (simpler) tests have
few or no false negatives

Any window that Is rejected by early tests can be discarded quickly without
computing the other features

This Is referred to as a cascade architecture
43



Cascading Classifiers

50% 20% 2%
IMAGE » - »| 20 Features - FACE
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Figure credit: P. Viola

A classifier in the cascade Is not necessarily restricted to a single feature
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Example: Face Detection

Viola & Jones algorithm

3. I'he final strong classifier Is

| T | T |
1 a,h,(x)2 EZ _a,| o ,=log—

h(x) = p

0 otherwise

The final strong classifier is a weighted linear combination of the T weak
classifiers where the weights are inversely proportional to the training errors

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Face Detection Summary

Train cascade of
classifiers with

AdaBoost

Selected features,
thresholds, and weights

Non-faces

Figure credit: K. Grauman
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Hard Negative Mining

Randomly Select M; (K M™) A MINIBATCH

draw M~ samples with , N
samples highest f* scores ! |
Pool of
Negative
Samples
| Training
CNN

Pool of

Positive
Samples

Randomly
draw Mt
samples

Image From: Jamie Kang
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Example: Face Detection

Just for fun:

Compared against OpenCV using 4 Maar Cascades (dofault, alt, alt2, and ait_troe) © Adam Harvey / ahprojects com / ' \

"CV Dazzle, a project focused on finding fashionable ways to thwart facial-

recognition technology"”

Figure source: Wired, 2015
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Pedestrian Detection

The sliding window approach applies naturally to pedestrian detection because
pedestrians tend to take characteristic poses, (e.g. standing, walking)

Image window; Visualisation of HOG features; HOG features weighted by positive
weights; HOG features weighted by negative weights

Fig. 17.7 In Forsyth & Ponce (2nd ed). Original source: Dalal and Triggs, 2005.
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Deformable Part Model

Sliding window detectors tend to fail when the object is not well described by a

1

rgid template

Felzenszwalb et al., 2010

Many complex objects are better represented using a parts model
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Deformable Part Model
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A deformable part model consists of a root and a set of parts
— Root: an approximate model that gives the overall location of the object

— Parts: object components that have reliable appearance but might appear
at somewnhat different locations on the root for different instances

Felzenszwalb et al., 2010
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Deformable Part Model
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Felzenszwalb et al., 2010

Each part has an appearance model and a natural location relative to the root

FiInding a window that looks a lot like the part close to that part’s natural
location relative to the root yields evidence that the object is present
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Deformable Part Model
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A parts model for a bicycle, containing a root and 6 parts

Figure source: Felzenszwalb et al., 2010
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Deformable Part Model

Figure source: Felzenszwalb et al., 2010

The learned root model is a set of linear weights (") applied to the feature
descriptor of the root window

The I-th learned part model consists of

— a set of linear weights 3%) applied to the feature descriptor of the part window
— a natural location (offset) relative to the root v\P) = (u(Pi) yPi))

— a set of distance weights d®) = (4%, a?*), qP*), qP*))

o4



Sliding Window with Deformable Part Model

The overall score of the deformable parts model at a particular window will be
the sum of several scores

— A root score compares the root to the window

— Each part has its own score, consisting of an appearance score and a
location score

Model score = Root score + Z Part | score

1
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Sliding Window with Deformable Part Model

Denote by ¢(z,y) the feature descriptor of a part window at offset (x, y) relative
to the root.

Denote by (dz, dy) = (u'P),vP)) — (z, y) the difference from the part’s natural
offset relative to the root.

The score for part i at offset (z,y) is given by:

S(pi)(aj,y;/B(pi)’d(pi)7v(pi)) _ 5(pi)¢($7y)
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Sliding Window with Deformable Part Model

Denote by ¢(z,y) the feature descriptor of a part window at offset (x, y) relative
to the root.

Denote by (dz, dy) = (u'P),vP)) — (z, y) the difference from the part’s natural
offset relative to the root.

The score for part i at offset (z,y) is given by:

S(pi)(aj,y;/B(pi)’d(pi)7v(pi)) _ 5(pi)¢($7y)

The final part i score is the best score found over all possible offsets (z, y)

Part / score = max ;) SP) (z,y; B, AP vPi))

of



Learning a Deformable Part Model

Learning the model can be tricky. Why?
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Learning a Deformable Part Model

Learning the model can be tricky. Why?

A class model can consist of multiple component models representing different
canonical views

— e.g. a front and lateral model of a bicycle

We do not know which component model should respond to which training
example
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Learning a Deformable Part Model

Learning the model can be tricky. Why?

A class model can consist of multiple component models representing different
canonical views

— e.g. a front and lateral model of a bicycle

We do not know which component model should respond to which training
example

We also do not know the locations of the parts in the training examples

o0



Learning a Deformable Part Model

However, notice that if the component and the part locations for each training
example are given (fixed), we can simply train a linear SVM as usual

o1



Learning a Deformable Part Model

However, notice that if the component and the part locations for each training
example are given (fixed), we can simply train a linear SVM as usual

This observation leads to the following iterative strategy:

— Assume components and part locations are given (fixed). Compute
appearance and offset models.

— Assume appearance and offset models are given (fixed). Re-estimate
components and part locations.

02



Deformable Part Models: Hard Negative Mining

Sliding window detectors must search over an immense number of windows
— Even a small false positive rate becomes noticeable

As a result, we want to train on as many negative examples as possible, but
remain computationally feasible

Hard negative mining: As we train the classifier, apply it to the negative
examples (e.g. ‘not a bicycle’) and keep track of ones that get a strong

response (e.g. are mistakenly detected as bicycles). Include these in the next
round of training.
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Deformable Part Model: Examples

A learned car model

Figure source: Felzenszwalb et al., 2010
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Deformable Part Model: Examples

A learned cat model

Figure source: Felzenszwalb et al., 2010
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Deformable Part Models are Convolutional Neural Networks

Ross Girshick?

Forrest Iandola?

"Microsoft Research

rbg@microsoft.com

Abstract

Deformable part models (DPMs) and convolutional neu-
ral networks (CNNs) are two widely used tools for vi-
sual recognition. They are typically viewed as distinct ap-
proaches: DPMs are graphical models (Markov random
fields), while CNNs are “black-box” non-linear classifiers.
In this paper, we show that a DPM can be formulated as a
CNN, thus providing a synthesis of the two ideas. Our con-
struction involves unrolling the DPM inference algorithm
and mapping each step to an equivalent CNN layer. From
this perspective, it is natural to replace the standard im-
age features used in DPMs with a learned feature extractor.
We call the resulting model a DeepPyramid DPM and ex-
perimentally validate it on PASCAL VOC object detection.
We find that DeepPyramid DPMs significantly outperform
DPMs based on histograms of oriented gradients features
(HOG) and slightly outperforms a comparable version of
the recently introduced R-CNN detection system, while run-
ning significantly faster.

06

Trevor Darrell?

Jitendra Malik?
2UC Berkeley

{forresti,trevor,malik}@eecs.berkeley.edu

CNN. In other words, deformable part models are convo-
lutional neural networks. Our construction relies on a new
network layer, distance transform pooling, which general-
izes max pooling.

DPMs typically operate on a scale-space pyramid of gra-
dient orientation feature maps (HOG [5]). But we now
know that for object detection this feature representation is
suboptimal compared to features computed by deep con-
volutional networks [17]. As a second innovation, we re-
place HOG with features learned by a fully-convolutional
network. This “front-end” network generates a pyramid of
deep features, analogous to a HOG feature pyramid. We
call the full model a DeepPyramid DPM.

We experimentally validate DeepPyramid DPMs by
measuring object detection performance on PASCAL VOC
[9]. Since traditional DPMs have been tuned for HOG fea-
tures over many years, we first analyze the differences be-
tween HOG feature pyramids and deep feature pyramids.
We then select a good model structure and train a Deep-
Pyramid DPM that significantly outperforms the best HOG-

based DPMs. While we don’t expect our approach to out-
narfarm a fina_tiimad R_NINl Aatantar [ 171 wra An find that 1t



Recall: Sliding Window

Train an image classifier as described previously. ‘Slide” a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark
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Recall: Sliding Window

Train an image classifier as described previously. ‘Slide” a fixed-sized
detection window across the image and evaluate the classifier on each
window.

Image credit: KITTI Vision Benchmark

This is a lot of possible windows! And most will not contain the object we are
looking for.

03



Object Proposals

Object proposal algorithms generate a short list of regions that have generic
object-like properties

— Ihese regions are likely to contain some kind of foreground object instead of
background texture

The object detector then considers these candidate regions only, instead of
exhaustive sliding window search

69



Object Proposals

First introduced by Alexe et al., who asked ‘what is an object”?’ and defined an
‘Objectness’ score based on several visual cues

Figure credit: Alexe et al., 2012
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Object Proposals

First introduced by Alexe et al., who asked ‘what is an object”?’ and defined an
‘Objectness’ score based on several visual cues

Figure credit: Alexe et al., 2012
This work argued that objects typically

— are unigque within the image and stand out as salient
— have a contrasting appearance from surroundings and/or

— have a well-defined closed boundary in space
Ia



Object Proposals

Multiscale Saliency
— Favors regions with a unique appearance within the image

High scale Low scale

Successful Case

Failure Case

72 Figure credit: Alexe et al., 2012



Object Proposals

Colour Contrast

— Favors regions with a contrasting colour appearance from immediate
surroundings

Successful Cases Failure Case

73 Figure credit: Alexe et al., 2012



Object Proposals

Superpixels Straddling

— Favors regions with a well-defined closed boundary

— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

74 Figure credit: Alexe et al., 2012



Object Proposals

Superpixels Straddling

— Favors regions with a well-defined closed boundary

— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

Successful Cases Failure Case

75 Figure credit: Alexe et al., 2012



Object Proposals

TABLE 2: For each detector [11. 18, 33| we report 1ts performance
(left column) and that of our algorithm 1 using the same window
scoring function (right column). We show the average number of
windows evaluated per image #win and the detection performance
as the mean average precision (mAP) over all 20 classes.

[11] OBJ-[11] [ 18] OBJ- [I8] | ESS-BOW|[33] OBJ-BOW
mAP | 0.186 0.162 | 0.268 0.225 0.127 0.125
#win | 79945 = 1349 | 18562 —m 1358 183501 —% 2997

Table credit: Alexe et al., 2012

Speeding up [11] HOG pedestrian detector [18] Deformable part model detector
[33] Bag of words detector
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Summary

Detection scores in the deformable part model are based on both appearance
and location

The deformable part model Is trained iteratively by alternating the steps

1. Assume components and part locations given; compute appearance and
offset models

2. Assume appearance and offset models given; compute components and
part locations

An object proposal algorithm generates a short list of regions with generic
object-like properties that can be evaluated by an object detector In place of an
exhaustive sliding window search

la4



