
Lecture 21: Object Detection (cont.)

CPSC 425: Computer Vision

!1

Menu for Today (March 26, 2020)
Topics:

— Deformable part models
— Object Proposals

Reminders:
— Assignment 5: Scene Recognition with Bag of Words due March 31st
— Assignment 6: Deep Learning will be available March 31st

— Grouping
— Image Segmentation

Redings:
— Today’s Lecture: Forsyth & Ponce (2nd ed.) 15.1, 15.2, 17.2

— Next Lecture: Deep Learning (N/A)

!3
Figure credit: Paul Viola

Lecture 20: Re-cap — Boosting

!4
Figure credit: Paul Viola

Lecture 20: Re-cap — Boosting

!5
Figure credit: Paul Viola

Lecture 20: Re-cap — Boosting

!6
Figure credit: Paul Viola

Lecture 20: Re-cap — Boosting

!7
Figure credit: Paul Viola

Lecture 20: Re-cap — Boosting

!8
Figure credit: Paul Viola

Lecture 20: Re-cap — Boosting

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!9

Image credit: KITTI Vision Benchmark

Lecture 20: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!10

Image credit: KITTI Vision Benchmark

Lecture 20: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!11

Image credit: KITTI Vision Benchmark

Lecture 20: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!12

Image credit: KITTI Vision Benchmark

Lecture 20: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!13

Image credit: KITTI Vision Benchmark

Lecture 20: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!14

Image credit: KITTI Vision Benchmark

Lecture 20: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!15

Image credit: KITTI Vision Benchmark

Lecture 20: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!16

Image credit: KITTI Vision Benchmark

Lecture 20: Re-cap — Sliding Window

Is there a car?

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

This is a search over location  
— We have to search over scale as well  
— We may also have to search over aspect ratios

!17

Image credit: KITTI Vision Benchmark

Lecture 20: Re-cap — Sliding Window

Example: Face Detection

The Viola-Jones face detector is a classic sliding window detector that learns
both efficient features and a classifier

A key strategy is to use features that are fast to evaluate to reject most
windows early

The Viola-Jones detector computes ‘rectangular’ features within each window

!18

A ‘rectangular’ feature is computed by summing up pixel values within
rectangular regions and then differencing those region sums

!19

Figure credit: P. Viola and M. Jones, 2001

a.k.a. Harr Wavelets

Example: Face Detection

!20

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Training Dataset:

Faces Not-faces

!21

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Evaluate a Harr Wavelet filter on each training example

Faces Not-faces

!22

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Evaluate a Harr Wavelet filter on each training example

We can build a simple classifier by just selecting a threshold on the filter response
(e.g. Harr filter response > 0.6 = face; Harr filter response <= 0.6 = not face)

Note: it is easy to find an optimal threshold. Just
requires linear search over training example responses.

!23

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Evaluate a Harr Wavelet filter on each training example

!24

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Evaluate a Harr Wavelet filter on each training example

Faces Not-faces

!25

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Evaluate a Harr Wavelet filter on each training example

Faces Not-faces

Note: we can easily compare different Harr Wavelet features under their individual
best thresholds to see is the most informative (has highest classification)

!26

Many possible rectangular features (180,000+ were used in the original paper)
Figure credit: B. Freeman

Example: Face Detection

!27

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Evaluate a Harr Wavelet filter on each training example

Faces Not-faces

Note: we can easily compare different Harr Wavelet features under their individual
best thresholds to see is the most informative (has highest classification)

However, no one feature is likely to be good enough

!28

Use boosting to both select the informative features and form the classifier.
Each round chooses a weak classifier that simply compares a single rectangular
feature against a threshold

Figure credit: P. Viola and M. Jones, 2001

Example: Face Detection

!29

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Select best filter/threshold combination

2. Re-weight examples

!30

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Select best filter/threshold combination

We start with all sample weights = 1

!31

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Select best filter/threshold combination

weighed sum of miss-classified
training examples

Note: the second term is 0/1
 — 0 predicted label and true label are same
 — 1 predicted label and true label are different (error)

!32

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Select best filter/threshold combination

!33

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Select best filter/threshold combination

2. Re-weight examples

!34

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

2. Re-weight examples

Case 1: Classification for the sample i is correct

Case 2: Classification for the sample i is incorrect

wt+1,i = wt,i �t

wt+1,i = wt,i �t

!35

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

2. Re-weight examples

Case 1: Classification for the sample i is correct

Case 2: Classification for the sample i is incorrect

wt+1,i = wt,i �t

wt+1,i = wt,i �t

Note: the Beta is < 1

!36

Example: Face Detection

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Select best filter/threshold combination

2. Re-weight examples

!37 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Example: Face Detection

3. The final strong classifier is

The final strong classifier is a weighted linear combination of the T weak
classifiers where the weights are inversely proportional to the training errors

!38
Figure credit: K. Grauman

Example: Face Detection Summary

!39
Figure credit: K. Grauman

Example: Face Detection Summary

Main Issue: Efficiency

Observations:
— On average only 0.01% of all sub-windows are positive (faces)
— Equal computation time is spent on all sub-window
— Shouldn’t we spend most time only on potentially positive sub-windows?

!40

Example: Face Detection

Observations:
— On average only 0.01% of all sub-windows are positive (faces)
— Equal computation time is spent on all sub-window
— Shouldn’t we spend most time only on potentially positive sub-windows?

!41

Example: Face Detection

A simple 2-feature classifier can achieve almost 100% detection
rate (0% false negatives) with 50% false positive rate

Observations:
— On average only 0.01% of all sub-windows are positive (faces)
— Equal computation time is spent on all sub-window
— Shouldn’t we spend most time only on potentially positive sub-windows?

Solution:
— A simple 2-feature classifier can act as a 1st layer of a series to filter out
most negative (clearly non-face) windows
— 2nd layer with 10 features can tackle “harder” negative-windows which
survived the 1st layer, and so on…

!42

Example: Face Detection

A simple 2-feature classifier can achieve almost 100% detection
rate (0% false negatives) with 50% false positive rate

Cascading Classifiers

To make detection faster, features can be reordered by increasing complexity
of evaluation and the thresholds adjusted so that the early (simpler) tests have
few or no false negatives

Any window that is rejected by early tests can be discarded quickly without
computing the other features

This is referred to as a cascade architecture
!43

Figure credit: P. Viola

!44

Cascading Classifiers

A classifier in the cascade is not necessarily restricted to a single feature

Figure credit: P. Viola

!45 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Example: Face Detection

3. The final strong classifier is

The final strong classifier is a weighted linear combination of the T weak
classifiers where the weights are inversely proportional to the training errors

!46
Figure credit: K. Grauman

Example: Face Detection Summary

Hard Negative Mining

!47
Image From: Jamie Kang

!48

"CV Dazzle, a project focused on finding fashionable ways to thwart facial-
recognition technology"

Just for fun:

Figure source: Wired, 2015

Example: Face Detection

Pedestrian Detection

!49

Image window; Visualisation of HOG features; HOG features weighted by positive
weights; HOG features weighted by negative weights

Fig. 17.7 in Forsyth & Ponce (2nd ed). Original source: Dalal and Triggs, 2005.

The sliding window approach applies naturally to pedestrian detection because
pedestrians tend to take characteristic poses, (e.g. standing, walking)

!50

Sliding window detectors tend to fail when the object is not well described by a
rigid template

Felzenszwalb et al., 2010

Many complex objects are better represented using a parts model

Deformable Part Model

Deformable Part Model

A deformable part model consists of a root and a set of parts
— Root: an approximate model that gives the overall location of the object
— Parts: object components that have reliable appearance but might appear
at somewhat different locations on the root for different instances

!51

Felzenszwalb et al., 2010

Each part has an appearance model and a natural location relative to the root

Finding a window that looks a lot like the part close to that part’s natural
location relative to the root yields evidence that the object is present

!52

Felzenszwalb et al., 2010

Deformable Part Model

!53

A parts model for a bicycle, containing a root and 6 parts

Figure source: Felzenszwalb et al., 2010

Deformable Part Model

The learned root model is a set of linear weights applied to the feature
descriptor of the root window
The i-th learned part model consists of
— a set of linear weights applied to the feature descriptor of the part window
— a natural location (offset) relative to the root
— a set of distance weights

!54

�(pi)

�(r)

v(pi) = (u(pi), v(pi))

d(pi) = (d(pi)
1 , d(pi)

2 , d(pi)
3 , d(pi)

4)

Figure source: Felzenszwalb et al., 2010

Deformable Part Model

Sliding Window with Deformable Part Model

The overall score of the deformable parts model at a particular window will be
the sum of several scores
— A root score compares the root to the window
— Each part has its own score, consisting of an appearance score and a
location score

Model score = Root score + Part i score

!55

X

i

Denote by the feature descriptor of a part window at offset relative
to the root.

Denote by the difference from the part’s natural
offset relative to the root.

The score for part i at offset is given by: 

!56

S

(pi)(x, y;�(pi)
,d(pi)

,v(pi)) = �

(pi)
�(x, y)

�
⇣
d

(pi)
1 dx+ d

(pi)
2 dy + d

(pi)
3 (dx)2 + d

(pi)
4 (dy)2

⌘

S

(pi)(x, y;�(pi)
,d(pi)

,v(pi)) = �

(pi)
�(x, y)

�
⇣
d

(pi)
1 dx+ d

(pi)
2 dy + d

(pi)
3 (dx)2 + d

(pi)
4 (dy)2

⌘

�(x, y)

(x, y)

(dx, dy) = (u(pi)
, v

(pi))� (x, y)

(x, y)

Sliding Window with Deformable Part Model

Denote by the feature descriptor of a part window at offset relative
to the root.

Denote by the difference from the part’s natural
offset relative to the root.

The score for part i at offset is given by: 

The final part i score is the best score found over all possible offsets

!57

S

(pi)(x, y;�(pi)
,d(pi)

,v(pi)) = �

(pi)
�(x, y)

�
⇣
d

(pi)
1 dx+ d

(pi)
2 dy + d

(pi)
3 (dx)2 + d

(pi)
4 (dy)2

⌘

S

(pi)(x, y;�(pi)
,d(pi)

,v(pi)) = �

(pi)
�(x, y)

�
⇣
d

(pi)
1 dx+ d

(pi)
2 dy + d

(pi)
3 (dx)2 + d

(pi)
4 (dy)2

⌘

�(x, y)

(x, y)

(dx, dy) = (u(pi)
, v

(pi))� (x, y)

(x, y)

(x, y)

max(x,y)S
(pi)(x, y;�(pi)

,d(pi)
,v(pi))Part i score =

Sliding Window with Deformable Part Model

Learning a Deformable Part Model

Learning the model can be tricky. Why?

!58

Learning a Deformable Part Model

Learning the model can be tricky. Why?

A class model can consist of multiple component models representing different
canonical views
— e.g. a front and lateral model of a bicycle

We do not know which component model should respond to which training
example

!59

Learning a Deformable Part Model

Learning the model can be tricky. Why?

A class model can consist of multiple component models representing different
canonical views
— e.g. a front and lateral model of a bicycle

We do not know which component model should respond to which training
example

We also do not know the locations of the parts in the training examples

!60

However, notice that if the component and the part locations for each training
example are given (fixed), we can simply train a linear SVM as usual

!61

Learning a Deformable Part Model

However, notice that if the component and the part locations for each training
example are given (fixed), we can simply train a linear SVM as usual

This observation leads to the following iterative strategy:
— Assume components and part locations are given (fixed). Compute
appearance and offset models.
— Assume appearance and offset models are given (fixed). Re-estimate
components and part locations.

!62

Learning a Deformable Part Model

Deformable Part Models: Hard Negative Mining

Sliding window detectors must search over an immense number of windows 
— Even a small false positive rate becomes noticeable

As a result, we want to train on as many negative examples as possible, but
remain computationally feasible

Hard negative mining: As we train the classifier, apply it to the negative
examples (e.g. ‘not a bicycle’) and keep track of ones that get a strong
response (e.g. are mistakenly detected as bicycles). Include these in the next
round of training.

!63

Deformable Part Model: Examples

!64

Figure source: Felzenszwalb et al., 2010

Deformable Part Model: Examples

!65

Figure source: Felzenszwalb et al., 2010

!66

Recall: Sliding Window
Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!67

Image credit: KITTI Vision Benchmark

Recall: Sliding Window
Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

!68

Image credit: KITTI Vision Benchmark

This is a lot of possible windows! And most will not contain the object we are
looking for.

Object Proposals

Object proposal algorithms generate a short list of regions that have generic
object-like properties
— These regions are likely to contain some kind of foreground object instead of
background texture

The object detector then considers these candidate regions only, instead of
exhaustive sliding window search

!69

!70

First introduced by Alexe et al., who asked ‘what is an object?’ and defined an
‘objectness’ score based on several visual cues

Object Proposals

Figure credit: Alexe et al., 2012

!71

First introduced by Alexe et al., who asked ‘what is an object?’ and defined an
‘objectness’ score based on several visual cues

Object Proposals

Figure credit: Alexe et al., 2012
This work argued that objects typically
— are unique within the image and stand out as salient
— have a contrasting appearance from surroundings and/or
— have a well-defined closed boundary in space

!72

Multiscale Saliency
— Favors regions with a unique appearance within the image

High scale Low scale

Failure Case

Successful Case

Object Proposals

Figure credit: Alexe et al., 2012

!73

Colour Contrast
— Favors regions with a contrasting colour appearance from immediate
surroundings

Failure CaseSuccessful Cases

Figure credit: Alexe et al., 2012

Object Proposals

!74 Figure credit: Alexe et al., 2012

Superpixels Straddling
— Favors regions with a well-defined closed boundary
— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

Object Proposals

!75

Object Proposals

Figure credit: Alexe et al., 2012

Superpixels Straddling
— Favors regions with a well-defined closed boundary
— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

Failure CaseSuccessful Cases

!76

Speeding up [11] HOG pedestrian detector [18] Deformable part model detector
[33] Bag of words detector

Table credit: Alexe et al., 2012

Object Proposals

Summary

Detection scores in the deformable part model are based on both appearance
and location

The deformable part model is trained iteratively by alternating the steps
	 1. Assume components and part locations given; compute appearance and

offset models
	 2. Assume appearance and offset models given; compute components and

part locations

An object proposal algorithm generates a short list of regions with generic
object-like properties that can be evaluated by an object detector in place of an
exhaustive sliding window search

!77

