THE UNIVERSITY OF BRITISH COLUMBIA

O O HE HEE o O HE BB
O] m B O m B
D|:||:| O ..l. DDD O ..l.
] [ O ] ] O
=ik - a7 -
O - = ] . =
O O
O o T O iy T
oy -
HE [ HE [

Lecture 19: Image Classification (cont.)



Menu for Today (March 19, 2020)

Topics:
— Scene Classification — Decision Tree
— Bag of Words Representation — Boosting

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9
— Next Lecture: Forsyth & Ponce (2nd ed.) 17.1-17.2

Reminders:

— No more fun examples (sorry) ... it is difficult to get them to work

— Assignment 5 is out



Lecture 18: Re-cap

Classify images containing single objects, the same techniques can be applied
to classify natural scenes (e.g. beach, forest, harbour, library).



Lecture 18: Re-cap (Vector Space Model)

Many algorithms for image classification accumulate evidence on the basis of
visual words.

To classity a text document (e.g. as an article on sports, entertainment,
business, politics) we might find patterns in the occurrences of certain words.



Lecture 18: Re-cap (Vector Space Model

G. Salton. ‘Mathematics and Information Retrieval’ Journal of Documentation, 1979
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Lecture 18: Re-cap (Vector Space Model

A document (datapoint) is a vector of counts over each word (feature

vqg = [n(w14) n(wagq) --- n(wrg)l ‘é-s\
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Visual Words

INn Images, the equivalent of a word Is a local image patch. The local image
patch is described using a descriptor such as SIFT.

We construct a vocabulary or codebook of local descriptors, containing
representative local descriptors.



What Objects do These Parts Belong To”

9 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Some local feature are
very Informative -

a collection of local features
(loag-of-features)

e deals well with occlusion
e gcale Invariant
e rotation invariant

10 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



(not so) Crazy Assumption

spatial information of local features
can be ignored for object recognition (i.e., verification)

11 Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Visual Words

INn Images, the equivalent of a word Is a local image patch. The local image
patch is described using a descriptor such as SIFT.

We construct a vocabulary or codebook of local descriptors, containing
representative local descriptors.

Question: How might we construct such a codebook? Given a large sample of
SIFT descriptors, say 1 million, how can we choose a small number of
‘representative’ SIFT codewords, say 10007

13



Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each iImage

Classify:
Train and test data using BOWs

14 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Dictionary Learning: Learn Visual Words using Clustering

1. extract features (e.g., SIFT) from images

15 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Dictionary Learning: Learn Visual Words using Clustering

2. Learn visual dictionary (e.g., K-means clustering)

16 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What Features Should We Extract?

— Regular grid
Vogel & Schiele, 2003
Fel-Fel & Perona, 2005

— Interest point detector

Csurka et al. 2004
Fel-Fel & Perona, 2005
Sivic et al. 2005

— Other methods

Random sampling (Vidal-Naguet & Uliman,
2002)

Segmentation-based patches (Barnard et
al. 2003)

17 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Extracting SIFT Patches

Compute SIFT  Normalize patch
descriptor

ILowe’ 99|

Detect patches
Mikojaczyk and Schmid '02]
Mata, Chum, Urban & Pajdla, '02]
Sivic & Zisserman, 03]

18 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Extracting SIFT Patches

N | |

19 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Creating Dictionary
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Clustering

Slide Credit: loannis (Yannis) Gkioulekas (CMU
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Visual vocabulary

Clustering

Slide Credit: loannis (Yannis) Gkioulekas (CMU



K-means clustering
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K-means Clustering

K-means is a clustering technique that iterates between

1. Assume the cluster centers are known. Assign each point to the
closest cluster center.

2. Assume the assignment of points to clusters is known. Compute
the best cluster center for each cluster (as the mean).

K-means clustering is initialization dependent and converges to a local minimum

24



Example Visual Dictionary
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Example Visual Dictionary
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Example Visual Dictionary
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Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
_earn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each image

Classify:
Train and test data using BOWs

08 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

T

1. Quantization: image features gets associated
to a visual word (nearest cluster center)

M
\

29 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

2. Histogram: count the number of visual word occurrences
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30 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

frequency

TLUNENL, e

codewords

3 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each Image

Classify:
Train and test data using BOWs

39 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



3. Classify: Train and text classifier using BOWSs

Support
K nearest Vector
neighbors Machine

33 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Bag-of-Words Representation

Algorithm:

Initialize an empty K -bin histogram, where K Is the number of codewords
Extract local descriptors (e.g. SIFT) from the image
For each local descriptor x

Map (Quantize) x to its closest codeword — ¢(x)
Increment the histogram bin for ¢(x)
Return histogram

We can then classity the histogram using a trained classifier, e.g. a support
vector machine or k-Nearest Neighbor classifier

34



Spatial Pyramid

The bag of words representation does not preserve any spatial information

The spatial pyramid is one way to incorporate spatial information into the
image descriptor.

A spatial pyramid partitions the image and counts codewords within each grid
box; this Is performed at multiple levels

35



Spatial Pyramid
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VLAD (Vector of Locally Aggregated Descriptors)

There are more advanced ways to ‘count’ visual words than incrementing its
histogram bin

For example, it might be useful to describe how local descriptors are quantized
to thelr visual words

In the VLAD representation, instead of incrementing the histogram bin by one,
we increment it by the residual vector x — ¢(x)
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Example: VLAD

338



Example: VLAD
Bag of Word
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Example: VLAD
Bag of Word

40



Example: VLAD

Bag of Word

VLAD
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Example: VLAD

Bag of Word
‘ i 6. 3. O]
VLAD

/7 N\
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VLAD (Vector of Locally Aggregated Descriptors)

The dimensionality of a VLAD descriptor is Kd
— K : number of codewords
— d : dimensionality of the local descriptor

VLAD characterizes the distribution of local descriptors with respect to the
codewords
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Summary

Factors that make image classification hard
— Intra-class variation, viewpoint, illumination, clutter, occlusion...

A codebook of visual words contains representative local patch descriptors

— can be constructed by clustering local descriptors (e.g. SIFT) in training
images

The bag of words model accumulates a histogram of occurrences of each
visual word

The spatial pyramid partitions the image and counts visual words within each
grid box; this Is repeated at multiple levels

44



Back to Classification



Decision Iree

A decision tree is a simple non-linear parametric classifier
Consists of a tree in which each internal node Is associated with a feature test

A data point starts at the root and recursively proceeds to the child node
determined by the feature test, until it reaches a leaf node

The leaf node stores a class label or a probability distribution over class labels

46



Decision Iree

Learning a decision tree from a training set involves selecting an efficient

sequence of feature tests
Example: \Waiting for a restaurant table

Example Attributes Target
Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | FEst | WillWait
X, T | F | F T | Some| $$% F T | French | 0-10 T
Xo r F | F | T | Ful $ F F | Thai | 30-60 F
X3 F| T | F | F |Some| §$ F F | Burger 0-10 T
X4 r F | T | T | Ful $ F F | Thai | 10-30 T
X5 r F | T | F | Full | $%% F T | French| >60 F
X F| T | F | T | Some| $% T T | Italian | 0-10 T
X7 F| T | F | F | None|l §$ T F | Burger 0-10 F
Xy F| F | F | T | Some| $% T T | Thai | 0-10 T
X F| T | T | F | Ful $ T F | Burger| >60 F
X0 T | T | T | T | Full | $%% F T | Italian | 10-30 F
X1 F| F | F| F | None|l § F F | Thai | 0-10 F
X9 T T | T T | Ful $ F F | Burger | 30-60 T

47




Decision Iree

Which test is more helpful?

Patrons?

Nor%\ull Frencm
0000 00 O

Figure credit: Russell and Norvig (3rd ed.)
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Decision Iree

The entropy of a set S of data samples is defined as

Zp ) log(p

ceC

where C is the set of classes represented in .S, and p(c¢) is the empirical
distribution of class ¢ In S

Entropy Is highest when data samples are spread equally across all classes,
and zero when all data samples are from the same class.

49



Decision Iree

In general we try to select the feature test that maximizes the information gain:

I=H(S)- »

i1€{children} ‘ ‘

In the previous example, the information gains of the two candidate tests are:

Ipatrons = 0.041 IType =

SO we choose the ‘Patrons’ test.

50



Decision Iree

Following this construction procedure we obtain the final decision tree:

| Patrons? |
None ome Full
| Hungry? |
Yes No
Type?

French Italia Tha Burger

| Fri/Sat? |
No Yes

Figure credit: Russell and Norvig (3rd ed.)
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